NVMe: Disk IO statistics
[deliverable/linux.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define ADMIN_TIMEOUT (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62 * An NVM Express queue. Each device has at least two (one for admin
63 * commands and one for I/O commands).
64 */
65 struct nvme_queue {
66 struct device *q_dmadev;
67 struct nvme_dev *dev;
68 spinlock_t q_lock;
69 struct nvme_command *sq_cmds;
70 volatile struct nvme_completion *cqes;
71 dma_addr_t sq_dma_addr;
72 dma_addr_t cq_dma_addr;
73 wait_queue_head_t sq_full;
74 wait_queue_t sq_cong_wait;
75 struct bio_list sq_cong;
76 u32 __iomem *q_db;
77 u16 q_depth;
78 u16 cq_vector;
79 u16 sq_head;
80 u16 sq_tail;
81 u16 cq_head;
82 u16 cq_phase;
83 unsigned long cmdid_data[];
84 };
85
86 /*
87 * Check we didin't inadvertently grow the command struct
88 */
89 static inline void _nvme_check_size(void)
90 {
91 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
92 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
93 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
94 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
95 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
96 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
97 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
98 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
99 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
100 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
101 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
102 }
103
104 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
105 struct nvme_completion *);
106
107 struct nvme_cmd_info {
108 nvme_completion_fn fn;
109 void *ctx;
110 unsigned long timeout;
111 };
112
113 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
114 {
115 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
116 }
117
118 /**
119 * alloc_cmdid() - Allocate a Command ID
120 * @nvmeq: The queue that will be used for this command
121 * @ctx: A pointer that will be passed to the handler
122 * @handler: The function to call on completion
123 *
124 * Allocate a Command ID for a queue. The data passed in will
125 * be passed to the completion handler. This is implemented by using
126 * the bottom two bits of the ctx pointer to store the handler ID.
127 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128 * We can change this if it becomes a problem.
129 *
130 * May be called with local interrupts disabled and the q_lock held,
131 * or with interrupts enabled and no locks held.
132 */
133 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
134 nvme_completion_fn handler, unsigned timeout)
135 {
136 int depth = nvmeq->q_depth - 1;
137 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
138 int cmdid;
139
140 do {
141 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
142 if (cmdid >= depth)
143 return -EBUSY;
144 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
145
146 info[cmdid].fn = handler;
147 info[cmdid].ctx = ctx;
148 info[cmdid].timeout = jiffies + timeout;
149 return cmdid;
150 }
151
152 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153 nvme_completion_fn handler, unsigned timeout)
154 {
155 int cmdid;
156 wait_event_killable(nvmeq->sq_full,
157 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
158 return (cmdid < 0) ? -EINTR : cmdid;
159 }
160
161 /* Special values must be less than 0x1000 */
162 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
163 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
164 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
165 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
166 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
167
168 static void special_completion(struct nvme_dev *dev, void *ctx,
169 struct nvme_completion *cqe)
170 {
171 if (ctx == CMD_CTX_CANCELLED)
172 return;
173 if (ctx == CMD_CTX_FLUSH)
174 return;
175 if (ctx == CMD_CTX_COMPLETED) {
176 dev_warn(&dev->pci_dev->dev,
177 "completed id %d twice on queue %d\n",
178 cqe->command_id, le16_to_cpup(&cqe->sq_id));
179 return;
180 }
181 if (ctx == CMD_CTX_INVALID) {
182 dev_warn(&dev->pci_dev->dev,
183 "invalid id %d completed on queue %d\n",
184 cqe->command_id, le16_to_cpup(&cqe->sq_id));
185 return;
186 }
187
188 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
189 }
190
191 /*
192 * Called with local interrupts disabled and the q_lock held. May not sleep.
193 */
194 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
195 nvme_completion_fn *fn)
196 {
197 void *ctx;
198 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
199
200 if (cmdid >= nvmeq->q_depth) {
201 *fn = special_completion;
202 return CMD_CTX_INVALID;
203 }
204 if (fn)
205 *fn = info[cmdid].fn;
206 ctx = info[cmdid].ctx;
207 info[cmdid].fn = special_completion;
208 info[cmdid].ctx = CMD_CTX_COMPLETED;
209 clear_bit(cmdid, nvmeq->cmdid_data);
210 wake_up(&nvmeq->sq_full);
211 return ctx;
212 }
213
214 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
215 nvme_completion_fn *fn)
216 {
217 void *ctx;
218 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219 if (fn)
220 *fn = info[cmdid].fn;
221 ctx = info[cmdid].ctx;
222 info[cmdid].fn = special_completion;
223 info[cmdid].ctx = CMD_CTX_CANCELLED;
224 return ctx;
225 }
226
227 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
228 {
229 return dev->queues[get_cpu() + 1];
230 }
231
232 void put_nvmeq(struct nvme_queue *nvmeq)
233 {
234 put_cpu();
235 }
236
237 /**
238 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239 * @nvmeq: The queue to use
240 * @cmd: The command to send
241 *
242 * Safe to use from interrupt context
243 */
244 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245 {
246 unsigned long flags;
247 u16 tail;
248 spin_lock_irqsave(&nvmeq->q_lock, flags);
249 tail = nvmeq->sq_tail;
250 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251 if (++tail == nvmeq->q_depth)
252 tail = 0;
253 writel(tail, nvmeq->q_db);
254 nvmeq->sq_tail = tail;
255 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257 return 0;
258 }
259
260 static __le64 **iod_list(struct nvme_iod *iod)
261 {
262 return ((void *)iod) + iod->offset;
263 }
264
265 /*
266 * Will slightly overestimate the number of pages needed. This is OK
267 * as it only leads to a small amount of wasted memory for the lifetime of
268 * the I/O.
269 */
270 static int nvme_npages(unsigned size)
271 {
272 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
273 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
274 }
275
276 static struct nvme_iod *
277 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
278 {
279 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
280 sizeof(__le64 *) * nvme_npages(nbytes) +
281 sizeof(struct scatterlist) * nseg, gfp);
282
283 if (iod) {
284 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
285 iod->npages = -1;
286 iod->length = nbytes;
287 iod->nents = 0;
288 iod->start_time = jiffies;
289 }
290
291 return iod;
292 }
293
294 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
295 {
296 const int last_prp = PAGE_SIZE / 8 - 1;
297 int i;
298 __le64 **list = iod_list(iod);
299 dma_addr_t prp_dma = iod->first_dma;
300
301 if (iod->npages == 0)
302 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
303 for (i = 0; i < iod->npages; i++) {
304 __le64 *prp_list = list[i];
305 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
306 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
307 prp_dma = next_prp_dma;
308 }
309 kfree(iod);
310 }
311
312 static void nvme_start_io_acct(struct bio *bio)
313 {
314 struct gendisk *disk = bio->bi_bdev->bd_disk;
315 const int rw = bio_data_dir(bio);
316 int cpu = part_stat_lock();
317 part_round_stats(cpu, &disk->part0);
318 part_stat_inc(cpu, &disk->part0, ios[rw]);
319 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
320 part_inc_in_flight(&disk->part0, rw);
321 part_stat_unlock();
322 }
323
324 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
325 {
326 struct gendisk *disk = bio->bi_bdev->bd_disk;
327 const int rw = bio_data_dir(bio);
328 unsigned long duration = jiffies - start_time;
329 int cpu = part_stat_lock();
330 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
331 part_round_stats(cpu, &disk->part0);
332 part_dec_in_flight(&disk->part0, rw);
333 part_stat_unlock();
334 }
335
336 static void bio_completion(struct nvme_dev *dev, void *ctx,
337 struct nvme_completion *cqe)
338 {
339 struct nvme_iod *iod = ctx;
340 struct bio *bio = iod->private;
341 u16 status = le16_to_cpup(&cqe->status) >> 1;
342
343 if (iod->nents)
344 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
345 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
346
347 nvme_end_io_acct(bio, iod->start_time);
348 nvme_free_iod(dev, iod);
349 if (status)
350 bio_endio(bio, -EIO);
351 else
352 bio_endio(bio, 0);
353 }
354
355 /* length is in bytes. gfp flags indicates whether we may sleep. */
356 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
357 struct nvme_iod *iod, int total_len, gfp_t gfp)
358 {
359 struct dma_pool *pool;
360 int length = total_len;
361 struct scatterlist *sg = iod->sg;
362 int dma_len = sg_dma_len(sg);
363 u64 dma_addr = sg_dma_address(sg);
364 int offset = offset_in_page(dma_addr);
365 __le64 *prp_list;
366 __le64 **list = iod_list(iod);
367 dma_addr_t prp_dma;
368 int nprps, i;
369
370 cmd->prp1 = cpu_to_le64(dma_addr);
371 length -= (PAGE_SIZE - offset);
372 if (length <= 0)
373 return total_len;
374
375 dma_len -= (PAGE_SIZE - offset);
376 if (dma_len) {
377 dma_addr += (PAGE_SIZE - offset);
378 } else {
379 sg = sg_next(sg);
380 dma_addr = sg_dma_address(sg);
381 dma_len = sg_dma_len(sg);
382 }
383
384 if (length <= PAGE_SIZE) {
385 cmd->prp2 = cpu_to_le64(dma_addr);
386 return total_len;
387 }
388
389 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
390 if (nprps <= (256 / 8)) {
391 pool = dev->prp_small_pool;
392 iod->npages = 0;
393 } else {
394 pool = dev->prp_page_pool;
395 iod->npages = 1;
396 }
397
398 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
399 if (!prp_list) {
400 cmd->prp2 = cpu_to_le64(dma_addr);
401 iod->npages = -1;
402 return (total_len - length) + PAGE_SIZE;
403 }
404 list[0] = prp_list;
405 iod->first_dma = prp_dma;
406 cmd->prp2 = cpu_to_le64(prp_dma);
407 i = 0;
408 for (;;) {
409 if (i == PAGE_SIZE / 8) {
410 __le64 *old_prp_list = prp_list;
411 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
412 if (!prp_list)
413 return total_len - length;
414 list[iod->npages++] = prp_list;
415 prp_list[0] = old_prp_list[i - 1];
416 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
417 i = 1;
418 }
419 prp_list[i++] = cpu_to_le64(dma_addr);
420 dma_len -= PAGE_SIZE;
421 dma_addr += PAGE_SIZE;
422 length -= PAGE_SIZE;
423 if (length <= 0)
424 break;
425 if (dma_len > 0)
426 continue;
427 BUG_ON(dma_len < 0);
428 sg = sg_next(sg);
429 dma_addr = sg_dma_address(sg);
430 dma_len = sg_dma_len(sg);
431 }
432
433 return total_len;
434 }
435
436 struct nvme_bio_pair {
437 struct bio b1, b2, *parent;
438 struct bio_vec *bv1, *bv2;
439 int err;
440 atomic_t cnt;
441 };
442
443 static void nvme_bio_pair_endio(struct bio *bio, int err)
444 {
445 struct nvme_bio_pair *bp = bio->bi_private;
446
447 if (err)
448 bp->err = err;
449
450 if (atomic_dec_and_test(&bp->cnt)) {
451 bio_endio(bp->parent, bp->err);
452 if (bp->bv1)
453 kfree(bp->bv1);
454 if (bp->bv2)
455 kfree(bp->bv2);
456 kfree(bp);
457 }
458 }
459
460 static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
461 int len, int offset)
462 {
463 struct nvme_bio_pair *bp;
464
465 BUG_ON(len > bio->bi_size);
466 BUG_ON(idx > bio->bi_vcnt);
467
468 bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
469 if (!bp)
470 return NULL;
471 bp->err = 0;
472
473 bp->b1 = *bio;
474 bp->b2 = *bio;
475
476 bp->b1.bi_size = len;
477 bp->b2.bi_size -= len;
478 bp->b1.bi_vcnt = idx;
479 bp->b2.bi_idx = idx;
480 bp->b2.bi_sector += len >> 9;
481
482 if (offset) {
483 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
484 GFP_ATOMIC);
485 if (!bp->bv1)
486 goto split_fail_1;
487
488 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
489 GFP_ATOMIC);
490 if (!bp->bv2)
491 goto split_fail_2;
492
493 memcpy(bp->bv1, bio->bi_io_vec,
494 bio->bi_max_vecs * sizeof(struct bio_vec));
495 memcpy(bp->bv2, bio->bi_io_vec,
496 bio->bi_max_vecs * sizeof(struct bio_vec));
497
498 bp->b1.bi_io_vec = bp->bv1;
499 bp->b2.bi_io_vec = bp->bv2;
500 bp->b2.bi_io_vec[idx].bv_offset += offset;
501 bp->b2.bi_io_vec[idx].bv_len -= offset;
502 bp->b1.bi_io_vec[idx].bv_len = offset;
503 bp->b1.bi_vcnt++;
504 } else
505 bp->bv1 = bp->bv2 = NULL;
506
507 bp->b1.bi_private = bp;
508 bp->b2.bi_private = bp;
509
510 bp->b1.bi_end_io = nvme_bio_pair_endio;
511 bp->b2.bi_end_io = nvme_bio_pair_endio;
512
513 bp->parent = bio;
514 atomic_set(&bp->cnt, 2);
515
516 return bp;
517
518 split_fail_2:
519 kfree(bp->bv1);
520 split_fail_1:
521 kfree(bp);
522 return NULL;
523 }
524
525 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
526 int idx, int len, int offset)
527 {
528 struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
529 if (!bp)
530 return -ENOMEM;
531
532 if (bio_list_empty(&nvmeq->sq_cong))
533 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
534 bio_list_add(&nvmeq->sq_cong, &bp->b1);
535 bio_list_add(&nvmeq->sq_cong, &bp->b2);
536
537 return 0;
538 }
539
540 /* NVMe scatterlists require no holes in the virtual address */
541 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
542 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
543
544 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
545 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
546 {
547 struct bio_vec *bvec, *bvprv = NULL;
548 struct scatterlist *sg = NULL;
549 int i, length = 0, nsegs = 0, split_len = bio->bi_size;
550
551 if (nvmeq->dev->stripe_size)
552 split_len = nvmeq->dev->stripe_size -
553 ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
554
555 sg_init_table(iod->sg, psegs);
556 bio_for_each_segment(bvec, bio, i) {
557 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
558 sg->length += bvec->bv_len;
559 } else {
560 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
561 return nvme_split_and_submit(bio, nvmeq, i,
562 length, 0);
563
564 sg = sg ? sg + 1 : iod->sg;
565 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
566 bvec->bv_offset);
567 nsegs++;
568 }
569
570 if (split_len - length < bvec->bv_len)
571 return nvme_split_and_submit(bio, nvmeq, i, split_len,
572 split_len - length);
573 length += bvec->bv_len;
574 bvprv = bvec;
575 }
576 iod->nents = nsegs;
577 sg_mark_end(sg);
578 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
579 return -ENOMEM;
580
581 BUG_ON(length != bio->bi_size);
582 return length;
583 }
584
585 /*
586 * We reuse the small pool to allocate the 16-byte range here as it is not
587 * worth having a special pool for these or additional cases to handle freeing
588 * the iod.
589 */
590 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
591 struct bio *bio, struct nvme_iod *iod, int cmdid)
592 {
593 struct nvme_dsm_range *range;
594 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
595
596 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
597 &iod->first_dma);
598 if (!range)
599 return -ENOMEM;
600
601 iod_list(iod)[0] = (__le64 *)range;
602 iod->npages = 0;
603
604 range->cattr = cpu_to_le32(0);
605 range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
606 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
607
608 memset(cmnd, 0, sizeof(*cmnd));
609 cmnd->dsm.opcode = nvme_cmd_dsm;
610 cmnd->dsm.command_id = cmdid;
611 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
612 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
613 cmnd->dsm.nr = 0;
614 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
615
616 if (++nvmeq->sq_tail == nvmeq->q_depth)
617 nvmeq->sq_tail = 0;
618 writel(nvmeq->sq_tail, nvmeq->q_db);
619
620 return 0;
621 }
622
623 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
624 int cmdid)
625 {
626 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
627
628 memset(cmnd, 0, sizeof(*cmnd));
629 cmnd->common.opcode = nvme_cmd_flush;
630 cmnd->common.command_id = cmdid;
631 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
632
633 if (++nvmeq->sq_tail == nvmeq->q_depth)
634 nvmeq->sq_tail = 0;
635 writel(nvmeq->sq_tail, nvmeq->q_db);
636
637 return 0;
638 }
639
640 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
641 {
642 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
643 special_completion, NVME_IO_TIMEOUT);
644 if (unlikely(cmdid < 0))
645 return cmdid;
646
647 return nvme_submit_flush(nvmeq, ns, cmdid);
648 }
649
650 /*
651 * Called with local interrupts disabled and the q_lock held. May not sleep.
652 */
653 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
654 struct bio *bio)
655 {
656 struct nvme_command *cmnd;
657 struct nvme_iod *iod;
658 enum dma_data_direction dma_dir;
659 int cmdid, length, result;
660 u16 control;
661 u32 dsmgmt;
662 int psegs = bio_phys_segments(ns->queue, bio);
663
664 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
665 result = nvme_submit_flush_data(nvmeq, ns);
666 if (result)
667 return result;
668 }
669
670 result = -ENOMEM;
671 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
672 if (!iod)
673 goto nomem;
674 iod->private = bio;
675
676 result = -EBUSY;
677 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
678 if (unlikely(cmdid < 0))
679 goto free_iod;
680
681 if (bio->bi_rw & REQ_DISCARD) {
682 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
683 if (result)
684 goto free_cmdid;
685 return result;
686 }
687 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
688 return nvme_submit_flush(nvmeq, ns, cmdid);
689
690 control = 0;
691 if (bio->bi_rw & REQ_FUA)
692 control |= NVME_RW_FUA;
693 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
694 control |= NVME_RW_LR;
695
696 dsmgmt = 0;
697 if (bio->bi_rw & REQ_RAHEAD)
698 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
700 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
701
702 memset(cmnd, 0, sizeof(*cmnd));
703 if (bio_data_dir(bio)) {
704 cmnd->rw.opcode = nvme_cmd_write;
705 dma_dir = DMA_TO_DEVICE;
706 } else {
707 cmnd->rw.opcode = nvme_cmd_read;
708 dma_dir = DMA_FROM_DEVICE;
709 }
710
711 result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
712 if (result <= 0)
713 goto free_cmdid;
714 length = result;
715
716 cmnd->rw.command_id = cmdid;
717 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
718 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
719 GFP_ATOMIC);
720 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
721 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
722 cmnd->rw.control = cpu_to_le16(control);
723 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
724
725 nvme_start_io_acct(bio);
726 if (++nvmeq->sq_tail == nvmeq->q_depth)
727 nvmeq->sq_tail = 0;
728 writel(nvmeq->sq_tail, nvmeq->q_db);
729
730 return 0;
731
732 free_cmdid:
733 free_cmdid(nvmeq, cmdid, NULL);
734 free_iod:
735 nvme_free_iod(nvmeq->dev, iod);
736 nomem:
737 return result;
738 }
739
740 static void nvme_make_request(struct request_queue *q, struct bio *bio)
741 {
742 struct nvme_ns *ns = q->queuedata;
743 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
744 int result = -EBUSY;
745
746 spin_lock_irq(&nvmeq->q_lock);
747 if (bio_list_empty(&nvmeq->sq_cong))
748 result = nvme_submit_bio_queue(nvmeq, ns, bio);
749 if (unlikely(result)) {
750 if (bio_list_empty(&nvmeq->sq_cong))
751 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
752 bio_list_add(&nvmeq->sq_cong, bio);
753 }
754
755 spin_unlock_irq(&nvmeq->q_lock);
756 put_nvmeq(nvmeq);
757 }
758
759 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
760 {
761 u16 head, phase;
762
763 head = nvmeq->cq_head;
764 phase = nvmeq->cq_phase;
765
766 for (;;) {
767 void *ctx;
768 nvme_completion_fn fn;
769 struct nvme_completion cqe = nvmeq->cqes[head];
770 if ((le16_to_cpu(cqe.status) & 1) != phase)
771 break;
772 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
773 if (++head == nvmeq->q_depth) {
774 head = 0;
775 phase = !phase;
776 }
777
778 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
779 fn(nvmeq->dev, ctx, &cqe);
780 }
781
782 /* If the controller ignores the cq head doorbell and continuously
783 * writes to the queue, it is theoretically possible to wrap around
784 * the queue twice and mistakenly return IRQ_NONE. Linux only
785 * requires that 0.1% of your interrupts are handled, so this isn't
786 * a big problem.
787 */
788 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
789 return IRQ_NONE;
790
791 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
792 nvmeq->cq_head = head;
793 nvmeq->cq_phase = phase;
794
795 return IRQ_HANDLED;
796 }
797
798 static irqreturn_t nvme_irq(int irq, void *data)
799 {
800 irqreturn_t result;
801 struct nvme_queue *nvmeq = data;
802 spin_lock(&nvmeq->q_lock);
803 result = nvme_process_cq(nvmeq);
804 spin_unlock(&nvmeq->q_lock);
805 return result;
806 }
807
808 static irqreturn_t nvme_irq_check(int irq, void *data)
809 {
810 struct nvme_queue *nvmeq = data;
811 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
812 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
813 return IRQ_NONE;
814 return IRQ_WAKE_THREAD;
815 }
816
817 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
818 {
819 spin_lock_irq(&nvmeq->q_lock);
820 cancel_cmdid(nvmeq, cmdid, NULL);
821 spin_unlock_irq(&nvmeq->q_lock);
822 }
823
824 struct sync_cmd_info {
825 struct task_struct *task;
826 u32 result;
827 int status;
828 };
829
830 static void sync_completion(struct nvme_dev *dev, void *ctx,
831 struct nvme_completion *cqe)
832 {
833 struct sync_cmd_info *cmdinfo = ctx;
834 cmdinfo->result = le32_to_cpup(&cqe->result);
835 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
836 wake_up_process(cmdinfo->task);
837 }
838
839 /*
840 * Returns 0 on success. If the result is negative, it's a Linux error code;
841 * if the result is positive, it's an NVM Express status code
842 */
843 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
844 u32 *result, unsigned timeout)
845 {
846 int cmdid;
847 struct sync_cmd_info cmdinfo;
848
849 cmdinfo.task = current;
850 cmdinfo.status = -EINTR;
851
852 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
853 timeout);
854 if (cmdid < 0)
855 return cmdid;
856 cmd->common.command_id = cmdid;
857
858 set_current_state(TASK_KILLABLE);
859 nvme_submit_cmd(nvmeq, cmd);
860 schedule_timeout(timeout);
861
862 if (cmdinfo.status == -EINTR) {
863 nvme_abort_command(nvmeq, cmdid);
864 return -EINTR;
865 }
866
867 if (result)
868 *result = cmdinfo.result;
869
870 return cmdinfo.status;
871 }
872
873 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
874 u32 *result)
875 {
876 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
877 }
878
879 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
880 {
881 int status;
882 struct nvme_command c;
883
884 memset(&c, 0, sizeof(c));
885 c.delete_queue.opcode = opcode;
886 c.delete_queue.qid = cpu_to_le16(id);
887
888 status = nvme_submit_admin_cmd(dev, &c, NULL);
889 if (status)
890 return -EIO;
891 return 0;
892 }
893
894 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
895 struct nvme_queue *nvmeq)
896 {
897 int status;
898 struct nvme_command c;
899 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
900
901 memset(&c, 0, sizeof(c));
902 c.create_cq.opcode = nvme_admin_create_cq;
903 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
904 c.create_cq.cqid = cpu_to_le16(qid);
905 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
906 c.create_cq.cq_flags = cpu_to_le16(flags);
907 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
908
909 status = nvme_submit_admin_cmd(dev, &c, NULL);
910 if (status)
911 return -EIO;
912 return 0;
913 }
914
915 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
916 struct nvme_queue *nvmeq)
917 {
918 int status;
919 struct nvme_command c;
920 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
921
922 memset(&c, 0, sizeof(c));
923 c.create_sq.opcode = nvme_admin_create_sq;
924 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
925 c.create_sq.sqid = cpu_to_le16(qid);
926 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
927 c.create_sq.sq_flags = cpu_to_le16(flags);
928 c.create_sq.cqid = cpu_to_le16(qid);
929
930 status = nvme_submit_admin_cmd(dev, &c, NULL);
931 if (status)
932 return -EIO;
933 return 0;
934 }
935
936 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
937 {
938 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
939 }
940
941 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
942 {
943 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
944 }
945
946 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
947 dma_addr_t dma_addr)
948 {
949 struct nvme_command c;
950
951 memset(&c, 0, sizeof(c));
952 c.identify.opcode = nvme_admin_identify;
953 c.identify.nsid = cpu_to_le32(nsid);
954 c.identify.prp1 = cpu_to_le64(dma_addr);
955 c.identify.cns = cpu_to_le32(cns);
956
957 return nvme_submit_admin_cmd(dev, &c, NULL);
958 }
959
960 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
961 dma_addr_t dma_addr, u32 *result)
962 {
963 struct nvme_command c;
964
965 memset(&c, 0, sizeof(c));
966 c.features.opcode = nvme_admin_get_features;
967 c.features.nsid = cpu_to_le32(nsid);
968 c.features.prp1 = cpu_to_le64(dma_addr);
969 c.features.fid = cpu_to_le32(fid);
970
971 return nvme_submit_admin_cmd(dev, &c, result);
972 }
973
974 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
975 dma_addr_t dma_addr, u32 *result)
976 {
977 struct nvme_command c;
978
979 memset(&c, 0, sizeof(c));
980 c.features.opcode = nvme_admin_set_features;
981 c.features.prp1 = cpu_to_le64(dma_addr);
982 c.features.fid = cpu_to_le32(fid);
983 c.features.dword11 = cpu_to_le32(dword11);
984
985 return nvme_submit_admin_cmd(dev, &c, result);
986 }
987
988 /**
989 * nvme_cancel_ios - Cancel outstanding I/Os
990 * @queue: The queue to cancel I/Os on
991 * @timeout: True to only cancel I/Os which have timed out
992 */
993 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
994 {
995 int depth = nvmeq->q_depth - 1;
996 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
997 unsigned long now = jiffies;
998 int cmdid;
999
1000 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1001 void *ctx;
1002 nvme_completion_fn fn;
1003 static struct nvme_completion cqe = {
1004 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1005 };
1006
1007 if (timeout && !time_after(now, info[cmdid].timeout))
1008 continue;
1009 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1010 continue;
1011 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1012 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1013 fn(nvmeq->dev, ctx, &cqe);
1014 }
1015 }
1016
1017 static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1018 {
1019 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1020 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1021 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1022 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1023 kfree(nvmeq);
1024 }
1025
1026 static void nvme_free_queue(struct nvme_dev *dev, int qid)
1027 {
1028 struct nvme_queue *nvmeq = dev->queues[qid];
1029 int vector = dev->entry[nvmeq->cq_vector].vector;
1030
1031 spin_lock_irq(&nvmeq->q_lock);
1032 nvme_cancel_ios(nvmeq, false);
1033 while (bio_list_peek(&nvmeq->sq_cong)) {
1034 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1035 bio_endio(bio, -EIO);
1036 }
1037 spin_unlock_irq(&nvmeq->q_lock);
1038
1039 irq_set_affinity_hint(vector, NULL);
1040 free_irq(vector, nvmeq);
1041
1042 /* Don't tell the adapter to delete the admin queue */
1043 if (qid) {
1044 adapter_delete_sq(dev, qid);
1045 adapter_delete_cq(dev, qid);
1046 }
1047
1048 nvme_free_queue_mem(nvmeq);
1049 }
1050
1051 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1052 int depth, int vector)
1053 {
1054 struct device *dmadev = &dev->pci_dev->dev;
1055 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1056 sizeof(struct nvme_cmd_info));
1057 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1058 if (!nvmeq)
1059 return NULL;
1060
1061 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1062 &nvmeq->cq_dma_addr, GFP_KERNEL);
1063 if (!nvmeq->cqes)
1064 goto free_nvmeq;
1065 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1066
1067 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1068 &nvmeq->sq_dma_addr, GFP_KERNEL);
1069 if (!nvmeq->sq_cmds)
1070 goto free_cqdma;
1071
1072 nvmeq->q_dmadev = dmadev;
1073 nvmeq->dev = dev;
1074 spin_lock_init(&nvmeq->q_lock);
1075 nvmeq->cq_head = 0;
1076 nvmeq->cq_phase = 1;
1077 init_waitqueue_head(&nvmeq->sq_full);
1078 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1079 bio_list_init(&nvmeq->sq_cong);
1080 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1081 nvmeq->q_depth = depth;
1082 nvmeq->cq_vector = vector;
1083
1084 return nvmeq;
1085
1086 free_cqdma:
1087 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1088 nvmeq->cq_dma_addr);
1089 free_nvmeq:
1090 kfree(nvmeq);
1091 return NULL;
1092 }
1093
1094 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1095 const char *name)
1096 {
1097 if (use_threaded_interrupts)
1098 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1099 nvme_irq_check, nvme_irq,
1100 IRQF_DISABLED | IRQF_SHARED,
1101 name, nvmeq);
1102 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1103 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1104 }
1105
1106 static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1107 int cq_size, int vector)
1108 {
1109 int result;
1110 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1111
1112 if (!nvmeq)
1113 return ERR_PTR(-ENOMEM);
1114
1115 result = adapter_alloc_cq(dev, qid, nvmeq);
1116 if (result < 0)
1117 goto free_nvmeq;
1118
1119 result = adapter_alloc_sq(dev, qid, nvmeq);
1120 if (result < 0)
1121 goto release_cq;
1122
1123 result = queue_request_irq(dev, nvmeq, "nvme");
1124 if (result < 0)
1125 goto release_sq;
1126
1127 return nvmeq;
1128
1129 release_sq:
1130 adapter_delete_sq(dev, qid);
1131 release_cq:
1132 adapter_delete_cq(dev, qid);
1133 free_nvmeq:
1134 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1135 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1136 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1137 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1138 kfree(nvmeq);
1139 return ERR_PTR(result);
1140 }
1141
1142 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1143 {
1144 unsigned long timeout;
1145 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1146
1147 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1148
1149 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1150 msleep(100);
1151 if (fatal_signal_pending(current))
1152 return -EINTR;
1153 if (time_after(jiffies, timeout)) {
1154 dev_err(&dev->pci_dev->dev,
1155 "Device not ready; aborting initialisation\n");
1156 return -ENODEV;
1157 }
1158 }
1159
1160 return 0;
1161 }
1162
1163 /*
1164 * If the device has been passed off to us in an enabled state, just clear
1165 * the enabled bit. The spec says we should set the 'shutdown notification
1166 * bits', but doing so may cause the device to complete commands to the
1167 * admin queue ... and we don't know what memory that might be pointing at!
1168 */
1169 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1170 {
1171 u32 cc = readl(&dev->bar->cc);
1172
1173 if (cc & NVME_CC_ENABLE)
1174 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1175 return nvme_wait_ready(dev, cap, false);
1176 }
1177
1178 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1179 {
1180 return nvme_wait_ready(dev, cap, true);
1181 }
1182
1183 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1184 {
1185 int result;
1186 u32 aqa;
1187 u64 cap = readq(&dev->bar->cap);
1188 struct nvme_queue *nvmeq;
1189
1190 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1191 dev->db_stride = NVME_CAP_STRIDE(cap);
1192
1193 result = nvme_disable_ctrl(dev, cap);
1194 if (result < 0)
1195 return result;
1196
1197 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1198 if (!nvmeq)
1199 return -ENOMEM;
1200
1201 aqa = nvmeq->q_depth - 1;
1202 aqa |= aqa << 16;
1203
1204 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1205 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1206 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1207 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1208
1209 writel(aqa, &dev->bar->aqa);
1210 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1211 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1212 writel(dev->ctrl_config, &dev->bar->cc);
1213
1214 result = nvme_enable_ctrl(dev, cap);
1215 if (result)
1216 goto free_q;
1217
1218 result = queue_request_irq(dev, nvmeq, "nvme admin");
1219 if (result)
1220 goto free_q;
1221
1222 dev->queues[0] = nvmeq;
1223 return result;
1224
1225 free_q:
1226 nvme_free_queue_mem(nvmeq);
1227 return result;
1228 }
1229
1230 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1231 unsigned long addr, unsigned length)
1232 {
1233 int i, err, count, nents, offset;
1234 struct scatterlist *sg;
1235 struct page **pages;
1236 struct nvme_iod *iod;
1237
1238 if (addr & 3)
1239 return ERR_PTR(-EINVAL);
1240 if (!length || length > INT_MAX - PAGE_SIZE)
1241 return ERR_PTR(-EINVAL);
1242
1243 offset = offset_in_page(addr);
1244 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1245 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1246 if (!pages)
1247 return ERR_PTR(-ENOMEM);
1248
1249 err = get_user_pages_fast(addr, count, 1, pages);
1250 if (err < count) {
1251 count = err;
1252 err = -EFAULT;
1253 goto put_pages;
1254 }
1255
1256 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1257 sg = iod->sg;
1258 sg_init_table(sg, count);
1259 for (i = 0; i < count; i++) {
1260 sg_set_page(&sg[i], pages[i],
1261 min_t(unsigned, length, PAGE_SIZE - offset),
1262 offset);
1263 length -= (PAGE_SIZE - offset);
1264 offset = 0;
1265 }
1266 sg_mark_end(&sg[i - 1]);
1267 iod->nents = count;
1268
1269 err = -ENOMEM;
1270 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1271 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1272 if (!nents)
1273 goto free_iod;
1274
1275 kfree(pages);
1276 return iod;
1277
1278 free_iod:
1279 kfree(iod);
1280 put_pages:
1281 for (i = 0; i < count; i++)
1282 put_page(pages[i]);
1283 kfree(pages);
1284 return ERR_PTR(err);
1285 }
1286
1287 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1288 struct nvme_iod *iod)
1289 {
1290 int i;
1291
1292 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1293 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1294
1295 for (i = 0; i < iod->nents; i++)
1296 put_page(sg_page(&iod->sg[i]));
1297 }
1298
1299 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1300 {
1301 struct nvme_dev *dev = ns->dev;
1302 struct nvme_queue *nvmeq;
1303 struct nvme_user_io io;
1304 struct nvme_command c;
1305 unsigned length, meta_len;
1306 int status, i;
1307 struct nvme_iod *iod, *meta_iod = NULL;
1308 dma_addr_t meta_dma_addr;
1309 void *meta, *uninitialized_var(meta_mem);
1310
1311 if (copy_from_user(&io, uio, sizeof(io)))
1312 return -EFAULT;
1313 length = (io.nblocks + 1) << ns->lba_shift;
1314 meta_len = (io.nblocks + 1) * ns->ms;
1315
1316 if (meta_len && ((io.metadata & 3) || !io.metadata))
1317 return -EINVAL;
1318
1319 switch (io.opcode) {
1320 case nvme_cmd_write:
1321 case nvme_cmd_read:
1322 case nvme_cmd_compare:
1323 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1324 break;
1325 default:
1326 return -EINVAL;
1327 }
1328
1329 if (IS_ERR(iod))
1330 return PTR_ERR(iod);
1331
1332 memset(&c, 0, sizeof(c));
1333 c.rw.opcode = io.opcode;
1334 c.rw.flags = io.flags;
1335 c.rw.nsid = cpu_to_le32(ns->ns_id);
1336 c.rw.slba = cpu_to_le64(io.slba);
1337 c.rw.length = cpu_to_le16(io.nblocks);
1338 c.rw.control = cpu_to_le16(io.control);
1339 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1340 c.rw.reftag = cpu_to_le32(io.reftag);
1341 c.rw.apptag = cpu_to_le16(io.apptag);
1342 c.rw.appmask = cpu_to_le16(io.appmask);
1343
1344 if (meta_len) {
1345 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1346 if (IS_ERR(meta_iod)) {
1347 status = PTR_ERR(meta_iod);
1348 meta_iod = NULL;
1349 goto unmap;
1350 }
1351
1352 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1353 &meta_dma_addr, GFP_KERNEL);
1354 if (!meta_mem) {
1355 status = -ENOMEM;
1356 goto unmap;
1357 }
1358
1359 if (io.opcode & 1) {
1360 int meta_offset = 0;
1361
1362 for (i = 0; i < meta_iod->nents; i++) {
1363 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1364 meta_iod->sg[i].offset;
1365 memcpy(meta_mem + meta_offset, meta,
1366 meta_iod->sg[i].length);
1367 kunmap_atomic(meta);
1368 meta_offset += meta_iod->sg[i].length;
1369 }
1370 }
1371
1372 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1373 }
1374
1375 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1376
1377 nvmeq = get_nvmeq(dev);
1378 /*
1379 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1380 * disabled. We may be preempted at any point, and be rescheduled
1381 * to a different CPU. That will cause cacheline bouncing, but no
1382 * additional races since q_lock already protects against other CPUs.
1383 */
1384 put_nvmeq(nvmeq);
1385 if (length != (io.nblocks + 1) << ns->lba_shift)
1386 status = -ENOMEM;
1387 else
1388 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1389
1390 if (meta_len) {
1391 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1392 int meta_offset = 0;
1393
1394 for (i = 0; i < meta_iod->nents; i++) {
1395 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1396 meta_iod->sg[i].offset;
1397 memcpy(meta, meta_mem + meta_offset,
1398 meta_iod->sg[i].length);
1399 kunmap_atomic(meta);
1400 meta_offset += meta_iod->sg[i].length;
1401 }
1402 }
1403
1404 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1405 meta_dma_addr);
1406 }
1407
1408 unmap:
1409 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1410 nvme_free_iod(dev, iod);
1411
1412 if (meta_iod) {
1413 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1414 nvme_free_iod(dev, meta_iod);
1415 }
1416
1417 return status;
1418 }
1419
1420 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1421 struct nvme_admin_cmd __user *ucmd)
1422 {
1423 struct nvme_admin_cmd cmd;
1424 struct nvme_command c;
1425 int status, length;
1426 struct nvme_iod *uninitialized_var(iod);
1427 unsigned timeout;
1428
1429 if (!capable(CAP_SYS_ADMIN))
1430 return -EACCES;
1431 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1432 return -EFAULT;
1433
1434 memset(&c, 0, sizeof(c));
1435 c.common.opcode = cmd.opcode;
1436 c.common.flags = cmd.flags;
1437 c.common.nsid = cpu_to_le32(cmd.nsid);
1438 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1439 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1440 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1441 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1442 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1443 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1444 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1445 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1446
1447 length = cmd.data_len;
1448 if (cmd.data_len) {
1449 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1450 length);
1451 if (IS_ERR(iod))
1452 return PTR_ERR(iod);
1453 length = nvme_setup_prps(dev, &c.common, iod, length,
1454 GFP_KERNEL);
1455 }
1456
1457 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1458 ADMIN_TIMEOUT;
1459 if (length != cmd.data_len)
1460 status = -ENOMEM;
1461 else
1462 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1463 timeout);
1464
1465 if (cmd.data_len) {
1466 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1467 nvme_free_iod(dev, iod);
1468 }
1469
1470 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1471 sizeof(cmd.result)))
1472 status = -EFAULT;
1473
1474 return status;
1475 }
1476
1477 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1478 unsigned long arg)
1479 {
1480 struct nvme_ns *ns = bdev->bd_disk->private_data;
1481
1482 switch (cmd) {
1483 case NVME_IOCTL_ID:
1484 return ns->ns_id;
1485 case NVME_IOCTL_ADMIN_CMD:
1486 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1487 case NVME_IOCTL_SUBMIT_IO:
1488 return nvme_submit_io(ns, (void __user *)arg);
1489 case SG_GET_VERSION_NUM:
1490 return nvme_sg_get_version_num((void __user *)arg);
1491 case SG_IO:
1492 return nvme_sg_io(ns, (void __user *)arg);
1493 default:
1494 return -ENOTTY;
1495 }
1496 }
1497
1498 static const struct block_device_operations nvme_fops = {
1499 .owner = THIS_MODULE,
1500 .ioctl = nvme_ioctl,
1501 .compat_ioctl = nvme_ioctl,
1502 };
1503
1504 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1505 {
1506 while (bio_list_peek(&nvmeq->sq_cong)) {
1507 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1508 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1509
1510 if (bio_list_empty(&nvmeq->sq_cong))
1511 remove_wait_queue(&nvmeq->sq_full,
1512 &nvmeq->sq_cong_wait);
1513 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1514 if (bio_list_empty(&nvmeq->sq_cong))
1515 add_wait_queue(&nvmeq->sq_full,
1516 &nvmeq->sq_cong_wait);
1517 bio_list_add_head(&nvmeq->sq_cong, bio);
1518 break;
1519 }
1520 }
1521 }
1522
1523 static int nvme_kthread(void *data)
1524 {
1525 struct nvme_dev *dev;
1526
1527 while (!kthread_should_stop()) {
1528 set_current_state(TASK_INTERRUPTIBLE);
1529 spin_lock(&dev_list_lock);
1530 list_for_each_entry(dev, &dev_list, node) {
1531 int i;
1532 for (i = 0; i < dev->queue_count; i++) {
1533 struct nvme_queue *nvmeq = dev->queues[i];
1534 if (!nvmeq)
1535 continue;
1536 spin_lock_irq(&nvmeq->q_lock);
1537 if (nvme_process_cq(nvmeq))
1538 printk("process_cq did something\n");
1539 nvme_cancel_ios(nvmeq, true);
1540 nvme_resubmit_bios(nvmeq);
1541 spin_unlock_irq(&nvmeq->q_lock);
1542 }
1543 }
1544 spin_unlock(&dev_list_lock);
1545 schedule_timeout(round_jiffies_relative(HZ));
1546 }
1547 return 0;
1548 }
1549
1550 static DEFINE_IDA(nvme_index_ida);
1551
1552 static int nvme_get_ns_idx(void)
1553 {
1554 int index, error;
1555
1556 do {
1557 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1558 return -1;
1559
1560 spin_lock(&dev_list_lock);
1561 error = ida_get_new(&nvme_index_ida, &index);
1562 spin_unlock(&dev_list_lock);
1563 } while (error == -EAGAIN);
1564
1565 if (error)
1566 index = -1;
1567 return index;
1568 }
1569
1570 static void nvme_put_ns_idx(int index)
1571 {
1572 spin_lock(&dev_list_lock);
1573 ida_remove(&nvme_index_ida, index);
1574 spin_unlock(&dev_list_lock);
1575 }
1576
1577 static void nvme_config_discard(struct nvme_ns *ns)
1578 {
1579 u32 logical_block_size = queue_logical_block_size(ns->queue);
1580 ns->queue->limits.discard_zeroes_data = 0;
1581 ns->queue->limits.discard_alignment = logical_block_size;
1582 ns->queue->limits.discard_granularity = logical_block_size;
1583 ns->queue->limits.max_discard_sectors = 0xffffffff;
1584 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1585 }
1586
1587 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1588 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1589 {
1590 struct nvme_ns *ns;
1591 struct gendisk *disk;
1592 int lbaf;
1593
1594 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1595 return NULL;
1596
1597 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1598 if (!ns)
1599 return NULL;
1600 ns->queue = blk_alloc_queue(GFP_KERNEL);
1601 if (!ns->queue)
1602 goto out_free_ns;
1603 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1604 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1605 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1606 blk_queue_make_request(ns->queue, nvme_make_request);
1607 ns->dev = dev;
1608 ns->queue->queuedata = ns;
1609
1610 disk = alloc_disk(NVME_MINORS);
1611 if (!disk)
1612 goto out_free_queue;
1613 ns->ns_id = nsid;
1614 ns->disk = disk;
1615 lbaf = id->flbas & 0xf;
1616 ns->lba_shift = id->lbaf[lbaf].ds;
1617 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1618 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1619 if (dev->max_hw_sectors)
1620 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1621
1622 disk->major = nvme_major;
1623 disk->minors = NVME_MINORS;
1624 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1625 disk->fops = &nvme_fops;
1626 disk->private_data = ns;
1627 disk->queue = ns->queue;
1628 disk->driverfs_dev = &dev->pci_dev->dev;
1629 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1630 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1631
1632 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1633 nvme_config_discard(ns);
1634
1635 return ns;
1636
1637 out_free_queue:
1638 blk_cleanup_queue(ns->queue);
1639 out_free_ns:
1640 kfree(ns);
1641 return NULL;
1642 }
1643
1644 static void nvme_ns_free(struct nvme_ns *ns)
1645 {
1646 int index = ns->disk->first_minor / NVME_MINORS;
1647 put_disk(ns->disk);
1648 nvme_put_ns_idx(index);
1649 blk_cleanup_queue(ns->queue);
1650 kfree(ns);
1651 }
1652
1653 static int set_queue_count(struct nvme_dev *dev, int count)
1654 {
1655 int status;
1656 u32 result;
1657 u32 q_count = (count - 1) | ((count - 1) << 16);
1658
1659 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1660 &result);
1661 if (status)
1662 return -EIO;
1663 return min(result & 0xffff, result >> 16) + 1;
1664 }
1665
1666 static int nvme_setup_io_queues(struct nvme_dev *dev)
1667 {
1668 struct pci_dev *pdev = dev->pci_dev;
1669 int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
1670
1671 nr_io_queues = num_online_cpus();
1672 result = set_queue_count(dev, nr_io_queues);
1673 if (result < 0)
1674 return result;
1675 if (result < nr_io_queues)
1676 nr_io_queues = result;
1677
1678 /* Deregister the admin queue's interrupt */
1679 free_irq(dev->entry[0].vector, dev->queues[0]);
1680
1681 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1682 if (db_bar_size > 8192) {
1683 iounmap(dev->bar);
1684 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1685 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1686 dev->queues[0]->q_db = dev->dbs;
1687 }
1688
1689 vecs = nr_io_queues;
1690 for (i = 0; i < vecs; i++)
1691 dev->entry[i].entry = i;
1692 for (;;) {
1693 result = pci_enable_msix(pdev, dev->entry, vecs);
1694 if (result <= 0)
1695 break;
1696 vecs = result;
1697 }
1698
1699 if (result < 0) {
1700 vecs = nr_io_queues;
1701 if (vecs > 32)
1702 vecs = 32;
1703 for (;;) {
1704 result = pci_enable_msi_block(pdev, vecs);
1705 if (result == 0) {
1706 for (i = 0; i < vecs; i++)
1707 dev->entry[i].vector = i + pdev->irq;
1708 break;
1709 } else if (result < 0) {
1710 vecs = 1;
1711 break;
1712 }
1713 vecs = result;
1714 }
1715 }
1716
1717 /*
1718 * Should investigate if there's a performance win from allocating
1719 * more queues than interrupt vectors; it might allow the submission
1720 * path to scale better, even if the receive path is limited by the
1721 * number of interrupts.
1722 */
1723 nr_io_queues = vecs;
1724
1725 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1726 /* XXX: handle failure here */
1727
1728 cpu = cpumask_first(cpu_online_mask);
1729 for (i = 0; i < nr_io_queues; i++) {
1730 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1731 cpu = cpumask_next(cpu, cpu_online_mask);
1732 }
1733
1734 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1735 NVME_Q_DEPTH);
1736 for (i = 0; i < nr_io_queues; i++) {
1737 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1738 if (IS_ERR(dev->queues[i + 1]))
1739 return PTR_ERR(dev->queues[i + 1]);
1740 dev->queue_count++;
1741 }
1742
1743 for (; i < num_possible_cpus(); i++) {
1744 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1745 dev->queues[i + 1] = dev->queues[target + 1];
1746 }
1747
1748 return 0;
1749 }
1750
1751 static void nvme_free_queues(struct nvme_dev *dev)
1752 {
1753 int i;
1754
1755 for (i = dev->queue_count - 1; i >= 0; i--)
1756 nvme_free_queue(dev, i);
1757 }
1758
1759 /*
1760 * Return: error value if an error occurred setting up the queues or calling
1761 * Identify Device. 0 if these succeeded, even if adding some of the
1762 * namespaces failed. At the moment, these failures are silent. TBD which
1763 * failures should be reported.
1764 */
1765 static int nvme_dev_add(struct nvme_dev *dev)
1766 {
1767 int res, nn, i;
1768 struct nvme_ns *ns;
1769 struct nvme_id_ctrl *ctrl;
1770 struct nvme_id_ns *id_ns;
1771 void *mem;
1772 dma_addr_t dma_addr;
1773 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1774
1775 res = nvme_setup_io_queues(dev);
1776 if (res)
1777 return res;
1778
1779 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1780 GFP_KERNEL);
1781 if (!mem)
1782 return -ENOMEM;
1783
1784 res = nvme_identify(dev, 0, 1, dma_addr);
1785 if (res) {
1786 res = -EIO;
1787 goto out;
1788 }
1789
1790 ctrl = mem;
1791 nn = le32_to_cpup(&ctrl->nn);
1792 dev->oncs = le16_to_cpup(&ctrl->oncs);
1793 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1794 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1795 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1796 if (ctrl->mdts)
1797 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1798 if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1799 (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1800 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1801
1802 id_ns = mem;
1803 for (i = 1; i <= nn; i++) {
1804 res = nvme_identify(dev, i, 0, dma_addr);
1805 if (res)
1806 continue;
1807
1808 if (id_ns->ncap == 0)
1809 continue;
1810
1811 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1812 dma_addr + 4096, NULL);
1813 if (res)
1814 memset(mem + 4096, 0, 4096);
1815
1816 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1817 if (ns)
1818 list_add_tail(&ns->list, &dev->namespaces);
1819 }
1820 list_for_each_entry(ns, &dev->namespaces, list)
1821 add_disk(ns->disk);
1822 res = 0;
1823
1824 out:
1825 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1826 return res;
1827 }
1828
1829 static int nvme_dev_remove(struct nvme_dev *dev)
1830 {
1831 struct nvme_ns *ns, *next;
1832
1833 spin_lock(&dev_list_lock);
1834 list_del(&dev->node);
1835 spin_unlock(&dev_list_lock);
1836
1837 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1838 list_del(&ns->list);
1839 del_gendisk(ns->disk);
1840 nvme_ns_free(ns);
1841 }
1842
1843 nvme_free_queues(dev);
1844
1845 return 0;
1846 }
1847
1848 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1849 {
1850 struct device *dmadev = &dev->pci_dev->dev;
1851 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1852 PAGE_SIZE, PAGE_SIZE, 0);
1853 if (!dev->prp_page_pool)
1854 return -ENOMEM;
1855
1856 /* Optimisation for I/Os between 4k and 128k */
1857 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1858 256, 256, 0);
1859 if (!dev->prp_small_pool) {
1860 dma_pool_destroy(dev->prp_page_pool);
1861 return -ENOMEM;
1862 }
1863 return 0;
1864 }
1865
1866 static void nvme_release_prp_pools(struct nvme_dev *dev)
1867 {
1868 dma_pool_destroy(dev->prp_page_pool);
1869 dma_pool_destroy(dev->prp_small_pool);
1870 }
1871
1872 static DEFINE_IDA(nvme_instance_ida);
1873
1874 static int nvme_set_instance(struct nvme_dev *dev)
1875 {
1876 int instance, error;
1877
1878 do {
1879 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1880 return -ENODEV;
1881
1882 spin_lock(&dev_list_lock);
1883 error = ida_get_new(&nvme_instance_ida, &instance);
1884 spin_unlock(&dev_list_lock);
1885 } while (error == -EAGAIN);
1886
1887 if (error)
1888 return -ENODEV;
1889
1890 dev->instance = instance;
1891 return 0;
1892 }
1893
1894 static void nvme_release_instance(struct nvme_dev *dev)
1895 {
1896 spin_lock(&dev_list_lock);
1897 ida_remove(&nvme_instance_ida, dev->instance);
1898 spin_unlock(&dev_list_lock);
1899 }
1900
1901 static void nvme_free_dev(struct kref *kref)
1902 {
1903 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1904 nvme_dev_remove(dev);
1905 if (dev->pci_dev->msi_enabled)
1906 pci_disable_msi(dev->pci_dev);
1907 else if (dev->pci_dev->msix_enabled)
1908 pci_disable_msix(dev->pci_dev);
1909 iounmap(dev->bar);
1910 nvme_release_instance(dev);
1911 nvme_release_prp_pools(dev);
1912 pci_disable_device(dev->pci_dev);
1913 pci_release_regions(dev->pci_dev);
1914 kfree(dev->queues);
1915 kfree(dev->entry);
1916 kfree(dev);
1917 }
1918
1919 static int nvme_dev_open(struct inode *inode, struct file *f)
1920 {
1921 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1922 miscdev);
1923 kref_get(&dev->kref);
1924 f->private_data = dev;
1925 return 0;
1926 }
1927
1928 static int nvme_dev_release(struct inode *inode, struct file *f)
1929 {
1930 struct nvme_dev *dev = f->private_data;
1931 kref_put(&dev->kref, nvme_free_dev);
1932 return 0;
1933 }
1934
1935 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1936 {
1937 struct nvme_dev *dev = f->private_data;
1938 switch (cmd) {
1939 case NVME_IOCTL_ADMIN_CMD:
1940 return nvme_user_admin_cmd(dev, (void __user *)arg);
1941 default:
1942 return -ENOTTY;
1943 }
1944 }
1945
1946 static const struct file_operations nvme_dev_fops = {
1947 .owner = THIS_MODULE,
1948 .open = nvme_dev_open,
1949 .release = nvme_dev_release,
1950 .unlocked_ioctl = nvme_dev_ioctl,
1951 .compat_ioctl = nvme_dev_ioctl,
1952 };
1953
1954 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1955 {
1956 int bars, result = -ENOMEM;
1957 struct nvme_dev *dev;
1958
1959 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1960 if (!dev)
1961 return -ENOMEM;
1962 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1963 GFP_KERNEL);
1964 if (!dev->entry)
1965 goto free;
1966 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1967 GFP_KERNEL);
1968 if (!dev->queues)
1969 goto free;
1970
1971 if (pci_enable_device_mem(pdev))
1972 goto free;
1973 pci_set_master(pdev);
1974 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1975 if (pci_request_selected_regions(pdev, bars, "nvme"))
1976 goto disable;
1977
1978 INIT_LIST_HEAD(&dev->namespaces);
1979 dev->pci_dev = pdev;
1980 pci_set_drvdata(pdev, dev);
1981
1982 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1983 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1984 else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1985 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1986 else
1987 goto disable;
1988
1989 result = nvme_set_instance(dev);
1990 if (result)
1991 goto disable;
1992
1993 dev->entry[0].vector = pdev->irq;
1994
1995 result = nvme_setup_prp_pools(dev);
1996 if (result)
1997 goto disable_msix;
1998
1999 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2000 if (!dev->bar) {
2001 result = -ENOMEM;
2002 goto disable_msix;
2003 }
2004
2005 result = nvme_configure_admin_queue(dev);
2006 if (result)
2007 goto unmap;
2008 dev->queue_count++;
2009
2010 spin_lock(&dev_list_lock);
2011 list_add(&dev->node, &dev_list);
2012 spin_unlock(&dev_list_lock);
2013
2014 result = nvme_dev_add(dev);
2015 if (result)
2016 goto delete;
2017
2018 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2019 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2020 dev->miscdev.parent = &pdev->dev;
2021 dev->miscdev.name = dev->name;
2022 dev->miscdev.fops = &nvme_dev_fops;
2023 result = misc_register(&dev->miscdev);
2024 if (result)
2025 goto remove;
2026
2027 kref_init(&dev->kref);
2028 return 0;
2029
2030 remove:
2031 nvme_dev_remove(dev);
2032 delete:
2033 spin_lock(&dev_list_lock);
2034 list_del(&dev->node);
2035 spin_unlock(&dev_list_lock);
2036
2037 nvme_free_queues(dev);
2038 unmap:
2039 iounmap(dev->bar);
2040 disable_msix:
2041 if (dev->pci_dev->msi_enabled)
2042 pci_disable_msi(dev->pci_dev);
2043 else if (dev->pci_dev->msix_enabled)
2044 pci_disable_msix(dev->pci_dev);
2045 nvme_release_instance(dev);
2046 nvme_release_prp_pools(dev);
2047 disable:
2048 pci_disable_device(pdev);
2049 pci_release_regions(pdev);
2050 free:
2051 kfree(dev->queues);
2052 kfree(dev->entry);
2053 kfree(dev);
2054 return result;
2055 }
2056
2057 static void nvme_remove(struct pci_dev *pdev)
2058 {
2059 struct nvme_dev *dev = pci_get_drvdata(pdev);
2060 misc_deregister(&dev->miscdev);
2061 kref_put(&dev->kref, nvme_free_dev);
2062 }
2063
2064 /* These functions are yet to be implemented */
2065 #define nvme_error_detected NULL
2066 #define nvme_dump_registers NULL
2067 #define nvme_link_reset NULL
2068 #define nvme_slot_reset NULL
2069 #define nvme_error_resume NULL
2070 #define nvme_suspend NULL
2071 #define nvme_resume NULL
2072
2073 static const struct pci_error_handlers nvme_err_handler = {
2074 .error_detected = nvme_error_detected,
2075 .mmio_enabled = nvme_dump_registers,
2076 .link_reset = nvme_link_reset,
2077 .slot_reset = nvme_slot_reset,
2078 .resume = nvme_error_resume,
2079 };
2080
2081 /* Move to pci_ids.h later */
2082 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2083
2084 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2085 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2086 { 0, }
2087 };
2088 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2089
2090 static struct pci_driver nvme_driver = {
2091 .name = "nvme",
2092 .id_table = nvme_id_table,
2093 .probe = nvme_probe,
2094 .remove = nvme_remove,
2095 .suspend = nvme_suspend,
2096 .resume = nvme_resume,
2097 .err_handler = &nvme_err_handler,
2098 };
2099
2100 static int __init nvme_init(void)
2101 {
2102 int result;
2103
2104 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2105 if (IS_ERR(nvme_thread))
2106 return PTR_ERR(nvme_thread);
2107
2108 result = register_blkdev(nvme_major, "nvme");
2109 if (result < 0)
2110 goto kill_kthread;
2111 else if (result > 0)
2112 nvme_major = result;
2113
2114 result = pci_register_driver(&nvme_driver);
2115 if (result)
2116 goto unregister_blkdev;
2117 return 0;
2118
2119 unregister_blkdev:
2120 unregister_blkdev(nvme_major, "nvme");
2121 kill_kthread:
2122 kthread_stop(nvme_thread);
2123 return result;
2124 }
2125
2126 static void __exit nvme_exit(void)
2127 {
2128 pci_unregister_driver(&nvme_driver);
2129 unregister_blkdev(nvme_major, "nvme");
2130 kthread_stop(nvme_thread);
2131 }
2132
2133 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2134 MODULE_LICENSE("GPL");
2135 MODULE_VERSION("0.8");
2136 module_init(nvme_init);
2137 module_exit(nvme_exit);
This page took 0.121714 seconds and 6 git commands to generate.