NVMe: Set request queue logical block size
[deliverable/linux.git] / drivers / block / nvme.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define NVME_IO_TIMEOUT (5 * HZ)
49 #define ADMIN_TIMEOUT (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64 struct nvme_dev {
65 struct list_head node;
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
69 struct dma_pool *prp_page_pool;
70 struct dma_pool *prp_small_pool;
71 int instance;
72 int queue_count;
73 int db_stride;
74 u32 ctrl_config;
75 struct msix_entry *entry;
76 struct nvme_bar __iomem *bar;
77 struct list_head namespaces;
78 char serial[20];
79 char model[40];
80 char firmware_rev[8];
81 };
82
83 /*
84 * An NVM Express namespace is equivalent to a SCSI LUN
85 */
86 struct nvme_ns {
87 struct list_head list;
88
89 struct nvme_dev *dev;
90 struct request_queue *queue;
91 struct gendisk *disk;
92
93 int ns_id;
94 int lba_shift;
95 };
96
97 /*
98 * An NVM Express queue. Each device has at least two (one for admin
99 * commands and one for I/O commands).
100 */
101 struct nvme_queue {
102 struct device *q_dmadev;
103 struct nvme_dev *dev;
104 spinlock_t q_lock;
105 struct nvme_command *sq_cmds;
106 volatile struct nvme_completion *cqes;
107 dma_addr_t sq_dma_addr;
108 dma_addr_t cq_dma_addr;
109 wait_queue_head_t sq_full;
110 wait_queue_t sq_cong_wait;
111 struct bio_list sq_cong;
112 u32 __iomem *q_db;
113 u16 q_depth;
114 u16 cq_vector;
115 u16 sq_head;
116 u16 sq_tail;
117 u16 cq_head;
118 u16 cq_phase;
119 unsigned long cmdid_data[];
120 };
121
122 /*
123 * Check we didin't inadvertently grow the command struct
124 */
125 static inline void _nvme_check_size(void)
126 {
127 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 }
137
138 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
139 struct nvme_completion *);
140
141 struct nvme_cmd_info {
142 nvme_completion_fn fn;
143 void *ctx;
144 unsigned long timeout;
145 };
146
147 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
148 {
149 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
150 }
151
152 /**
153 * alloc_cmdid() - Allocate a Command ID
154 * @nvmeq: The queue that will be used for this command
155 * @ctx: A pointer that will be passed to the handler
156 * @handler: The function to call on completion
157 *
158 * Allocate a Command ID for a queue. The data passed in will
159 * be passed to the completion handler. This is implemented by using
160 * the bottom two bits of the ctx pointer to store the handler ID.
161 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
162 * We can change this if it becomes a problem.
163 *
164 * May be called with local interrupts disabled and the q_lock held,
165 * or with interrupts enabled and no locks held.
166 */
167 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
168 nvme_completion_fn handler, unsigned timeout)
169 {
170 int depth = nvmeq->q_depth - 1;
171 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
172 int cmdid;
173
174 do {
175 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
176 if (cmdid >= depth)
177 return -EBUSY;
178 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
179
180 info[cmdid].fn = handler;
181 info[cmdid].ctx = ctx;
182 info[cmdid].timeout = jiffies + timeout;
183 return cmdid;
184 }
185
186 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
187 nvme_completion_fn handler, unsigned timeout)
188 {
189 int cmdid;
190 wait_event_killable(nvmeq->sq_full,
191 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
192 return (cmdid < 0) ? -EINTR : cmdid;
193 }
194
195 /* Special values must be less than 0x1000 */
196 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
197 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
201
202 static void special_completion(struct nvme_dev *dev, void *ctx,
203 struct nvme_completion *cqe)
204 {
205 if (ctx == CMD_CTX_CANCELLED)
206 return;
207 if (ctx == CMD_CTX_FLUSH)
208 return;
209 if (ctx == CMD_CTX_COMPLETED) {
210 dev_warn(&dev->pci_dev->dev,
211 "completed id %d twice on queue %d\n",
212 cqe->command_id, le16_to_cpup(&cqe->sq_id));
213 return;
214 }
215 if (ctx == CMD_CTX_INVALID) {
216 dev_warn(&dev->pci_dev->dev,
217 "invalid id %d completed on queue %d\n",
218 cqe->command_id, le16_to_cpup(&cqe->sq_id));
219 return;
220 }
221
222 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
223 }
224
225 /*
226 * Called with local interrupts disabled and the q_lock held. May not sleep.
227 */
228 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
229 nvme_completion_fn *fn)
230 {
231 void *ctx;
232 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
233
234 if (cmdid >= nvmeq->q_depth) {
235 *fn = special_completion;
236 return CMD_CTX_INVALID;
237 }
238 *fn = info[cmdid].fn;
239 ctx = info[cmdid].ctx;
240 info[cmdid].fn = special_completion;
241 info[cmdid].ctx = CMD_CTX_COMPLETED;
242 clear_bit(cmdid, nvmeq->cmdid_data);
243 wake_up(&nvmeq->sq_full);
244 return ctx;
245 }
246
247 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
248 nvme_completion_fn *fn)
249 {
250 void *ctx;
251 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
252 if (fn)
253 *fn = info[cmdid].fn;
254 ctx = info[cmdid].ctx;
255 info[cmdid].fn = special_completion;
256 info[cmdid].ctx = CMD_CTX_CANCELLED;
257 return ctx;
258 }
259
260 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
261 {
262 return dev->queues[get_cpu() + 1];
263 }
264
265 static void put_nvmeq(struct nvme_queue *nvmeq)
266 {
267 put_cpu();
268 }
269
270 /**
271 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
272 * @nvmeq: The queue to use
273 * @cmd: The command to send
274 *
275 * Safe to use from interrupt context
276 */
277 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
278 {
279 unsigned long flags;
280 u16 tail;
281 spin_lock_irqsave(&nvmeq->q_lock, flags);
282 tail = nvmeq->sq_tail;
283 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
284 if (++tail == nvmeq->q_depth)
285 tail = 0;
286 writel(tail, nvmeq->q_db);
287 nvmeq->sq_tail = tail;
288 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
289
290 return 0;
291 }
292
293 /*
294 * The nvme_iod describes the data in an I/O, including the list of PRP
295 * entries. You can't see it in this data structure because C doesn't let
296 * me express that. Use nvme_alloc_iod to ensure there's enough space
297 * allocated to store the PRP list.
298 */
299 struct nvme_iod {
300 void *private; /* For the use of the submitter of the I/O */
301 int npages; /* In the PRP list. 0 means small pool in use */
302 int offset; /* Of PRP list */
303 int nents; /* Used in scatterlist */
304 int length; /* Of data, in bytes */
305 dma_addr_t first_dma;
306 struct scatterlist sg[0];
307 };
308
309 static __le64 **iod_list(struct nvme_iod *iod)
310 {
311 return ((void *)iod) + iod->offset;
312 }
313
314 /*
315 * Will slightly overestimate the number of pages needed. This is OK
316 * as it only leads to a small amount of wasted memory for the lifetime of
317 * the I/O.
318 */
319 static int nvme_npages(unsigned size)
320 {
321 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
322 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
323 }
324
325 static struct nvme_iod *
326 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
327 {
328 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
329 sizeof(__le64 *) * nvme_npages(nbytes) +
330 sizeof(struct scatterlist) * nseg, gfp);
331
332 if (iod) {
333 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
334 iod->npages = -1;
335 iod->length = nbytes;
336 }
337
338 return iod;
339 }
340
341 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
342 {
343 const int last_prp = PAGE_SIZE / 8 - 1;
344 int i;
345 __le64 **list = iod_list(iod);
346 dma_addr_t prp_dma = iod->first_dma;
347
348 if (iod->npages == 0)
349 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
350 for (i = 0; i < iod->npages; i++) {
351 __le64 *prp_list = list[i];
352 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
353 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
354 prp_dma = next_prp_dma;
355 }
356 kfree(iod);
357 }
358
359 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
360 {
361 struct nvme_queue *nvmeq = get_nvmeq(dev);
362 if (bio_list_empty(&nvmeq->sq_cong))
363 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
364 bio_list_add(&nvmeq->sq_cong, bio);
365 put_nvmeq(nvmeq);
366 wake_up_process(nvme_thread);
367 }
368
369 static void bio_completion(struct nvme_dev *dev, void *ctx,
370 struct nvme_completion *cqe)
371 {
372 struct nvme_iod *iod = ctx;
373 struct bio *bio = iod->private;
374 u16 status = le16_to_cpup(&cqe->status) >> 1;
375
376 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
377 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
378 nvme_free_iod(dev, iod);
379 if (status) {
380 bio_endio(bio, -EIO);
381 } else if (bio->bi_vcnt > bio->bi_idx) {
382 requeue_bio(dev, bio);
383 } else {
384 bio_endio(bio, 0);
385 }
386 }
387
388 /* length is in bytes. gfp flags indicates whether we may sleep. */
389 static int nvme_setup_prps(struct nvme_dev *dev,
390 struct nvme_common_command *cmd, struct nvme_iod *iod,
391 int total_len, gfp_t gfp)
392 {
393 struct dma_pool *pool;
394 int length = total_len;
395 struct scatterlist *sg = iod->sg;
396 int dma_len = sg_dma_len(sg);
397 u64 dma_addr = sg_dma_address(sg);
398 int offset = offset_in_page(dma_addr);
399 __le64 *prp_list;
400 __le64 **list = iod_list(iod);
401 dma_addr_t prp_dma;
402 int nprps, i;
403
404 cmd->prp1 = cpu_to_le64(dma_addr);
405 length -= (PAGE_SIZE - offset);
406 if (length <= 0)
407 return total_len;
408
409 dma_len -= (PAGE_SIZE - offset);
410 if (dma_len) {
411 dma_addr += (PAGE_SIZE - offset);
412 } else {
413 sg = sg_next(sg);
414 dma_addr = sg_dma_address(sg);
415 dma_len = sg_dma_len(sg);
416 }
417
418 if (length <= PAGE_SIZE) {
419 cmd->prp2 = cpu_to_le64(dma_addr);
420 return total_len;
421 }
422
423 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
424 if (nprps <= (256 / 8)) {
425 pool = dev->prp_small_pool;
426 iod->npages = 0;
427 } else {
428 pool = dev->prp_page_pool;
429 iod->npages = 1;
430 }
431
432 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
433 if (!prp_list) {
434 cmd->prp2 = cpu_to_le64(dma_addr);
435 iod->npages = -1;
436 return (total_len - length) + PAGE_SIZE;
437 }
438 list[0] = prp_list;
439 iod->first_dma = prp_dma;
440 cmd->prp2 = cpu_to_le64(prp_dma);
441 i = 0;
442 for (;;) {
443 if (i == PAGE_SIZE / 8) {
444 __le64 *old_prp_list = prp_list;
445 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
446 if (!prp_list)
447 return total_len - length;
448 list[iod->npages++] = prp_list;
449 prp_list[0] = old_prp_list[i - 1];
450 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
451 i = 1;
452 }
453 prp_list[i++] = cpu_to_le64(dma_addr);
454 dma_len -= PAGE_SIZE;
455 dma_addr += PAGE_SIZE;
456 length -= PAGE_SIZE;
457 if (length <= 0)
458 break;
459 if (dma_len > 0)
460 continue;
461 BUG_ON(dma_len < 0);
462 sg = sg_next(sg);
463 dma_addr = sg_dma_address(sg);
464 dma_len = sg_dma_len(sg);
465 }
466
467 return total_len;
468 }
469
470 /* NVMe scatterlists require no holes in the virtual address */
471 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
472 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
473
474 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
475 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
476 {
477 struct bio_vec *bvec, *bvprv = NULL;
478 struct scatterlist *sg = NULL;
479 int i, old_idx, length = 0, nsegs = 0;
480
481 sg_init_table(iod->sg, psegs);
482 old_idx = bio->bi_idx;
483 bio_for_each_segment(bvec, bio, i) {
484 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
485 sg->length += bvec->bv_len;
486 } else {
487 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
488 break;
489 sg = sg ? sg + 1 : iod->sg;
490 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
491 bvec->bv_offset);
492 nsegs++;
493 }
494 length += bvec->bv_len;
495 bvprv = bvec;
496 }
497 bio->bi_idx = i;
498 iod->nents = nsegs;
499 sg_mark_end(sg);
500 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
501 bio->bi_idx = old_idx;
502 return -ENOMEM;
503 }
504 return length;
505 }
506
507 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
508 int cmdid)
509 {
510 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
511
512 memset(cmnd, 0, sizeof(*cmnd));
513 cmnd->common.opcode = nvme_cmd_flush;
514 cmnd->common.command_id = cmdid;
515 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
516
517 if (++nvmeq->sq_tail == nvmeq->q_depth)
518 nvmeq->sq_tail = 0;
519 writel(nvmeq->sq_tail, nvmeq->q_db);
520
521 return 0;
522 }
523
524 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
525 {
526 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
527 special_completion, NVME_IO_TIMEOUT);
528 if (unlikely(cmdid < 0))
529 return cmdid;
530
531 return nvme_submit_flush(nvmeq, ns, cmdid);
532 }
533
534 /*
535 * Called with local interrupts disabled and the q_lock held. May not sleep.
536 */
537 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
538 struct bio *bio)
539 {
540 struct nvme_command *cmnd;
541 struct nvme_iod *iod;
542 enum dma_data_direction dma_dir;
543 int cmdid, length, result = -ENOMEM;
544 u16 control;
545 u32 dsmgmt;
546 int psegs = bio_phys_segments(ns->queue, bio);
547
548 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
549 result = nvme_submit_flush_data(nvmeq, ns);
550 if (result)
551 return result;
552 }
553
554 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
555 if (!iod)
556 goto nomem;
557 iod->private = bio;
558
559 result = -EBUSY;
560 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
561 if (unlikely(cmdid < 0))
562 goto free_iod;
563
564 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
565 return nvme_submit_flush(nvmeq, ns, cmdid);
566
567 control = 0;
568 if (bio->bi_rw & REQ_FUA)
569 control |= NVME_RW_FUA;
570 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
571 control |= NVME_RW_LR;
572
573 dsmgmt = 0;
574 if (bio->bi_rw & REQ_RAHEAD)
575 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
576
577 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
578
579 memset(cmnd, 0, sizeof(*cmnd));
580 if (bio_data_dir(bio)) {
581 cmnd->rw.opcode = nvme_cmd_write;
582 dma_dir = DMA_TO_DEVICE;
583 } else {
584 cmnd->rw.opcode = nvme_cmd_read;
585 dma_dir = DMA_FROM_DEVICE;
586 }
587
588 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
589 if (result < 0)
590 goto free_iod;
591 length = result;
592
593 cmnd->rw.command_id = cmdid;
594 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
595 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
596 GFP_ATOMIC);
597 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
598 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
599 cmnd->rw.control = cpu_to_le16(control);
600 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
601
602 bio->bi_sector += length >> 9;
603
604 if (++nvmeq->sq_tail == nvmeq->q_depth)
605 nvmeq->sq_tail = 0;
606 writel(nvmeq->sq_tail, nvmeq->q_db);
607
608 return 0;
609
610 free_iod:
611 nvme_free_iod(nvmeq->dev, iod);
612 nomem:
613 return result;
614 }
615
616 /*
617 * NB: return value of non-zero would mean that we were a stacking driver.
618 * make_request must always succeed.
619 */
620 static int nvme_make_request(struct request_queue *q, struct bio *bio)
621 {
622 struct nvme_ns *ns = q->queuedata;
623 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
624 int result = -EBUSY;
625
626 spin_lock_irq(&nvmeq->q_lock);
627 if (bio_list_empty(&nvmeq->sq_cong))
628 result = nvme_submit_bio_queue(nvmeq, ns, bio);
629 if (unlikely(result)) {
630 if (bio_list_empty(&nvmeq->sq_cong))
631 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
632 bio_list_add(&nvmeq->sq_cong, bio);
633 }
634
635 spin_unlock_irq(&nvmeq->q_lock);
636 put_nvmeq(nvmeq);
637
638 return 0;
639 }
640
641 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
642 {
643 u16 head, phase;
644
645 head = nvmeq->cq_head;
646 phase = nvmeq->cq_phase;
647
648 for (;;) {
649 void *ctx;
650 nvme_completion_fn fn;
651 struct nvme_completion cqe = nvmeq->cqes[head];
652 if ((le16_to_cpu(cqe.status) & 1) != phase)
653 break;
654 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
655 if (++head == nvmeq->q_depth) {
656 head = 0;
657 phase = !phase;
658 }
659
660 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
661 fn(nvmeq->dev, ctx, &cqe);
662 }
663
664 /* If the controller ignores the cq head doorbell and continuously
665 * writes to the queue, it is theoretically possible to wrap around
666 * the queue twice and mistakenly return IRQ_NONE. Linux only
667 * requires that 0.1% of your interrupts are handled, so this isn't
668 * a big problem.
669 */
670 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
671 return IRQ_NONE;
672
673 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
674 nvmeq->cq_head = head;
675 nvmeq->cq_phase = phase;
676
677 return IRQ_HANDLED;
678 }
679
680 static irqreturn_t nvme_irq(int irq, void *data)
681 {
682 irqreturn_t result;
683 struct nvme_queue *nvmeq = data;
684 spin_lock(&nvmeq->q_lock);
685 result = nvme_process_cq(nvmeq);
686 spin_unlock(&nvmeq->q_lock);
687 return result;
688 }
689
690 static irqreturn_t nvme_irq_check(int irq, void *data)
691 {
692 struct nvme_queue *nvmeq = data;
693 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
694 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
695 return IRQ_NONE;
696 return IRQ_WAKE_THREAD;
697 }
698
699 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
700 {
701 spin_lock_irq(&nvmeq->q_lock);
702 cancel_cmdid(nvmeq, cmdid, NULL);
703 spin_unlock_irq(&nvmeq->q_lock);
704 }
705
706 struct sync_cmd_info {
707 struct task_struct *task;
708 u32 result;
709 int status;
710 };
711
712 static void sync_completion(struct nvme_dev *dev, void *ctx,
713 struct nvme_completion *cqe)
714 {
715 struct sync_cmd_info *cmdinfo = ctx;
716 cmdinfo->result = le32_to_cpup(&cqe->result);
717 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
718 wake_up_process(cmdinfo->task);
719 }
720
721 /*
722 * Returns 0 on success. If the result is negative, it's a Linux error code;
723 * if the result is positive, it's an NVM Express status code
724 */
725 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
726 struct nvme_command *cmd, u32 *result, unsigned timeout)
727 {
728 int cmdid;
729 struct sync_cmd_info cmdinfo;
730
731 cmdinfo.task = current;
732 cmdinfo.status = -EINTR;
733
734 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
735 timeout);
736 if (cmdid < 0)
737 return cmdid;
738 cmd->common.command_id = cmdid;
739
740 set_current_state(TASK_KILLABLE);
741 nvme_submit_cmd(nvmeq, cmd);
742 schedule();
743
744 if (cmdinfo.status == -EINTR) {
745 nvme_abort_command(nvmeq, cmdid);
746 return -EINTR;
747 }
748
749 if (result)
750 *result = cmdinfo.result;
751
752 return cmdinfo.status;
753 }
754
755 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
756 u32 *result)
757 {
758 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
759 }
760
761 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
762 {
763 int status;
764 struct nvme_command c;
765
766 memset(&c, 0, sizeof(c));
767 c.delete_queue.opcode = opcode;
768 c.delete_queue.qid = cpu_to_le16(id);
769
770 status = nvme_submit_admin_cmd(dev, &c, NULL);
771 if (status)
772 return -EIO;
773 return 0;
774 }
775
776 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
777 struct nvme_queue *nvmeq)
778 {
779 int status;
780 struct nvme_command c;
781 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
782
783 memset(&c, 0, sizeof(c));
784 c.create_cq.opcode = nvme_admin_create_cq;
785 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
786 c.create_cq.cqid = cpu_to_le16(qid);
787 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
788 c.create_cq.cq_flags = cpu_to_le16(flags);
789 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
790
791 status = nvme_submit_admin_cmd(dev, &c, NULL);
792 if (status)
793 return -EIO;
794 return 0;
795 }
796
797 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
798 struct nvme_queue *nvmeq)
799 {
800 int status;
801 struct nvme_command c;
802 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
803
804 memset(&c, 0, sizeof(c));
805 c.create_sq.opcode = nvme_admin_create_sq;
806 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
807 c.create_sq.sqid = cpu_to_le16(qid);
808 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
809 c.create_sq.sq_flags = cpu_to_le16(flags);
810 c.create_sq.cqid = cpu_to_le16(qid);
811
812 status = nvme_submit_admin_cmd(dev, &c, NULL);
813 if (status)
814 return -EIO;
815 return 0;
816 }
817
818 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
819 {
820 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
821 }
822
823 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
824 {
825 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
826 }
827
828 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
829 dma_addr_t dma_addr)
830 {
831 struct nvme_command c;
832
833 memset(&c, 0, sizeof(c));
834 c.identify.opcode = nvme_admin_identify;
835 c.identify.nsid = cpu_to_le32(nsid);
836 c.identify.prp1 = cpu_to_le64(dma_addr);
837 c.identify.cns = cpu_to_le32(cns);
838
839 return nvme_submit_admin_cmd(dev, &c, NULL);
840 }
841
842 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
843 unsigned dword11, dma_addr_t dma_addr)
844 {
845 struct nvme_command c;
846
847 memset(&c, 0, sizeof(c));
848 c.features.opcode = nvme_admin_get_features;
849 c.features.prp1 = cpu_to_le64(dma_addr);
850 c.features.fid = cpu_to_le32(fid);
851 c.features.dword11 = cpu_to_le32(dword11);
852
853 return nvme_submit_admin_cmd(dev, &c, NULL);
854 }
855
856 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
857 unsigned dword11, dma_addr_t dma_addr, u32 *result)
858 {
859 struct nvme_command c;
860
861 memset(&c, 0, sizeof(c));
862 c.features.opcode = nvme_admin_set_features;
863 c.features.prp1 = cpu_to_le64(dma_addr);
864 c.features.fid = cpu_to_le32(fid);
865 c.features.dword11 = cpu_to_le32(dword11);
866
867 return nvme_submit_admin_cmd(dev, &c, result);
868 }
869
870 static void nvme_free_queue(struct nvme_dev *dev, int qid)
871 {
872 struct nvme_queue *nvmeq = dev->queues[qid];
873 int vector = dev->entry[nvmeq->cq_vector].vector;
874
875 irq_set_affinity_hint(vector, NULL);
876 free_irq(vector, nvmeq);
877
878 /* Don't tell the adapter to delete the admin queue */
879 if (qid) {
880 adapter_delete_sq(dev, qid);
881 adapter_delete_cq(dev, qid);
882 }
883
884 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
885 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
886 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
887 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
888 kfree(nvmeq);
889 }
890
891 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
892 int depth, int vector)
893 {
894 struct device *dmadev = &dev->pci_dev->dev;
895 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
896 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
897 if (!nvmeq)
898 return NULL;
899
900 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
901 &nvmeq->cq_dma_addr, GFP_KERNEL);
902 if (!nvmeq->cqes)
903 goto free_nvmeq;
904 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
905
906 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
907 &nvmeq->sq_dma_addr, GFP_KERNEL);
908 if (!nvmeq->sq_cmds)
909 goto free_cqdma;
910
911 nvmeq->q_dmadev = dmadev;
912 nvmeq->dev = dev;
913 spin_lock_init(&nvmeq->q_lock);
914 nvmeq->cq_head = 0;
915 nvmeq->cq_phase = 1;
916 init_waitqueue_head(&nvmeq->sq_full);
917 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
918 bio_list_init(&nvmeq->sq_cong);
919 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
920 nvmeq->q_depth = depth;
921 nvmeq->cq_vector = vector;
922
923 return nvmeq;
924
925 free_cqdma:
926 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
927 nvmeq->cq_dma_addr);
928 free_nvmeq:
929 kfree(nvmeq);
930 return NULL;
931 }
932
933 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
934 const char *name)
935 {
936 if (use_threaded_interrupts)
937 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
938 nvme_irq_check, nvme_irq,
939 IRQF_DISABLED | IRQF_SHARED,
940 name, nvmeq);
941 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
942 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
943 }
944
945 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
946 int qid, int cq_size, int vector)
947 {
948 int result;
949 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
950
951 if (!nvmeq)
952 return ERR_PTR(-ENOMEM);
953
954 result = adapter_alloc_cq(dev, qid, nvmeq);
955 if (result < 0)
956 goto free_nvmeq;
957
958 result = adapter_alloc_sq(dev, qid, nvmeq);
959 if (result < 0)
960 goto release_cq;
961
962 result = queue_request_irq(dev, nvmeq, "nvme");
963 if (result < 0)
964 goto release_sq;
965
966 return nvmeq;
967
968 release_sq:
969 adapter_delete_sq(dev, qid);
970 release_cq:
971 adapter_delete_cq(dev, qid);
972 free_nvmeq:
973 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
974 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
975 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
976 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
977 kfree(nvmeq);
978 return ERR_PTR(result);
979 }
980
981 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
982 {
983 int result;
984 u32 aqa;
985 u64 cap;
986 unsigned long timeout;
987 struct nvme_queue *nvmeq;
988
989 dev->dbs = ((void __iomem *)dev->bar) + 4096;
990
991 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
992 if (!nvmeq)
993 return -ENOMEM;
994
995 aqa = nvmeq->q_depth - 1;
996 aqa |= aqa << 16;
997
998 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
999 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1000 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1001 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1002
1003 writel(0, &dev->bar->cc);
1004 writel(aqa, &dev->bar->aqa);
1005 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1006 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1007 writel(dev->ctrl_config, &dev->bar->cc);
1008
1009 cap = readq(&dev->bar->cap);
1010 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1011 dev->db_stride = NVME_CAP_STRIDE(cap);
1012
1013 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1014 msleep(100);
1015 if (fatal_signal_pending(current))
1016 return -EINTR;
1017 if (time_after(jiffies, timeout)) {
1018 dev_err(&dev->pci_dev->dev,
1019 "Device not ready; aborting initialisation\n");
1020 return -ENODEV;
1021 }
1022 }
1023
1024 result = queue_request_irq(dev, nvmeq, "nvme admin");
1025 dev->queues[0] = nvmeq;
1026 return result;
1027 }
1028
1029 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1030 unsigned long addr, unsigned length)
1031 {
1032 int i, err, count, nents, offset;
1033 struct scatterlist *sg;
1034 struct page **pages;
1035 struct nvme_iod *iod;
1036
1037 if (addr & 3)
1038 return ERR_PTR(-EINVAL);
1039 if (!length)
1040 return ERR_PTR(-EINVAL);
1041
1042 offset = offset_in_page(addr);
1043 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1044 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1045
1046 err = get_user_pages_fast(addr, count, 1, pages);
1047 if (err < count) {
1048 count = err;
1049 err = -EFAULT;
1050 goto put_pages;
1051 }
1052
1053 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1054 sg = iod->sg;
1055 sg_init_table(sg, count);
1056 for (i = 0; i < count; i++) {
1057 sg_set_page(&sg[i], pages[i],
1058 min_t(int, length, PAGE_SIZE - offset), offset);
1059 length -= (PAGE_SIZE - offset);
1060 offset = 0;
1061 }
1062 sg_mark_end(&sg[i - 1]);
1063 iod->nents = count;
1064
1065 err = -ENOMEM;
1066 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1067 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1068 if (!nents)
1069 goto free_iod;
1070
1071 kfree(pages);
1072 return iod;
1073
1074 free_iod:
1075 kfree(iod);
1076 put_pages:
1077 for (i = 0; i < count; i++)
1078 put_page(pages[i]);
1079 kfree(pages);
1080 return ERR_PTR(err);
1081 }
1082
1083 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1084 struct nvme_iod *iod)
1085 {
1086 int i;
1087
1088 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1089 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1090
1091 for (i = 0; i < iod->nents; i++)
1092 put_page(sg_page(&iod->sg[i]));
1093 }
1094
1095 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1096 {
1097 struct nvme_dev *dev = ns->dev;
1098 struct nvme_queue *nvmeq;
1099 struct nvme_user_io io;
1100 struct nvme_command c;
1101 unsigned length;
1102 int status;
1103 struct nvme_iod *iod;
1104
1105 if (copy_from_user(&io, uio, sizeof(io)))
1106 return -EFAULT;
1107 length = (io.nblocks + 1) << ns->lba_shift;
1108
1109 switch (io.opcode) {
1110 case nvme_cmd_write:
1111 case nvme_cmd_read:
1112 case nvme_cmd_compare:
1113 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1114 break;
1115 default:
1116 return -EINVAL;
1117 }
1118
1119 if (IS_ERR(iod))
1120 return PTR_ERR(iod);
1121
1122 memset(&c, 0, sizeof(c));
1123 c.rw.opcode = io.opcode;
1124 c.rw.flags = io.flags;
1125 c.rw.nsid = cpu_to_le32(ns->ns_id);
1126 c.rw.slba = cpu_to_le64(io.slba);
1127 c.rw.length = cpu_to_le16(io.nblocks);
1128 c.rw.control = cpu_to_le16(io.control);
1129 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1130 c.rw.reftag = io.reftag;
1131 c.rw.apptag = io.apptag;
1132 c.rw.appmask = io.appmask;
1133 /* XXX: metadata */
1134 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1135
1136 nvmeq = get_nvmeq(dev);
1137 /*
1138 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1139 * disabled. We may be preempted at any point, and be rescheduled
1140 * to a different CPU. That will cause cacheline bouncing, but no
1141 * additional races since q_lock already protects against other CPUs.
1142 */
1143 put_nvmeq(nvmeq);
1144 if (length != (io.nblocks + 1) << ns->lba_shift)
1145 status = -ENOMEM;
1146 else
1147 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1148
1149 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1150 nvme_free_iod(dev, iod);
1151 return status;
1152 }
1153
1154 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1155 struct nvme_admin_cmd __user *ucmd)
1156 {
1157 struct nvme_dev *dev = ns->dev;
1158 struct nvme_admin_cmd cmd;
1159 struct nvme_command c;
1160 int status, length;
1161 struct nvme_iod *iod;
1162
1163 if (!capable(CAP_SYS_ADMIN))
1164 return -EACCES;
1165 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1166 return -EFAULT;
1167
1168 memset(&c, 0, sizeof(c));
1169 c.common.opcode = cmd.opcode;
1170 c.common.flags = cmd.flags;
1171 c.common.nsid = cpu_to_le32(cmd.nsid);
1172 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1173 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1174 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1175 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1176 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1177 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1178 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1179 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1180
1181 length = cmd.data_len;
1182 if (cmd.data_len) {
1183 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1184 length);
1185 if (IS_ERR(iod))
1186 return PTR_ERR(iod);
1187 length = nvme_setup_prps(dev, &c.common, iod, length,
1188 GFP_KERNEL);
1189 }
1190
1191 if (length != cmd.data_len)
1192 status = -ENOMEM;
1193 else
1194 status = nvme_submit_admin_cmd(dev, &c, NULL);
1195
1196 if (cmd.data_len) {
1197 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1198 nvme_free_iod(dev, iod);
1199 }
1200 return status;
1201 }
1202
1203 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1204 unsigned long arg)
1205 {
1206 struct nvme_ns *ns = bdev->bd_disk->private_data;
1207
1208 switch (cmd) {
1209 case NVME_IOCTL_ID:
1210 return ns->ns_id;
1211 case NVME_IOCTL_ADMIN_CMD:
1212 return nvme_user_admin_cmd(ns, (void __user *)arg);
1213 case NVME_IOCTL_SUBMIT_IO:
1214 return nvme_submit_io(ns, (void __user *)arg);
1215 default:
1216 return -ENOTTY;
1217 }
1218 }
1219
1220 static const struct block_device_operations nvme_fops = {
1221 .owner = THIS_MODULE,
1222 .ioctl = nvme_ioctl,
1223 .compat_ioctl = nvme_ioctl,
1224 };
1225
1226 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1227 {
1228 int depth = nvmeq->q_depth - 1;
1229 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1230 unsigned long now = jiffies;
1231 int cmdid;
1232
1233 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1234 void *ctx;
1235 nvme_completion_fn fn;
1236 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1237
1238 if (!time_after(now, info[cmdid].timeout))
1239 continue;
1240 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1241 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1242 fn(nvmeq->dev, ctx, &cqe);
1243 }
1244 }
1245
1246 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1247 {
1248 while (bio_list_peek(&nvmeq->sq_cong)) {
1249 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1250 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1251 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1252 bio_list_add_head(&nvmeq->sq_cong, bio);
1253 break;
1254 }
1255 if (bio_list_empty(&nvmeq->sq_cong))
1256 remove_wait_queue(&nvmeq->sq_full,
1257 &nvmeq->sq_cong_wait);
1258 }
1259 }
1260
1261 static int nvme_kthread(void *data)
1262 {
1263 struct nvme_dev *dev;
1264
1265 while (!kthread_should_stop()) {
1266 __set_current_state(TASK_RUNNING);
1267 spin_lock(&dev_list_lock);
1268 list_for_each_entry(dev, &dev_list, node) {
1269 int i;
1270 for (i = 0; i < dev->queue_count; i++) {
1271 struct nvme_queue *nvmeq = dev->queues[i];
1272 if (!nvmeq)
1273 continue;
1274 spin_lock_irq(&nvmeq->q_lock);
1275 if (nvme_process_cq(nvmeq))
1276 printk("process_cq did something\n");
1277 nvme_timeout_ios(nvmeq);
1278 nvme_resubmit_bios(nvmeq);
1279 spin_unlock_irq(&nvmeq->q_lock);
1280 }
1281 }
1282 spin_unlock(&dev_list_lock);
1283 set_current_state(TASK_INTERRUPTIBLE);
1284 schedule_timeout(HZ);
1285 }
1286 return 0;
1287 }
1288
1289 static DEFINE_IDA(nvme_index_ida);
1290
1291 static int nvme_get_ns_idx(void)
1292 {
1293 int index, error;
1294
1295 do {
1296 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1297 return -1;
1298
1299 spin_lock(&dev_list_lock);
1300 error = ida_get_new(&nvme_index_ida, &index);
1301 spin_unlock(&dev_list_lock);
1302 } while (error == -EAGAIN);
1303
1304 if (error)
1305 index = -1;
1306 return index;
1307 }
1308
1309 static void nvme_put_ns_idx(int index)
1310 {
1311 spin_lock(&dev_list_lock);
1312 ida_remove(&nvme_index_ida, index);
1313 spin_unlock(&dev_list_lock);
1314 }
1315
1316 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1317 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1318 {
1319 struct nvme_ns *ns;
1320 struct gendisk *disk;
1321 int lbaf;
1322
1323 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1324 return NULL;
1325
1326 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1327 if (!ns)
1328 return NULL;
1329 ns->queue = blk_alloc_queue(GFP_KERNEL);
1330 if (!ns->queue)
1331 goto out_free_ns;
1332 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1333 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1334 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1335 /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1336 blk_queue_make_request(ns->queue, nvme_make_request);
1337 ns->dev = dev;
1338 ns->queue->queuedata = ns;
1339
1340 disk = alloc_disk(NVME_MINORS);
1341 if (!disk)
1342 goto out_free_queue;
1343 ns->ns_id = nsid;
1344 ns->disk = disk;
1345 lbaf = id->flbas & 0xf;
1346 ns->lba_shift = id->lbaf[lbaf].ds;
1347 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1348
1349 disk->major = nvme_major;
1350 disk->minors = NVME_MINORS;
1351 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1352 disk->fops = &nvme_fops;
1353 disk->private_data = ns;
1354 disk->queue = ns->queue;
1355 disk->driverfs_dev = &dev->pci_dev->dev;
1356 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1357 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1358
1359 return ns;
1360
1361 out_free_queue:
1362 blk_cleanup_queue(ns->queue);
1363 out_free_ns:
1364 kfree(ns);
1365 return NULL;
1366 }
1367
1368 static void nvme_ns_free(struct nvme_ns *ns)
1369 {
1370 int index = ns->disk->first_minor / NVME_MINORS;
1371 put_disk(ns->disk);
1372 nvme_put_ns_idx(index);
1373 blk_cleanup_queue(ns->queue);
1374 kfree(ns);
1375 }
1376
1377 static int set_queue_count(struct nvme_dev *dev, int count)
1378 {
1379 int status;
1380 u32 result;
1381 u32 q_count = (count - 1) | ((count - 1) << 16);
1382
1383 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1384 &result);
1385 if (status)
1386 return -EIO;
1387 return min(result & 0xffff, result >> 16) + 1;
1388 }
1389
1390 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1391 {
1392 int result, cpu, i, nr_io_queues, db_bar_size;
1393
1394 nr_io_queues = num_online_cpus();
1395 result = set_queue_count(dev, nr_io_queues);
1396 if (result < 0)
1397 return result;
1398 if (result < nr_io_queues)
1399 nr_io_queues = result;
1400
1401 /* Deregister the admin queue's interrupt */
1402 free_irq(dev->entry[0].vector, dev->queues[0]);
1403
1404 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1405 if (db_bar_size > 8192) {
1406 iounmap(dev->bar);
1407 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1408 db_bar_size);
1409 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1410 dev->queues[0]->q_db = dev->dbs;
1411 }
1412
1413 for (i = 0; i < nr_io_queues; i++)
1414 dev->entry[i].entry = i;
1415 for (;;) {
1416 result = pci_enable_msix(dev->pci_dev, dev->entry,
1417 nr_io_queues);
1418 if (result == 0) {
1419 break;
1420 } else if (result > 0) {
1421 nr_io_queues = result;
1422 continue;
1423 } else {
1424 nr_io_queues = 1;
1425 break;
1426 }
1427 }
1428
1429 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1430 /* XXX: handle failure here */
1431
1432 cpu = cpumask_first(cpu_online_mask);
1433 for (i = 0; i < nr_io_queues; i++) {
1434 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1435 cpu = cpumask_next(cpu, cpu_online_mask);
1436 }
1437
1438 for (i = 0; i < nr_io_queues; i++) {
1439 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1440 NVME_Q_DEPTH, i);
1441 if (IS_ERR(dev->queues[i + 1]))
1442 return PTR_ERR(dev->queues[i + 1]);
1443 dev->queue_count++;
1444 }
1445
1446 for (; i < num_possible_cpus(); i++) {
1447 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1448 dev->queues[i + 1] = dev->queues[target + 1];
1449 }
1450
1451 return 0;
1452 }
1453
1454 static void nvme_free_queues(struct nvme_dev *dev)
1455 {
1456 int i;
1457
1458 for (i = dev->queue_count - 1; i >= 0; i--)
1459 nvme_free_queue(dev, i);
1460 }
1461
1462 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1463 {
1464 int res, nn, i;
1465 struct nvme_ns *ns, *next;
1466 struct nvme_id_ctrl *ctrl;
1467 struct nvme_id_ns *id_ns;
1468 void *mem;
1469 dma_addr_t dma_addr;
1470
1471 res = nvme_setup_io_queues(dev);
1472 if (res)
1473 return res;
1474
1475 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1476 GFP_KERNEL);
1477
1478 res = nvme_identify(dev, 0, 1, dma_addr);
1479 if (res) {
1480 res = -EIO;
1481 goto out_free;
1482 }
1483
1484 ctrl = mem;
1485 nn = le32_to_cpup(&ctrl->nn);
1486 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1487 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1488 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1489
1490 id_ns = mem;
1491 for (i = 1; i <= nn; i++) {
1492 res = nvme_identify(dev, i, 0, dma_addr);
1493 if (res)
1494 continue;
1495
1496 if (id_ns->ncap == 0)
1497 continue;
1498
1499 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1500 dma_addr + 4096);
1501 if (res)
1502 continue;
1503
1504 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1505 if (ns)
1506 list_add_tail(&ns->list, &dev->namespaces);
1507 }
1508 list_for_each_entry(ns, &dev->namespaces, list)
1509 add_disk(ns->disk);
1510
1511 goto out;
1512
1513 out_free:
1514 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1515 list_del(&ns->list);
1516 nvme_ns_free(ns);
1517 }
1518
1519 out:
1520 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1521 return res;
1522 }
1523
1524 static int nvme_dev_remove(struct nvme_dev *dev)
1525 {
1526 struct nvme_ns *ns, *next;
1527
1528 spin_lock(&dev_list_lock);
1529 list_del(&dev->node);
1530 spin_unlock(&dev_list_lock);
1531
1532 /* TODO: wait all I/O finished or cancel them */
1533
1534 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1535 list_del(&ns->list);
1536 del_gendisk(ns->disk);
1537 nvme_ns_free(ns);
1538 }
1539
1540 nvme_free_queues(dev);
1541
1542 return 0;
1543 }
1544
1545 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1546 {
1547 struct device *dmadev = &dev->pci_dev->dev;
1548 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1549 PAGE_SIZE, PAGE_SIZE, 0);
1550 if (!dev->prp_page_pool)
1551 return -ENOMEM;
1552
1553 /* Optimisation for I/Os between 4k and 128k */
1554 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1555 256, 256, 0);
1556 if (!dev->prp_small_pool) {
1557 dma_pool_destroy(dev->prp_page_pool);
1558 return -ENOMEM;
1559 }
1560 return 0;
1561 }
1562
1563 static void nvme_release_prp_pools(struct nvme_dev *dev)
1564 {
1565 dma_pool_destroy(dev->prp_page_pool);
1566 dma_pool_destroy(dev->prp_small_pool);
1567 }
1568
1569 /* XXX: Use an ida or something to let remove / add work correctly */
1570 static void nvme_set_instance(struct nvme_dev *dev)
1571 {
1572 static int instance;
1573 dev->instance = instance++;
1574 }
1575
1576 static void nvme_release_instance(struct nvme_dev *dev)
1577 {
1578 }
1579
1580 static int __devinit nvme_probe(struct pci_dev *pdev,
1581 const struct pci_device_id *id)
1582 {
1583 int bars, result = -ENOMEM;
1584 struct nvme_dev *dev;
1585
1586 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1587 if (!dev)
1588 return -ENOMEM;
1589 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1590 GFP_KERNEL);
1591 if (!dev->entry)
1592 goto free;
1593 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1594 GFP_KERNEL);
1595 if (!dev->queues)
1596 goto free;
1597
1598 if (pci_enable_device_mem(pdev))
1599 goto free;
1600 pci_set_master(pdev);
1601 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1602 if (pci_request_selected_regions(pdev, bars, "nvme"))
1603 goto disable;
1604
1605 INIT_LIST_HEAD(&dev->namespaces);
1606 dev->pci_dev = pdev;
1607 pci_set_drvdata(pdev, dev);
1608 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1609 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1610 nvme_set_instance(dev);
1611 dev->entry[0].vector = pdev->irq;
1612
1613 result = nvme_setup_prp_pools(dev);
1614 if (result)
1615 goto disable_msix;
1616
1617 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1618 if (!dev->bar) {
1619 result = -ENOMEM;
1620 goto disable_msix;
1621 }
1622
1623 result = nvme_configure_admin_queue(dev);
1624 if (result)
1625 goto unmap;
1626 dev->queue_count++;
1627
1628 spin_lock(&dev_list_lock);
1629 list_add(&dev->node, &dev_list);
1630 spin_unlock(&dev_list_lock);
1631
1632 result = nvme_dev_add(dev);
1633 if (result)
1634 goto delete;
1635
1636 return 0;
1637
1638 delete:
1639 spin_lock(&dev_list_lock);
1640 list_del(&dev->node);
1641 spin_unlock(&dev_list_lock);
1642
1643 nvme_free_queues(dev);
1644 unmap:
1645 iounmap(dev->bar);
1646 disable_msix:
1647 pci_disable_msix(pdev);
1648 nvme_release_instance(dev);
1649 nvme_release_prp_pools(dev);
1650 disable:
1651 pci_disable_device(pdev);
1652 pci_release_regions(pdev);
1653 free:
1654 kfree(dev->queues);
1655 kfree(dev->entry);
1656 kfree(dev);
1657 return result;
1658 }
1659
1660 static void __devexit nvme_remove(struct pci_dev *pdev)
1661 {
1662 struct nvme_dev *dev = pci_get_drvdata(pdev);
1663 nvme_dev_remove(dev);
1664 pci_disable_msix(pdev);
1665 iounmap(dev->bar);
1666 nvme_release_instance(dev);
1667 nvme_release_prp_pools(dev);
1668 pci_disable_device(pdev);
1669 pci_release_regions(pdev);
1670 kfree(dev->queues);
1671 kfree(dev->entry);
1672 kfree(dev);
1673 }
1674
1675 /* These functions are yet to be implemented */
1676 #define nvme_error_detected NULL
1677 #define nvme_dump_registers NULL
1678 #define nvme_link_reset NULL
1679 #define nvme_slot_reset NULL
1680 #define nvme_error_resume NULL
1681 #define nvme_suspend NULL
1682 #define nvme_resume NULL
1683
1684 static struct pci_error_handlers nvme_err_handler = {
1685 .error_detected = nvme_error_detected,
1686 .mmio_enabled = nvme_dump_registers,
1687 .link_reset = nvme_link_reset,
1688 .slot_reset = nvme_slot_reset,
1689 .resume = nvme_error_resume,
1690 };
1691
1692 /* Move to pci_ids.h later */
1693 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1694
1695 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1696 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1697 { 0, }
1698 };
1699 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1700
1701 static struct pci_driver nvme_driver = {
1702 .name = "nvme",
1703 .id_table = nvme_id_table,
1704 .probe = nvme_probe,
1705 .remove = __devexit_p(nvme_remove),
1706 .suspend = nvme_suspend,
1707 .resume = nvme_resume,
1708 .err_handler = &nvme_err_handler,
1709 };
1710
1711 static int __init nvme_init(void)
1712 {
1713 int result = -EBUSY;
1714
1715 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1716 if (IS_ERR(nvme_thread))
1717 return PTR_ERR(nvme_thread);
1718
1719 nvme_major = register_blkdev(nvme_major, "nvme");
1720 if (nvme_major <= 0)
1721 goto kill_kthread;
1722
1723 result = pci_register_driver(&nvme_driver);
1724 if (result)
1725 goto unregister_blkdev;
1726 return 0;
1727
1728 unregister_blkdev:
1729 unregister_blkdev(nvme_major, "nvme");
1730 kill_kthread:
1731 kthread_stop(nvme_thread);
1732 return result;
1733 }
1734
1735 static void __exit nvme_exit(void)
1736 {
1737 pci_unregister_driver(&nvme_driver);
1738 unregister_blkdev(nvme_major, "nvme");
1739 kthread_stop(nvme_thread);
1740 }
1741
1742 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1743 MODULE_LICENSE("GPL");
1744 MODULE_VERSION("0.8");
1745 module_init(nvme_init);
1746 module_exit(nvme_exit);
This page took 0.103326 seconds and 5 git commands to generate.