NVMe: Add a kthread to handle the congestion list
[deliverable/linux.git] / drivers / block / nvme.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/version.h>
40
41 #define NVME_Q_DEPTH 1024
42 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
43 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
44 #define NVME_MINORS 64
45 #define IO_TIMEOUT (5 * HZ)
46 #define ADMIN_TIMEOUT (60 * HZ)
47
48 static int nvme_major;
49 module_param(nvme_major, int, 0);
50
51 static int use_threaded_interrupts;
52 module_param(use_threaded_interrupts, int, 0);
53
54 static DEFINE_SPINLOCK(dev_list_lock);
55 static LIST_HEAD(dev_list);
56 static struct task_struct *nvme_thread;
57
58 /*
59 * Represents an NVM Express device. Each nvme_dev is a PCI function.
60 */
61 struct nvme_dev {
62 struct list_head node;
63 struct nvme_queue **queues;
64 u32 __iomem *dbs;
65 struct pci_dev *pci_dev;
66 struct dma_pool *prp_page_pool;
67 struct dma_pool *prp_small_pool;
68 int instance;
69 int queue_count;
70 u32 ctrl_config;
71 struct msix_entry *entry;
72 struct nvme_bar __iomem *bar;
73 struct list_head namespaces;
74 char serial[20];
75 char model[40];
76 char firmware_rev[8];
77 };
78
79 /*
80 * An NVM Express namespace is equivalent to a SCSI LUN
81 */
82 struct nvme_ns {
83 struct list_head list;
84
85 struct nvme_dev *dev;
86 struct request_queue *queue;
87 struct gendisk *disk;
88
89 int ns_id;
90 int lba_shift;
91 };
92
93 /*
94 * An NVM Express queue. Each device has at least two (one for admin
95 * commands and one for I/O commands).
96 */
97 struct nvme_queue {
98 struct device *q_dmadev;
99 struct nvme_dev *dev;
100 spinlock_t q_lock;
101 struct nvme_command *sq_cmds;
102 volatile struct nvme_completion *cqes;
103 dma_addr_t sq_dma_addr;
104 dma_addr_t cq_dma_addr;
105 wait_queue_head_t sq_full;
106 wait_queue_t sq_cong_wait;
107 struct bio_list sq_cong;
108 u32 __iomem *q_db;
109 u16 q_depth;
110 u16 cq_vector;
111 u16 sq_head;
112 u16 sq_tail;
113 u16 cq_head;
114 u16 cq_phase;
115 unsigned long cmdid_data[];
116 };
117
118 /*
119 * Check we didin't inadvertently grow the command struct
120 */
121 static inline void _nvme_check_size(void)
122 {
123 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132 }
133
134 struct nvme_cmd_info {
135 unsigned long ctx;
136 unsigned long timeout;
137 };
138
139 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140 {
141 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142 }
143
144 /**
145 * alloc_cmdid - Allocate a Command ID
146 * @param nvmeq The queue that will be used for this command
147 * @param ctx A pointer that will be passed to the handler
148 * @param handler The ID of the handler to call
149 *
150 * Allocate a Command ID for a queue. The data passed in will
151 * be passed to the completion handler. This is implemented by using
152 * the bottom two bits of the ctx pointer to store the handler ID.
153 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154 * We can change this if it becomes a problem.
155 */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157 unsigned timeout)
158 {
159 int depth = nvmeq->q_depth;
160 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161 int cmdid;
162
163 BUG_ON((unsigned long)ctx & 3);
164
165 do {
166 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167 if (cmdid >= depth)
168 return -EBUSY;
169 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171 info[cmdid].ctx = (unsigned long)ctx | handler;
172 info[cmdid].timeout = jiffies + timeout;
173 return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177 int handler, unsigned timeout)
178 {
179 int cmdid;
180 wait_event_killable(nvmeq->sq_full,
181 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182 return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /* If you need more than four handlers, you'll need to change how
186 * alloc_cmdid and nvme_process_cq work. Consider using a special
187 * CMD_CTX value instead, if that works for your situation.
188 */
189 enum {
190 sync_completion_id = 0,
191 bio_completion_id,
192 };
193
194 #define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
195 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
196 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
197 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
198
199 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
200 {
201 unsigned long data;
202 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
203
204 if (cmdid >= nvmeq->q_depth)
205 return CMD_CTX_INVALID;
206 data = info[cmdid].ctx;
207 info[cmdid].ctx = CMD_CTX_COMPLETED;
208 clear_bit(cmdid, nvmeq->cmdid_data);
209 wake_up(&nvmeq->sq_full);
210 return data;
211 }
212
213 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
214 {
215 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
216 info[cmdid].ctx = CMD_CTX_CANCELLED;
217 }
218
219 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
220 {
221 int qid, cpu = get_cpu();
222 if (cpu < ns->dev->queue_count)
223 qid = cpu + 1;
224 else
225 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
226 return ns->dev->queues[qid];
227 }
228
229 static void put_nvmeq(struct nvme_queue *nvmeq)
230 {
231 put_cpu();
232 }
233
234 /**
235 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
236 * @nvmeq: The queue to use
237 * @cmd: The command to send
238 *
239 * Safe to use from interrupt context
240 */
241 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
242 {
243 unsigned long flags;
244 u16 tail;
245 /* XXX: Need to check tail isn't going to overrun head */
246 spin_lock_irqsave(&nvmeq->q_lock, flags);
247 tail = nvmeq->sq_tail;
248 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
249 writel(tail, nvmeq->q_db);
250 if (++tail == nvmeq->q_depth)
251 tail = 0;
252 nvmeq->sq_tail = tail;
253 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
254
255 return 0;
256 }
257
258 struct nvme_prps {
259 int npages;
260 dma_addr_t first_dma;
261 __le64 *list[0];
262 };
263
264 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
265 {
266 const int last_prp = PAGE_SIZE / 8 - 1;
267 int i;
268 dma_addr_t prp_dma;
269
270 if (!prps)
271 return;
272
273 prp_dma = prps->first_dma;
274
275 if (prps->npages == 0)
276 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
277 for (i = 0; i < prps->npages; i++) {
278 __le64 *prp_list = prps->list[i];
279 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
280 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
281 prp_dma = next_prp_dma;
282 }
283 kfree(prps);
284 }
285
286 struct nvme_bio {
287 struct bio *bio;
288 int nents;
289 struct nvme_prps *prps;
290 struct scatterlist sg[0];
291 };
292
293 /* XXX: use a mempool */
294 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
295 {
296 return kzalloc(sizeof(struct nvme_bio) +
297 sizeof(struct scatterlist) * nseg, gfp);
298 }
299
300 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
301 {
302 nvme_free_prps(nvmeq->dev, nbio->prps);
303 kfree(nbio);
304 }
305
306 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
307 struct nvme_completion *cqe)
308 {
309 struct nvme_bio *nbio = ctx;
310 struct bio *bio = nbio->bio;
311 u16 status = le16_to_cpup(&cqe->status) >> 1;
312
313 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
314 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
315 free_nbio(nvmeq, nbio);
316 bio_endio(bio, status ? -EIO : 0);
317 }
318
319 /* length is in bytes */
320 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
321 struct nvme_common_command *cmd,
322 struct scatterlist *sg, int length)
323 {
324 struct dma_pool *pool;
325 int dma_len = sg_dma_len(sg);
326 u64 dma_addr = sg_dma_address(sg);
327 int offset = offset_in_page(dma_addr);
328 __le64 *prp_list;
329 dma_addr_t prp_dma;
330 int nprps, npages, i, prp_page;
331 struct nvme_prps *prps = NULL;
332
333 cmd->prp1 = cpu_to_le64(dma_addr);
334 length -= (PAGE_SIZE - offset);
335 if (length <= 0)
336 return prps;
337
338 dma_len -= (PAGE_SIZE - offset);
339 if (dma_len) {
340 dma_addr += (PAGE_SIZE - offset);
341 } else {
342 sg = sg_next(sg);
343 dma_addr = sg_dma_address(sg);
344 dma_len = sg_dma_len(sg);
345 }
346
347 if (length <= PAGE_SIZE) {
348 cmd->prp2 = cpu_to_le64(dma_addr);
349 return prps;
350 }
351
352 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
353 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
354 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
355 prp_page = 0;
356 if (nprps <= (256 / 8)) {
357 pool = dev->prp_small_pool;
358 prps->npages = 0;
359 } else {
360 pool = dev->prp_page_pool;
361 prps->npages = npages;
362 }
363
364 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
365 prps->list[prp_page++] = prp_list;
366 prps->first_dma = prp_dma;
367 cmd->prp2 = cpu_to_le64(prp_dma);
368 i = 0;
369 for (;;) {
370 if (i == PAGE_SIZE / 8 - 1) {
371 __le64 *old_prp_list = prp_list;
372 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
373 prps->list[prp_page++] = prp_list;
374 old_prp_list[i] = cpu_to_le64(prp_dma);
375 i = 0;
376 }
377 prp_list[i++] = cpu_to_le64(dma_addr);
378 dma_len -= PAGE_SIZE;
379 dma_addr += PAGE_SIZE;
380 length -= PAGE_SIZE;
381 if (length <= 0)
382 break;
383 if (dma_len > 0)
384 continue;
385 BUG_ON(dma_len < 0);
386 sg = sg_next(sg);
387 dma_addr = sg_dma_address(sg);
388 dma_len = sg_dma_len(sg);
389 }
390
391 return prps;
392 }
393
394 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
395 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
396 {
397 struct bio_vec *bvec, *bvprv = NULL;
398 struct scatterlist *sg = NULL;
399 int i, nsegs = 0;
400
401 sg_init_table(nbio->sg, psegs);
402 bio_for_each_segment(bvec, bio, i) {
403 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
404 sg->length += bvec->bv_len;
405 } else {
406 /* Check bvprv && offset == 0 */
407 sg = sg ? sg + 1 : nbio->sg;
408 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
409 bvec->bv_offset);
410 nsegs++;
411 }
412 bvprv = bvec;
413 }
414 nbio->nents = nsegs;
415 sg_mark_end(sg);
416 return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
417 }
418
419 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
420 struct bio *bio)
421 {
422 struct nvme_command *cmnd;
423 struct nvme_bio *nbio;
424 enum dma_data_direction dma_dir;
425 int cmdid, result = -ENOMEM;
426 u16 control;
427 u32 dsmgmt;
428 int psegs = bio_phys_segments(ns->queue, bio);
429
430 nbio = alloc_nbio(psegs, GFP_ATOMIC);
431 if (!nbio)
432 goto nomem;
433 nbio->bio = bio;
434
435 result = -EBUSY;
436 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
437 if (unlikely(cmdid < 0))
438 goto free_nbio;
439
440 control = 0;
441 if (bio->bi_rw & REQ_FUA)
442 control |= NVME_RW_FUA;
443 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
444 control |= NVME_RW_LR;
445
446 dsmgmt = 0;
447 if (bio->bi_rw & REQ_RAHEAD)
448 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
449
450 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
451
452 memset(cmnd, 0, sizeof(*cmnd));
453 if (bio_data_dir(bio)) {
454 cmnd->rw.opcode = nvme_cmd_write;
455 dma_dir = DMA_TO_DEVICE;
456 } else {
457 cmnd->rw.opcode = nvme_cmd_read;
458 dma_dir = DMA_FROM_DEVICE;
459 }
460
461 result = -ENOMEM;
462 if (nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs) == 0)
463 goto free_nbio;
464
465 cmnd->rw.flags = 1;
466 cmnd->rw.command_id = cmdid;
467 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
468 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
469 bio->bi_size);
470 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
471 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
472 cmnd->rw.control = cpu_to_le16(control);
473 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
474
475 writel(nvmeq->sq_tail, nvmeq->q_db);
476 if (++nvmeq->sq_tail == nvmeq->q_depth)
477 nvmeq->sq_tail = 0;
478
479 return 0;
480
481 free_nbio:
482 free_nbio(nvmeq, nbio);
483 nomem:
484 return result;
485 }
486
487 /*
488 * NB: return value of non-zero would mean that we were a stacking driver.
489 * make_request must always succeed.
490 */
491 static int nvme_make_request(struct request_queue *q, struct bio *bio)
492 {
493 struct nvme_ns *ns = q->queuedata;
494 struct nvme_queue *nvmeq = get_nvmeq(ns);
495 int result = -EBUSY;
496
497 spin_lock_irq(&nvmeq->q_lock);
498 if (bio_list_empty(&nvmeq->sq_cong))
499 result = nvme_submit_bio_queue(nvmeq, ns, bio);
500 if (unlikely(result)) {
501 if (bio_list_empty(&nvmeq->sq_cong))
502 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
503 bio_list_add(&nvmeq->sq_cong, bio);
504 }
505
506 spin_unlock_irq(&nvmeq->q_lock);
507 put_nvmeq(nvmeq);
508
509 return 0;
510 }
511
512 struct sync_cmd_info {
513 struct task_struct *task;
514 u32 result;
515 int status;
516 };
517
518 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
519 struct nvme_completion *cqe)
520 {
521 struct sync_cmd_info *cmdinfo = ctx;
522 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
523 return;
524 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
525 dev_warn(nvmeq->q_dmadev,
526 "completed id %d twice on queue %d\n",
527 cqe->command_id, le16_to_cpup(&cqe->sq_id));
528 return;
529 }
530 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
531 dev_warn(nvmeq->q_dmadev,
532 "invalid id %d completed on queue %d\n",
533 cqe->command_id, le16_to_cpup(&cqe->sq_id));
534 return;
535 }
536 cmdinfo->result = le32_to_cpup(&cqe->result);
537 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
538 wake_up_process(cmdinfo->task);
539 }
540
541 typedef void (*completion_fn)(struct nvme_queue *, void *,
542 struct nvme_completion *);
543
544 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
545 {
546 u16 head, phase;
547
548 static const completion_fn completions[4] = {
549 [sync_completion_id] = sync_completion,
550 [bio_completion_id] = bio_completion,
551 };
552
553 head = nvmeq->cq_head;
554 phase = nvmeq->cq_phase;
555
556 for (;;) {
557 unsigned long data;
558 void *ptr;
559 unsigned char handler;
560 struct nvme_completion cqe = nvmeq->cqes[head];
561 if ((le16_to_cpu(cqe.status) & 1) != phase)
562 break;
563 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
564 if (++head == nvmeq->q_depth) {
565 head = 0;
566 phase = !phase;
567 }
568
569 data = free_cmdid(nvmeq, cqe.command_id);
570 handler = data & 3;
571 ptr = (void *)(data & ~3UL);
572 completions[handler](nvmeq, ptr, &cqe);
573 }
574
575 /* If the controller ignores the cq head doorbell and continuously
576 * writes to the queue, it is theoretically possible to wrap around
577 * the queue twice and mistakenly return IRQ_NONE. Linux only
578 * requires that 0.1% of your interrupts are handled, so this isn't
579 * a big problem.
580 */
581 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
582 return IRQ_NONE;
583
584 writel(head, nvmeq->q_db + 1);
585 nvmeq->cq_head = head;
586 nvmeq->cq_phase = phase;
587
588 return IRQ_HANDLED;
589 }
590
591 static irqreturn_t nvme_irq(int irq, void *data)
592 {
593 irqreturn_t result;
594 struct nvme_queue *nvmeq = data;
595 spin_lock(&nvmeq->q_lock);
596 result = nvme_process_cq(nvmeq);
597 spin_unlock(&nvmeq->q_lock);
598 return result;
599 }
600
601 static irqreturn_t nvme_irq_check(int irq, void *data)
602 {
603 struct nvme_queue *nvmeq = data;
604 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
605 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
606 return IRQ_NONE;
607 return IRQ_WAKE_THREAD;
608 }
609
610 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
611 {
612 spin_lock_irq(&nvmeq->q_lock);
613 cancel_cmdid_data(nvmeq, cmdid);
614 spin_unlock_irq(&nvmeq->q_lock);
615 }
616
617 /*
618 * Returns 0 on success. If the result is negative, it's a Linux error code;
619 * if the result is positive, it's an NVM Express status code
620 */
621 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
622 struct nvme_command *cmd, u32 *result, unsigned timeout)
623 {
624 int cmdid;
625 struct sync_cmd_info cmdinfo;
626
627 cmdinfo.task = current;
628 cmdinfo.status = -EINTR;
629
630 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
631 timeout);
632 if (cmdid < 0)
633 return cmdid;
634 cmd->common.command_id = cmdid;
635
636 set_current_state(TASK_KILLABLE);
637 nvme_submit_cmd(nvmeq, cmd);
638 schedule();
639
640 if (cmdinfo.status == -EINTR) {
641 nvme_abort_command(nvmeq, cmdid);
642 return -EINTR;
643 }
644
645 if (result)
646 *result = cmdinfo.result;
647
648 return cmdinfo.status;
649 }
650
651 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
652 u32 *result)
653 {
654 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
655 }
656
657 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
658 {
659 int status;
660 struct nvme_command c;
661
662 memset(&c, 0, sizeof(c));
663 c.delete_queue.opcode = opcode;
664 c.delete_queue.qid = cpu_to_le16(id);
665
666 status = nvme_submit_admin_cmd(dev, &c, NULL);
667 if (status)
668 return -EIO;
669 return 0;
670 }
671
672 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
673 struct nvme_queue *nvmeq)
674 {
675 int status;
676 struct nvme_command c;
677 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
678
679 memset(&c, 0, sizeof(c));
680 c.create_cq.opcode = nvme_admin_create_cq;
681 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
682 c.create_cq.cqid = cpu_to_le16(qid);
683 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
684 c.create_cq.cq_flags = cpu_to_le16(flags);
685 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
686
687 status = nvme_submit_admin_cmd(dev, &c, NULL);
688 if (status)
689 return -EIO;
690 return 0;
691 }
692
693 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
694 struct nvme_queue *nvmeq)
695 {
696 int status;
697 struct nvme_command c;
698 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
699
700 memset(&c, 0, sizeof(c));
701 c.create_sq.opcode = nvme_admin_create_sq;
702 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
703 c.create_sq.sqid = cpu_to_le16(qid);
704 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
705 c.create_sq.sq_flags = cpu_to_le16(flags);
706 c.create_sq.cqid = cpu_to_le16(qid);
707
708 status = nvme_submit_admin_cmd(dev, &c, NULL);
709 if (status)
710 return -EIO;
711 return 0;
712 }
713
714 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
715 {
716 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
717 }
718
719 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
720 {
721 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
722 }
723
724 static void nvme_free_queue(struct nvme_dev *dev, int qid)
725 {
726 struct nvme_queue *nvmeq = dev->queues[qid];
727
728 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
729
730 /* Don't tell the adapter to delete the admin queue */
731 if (qid) {
732 adapter_delete_sq(dev, qid);
733 adapter_delete_cq(dev, qid);
734 }
735
736 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
737 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
738 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
739 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
740 kfree(nvmeq);
741 }
742
743 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
744 int depth, int vector)
745 {
746 struct device *dmadev = &dev->pci_dev->dev;
747 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
748 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
749 if (!nvmeq)
750 return NULL;
751
752 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
753 &nvmeq->cq_dma_addr, GFP_KERNEL);
754 if (!nvmeq->cqes)
755 goto free_nvmeq;
756 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
757
758 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
759 &nvmeq->sq_dma_addr, GFP_KERNEL);
760 if (!nvmeq->sq_cmds)
761 goto free_cqdma;
762
763 nvmeq->q_dmadev = dmadev;
764 nvmeq->dev = dev;
765 spin_lock_init(&nvmeq->q_lock);
766 nvmeq->cq_head = 0;
767 nvmeq->cq_phase = 1;
768 init_waitqueue_head(&nvmeq->sq_full);
769 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
770 bio_list_init(&nvmeq->sq_cong);
771 nvmeq->q_db = &dev->dbs[qid * 2];
772 nvmeq->q_depth = depth;
773 nvmeq->cq_vector = vector;
774
775 return nvmeq;
776
777 free_cqdma:
778 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
779 nvmeq->cq_dma_addr);
780 free_nvmeq:
781 kfree(nvmeq);
782 return NULL;
783 }
784
785 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
786 const char *name)
787 {
788 if (use_threaded_interrupts)
789 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
790 nvme_irq_check, nvme_irq,
791 IRQF_DISABLED | IRQF_SHARED,
792 name, nvmeq);
793 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
794 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
795 }
796
797 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
798 int qid, int cq_size, int vector)
799 {
800 int result;
801 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
802
803 if (!nvmeq)
804 return NULL;
805
806 result = adapter_alloc_cq(dev, qid, nvmeq);
807 if (result < 0)
808 goto free_nvmeq;
809
810 result = adapter_alloc_sq(dev, qid, nvmeq);
811 if (result < 0)
812 goto release_cq;
813
814 result = queue_request_irq(dev, nvmeq, "nvme");
815 if (result < 0)
816 goto release_sq;
817
818 return nvmeq;
819
820 release_sq:
821 adapter_delete_sq(dev, qid);
822 release_cq:
823 adapter_delete_cq(dev, qid);
824 free_nvmeq:
825 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
826 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
827 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
828 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
829 kfree(nvmeq);
830 return NULL;
831 }
832
833 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
834 {
835 int result;
836 u32 aqa;
837 struct nvme_queue *nvmeq;
838
839 dev->dbs = ((void __iomem *)dev->bar) + 4096;
840
841 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
842 if (!nvmeq)
843 return -ENOMEM;
844
845 aqa = nvmeq->q_depth - 1;
846 aqa |= aqa << 16;
847
848 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
849 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
850 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
851
852 writel(0, &dev->bar->cc);
853 writel(aqa, &dev->bar->aqa);
854 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
855 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
856 writel(dev->ctrl_config, &dev->bar->cc);
857
858 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
859 msleep(100);
860 if (fatal_signal_pending(current))
861 return -EINTR;
862 }
863
864 result = queue_request_irq(dev, nvmeq, "nvme admin");
865 dev->queues[0] = nvmeq;
866 return result;
867 }
868
869 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
870 unsigned long addr, unsigned length,
871 struct scatterlist **sgp)
872 {
873 int i, err, count, nents, offset;
874 struct scatterlist *sg;
875 struct page **pages;
876
877 if (addr & 3)
878 return -EINVAL;
879 if (!length)
880 return -EINVAL;
881
882 offset = offset_in_page(addr);
883 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
884 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
885
886 err = get_user_pages_fast(addr, count, 1, pages);
887 if (err < count) {
888 count = err;
889 err = -EFAULT;
890 goto put_pages;
891 }
892
893 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
894 sg_init_table(sg, count);
895 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
896 length -= (PAGE_SIZE - offset);
897 for (i = 1; i < count; i++) {
898 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
899 length -= PAGE_SIZE;
900 }
901
902 err = -ENOMEM;
903 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
904 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
905 if (!nents)
906 goto put_pages;
907
908 kfree(pages);
909 *sgp = sg;
910 return nents;
911
912 put_pages:
913 for (i = 0; i < count; i++)
914 put_page(pages[i]);
915 kfree(pages);
916 return err;
917 }
918
919 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
920 unsigned long addr, int length,
921 struct scatterlist *sg, int nents)
922 {
923 int i, count;
924
925 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
926 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
927
928 for (i = 0; i < count; i++)
929 put_page(sg_page(&sg[i]));
930 }
931
932 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
933 unsigned long addr, unsigned length,
934 struct nvme_command *cmd)
935 {
936 int err, nents;
937 struct scatterlist *sg;
938 struct nvme_prps *prps;
939
940 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
941 if (nents < 0)
942 return nents;
943 prps = nvme_setup_prps(dev, &cmd->common, sg, length);
944 err = nvme_submit_admin_cmd(dev, cmd, NULL);
945 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
946 nvme_free_prps(dev, prps);
947 return err ? -EIO : 0;
948 }
949
950 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
951 {
952 struct nvme_command c;
953
954 memset(&c, 0, sizeof(c));
955 c.identify.opcode = nvme_admin_identify;
956 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
957 c.identify.cns = cpu_to_le32(cns);
958
959 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
960 }
961
962 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
963 {
964 struct nvme_command c;
965
966 memset(&c, 0, sizeof(c));
967 c.features.opcode = nvme_admin_get_features;
968 c.features.nsid = cpu_to_le32(ns->ns_id);
969 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
970
971 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
972 }
973
974 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
975 {
976 struct nvme_dev *dev = ns->dev;
977 struct nvme_queue *nvmeq;
978 struct nvme_user_io io;
979 struct nvme_command c;
980 unsigned length;
981 u32 result;
982 int nents, status;
983 struct scatterlist *sg;
984 struct nvme_prps *prps;
985
986 if (copy_from_user(&io, uio, sizeof(io)))
987 return -EFAULT;
988 length = io.nblocks << io.block_shift;
989 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
990 if (nents < 0)
991 return nents;
992
993 memset(&c, 0, sizeof(c));
994 c.rw.opcode = io.opcode;
995 c.rw.flags = io.flags;
996 c.rw.nsid = cpu_to_le32(io.nsid);
997 c.rw.slba = cpu_to_le64(io.slba);
998 c.rw.length = cpu_to_le16(io.nblocks - 1);
999 c.rw.control = cpu_to_le16(io.control);
1000 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1001 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
1002 c.rw.apptag = cpu_to_le16(io.apptag);
1003 c.rw.appmask = cpu_to_le16(io.appmask);
1004 /* XXX: metadata */
1005 prps = nvme_setup_prps(dev, &c.common, sg, length);
1006
1007 nvmeq = get_nvmeq(ns);
1008 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1009 * disabled. We may be preempted at any point, and be rescheduled
1010 * to a different CPU. That will cause cacheline bouncing, but no
1011 * additional races since q_lock already protects against other CPUs.
1012 */
1013 put_nvmeq(nvmeq);
1014 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1015
1016 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1017 nvme_free_prps(dev, prps);
1018 put_user(result, &uio->result);
1019 return status;
1020 }
1021
1022 static int nvme_download_firmware(struct nvme_ns *ns,
1023 struct nvme_dlfw __user *udlfw)
1024 {
1025 struct nvme_dev *dev = ns->dev;
1026 struct nvme_dlfw dlfw;
1027 struct nvme_command c;
1028 int nents, status;
1029 struct scatterlist *sg;
1030 struct nvme_prps *prps;
1031
1032 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1033 return -EFAULT;
1034 if (dlfw.length >= (1 << 30))
1035 return -EINVAL;
1036
1037 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1038 if (nents < 0)
1039 return nents;
1040
1041 memset(&c, 0, sizeof(c));
1042 c.dlfw.opcode = nvme_admin_download_fw;
1043 c.dlfw.numd = cpu_to_le32(dlfw.length);
1044 c.dlfw.offset = cpu_to_le32(dlfw.offset);
1045 prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1046
1047 status = nvme_submit_admin_cmd(dev, &c, NULL);
1048 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1049 nvme_free_prps(dev, prps);
1050 return status;
1051 }
1052
1053 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1054 {
1055 struct nvme_dev *dev = ns->dev;
1056 struct nvme_command c;
1057
1058 memset(&c, 0, sizeof(c));
1059 c.common.opcode = nvme_admin_activate_fw;
1060 c.common.rsvd10[0] = cpu_to_le32(arg);
1061
1062 return nvme_submit_admin_cmd(dev, &c, NULL);
1063 }
1064
1065 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1066 unsigned long arg)
1067 {
1068 struct nvme_ns *ns = bdev->bd_disk->private_data;
1069
1070 switch (cmd) {
1071 case NVME_IOCTL_IDENTIFY_NS:
1072 return nvme_identify(ns, arg, 0);
1073 case NVME_IOCTL_IDENTIFY_CTRL:
1074 return nvme_identify(ns, arg, 1);
1075 case NVME_IOCTL_GET_RANGE_TYPE:
1076 return nvme_get_range_type(ns, arg);
1077 case NVME_IOCTL_SUBMIT_IO:
1078 return nvme_submit_io(ns, (void __user *)arg);
1079 case NVME_IOCTL_DOWNLOAD_FW:
1080 return nvme_download_firmware(ns, (void __user *)arg);
1081 case NVME_IOCTL_ACTIVATE_FW:
1082 return nvme_activate_firmware(ns, arg);
1083 default:
1084 return -ENOTTY;
1085 }
1086 }
1087
1088 static const struct block_device_operations nvme_fops = {
1089 .owner = THIS_MODULE,
1090 .ioctl = nvme_ioctl,
1091 };
1092
1093 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1094 {
1095 while (bio_list_peek(&nvmeq->sq_cong)) {
1096 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1097 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1098 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1099 bio_list_add_head(&nvmeq->sq_cong, bio);
1100 break;
1101 }
1102 }
1103 }
1104
1105 static int nvme_kthread(void *data)
1106 {
1107 struct nvme_dev *dev;
1108
1109 while (!kthread_should_stop()) {
1110 __set_current_state(TASK_RUNNING);
1111 spin_lock(&dev_list_lock);
1112 list_for_each_entry(dev, &dev_list, node) {
1113 int i;
1114 for (i = 0; i < dev->queue_count; i++) {
1115 struct nvme_queue *nvmeq = dev->queues[i];
1116 spin_lock_irq(&nvmeq->q_lock);
1117 if (nvme_process_cq(nvmeq))
1118 printk("process_cq did something\n");
1119 nvme_resubmit_bios(nvmeq);
1120 spin_unlock_irq(&nvmeq->q_lock);
1121 }
1122 }
1123 spin_unlock(&dev_list_lock);
1124 set_current_state(TASK_INTERRUPTIBLE);
1125 schedule_timeout(HZ);
1126 }
1127 return 0;
1128 }
1129
1130 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1131 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1132 {
1133 struct nvme_ns *ns;
1134 struct gendisk *disk;
1135 int lbaf;
1136
1137 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1138 return NULL;
1139
1140 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1141 if (!ns)
1142 return NULL;
1143 ns->queue = blk_alloc_queue(GFP_KERNEL);
1144 if (!ns->queue)
1145 goto out_free_ns;
1146 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1147 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1148 blk_queue_make_request(ns->queue, nvme_make_request);
1149 ns->dev = dev;
1150 ns->queue->queuedata = ns;
1151
1152 disk = alloc_disk(NVME_MINORS);
1153 if (!disk)
1154 goto out_free_queue;
1155 ns->ns_id = index;
1156 ns->disk = disk;
1157 lbaf = id->flbas & 0xf;
1158 ns->lba_shift = id->lbaf[lbaf].ds;
1159
1160 disk->major = nvme_major;
1161 disk->minors = NVME_MINORS;
1162 disk->first_minor = NVME_MINORS * index;
1163 disk->fops = &nvme_fops;
1164 disk->private_data = ns;
1165 disk->queue = ns->queue;
1166 disk->driverfs_dev = &dev->pci_dev->dev;
1167 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1168 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1169
1170 return ns;
1171
1172 out_free_queue:
1173 blk_cleanup_queue(ns->queue);
1174 out_free_ns:
1175 kfree(ns);
1176 return NULL;
1177 }
1178
1179 static void nvme_ns_free(struct nvme_ns *ns)
1180 {
1181 put_disk(ns->disk);
1182 blk_cleanup_queue(ns->queue);
1183 kfree(ns);
1184 }
1185
1186 static int set_queue_count(struct nvme_dev *dev, int count)
1187 {
1188 int status;
1189 u32 result;
1190 struct nvme_command c;
1191 u32 q_count = (count - 1) | ((count - 1) << 16);
1192
1193 memset(&c, 0, sizeof(c));
1194 c.features.opcode = nvme_admin_get_features;
1195 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1196 c.features.dword11 = cpu_to_le32(q_count);
1197
1198 status = nvme_submit_admin_cmd(dev, &c, &result);
1199 if (status)
1200 return -EIO;
1201 return min(result & 0xffff, result >> 16) + 1;
1202 }
1203
1204 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1205 {
1206 int result, cpu, i, nr_queues;
1207
1208 nr_queues = num_online_cpus();
1209 result = set_queue_count(dev, nr_queues);
1210 if (result < 0)
1211 return result;
1212 if (result < nr_queues)
1213 nr_queues = result;
1214
1215 /* Deregister the admin queue's interrupt */
1216 free_irq(dev->entry[0].vector, dev->queues[0]);
1217
1218 for (i = 0; i < nr_queues; i++)
1219 dev->entry[i].entry = i;
1220 for (;;) {
1221 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1222 if (result == 0) {
1223 break;
1224 } else if (result > 0) {
1225 nr_queues = result;
1226 continue;
1227 } else {
1228 nr_queues = 1;
1229 break;
1230 }
1231 }
1232
1233 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1234 /* XXX: handle failure here */
1235
1236 cpu = cpumask_first(cpu_online_mask);
1237 for (i = 0; i < nr_queues; i++) {
1238 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1239 cpu = cpumask_next(cpu, cpu_online_mask);
1240 }
1241
1242 for (i = 0; i < nr_queues; i++) {
1243 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1244 NVME_Q_DEPTH, i);
1245 if (!dev->queues[i + 1])
1246 return -ENOMEM;
1247 dev->queue_count++;
1248 }
1249
1250 return 0;
1251 }
1252
1253 static void nvme_free_queues(struct nvme_dev *dev)
1254 {
1255 int i;
1256
1257 for (i = dev->queue_count - 1; i >= 0; i--)
1258 nvme_free_queue(dev, i);
1259 }
1260
1261 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1262 {
1263 int res, nn, i;
1264 struct nvme_ns *ns, *next;
1265 struct nvme_id_ctrl *ctrl;
1266 void *id;
1267 dma_addr_t dma_addr;
1268 struct nvme_command cid, crt;
1269
1270 res = nvme_setup_io_queues(dev);
1271 if (res)
1272 return res;
1273
1274 /* XXX: Switch to a SG list once prp2 works */
1275 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1276 GFP_KERNEL);
1277
1278 memset(&cid, 0, sizeof(cid));
1279 cid.identify.opcode = nvme_admin_identify;
1280 cid.identify.nsid = 0;
1281 cid.identify.prp1 = cpu_to_le64(dma_addr);
1282 cid.identify.cns = cpu_to_le32(1);
1283
1284 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1285 if (res) {
1286 res = -EIO;
1287 goto out_free;
1288 }
1289
1290 ctrl = id;
1291 nn = le32_to_cpup(&ctrl->nn);
1292 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1293 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1294 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1295
1296 cid.identify.cns = 0;
1297 memset(&crt, 0, sizeof(crt));
1298 crt.features.opcode = nvme_admin_get_features;
1299 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1300 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1301
1302 for (i = 0; i < nn; i++) {
1303 cid.identify.nsid = cpu_to_le32(i);
1304 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1305 if (res)
1306 continue;
1307
1308 if (((struct nvme_id_ns *)id)->ncap == 0)
1309 continue;
1310
1311 crt.features.nsid = cpu_to_le32(i);
1312 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1313 if (res)
1314 continue;
1315
1316 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1317 if (ns)
1318 list_add_tail(&ns->list, &dev->namespaces);
1319 }
1320 list_for_each_entry(ns, &dev->namespaces, list)
1321 add_disk(ns->disk);
1322
1323 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1324 return 0;
1325
1326 out_free:
1327 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1328 list_del(&ns->list);
1329 nvme_ns_free(ns);
1330 }
1331
1332 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1333 return res;
1334 }
1335
1336 static int nvme_dev_remove(struct nvme_dev *dev)
1337 {
1338 struct nvme_ns *ns, *next;
1339
1340 spin_lock(&dev_list_lock);
1341 list_del(&dev->node);
1342 spin_unlock(&dev_list_lock);
1343
1344 /* TODO: wait all I/O finished or cancel them */
1345
1346 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1347 list_del(&ns->list);
1348 del_gendisk(ns->disk);
1349 nvme_ns_free(ns);
1350 }
1351
1352 nvme_free_queues(dev);
1353
1354 return 0;
1355 }
1356
1357 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1358 {
1359 struct device *dmadev = &dev->pci_dev->dev;
1360 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1361 PAGE_SIZE, PAGE_SIZE, 0);
1362 if (!dev->prp_page_pool)
1363 return -ENOMEM;
1364
1365 /* Optimisation for I/Os between 4k and 128k */
1366 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1367 256, 256, 0);
1368 if (!dev->prp_small_pool) {
1369 dma_pool_destroy(dev->prp_page_pool);
1370 return -ENOMEM;
1371 }
1372 return 0;
1373 }
1374
1375 static void nvme_release_prp_pools(struct nvme_dev *dev)
1376 {
1377 dma_pool_destroy(dev->prp_page_pool);
1378 dma_pool_destroy(dev->prp_small_pool);
1379 }
1380
1381 /* XXX: Use an ida or something to let remove / add work correctly */
1382 static void nvme_set_instance(struct nvme_dev *dev)
1383 {
1384 static int instance;
1385 dev->instance = instance++;
1386 }
1387
1388 static void nvme_release_instance(struct nvme_dev *dev)
1389 {
1390 }
1391
1392 static int __devinit nvme_probe(struct pci_dev *pdev,
1393 const struct pci_device_id *id)
1394 {
1395 int bars, result = -ENOMEM;
1396 struct nvme_dev *dev;
1397
1398 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1399 if (!dev)
1400 return -ENOMEM;
1401 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1402 GFP_KERNEL);
1403 if (!dev->entry)
1404 goto free;
1405 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1406 GFP_KERNEL);
1407 if (!dev->queues)
1408 goto free;
1409
1410 if (pci_enable_device_mem(pdev))
1411 goto free;
1412 pci_set_master(pdev);
1413 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1414 if (pci_request_selected_regions(pdev, bars, "nvme"))
1415 goto disable;
1416
1417 INIT_LIST_HEAD(&dev->namespaces);
1418 dev->pci_dev = pdev;
1419 pci_set_drvdata(pdev, dev);
1420 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1421 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1422 nvme_set_instance(dev);
1423 dev->entry[0].vector = pdev->irq;
1424
1425 result = nvme_setup_prp_pools(dev);
1426 if (result)
1427 goto disable_msix;
1428
1429 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1430 if (!dev->bar) {
1431 result = -ENOMEM;
1432 goto disable_msix;
1433 }
1434
1435 result = nvme_configure_admin_queue(dev);
1436 if (result)
1437 goto unmap;
1438 dev->queue_count++;
1439
1440 result = nvme_dev_add(dev);
1441 if (result)
1442 goto delete;
1443
1444 spin_lock(&dev_list_lock);
1445 list_add(&dev->node, &dev_list);
1446 spin_unlock(&dev_list_lock);
1447
1448 return 0;
1449
1450 delete:
1451 nvme_free_queues(dev);
1452 unmap:
1453 iounmap(dev->bar);
1454 disable_msix:
1455 pci_disable_msix(pdev);
1456 nvme_release_instance(dev);
1457 nvme_release_prp_pools(dev);
1458 disable:
1459 pci_disable_device(pdev);
1460 pci_release_regions(pdev);
1461 free:
1462 kfree(dev->queues);
1463 kfree(dev->entry);
1464 kfree(dev);
1465 return result;
1466 }
1467
1468 static void __devexit nvme_remove(struct pci_dev *pdev)
1469 {
1470 struct nvme_dev *dev = pci_get_drvdata(pdev);
1471 nvme_dev_remove(dev);
1472 pci_disable_msix(pdev);
1473 iounmap(dev->bar);
1474 nvme_release_instance(dev);
1475 nvme_release_prp_pools(dev);
1476 pci_disable_device(pdev);
1477 pci_release_regions(pdev);
1478 kfree(dev->queues);
1479 kfree(dev->entry);
1480 kfree(dev);
1481 }
1482
1483 /* These functions are yet to be implemented */
1484 #define nvme_error_detected NULL
1485 #define nvme_dump_registers NULL
1486 #define nvme_link_reset NULL
1487 #define nvme_slot_reset NULL
1488 #define nvme_error_resume NULL
1489 #define nvme_suspend NULL
1490 #define nvme_resume NULL
1491
1492 static struct pci_error_handlers nvme_err_handler = {
1493 .error_detected = nvme_error_detected,
1494 .mmio_enabled = nvme_dump_registers,
1495 .link_reset = nvme_link_reset,
1496 .slot_reset = nvme_slot_reset,
1497 .resume = nvme_error_resume,
1498 };
1499
1500 /* Move to pci_ids.h later */
1501 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1502
1503 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1504 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1505 { 0, }
1506 };
1507 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1508
1509 static struct pci_driver nvme_driver = {
1510 .name = "nvme",
1511 .id_table = nvme_id_table,
1512 .probe = nvme_probe,
1513 .remove = __devexit_p(nvme_remove),
1514 .suspend = nvme_suspend,
1515 .resume = nvme_resume,
1516 .err_handler = &nvme_err_handler,
1517 };
1518
1519 static int __init nvme_init(void)
1520 {
1521 int result = -EBUSY;
1522
1523 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1524 if (IS_ERR(nvme_thread))
1525 return PTR_ERR(nvme_thread);
1526
1527 nvme_major = register_blkdev(nvme_major, "nvme");
1528 if (nvme_major <= 0)
1529 goto kill_kthread;
1530
1531 result = pci_register_driver(&nvme_driver);
1532 if (result)
1533 goto unregister_blkdev;
1534 return 0;
1535
1536 unregister_blkdev:
1537 unregister_blkdev(nvme_major, "nvme");
1538 kill_kthread:
1539 kthread_stop(nvme_thread);
1540 return result;
1541 }
1542
1543 static void __exit nvme_exit(void)
1544 {
1545 pci_unregister_driver(&nvme_driver);
1546 unregister_blkdev(nvme_major, "nvme");
1547 kthread_stop(nvme_thread);
1548 }
1549
1550 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1551 MODULE_LICENSE("GPL");
1552 MODULE_VERSION("0.2");
1553 module_init(nvme_init);
1554 module_exit(nvme_exit);
This page took 0.08092 seconds and 5 git commands to generate.