block: push down BKL into .locked_ioctl
[deliverable/linux.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/smp_lock.h>
61 #include <linux/mutex.h>
62 #include <linux/slab.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_ioctl.h>
65 #include <scsi/scsi.h>
66 #include <linux/debugfs.h>
67 #include <linux/device.h>
68
69 #include <asm/uaccess.h>
70
71 #define DRIVER_NAME "pktcdvd"
72
73 #if PACKET_DEBUG
74 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
75 #else
76 #define DPRINTK(fmt, args...)
77 #endif
78
79 #if PACKET_DEBUG > 1
80 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
81 #else
82 #define VPRINTK(fmt, args...)
83 #endif
84
85 #define MAX_SPEED 0xffff
86
87 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
88
89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90 static struct proc_dir_entry *pkt_proc;
91 static int pktdev_major;
92 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95 static mempool_t *psd_pool;
96
97 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99
100 /* forward declaration */
101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102 static int pkt_remove_dev(dev_t pkt_dev);
103 static int pkt_seq_show(struct seq_file *m, void *p);
104
105
106
107 /*
108 * create and register a pktcdvd kernel object.
109 */
110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
114 {
115 struct pktcdvd_kobj *p;
116 int error;
117
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
126 }
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
129 }
130 /*
131 * remove a pktcdvd kernel object.
132 */
133 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134 {
135 if (p)
136 kobject_put(&p->kobj);
137 }
138 /*
139 * default release function for pktcdvd kernel objects.
140 */
141 static void pkt_kobj_release(struct kobject *kobj)
142 {
143 kfree(to_pktcdvdkobj(kobj));
144 }
145
146
147 /**********************************************************
148 *
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
151 *
152 **********************************************************/
153
154 #define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
156
157 /**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
169
170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176
177 static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
185 };
186
187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
190
191 static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
196 };
197
198 static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
200 {
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
224
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
230
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
236 }
237 return n;
238 }
239
240 static void init_write_congestion_marks(int* lo, int* hi)
241 {
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
250 }
251 } else {
252 *hi = -1;
253 *lo = -1;
254 }
255 }
256
257 static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
260 {
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
263
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
270
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
278
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
286 }
287 return len;
288 }
289
290 static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
293 };
294 static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
298 };
299 static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
303 };
304
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
312 }
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
320 }
321 }
322
323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324 {
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
329 }
330
331
332 /********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
338
339 static void class_pktcdvd_release(struct class *cls)
340 {
341 kfree(cls);
342 }
343 static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
346 {
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
359 }
360 mutex_unlock(&ctl_mutex);
361 return n;
362 }
363
364 static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
368 {
369 unsigned int major, minor;
370
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
375
376 pkt_setup_dev(MKDEV(major, minor), NULL);
377
378 module_put(THIS_MODULE);
379
380 return count;
381 }
382
383 return -EINVAL;
384 }
385
386 static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
390 {
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
395 }
396 return -EINVAL;
397 }
398
399 static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
404 };
405
406
407 static int pkt_sysfs_init(void)
408 {
409 int ret = 0;
410
411 /*
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
414 */
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
428 }
429 return 0;
430 }
431
432 static void pkt_sysfs_cleanup(void)
433 {
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
437 }
438
439 /********************************************************************
440 entries in debugfs
441
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
444
445 *******************************************************************/
446
447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448 {
449 return pkt_seq_show(m, p);
450 }
451
452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453 {
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455 }
456
457 static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
463 };
464
465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466 {
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
474 }
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
480 }
481 }
482
483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484 {
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
493 }
494
495 static void pkt_debugfs_init(void)
496 {
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
501 }
502 }
503
504 static void pkt_debugfs_cleanup(void)
505 {
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
510 }
511
512 /* ----------------------------------------------------------*/
513
514
515 static void pkt_bio_finished(struct pktcdvd_device *pd)
516 {
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
522 }
523 }
524
525 static void pkt_bio_destructor(struct bio *bio)
526 {
527 kfree(bio->bi_io_vec);
528 kfree(bio);
529 }
530
531 static struct bio *pkt_bio_alloc(int nr_iovecs)
532 {
533 struct bio_vec *bvl = NULL;
534 struct bio *bio;
535
536 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537 if (!bio)
538 goto no_bio;
539 bio_init(bio);
540
541 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542 if (!bvl)
543 goto no_bvl;
544
545 bio->bi_max_vecs = nr_iovecs;
546 bio->bi_io_vec = bvl;
547 bio->bi_destructor = pkt_bio_destructor;
548
549 return bio;
550
551 no_bvl:
552 kfree(bio);
553 no_bio:
554 return NULL;
555 }
556
557 /*
558 * Allocate a packet_data struct
559 */
560 static struct packet_data *pkt_alloc_packet_data(int frames)
561 {
562 int i;
563 struct packet_data *pkt;
564
565 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566 if (!pkt)
567 goto no_pkt;
568
569 pkt->frames = frames;
570 pkt->w_bio = pkt_bio_alloc(frames);
571 if (!pkt->w_bio)
572 goto no_bio;
573
574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576 if (!pkt->pages[i])
577 goto no_page;
578 }
579
580 spin_lock_init(&pkt->lock);
581 bio_list_init(&pkt->orig_bios);
582
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt_bio_alloc(1);
585 if (!bio)
586 goto no_rd_bio;
587 pkt->r_bios[i] = bio;
588 }
589
590 return pkt;
591
592 no_rd_bio:
593 for (i = 0; i < frames; i++) {
594 struct bio *bio = pkt->r_bios[i];
595 if (bio)
596 bio_put(bio);
597 }
598
599 no_page:
600 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601 if (pkt->pages[i])
602 __free_page(pkt->pages[i]);
603 bio_put(pkt->w_bio);
604 no_bio:
605 kfree(pkt);
606 no_pkt:
607 return NULL;
608 }
609
610 /*
611 * Free a packet_data struct
612 */
613 static void pkt_free_packet_data(struct packet_data *pkt)
614 {
615 int i;
616
617 for (i = 0; i < pkt->frames; i++) {
618 struct bio *bio = pkt->r_bios[i];
619 if (bio)
620 bio_put(bio);
621 }
622 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623 __free_page(pkt->pages[i]);
624 bio_put(pkt->w_bio);
625 kfree(pkt);
626 }
627
628 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
629 {
630 struct packet_data *pkt, *next;
631
632 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
633
634 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635 pkt_free_packet_data(pkt);
636 }
637 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
638 }
639
640 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
641 {
642 struct packet_data *pkt;
643
644 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
645
646 while (nr_packets > 0) {
647 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648 if (!pkt) {
649 pkt_shrink_pktlist(pd);
650 return 0;
651 }
652 pkt->id = nr_packets;
653 pkt->pd = pd;
654 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655 nr_packets--;
656 }
657 return 1;
658 }
659
660 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
661 {
662 struct rb_node *n = rb_next(&node->rb_node);
663 if (!n)
664 return NULL;
665 return rb_entry(n, struct pkt_rb_node, rb_node);
666 }
667
668 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
669 {
670 rb_erase(&node->rb_node, &pd->bio_queue);
671 mempool_free(node, pd->rb_pool);
672 pd->bio_queue_size--;
673 BUG_ON(pd->bio_queue_size < 0);
674 }
675
676 /*
677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
678 */
679 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
680 {
681 struct rb_node *n = pd->bio_queue.rb_node;
682 struct rb_node *next;
683 struct pkt_rb_node *tmp;
684
685 if (!n) {
686 BUG_ON(pd->bio_queue_size > 0);
687 return NULL;
688 }
689
690 for (;;) {
691 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692 if (s <= tmp->bio->bi_sector)
693 next = n->rb_left;
694 else
695 next = n->rb_right;
696 if (!next)
697 break;
698 n = next;
699 }
700
701 if (s > tmp->bio->bi_sector) {
702 tmp = pkt_rbtree_next(tmp);
703 if (!tmp)
704 return NULL;
705 }
706 BUG_ON(s > tmp->bio->bi_sector);
707 return tmp;
708 }
709
710 /*
711 * Insert a node into the pd->bio_queue rb tree.
712 */
713 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
714 {
715 struct rb_node **p = &pd->bio_queue.rb_node;
716 struct rb_node *parent = NULL;
717 sector_t s = node->bio->bi_sector;
718 struct pkt_rb_node *tmp;
719
720 while (*p) {
721 parent = *p;
722 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723 if (s < tmp->bio->bi_sector)
724 p = &(*p)->rb_left;
725 else
726 p = &(*p)->rb_right;
727 }
728 rb_link_node(&node->rb_node, parent, p);
729 rb_insert_color(&node->rb_node, &pd->bio_queue);
730 pd->bio_queue_size++;
731 }
732
733 /*
734 * Send a packet_command to the underlying block device and
735 * wait for completion.
736 */
737 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
738 {
739 struct request_queue *q = bdev_get_queue(pd->bdev);
740 struct request *rq;
741 int ret = 0;
742
743 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744 WRITE : READ, __GFP_WAIT);
745
746 if (cgc->buflen) {
747 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748 goto out;
749 }
750
751 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
753
754 rq->timeout = 60*HZ;
755 rq->cmd_type = REQ_TYPE_BLOCK_PC;
756 rq->cmd_flags |= REQ_HARDBARRIER;
757 if (cgc->quiet)
758 rq->cmd_flags |= REQ_QUIET;
759
760 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
761 if (rq->errors)
762 ret = -EIO;
763 out:
764 blk_put_request(rq);
765 return ret;
766 }
767
768 /*
769 * A generic sense dump / resolve mechanism should be implemented across
770 * all ATAPI + SCSI devices.
771 */
772 static void pkt_dump_sense(struct packet_command *cgc)
773 {
774 static char *info[9] = { "No sense", "Recovered error", "Not ready",
775 "Medium error", "Hardware error", "Illegal request",
776 "Unit attention", "Data protect", "Blank check" };
777 int i;
778 struct request_sense *sense = cgc->sense;
779
780 printk(DRIVER_NAME":");
781 for (i = 0; i < CDROM_PACKET_SIZE; i++)
782 printk(" %02x", cgc->cmd[i]);
783 printk(" - ");
784
785 if (sense == NULL) {
786 printk("no sense\n");
787 return;
788 }
789
790 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
791
792 if (sense->sense_key > 8) {
793 printk(" (INVALID)\n");
794 return;
795 }
796
797 printk(" (%s)\n", info[sense->sense_key]);
798 }
799
800 /*
801 * flush the drive cache to media
802 */
803 static int pkt_flush_cache(struct pktcdvd_device *pd)
804 {
805 struct packet_command cgc;
806
807 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
808 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
809 cgc.quiet = 1;
810
811 /*
812 * the IMMED bit -- we default to not setting it, although that
813 * would allow a much faster close, this is safer
814 */
815 #if 0
816 cgc.cmd[1] = 1 << 1;
817 #endif
818 return pkt_generic_packet(pd, &cgc);
819 }
820
821 /*
822 * speed is given as the normal factor, e.g. 4 for 4x
823 */
824 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
825 unsigned write_speed, unsigned read_speed)
826 {
827 struct packet_command cgc;
828 struct request_sense sense;
829 int ret;
830
831 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
832 cgc.sense = &sense;
833 cgc.cmd[0] = GPCMD_SET_SPEED;
834 cgc.cmd[2] = (read_speed >> 8) & 0xff;
835 cgc.cmd[3] = read_speed & 0xff;
836 cgc.cmd[4] = (write_speed >> 8) & 0xff;
837 cgc.cmd[5] = write_speed & 0xff;
838
839 if ((ret = pkt_generic_packet(pd, &cgc)))
840 pkt_dump_sense(&cgc);
841
842 return ret;
843 }
844
845 /*
846 * Queue a bio for processing by the low-level CD device. Must be called
847 * from process context.
848 */
849 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
850 {
851 spin_lock(&pd->iosched.lock);
852 if (bio_data_dir(bio) == READ)
853 bio_list_add(&pd->iosched.read_queue, bio);
854 else
855 bio_list_add(&pd->iosched.write_queue, bio);
856 spin_unlock(&pd->iosched.lock);
857
858 atomic_set(&pd->iosched.attention, 1);
859 wake_up(&pd->wqueue);
860 }
861
862 /*
863 * Process the queued read/write requests. This function handles special
864 * requirements for CDRW drives:
865 * - A cache flush command must be inserted before a read request if the
866 * previous request was a write.
867 * - Switching between reading and writing is slow, so don't do it more often
868 * than necessary.
869 * - Optimize for throughput at the expense of latency. This means that streaming
870 * writes will never be interrupted by a read, but if the drive has to seek
871 * before the next write, switch to reading instead if there are any pending
872 * read requests.
873 * - Set the read speed according to current usage pattern. When only reading
874 * from the device, it's best to use the highest possible read speed, but
875 * when switching often between reading and writing, it's better to have the
876 * same read and write speeds.
877 */
878 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
879 {
880
881 if (atomic_read(&pd->iosched.attention) == 0)
882 return;
883 atomic_set(&pd->iosched.attention, 0);
884
885 for (;;) {
886 struct bio *bio;
887 int reads_queued, writes_queued;
888
889 spin_lock(&pd->iosched.lock);
890 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
891 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
892 spin_unlock(&pd->iosched.lock);
893
894 if (!reads_queued && !writes_queued)
895 break;
896
897 if (pd->iosched.writing) {
898 int need_write_seek = 1;
899 spin_lock(&pd->iosched.lock);
900 bio = bio_list_peek(&pd->iosched.write_queue);
901 spin_unlock(&pd->iosched.lock);
902 if (bio && (bio->bi_sector == pd->iosched.last_write))
903 need_write_seek = 0;
904 if (need_write_seek && reads_queued) {
905 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
906 VPRINTK(DRIVER_NAME": write, waiting\n");
907 break;
908 }
909 pkt_flush_cache(pd);
910 pd->iosched.writing = 0;
911 }
912 } else {
913 if (!reads_queued && writes_queued) {
914 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
915 VPRINTK(DRIVER_NAME": read, waiting\n");
916 break;
917 }
918 pd->iosched.writing = 1;
919 }
920 }
921
922 spin_lock(&pd->iosched.lock);
923 if (pd->iosched.writing)
924 bio = bio_list_pop(&pd->iosched.write_queue);
925 else
926 bio = bio_list_pop(&pd->iosched.read_queue);
927 spin_unlock(&pd->iosched.lock);
928
929 if (!bio)
930 continue;
931
932 if (bio_data_dir(bio) == READ)
933 pd->iosched.successive_reads += bio->bi_size >> 10;
934 else {
935 pd->iosched.successive_reads = 0;
936 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
937 }
938 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
939 if (pd->read_speed == pd->write_speed) {
940 pd->read_speed = MAX_SPEED;
941 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
942 }
943 } else {
944 if (pd->read_speed != pd->write_speed) {
945 pd->read_speed = pd->write_speed;
946 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
947 }
948 }
949
950 atomic_inc(&pd->cdrw.pending_bios);
951 generic_make_request(bio);
952 }
953 }
954
955 /*
956 * Special care is needed if the underlying block device has a small
957 * max_phys_segments value.
958 */
959 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
960 {
961 if ((pd->settings.size << 9) / CD_FRAMESIZE
962 <= queue_max_segments(q)) {
963 /*
964 * The cdrom device can handle one segment/frame
965 */
966 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
967 return 0;
968 } else if ((pd->settings.size << 9) / PAGE_SIZE
969 <= queue_max_segments(q)) {
970 /*
971 * We can handle this case at the expense of some extra memory
972 * copies during write operations
973 */
974 set_bit(PACKET_MERGE_SEGS, &pd->flags);
975 return 0;
976 } else {
977 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
978 return -EIO;
979 }
980 }
981
982 /*
983 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
984 */
985 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
986 {
987 unsigned int copy_size = CD_FRAMESIZE;
988
989 while (copy_size > 0) {
990 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
991 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
992 src_bvl->bv_offset + offs;
993 void *vto = page_address(dst_page) + dst_offs;
994 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
995
996 BUG_ON(len < 0);
997 memcpy(vto, vfrom, len);
998 kunmap_atomic(vfrom, KM_USER0);
999
1000 seg++;
1001 offs = 0;
1002 dst_offs += len;
1003 copy_size -= len;
1004 }
1005 }
1006
1007 /*
1008 * Copy all data for this packet to pkt->pages[], so that
1009 * a) The number of required segments for the write bio is minimized, which
1010 * is necessary for some scsi controllers.
1011 * b) The data can be used as cache to avoid read requests if we receive a
1012 * new write request for the same zone.
1013 */
1014 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1015 {
1016 int f, p, offs;
1017
1018 /* Copy all data to pkt->pages[] */
1019 p = 0;
1020 offs = 0;
1021 for (f = 0; f < pkt->frames; f++) {
1022 if (bvec[f].bv_page != pkt->pages[p]) {
1023 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1024 void *vto = page_address(pkt->pages[p]) + offs;
1025 memcpy(vto, vfrom, CD_FRAMESIZE);
1026 kunmap_atomic(vfrom, KM_USER0);
1027 bvec[f].bv_page = pkt->pages[p];
1028 bvec[f].bv_offset = offs;
1029 } else {
1030 BUG_ON(bvec[f].bv_offset != offs);
1031 }
1032 offs += CD_FRAMESIZE;
1033 if (offs >= PAGE_SIZE) {
1034 offs = 0;
1035 p++;
1036 }
1037 }
1038 }
1039
1040 static void pkt_end_io_read(struct bio *bio, int err)
1041 {
1042 struct packet_data *pkt = bio->bi_private;
1043 struct pktcdvd_device *pd = pkt->pd;
1044 BUG_ON(!pd);
1045
1046 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1047 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1048
1049 if (err)
1050 atomic_inc(&pkt->io_errors);
1051 if (atomic_dec_and_test(&pkt->io_wait)) {
1052 atomic_inc(&pkt->run_sm);
1053 wake_up(&pd->wqueue);
1054 }
1055 pkt_bio_finished(pd);
1056 }
1057
1058 static void pkt_end_io_packet_write(struct bio *bio, int err)
1059 {
1060 struct packet_data *pkt = bio->bi_private;
1061 struct pktcdvd_device *pd = pkt->pd;
1062 BUG_ON(!pd);
1063
1064 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1065
1066 pd->stats.pkt_ended++;
1067
1068 pkt_bio_finished(pd);
1069 atomic_dec(&pkt->io_wait);
1070 atomic_inc(&pkt->run_sm);
1071 wake_up(&pd->wqueue);
1072 }
1073
1074 /*
1075 * Schedule reads for the holes in a packet
1076 */
1077 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1078 {
1079 int frames_read = 0;
1080 struct bio *bio;
1081 int f;
1082 char written[PACKET_MAX_SIZE];
1083
1084 BUG_ON(bio_list_empty(&pkt->orig_bios));
1085
1086 atomic_set(&pkt->io_wait, 0);
1087 atomic_set(&pkt->io_errors, 0);
1088
1089 /*
1090 * Figure out which frames we need to read before we can write.
1091 */
1092 memset(written, 0, sizeof(written));
1093 spin_lock(&pkt->lock);
1094 bio_list_for_each(bio, &pkt->orig_bios) {
1095 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1096 int num_frames = bio->bi_size / CD_FRAMESIZE;
1097 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1098 BUG_ON(first_frame < 0);
1099 BUG_ON(first_frame + num_frames > pkt->frames);
1100 for (f = first_frame; f < first_frame + num_frames; f++)
1101 written[f] = 1;
1102 }
1103 spin_unlock(&pkt->lock);
1104
1105 if (pkt->cache_valid) {
1106 VPRINTK("pkt_gather_data: zone %llx cached\n",
1107 (unsigned long long)pkt->sector);
1108 goto out_account;
1109 }
1110
1111 /*
1112 * Schedule reads for missing parts of the packet.
1113 */
1114 for (f = 0; f < pkt->frames; f++) {
1115 struct bio_vec *vec;
1116
1117 int p, offset;
1118 if (written[f])
1119 continue;
1120 bio = pkt->r_bios[f];
1121 vec = bio->bi_io_vec;
1122 bio_init(bio);
1123 bio->bi_max_vecs = 1;
1124 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1125 bio->bi_bdev = pd->bdev;
1126 bio->bi_end_io = pkt_end_io_read;
1127 bio->bi_private = pkt;
1128 bio->bi_io_vec = vec;
1129 bio->bi_destructor = pkt_bio_destructor;
1130
1131 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1132 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1133 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1134 f, pkt->pages[p], offset);
1135 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1136 BUG();
1137
1138 atomic_inc(&pkt->io_wait);
1139 bio->bi_rw = READ;
1140 pkt_queue_bio(pd, bio);
1141 frames_read++;
1142 }
1143
1144 out_account:
1145 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1146 frames_read, (unsigned long long)pkt->sector);
1147 pd->stats.pkt_started++;
1148 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1149 }
1150
1151 /*
1152 * Find a packet matching zone, or the least recently used packet if
1153 * there is no match.
1154 */
1155 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1156 {
1157 struct packet_data *pkt;
1158
1159 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1160 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1161 list_del_init(&pkt->list);
1162 if (pkt->sector != zone)
1163 pkt->cache_valid = 0;
1164 return pkt;
1165 }
1166 }
1167 BUG();
1168 return NULL;
1169 }
1170
1171 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1172 {
1173 if (pkt->cache_valid) {
1174 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1175 } else {
1176 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1177 }
1178 }
1179
1180 /*
1181 * recover a failed write, query for relocation if possible
1182 *
1183 * returns 1 if recovery is possible, or 0 if not
1184 *
1185 */
1186 static int pkt_start_recovery(struct packet_data *pkt)
1187 {
1188 /*
1189 * FIXME. We need help from the file system to implement
1190 * recovery handling.
1191 */
1192 return 0;
1193 #if 0
1194 struct request *rq = pkt->rq;
1195 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1196 struct block_device *pkt_bdev;
1197 struct super_block *sb = NULL;
1198 unsigned long old_block, new_block;
1199 sector_t new_sector;
1200
1201 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1202 if (pkt_bdev) {
1203 sb = get_super(pkt_bdev);
1204 bdput(pkt_bdev);
1205 }
1206
1207 if (!sb)
1208 return 0;
1209
1210 if (!sb->s_op || !sb->s_op->relocate_blocks)
1211 goto out;
1212
1213 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1214 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1215 goto out;
1216
1217 new_sector = new_block * (CD_FRAMESIZE >> 9);
1218 pkt->sector = new_sector;
1219
1220 pkt->bio->bi_sector = new_sector;
1221 pkt->bio->bi_next = NULL;
1222 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1223 pkt->bio->bi_idx = 0;
1224
1225 BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1226 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1227 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1228 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1229 BUG_ON(pkt->bio->bi_private != pkt);
1230
1231 drop_super(sb);
1232 return 1;
1233
1234 out:
1235 drop_super(sb);
1236 return 0;
1237 #endif
1238 }
1239
1240 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1241 {
1242 #if PACKET_DEBUG > 1
1243 static const char *state_name[] = {
1244 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1245 };
1246 enum packet_data_state old_state = pkt->state;
1247 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1248 state_name[old_state], state_name[state]);
1249 #endif
1250 pkt->state = state;
1251 }
1252
1253 /*
1254 * Scan the work queue to see if we can start a new packet.
1255 * returns non-zero if any work was done.
1256 */
1257 static int pkt_handle_queue(struct pktcdvd_device *pd)
1258 {
1259 struct packet_data *pkt, *p;
1260 struct bio *bio = NULL;
1261 sector_t zone = 0; /* Suppress gcc warning */
1262 struct pkt_rb_node *node, *first_node;
1263 struct rb_node *n;
1264 int wakeup;
1265
1266 VPRINTK("handle_queue\n");
1267
1268 atomic_set(&pd->scan_queue, 0);
1269
1270 if (list_empty(&pd->cdrw.pkt_free_list)) {
1271 VPRINTK("handle_queue: no pkt\n");
1272 return 0;
1273 }
1274
1275 /*
1276 * Try to find a zone we are not already working on.
1277 */
1278 spin_lock(&pd->lock);
1279 first_node = pkt_rbtree_find(pd, pd->current_sector);
1280 if (!first_node) {
1281 n = rb_first(&pd->bio_queue);
1282 if (n)
1283 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1284 }
1285 node = first_node;
1286 while (node) {
1287 bio = node->bio;
1288 zone = ZONE(bio->bi_sector, pd);
1289 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1290 if (p->sector == zone) {
1291 bio = NULL;
1292 goto try_next_bio;
1293 }
1294 }
1295 break;
1296 try_next_bio:
1297 node = pkt_rbtree_next(node);
1298 if (!node) {
1299 n = rb_first(&pd->bio_queue);
1300 if (n)
1301 node = rb_entry(n, struct pkt_rb_node, rb_node);
1302 }
1303 if (node == first_node)
1304 node = NULL;
1305 }
1306 spin_unlock(&pd->lock);
1307 if (!bio) {
1308 VPRINTK("handle_queue: no bio\n");
1309 return 0;
1310 }
1311
1312 pkt = pkt_get_packet_data(pd, zone);
1313
1314 pd->current_sector = zone + pd->settings.size;
1315 pkt->sector = zone;
1316 BUG_ON(pkt->frames != pd->settings.size >> 2);
1317 pkt->write_size = 0;
1318
1319 /*
1320 * Scan work queue for bios in the same zone and link them
1321 * to this packet.
1322 */
1323 spin_lock(&pd->lock);
1324 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1325 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1326 bio = node->bio;
1327 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1328 (unsigned long long)ZONE(bio->bi_sector, pd));
1329 if (ZONE(bio->bi_sector, pd) != zone)
1330 break;
1331 pkt_rbtree_erase(pd, node);
1332 spin_lock(&pkt->lock);
1333 bio_list_add(&pkt->orig_bios, bio);
1334 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1335 spin_unlock(&pkt->lock);
1336 }
1337 /* check write congestion marks, and if bio_queue_size is
1338 below, wake up any waiters */
1339 wakeup = (pd->write_congestion_on > 0
1340 && pd->bio_queue_size <= pd->write_congestion_off);
1341 spin_unlock(&pd->lock);
1342 if (wakeup) {
1343 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1344 BLK_RW_ASYNC);
1345 }
1346
1347 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1348 pkt_set_state(pkt, PACKET_WAITING_STATE);
1349 atomic_set(&pkt->run_sm, 1);
1350
1351 spin_lock(&pd->cdrw.active_list_lock);
1352 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1353 spin_unlock(&pd->cdrw.active_list_lock);
1354
1355 return 1;
1356 }
1357
1358 /*
1359 * Assemble a bio to write one packet and queue the bio for processing
1360 * by the underlying block device.
1361 */
1362 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1363 {
1364 struct bio *bio;
1365 int f;
1366 int frames_write;
1367 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1368
1369 for (f = 0; f < pkt->frames; f++) {
1370 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1371 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1372 }
1373
1374 /*
1375 * Fill-in bvec with data from orig_bios.
1376 */
1377 frames_write = 0;
1378 spin_lock(&pkt->lock);
1379 bio_list_for_each(bio, &pkt->orig_bios) {
1380 int segment = bio->bi_idx;
1381 int src_offs = 0;
1382 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1383 int num_frames = bio->bi_size / CD_FRAMESIZE;
1384 BUG_ON(first_frame < 0);
1385 BUG_ON(first_frame + num_frames > pkt->frames);
1386 for (f = first_frame; f < first_frame + num_frames; f++) {
1387 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1388
1389 while (src_offs >= src_bvl->bv_len) {
1390 src_offs -= src_bvl->bv_len;
1391 segment++;
1392 BUG_ON(segment >= bio->bi_vcnt);
1393 src_bvl = bio_iovec_idx(bio, segment);
1394 }
1395
1396 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1397 bvec[f].bv_page = src_bvl->bv_page;
1398 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1399 } else {
1400 pkt_copy_bio_data(bio, segment, src_offs,
1401 bvec[f].bv_page, bvec[f].bv_offset);
1402 }
1403 src_offs += CD_FRAMESIZE;
1404 frames_write++;
1405 }
1406 }
1407 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1408 spin_unlock(&pkt->lock);
1409
1410 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1411 frames_write, (unsigned long long)pkt->sector);
1412 BUG_ON(frames_write != pkt->write_size);
1413
1414 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1415 pkt_make_local_copy(pkt, bvec);
1416 pkt->cache_valid = 1;
1417 } else {
1418 pkt->cache_valid = 0;
1419 }
1420
1421 /* Start the write request */
1422 bio_init(pkt->w_bio);
1423 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1424 pkt->w_bio->bi_sector = pkt->sector;
1425 pkt->w_bio->bi_bdev = pd->bdev;
1426 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1427 pkt->w_bio->bi_private = pkt;
1428 pkt->w_bio->bi_io_vec = bvec;
1429 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1430 for (f = 0; f < pkt->frames; f++)
1431 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1432 BUG();
1433 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1434
1435 atomic_set(&pkt->io_wait, 1);
1436 pkt->w_bio->bi_rw = WRITE;
1437 pkt_queue_bio(pd, pkt->w_bio);
1438 }
1439
1440 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1441 {
1442 struct bio *bio;
1443
1444 if (!uptodate)
1445 pkt->cache_valid = 0;
1446
1447 /* Finish all bios corresponding to this packet */
1448 while ((bio = bio_list_pop(&pkt->orig_bios)))
1449 bio_endio(bio, uptodate ? 0 : -EIO);
1450 }
1451
1452 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1453 {
1454 int uptodate;
1455
1456 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1457
1458 for (;;) {
1459 switch (pkt->state) {
1460 case PACKET_WAITING_STATE:
1461 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1462 return;
1463
1464 pkt->sleep_time = 0;
1465 pkt_gather_data(pd, pkt);
1466 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1467 break;
1468
1469 case PACKET_READ_WAIT_STATE:
1470 if (atomic_read(&pkt->io_wait) > 0)
1471 return;
1472
1473 if (atomic_read(&pkt->io_errors) > 0) {
1474 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1475 } else {
1476 pkt_start_write(pd, pkt);
1477 }
1478 break;
1479
1480 case PACKET_WRITE_WAIT_STATE:
1481 if (atomic_read(&pkt->io_wait) > 0)
1482 return;
1483
1484 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1485 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1486 } else {
1487 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1488 }
1489 break;
1490
1491 case PACKET_RECOVERY_STATE:
1492 if (pkt_start_recovery(pkt)) {
1493 pkt_start_write(pd, pkt);
1494 } else {
1495 VPRINTK("No recovery possible\n");
1496 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1497 }
1498 break;
1499
1500 case PACKET_FINISHED_STATE:
1501 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1502 pkt_finish_packet(pkt, uptodate);
1503 return;
1504
1505 default:
1506 BUG();
1507 break;
1508 }
1509 }
1510 }
1511
1512 static void pkt_handle_packets(struct pktcdvd_device *pd)
1513 {
1514 struct packet_data *pkt, *next;
1515
1516 VPRINTK("pkt_handle_packets\n");
1517
1518 /*
1519 * Run state machine for active packets
1520 */
1521 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1522 if (atomic_read(&pkt->run_sm) > 0) {
1523 atomic_set(&pkt->run_sm, 0);
1524 pkt_run_state_machine(pd, pkt);
1525 }
1526 }
1527
1528 /*
1529 * Move no longer active packets to the free list
1530 */
1531 spin_lock(&pd->cdrw.active_list_lock);
1532 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1533 if (pkt->state == PACKET_FINISHED_STATE) {
1534 list_del(&pkt->list);
1535 pkt_put_packet_data(pd, pkt);
1536 pkt_set_state(pkt, PACKET_IDLE_STATE);
1537 atomic_set(&pd->scan_queue, 1);
1538 }
1539 }
1540 spin_unlock(&pd->cdrw.active_list_lock);
1541 }
1542
1543 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1544 {
1545 struct packet_data *pkt;
1546 int i;
1547
1548 for (i = 0; i < PACKET_NUM_STATES; i++)
1549 states[i] = 0;
1550
1551 spin_lock(&pd->cdrw.active_list_lock);
1552 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1553 states[pkt->state]++;
1554 }
1555 spin_unlock(&pd->cdrw.active_list_lock);
1556 }
1557
1558 /*
1559 * kcdrwd is woken up when writes have been queued for one of our
1560 * registered devices
1561 */
1562 static int kcdrwd(void *foobar)
1563 {
1564 struct pktcdvd_device *pd = foobar;
1565 struct packet_data *pkt;
1566 long min_sleep_time, residue;
1567
1568 set_user_nice(current, -20);
1569 set_freezable();
1570
1571 for (;;) {
1572 DECLARE_WAITQUEUE(wait, current);
1573
1574 /*
1575 * Wait until there is something to do
1576 */
1577 add_wait_queue(&pd->wqueue, &wait);
1578 for (;;) {
1579 set_current_state(TASK_INTERRUPTIBLE);
1580
1581 /* Check if we need to run pkt_handle_queue */
1582 if (atomic_read(&pd->scan_queue) > 0)
1583 goto work_to_do;
1584
1585 /* Check if we need to run the state machine for some packet */
1586 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1587 if (atomic_read(&pkt->run_sm) > 0)
1588 goto work_to_do;
1589 }
1590
1591 /* Check if we need to process the iosched queues */
1592 if (atomic_read(&pd->iosched.attention) != 0)
1593 goto work_to_do;
1594
1595 /* Otherwise, go to sleep */
1596 if (PACKET_DEBUG > 1) {
1597 int states[PACKET_NUM_STATES];
1598 pkt_count_states(pd, states);
1599 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1600 states[0], states[1], states[2], states[3],
1601 states[4], states[5]);
1602 }
1603
1604 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1605 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1606 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1607 min_sleep_time = pkt->sleep_time;
1608 }
1609
1610 generic_unplug_device(bdev_get_queue(pd->bdev));
1611
1612 VPRINTK("kcdrwd: sleeping\n");
1613 residue = schedule_timeout(min_sleep_time);
1614 VPRINTK("kcdrwd: wake up\n");
1615
1616 /* make swsusp happy with our thread */
1617 try_to_freeze();
1618
1619 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1620 if (!pkt->sleep_time)
1621 continue;
1622 pkt->sleep_time -= min_sleep_time - residue;
1623 if (pkt->sleep_time <= 0) {
1624 pkt->sleep_time = 0;
1625 atomic_inc(&pkt->run_sm);
1626 }
1627 }
1628
1629 if (kthread_should_stop())
1630 break;
1631 }
1632 work_to_do:
1633 set_current_state(TASK_RUNNING);
1634 remove_wait_queue(&pd->wqueue, &wait);
1635
1636 if (kthread_should_stop())
1637 break;
1638
1639 /*
1640 * if pkt_handle_queue returns true, we can queue
1641 * another request.
1642 */
1643 while (pkt_handle_queue(pd))
1644 ;
1645
1646 /*
1647 * Handle packet state machine
1648 */
1649 pkt_handle_packets(pd);
1650
1651 /*
1652 * Handle iosched queues
1653 */
1654 pkt_iosched_process_queue(pd);
1655 }
1656
1657 return 0;
1658 }
1659
1660 static void pkt_print_settings(struct pktcdvd_device *pd)
1661 {
1662 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1663 printk("%u blocks, ", pd->settings.size >> 2);
1664 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1665 }
1666
1667 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1668 {
1669 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1670
1671 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1672 cgc->cmd[2] = page_code | (page_control << 6);
1673 cgc->cmd[7] = cgc->buflen >> 8;
1674 cgc->cmd[8] = cgc->buflen & 0xff;
1675 cgc->data_direction = CGC_DATA_READ;
1676 return pkt_generic_packet(pd, cgc);
1677 }
1678
1679 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1680 {
1681 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1682 memset(cgc->buffer, 0, 2);
1683 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1684 cgc->cmd[1] = 0x10; /* PF */
1685 cgc->cmd[7] = cgc->buflen >> 8;
1686 cgc->cmd[8] = cgc->buflen & 0xff;
1687 cgc->data_direction = CGC_DATA_WRITE;
1688 return pkt_generic_packet(pd, cgc);
1689 }
1690
1691 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1692 {
1693 struct packet_command cgc;
1694 int ret;
1695
1696 /* set up command and get the disc info */
1697 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1698 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1699 cgc.cmd[8] = cgc.buflen = 2;
1700 cgc.quiet = 1;
1701
1702 if ((ret = pkt_generic_packet(pd, &cgc)))
1703 return ret;
1704
1705 /* not all drives have the same disc_info length, so requeue
1706 * packet with the length the drive tells us it can supply
1707 */
1708 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1709 sizeof(di->disc_information_length);
1710
1711 if (cgc.buflen > sizeof(disc_information))
1712 cgc.buflen = sizeof(disc_information);
1713
1714 cgc.cmd[8] = cgc.buflen;
1715 return pkt_generic_packet(pd, &cgc);
1716 }
1717
1718 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1719 {
1720 struct packet_command cgc;
1721 int ret;
1722
1723 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1724 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1725 cgc.cmd[1] = type & 3;
1726 cgc.cmd[4] = (track & 0xff00) >> 8;
1727 cgc.cmd[5] = track & 0xff;
1728 cgc.cmd[8] = 8;
1729 cgc.quiet = 1;
1730
1731 if ((ret = pkt_generic_packet(pd, &cgc)))
1732 return ret;
1733
1734 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1735 sizeof(ti->track_information_length);
1736
1737 if (cgc.buflen > sizeof(track_information))
1738 cgc.buflen = sizeof(track_information);
1739
1740 cgc.cmd[8] = cgc.buflen;
1741 return pkt_generic_packet(pd, &cgc);
1742 }
1743
1744 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1745 long *last_written)
1746 {
1747 disc_information di;
1748 track_information ti;
1749 __u32 last_track;
1750 int ret = -1;
1751
1752 if ((ret = pkt_get_disc_info(pd, &di)))
1753 return ret;
1754
1755 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1756 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1757 return ret;
1758
1759 /* if this track is blank, try the previous. */
1760 if (ti.blank) {
1761 last_track--;
1762 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1763 return ret;
1764 }
1765
1766 /* if last recorded field is valid, return it. */
1767 if (ti.lra_v) {
1768 *last_written = be32_to_cpu(ti.last_rec_address);
1769 } else {
1770 /* make it up instead */
1771 *last_written = be32_to_cpu(ti.track_start) +
1772 be32_to_cpu(ti.track_size);
1773 if (ti.free_blocks)
1774 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1775 }
1776 return 0;
1777 }
1778
1779 /*
1780 * write mode select package based on pd->settings
1781 */
1782 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1783 {
1784 struct packet_command cgc;
1785 struct request_sense sense;
1786 write_param_page *wp;
1787 char buffer[128];
1788 int ret, size;
1789
1790 /* doesn't apply to DVD+RW or DVD-RAM */
1791 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1792 return 0;
1793
1794 memset(buffer, 0, sizeof(buffer));
1795 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1796 cgc.sense = &sense;
1797 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1798 pkt_dump_sense(&cgc);
1799 return ret;
1800 }
1801
1802 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1803 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1804 if (size > sizeof(buffer))
1805 size = sizeof(buffer);
1806
1807 /*
1808 * now get it all
1809 */
1810 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1811 cgc.sense = &sense;
1812 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1813 pkt_dump_sense(&cgc);
1814 return ret;
1815 }
1816
1817 /*
1818 * write page is offset header + block descriptor length
1819 */
1820 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1821
1822 wp->fp = pd->settings.fp;
1823 wp->track_mode = pd->settings.track_mode;
1824 wp->write_type = pd->settings.write_type;
1825 wp->data_block_type = pd->settings.block_mode;
1826
1827 wp->multi_session = 0;
1828
1829 #ifdef PACKET_USE_LS
1830 wp->link_size = 7;
1831 wp->ls_v = 1;
1832 #endif
1833
1834 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1835 wp->session_format = 0;
1836 wp->subhdr2 = 0x20;
1837 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1838 wp->session_format = 0x20;
1839 wp->subhdr2 = 8;
1840 #if 0
1841 wp->mcn[0] = 0x80;
1842 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1843 #endif
1844 } else {
1845 /*
1846 * paranoia
1847 */
1848 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1849 return 1;
1850 }
1851 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1852
1853 cgc.buflen = cgc.cmd[8] = size;
1854 if ((ret = pkt_mode_select(pd, &cgc))) {
1855 pkt_dump_sense(&cgc);
1856 return ret;
1857 }
1858
1859 pkt_print_settings(pd);
1860 return 0;
1861 }
1862
1863 /*
1864 * 1 -- we can write to this track, 0 -- we can't
1865 */
1866 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1867 {
1868 switch (pd->mmc3_profile) {
1869 case 0x1a: /* DVD+RW */
1870 case 0x12: /* DVD-RAM */
1871 /* The track is always writable on DVD+RW/DVD-RAM */
1872 return 1;
1873 default:
1874 break;
1875 }
1876
1877 if (!ti->packet || !ti->fp)
1878 return 0;
1879
1880 /*
1881 * "good" settings as per Mt Fuji.
1882 */
1883 if (ti->rt == 0 && ti->blank == 0)
1884 return 1;
1885
1886 if (ti->rt == 0 && ti->blank == 1)
1887 return 1;
1888
1889 if (ti->rt == 1 && ti->blank == 0)
1890 return 1;
1891
1892 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1893 return 0;
1894 }
1895
1896 /*
1897 * 1 -- we can write to this disc, 0 -- we can't
1898 */
1899 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1900 {
1901 switch (pd->mmc3_profile) {
1902 case 0x0a: /* CD-RW */
1903 case 0xffff: /* MMC3 not supported */
1904 break;
1905 case 0x1a: /* DVD+RW */
1906 case 0x13: /* DVD-RW */
1907 case 0x12: /* DVD-RAM */
1908 return 1;
1909 default:
1910 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1911 return 0;
1912 }
1913
1914 /*
1915 * for disc type 0xff we should probably reserve a new track.
1916 * but i'm not sure, should we leave this to user apps? probably.
1917 */
1918 if (di->disc_type == 0xff) {
1919 printk(DRIVER_NAME": Unknown disc. No track?\n");
1920 return 0;
1921 }
1922
1923 if (di->disc_type != 0x20 && di->disc_type != 0) {
1924 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1925 return 0;
1926 }
1927
1928 if (di->erasable == 0) {
1929 printk(DRIVER_NAME": Disc not erasable\n");
1930 return 0;
1931 }
1932
1933 if (di->border_status == PACKET_SESSION_RESERVED) {
1934 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1935 return 0;
1936 }
1937
1938 return 1;
1939 }
1940
1941 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1942 {
1943 struct packet_command cgc;
1944 unsigned char buf[12];
1945 disc_information di;
1946 track_information ti;
1947 int ret, track;
1948
1949 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1950 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1951 cgc.cmd[8] = 8;
1952 ret = pkt_generic_packet(pd, &cgc);
1953 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1954
1955 memset(&di, 0, sizeof(disc_information));
1956 memset(&ti, 0, sizeof(track_information));
1957
1958 if ((ret = pkt_get_disc_info(pd, &di))) {
1959 printk("failed get_disc\n");
1960 return ret;
1961 }
1962
1963 if (!pkt_writable_disc(pd, &di))
1964 return -EROFS;
1965
1966 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1967
1968 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1969 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1970 printk(DRIVER_NAME": failed get_track\n");
1971 return ret;
1972 }
1973
1974 if (!pkt_writable_track(pd, &ti)) {
1975 printk(DRIVER_NAME": can't write to this track\n");
1976 return -EROFS;
1977 }
1978
1979 /*
1980 * we keep packet size in 512 byte units, makes it easier to
1981 * deal with request calculations.
1982 */
1983 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1984 if (pd->settings.size == 0) {
1985 printk(DRIVER_NAME": detected zero packet size!\n");
1986 return -ENXIO;
1987 }
1988 if (pd->settings.size > PACKET_MAX_SECTORS) {
1989 printk(DRIVER_NAME": packet size is too big\n");
1990 return -EROFS;
1991 }
1992 pd->settings.fp = ti.fp;
1993 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1994
1995 if (ti.nwa_v) {
1996 pd->nwa = be32_to_cpu(ti.next_writable);
1997 set_bit(PACKET_NWA_VALID, &pd->flags);
1998 }
1999
2000 /*
2001 * in theory we could use lra on -RW media as well and just zero
2002 * blocks that haven't been written yet, but in practice that
2003 * is just a no-go. we'll use that for -R, naturally.
2004 */
2005 if (ti.lra_v) {
2006 pd->lra = be32_to_cpu(ti.last_rec_address);
2007 set_bit(PACKET_LRA_VALID, &pd->flags);
2008 } else {
2009 pd->lra = 0xffffffff;
2010 set_bit(PACKET_LRA_VALID, &pd->flags);
2011 }
2012
2013 /*
2014 * fine for now
2015 */
2016 pd->settings.link_loss = 7;
2017 pd->settings.write_type = 0; /* packet */
2018 pd->settings.track_mode = ti.track_mode;
2019
2020 /*
2021 * mode1 or mode2 disc
2022 */
2023 switch (ti.data_mode) {
2024 case PACKET_MODE1:
2025 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2026 break;
2027 case PACKET_MODE2:
2028 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2029 break;
2030 default:
2031 printk(DRIVER_NAME": unknown data mode\n");
2032 return -EROFS;
2033 }
2034 return 0;
2035 }
2036
2037 /*
2038 * enable/disable write caching on drive
2039 */
2040 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2041 int set)
2042 {
2043 struct packet_command cgc;
2044 struct request_sense sense;
2045 unsigned char buf[64];
2046 int ret;
2047
2048 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2049 cgc.sense = &sense;
2050 cgc.buflen = pd->mode_offset + 12;
2051
2052 /*
2053 * caching mode page might not be there, so quiet this command
2054 */
2055 cgc.quiet = 1;
2056
2057 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2058 return ret;
2059
2060 buf[pd->mode_offset + 10] |= (!!set << 2);
2061
2062 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2063 ret = pkt_mode_select(pd, &cgc);
2064 if (ret) {
2065 printk(DRIVER_NAME": write caching control failed\n");
2066 pkt_dump_sense(&cgc);
2067 } else if (!ret && set)
2068 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2069 return ret;
2070 }
2071
2072 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2073 {
2074 struct packet_command cgc;
2075
2076 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2077 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2078 cgc.cmd[4] = lockflag ? 1 : 0;
2079 return pkt_generic_packet(pd, &cgc);
2080 }
2081
2082 /*
2083 * Returns drive maximum write speed
2084 */
2085 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2086 unsigned *write_speed)
2087 {
2088 struct packet_command cgc;
2089 struct request_sense sense;
2090 unsigned char buf[256+18];
2091 unsigned char *cap_buf;
2092 int ret, offset;
2093
2094 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2095 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2096 cgc.sense = &sense;
2097
2098 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2099 if (ret) {
2100 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2101 sizeof(struct mode_page_header);
2102 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2103 if (ret) {
2104 pkt_dump_sense(&cgc);
2105 return ret;
2106 }
2107 }
2108
2109 offset = 20; /* Obsoleted field, used by older drives */
2110 if (cap_buf[1] >= 28)
2111 offset = 28; /* Current write speed selected */
2112 if (cap_buf[1] >= 30) {
2113 /* If the drive reports at least one "Logical Unit Write
2114 * Speed Performance Descriptor Block", use the information
2115 * in the first block. (contains the highest speed)
2116 */
2117 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2118 if (num_spdb > 0)
2119 offset = 34;
2120 }
2121
2122 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2123 return 0;
2124 }
2125
2126 /* These tables from cdrecord - I don't have orange book */
2127 /* standard speed CD-RW (1-4x) */
2128 static char clv_to_speed[16] = {
2129 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2130 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2131 };
2132 /* high speed CD-RW (-10x) */
2133 static char hs_clv_to_speed[16] = {
2134 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2135 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2136 };
2137 /* ultra high speed CD-RW */
2138 static char us_clv_to_speed[16] = {
2139 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2140 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2141 };
2142
2143 /*
2144 * reads the maximum media speed from ATIP
2145 */
2146 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2147 unsigned *speed)
2148 {
2149 struct packet_command cgc;
2150 struct request_sense sense;
2151 unsigned char buf[64];
2152 unsigned int size, st, sp;
2153 int ret;
2154
2155 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2156 cgc.sense = &sense;
2157 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2158 cgc.cmd[1] = 2;
2159 cgc.cmd[2] = 4; /* READ ATIP */
2160 cgc.cmd[8] = 2;
2161 ret = pkt_generic_packet(pd, &cgc);
2162 if (ret) {
2163 pkt_dump_sense(&cgc);
2164 return ret;
2165 }
2166 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2167 if (size > sizeof(buf))
2168 size = sizeof(buf);
2169
2170 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2171 cgc.sense = &sense;
2172 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2173 cgc.cmd[1] = 2;
2174 cgc.cmd[2] = 4;
2175 cgc.cmd[8] = size;
2176 ret = pkt_generic_packet(pd, &cgc);
2177 if (ret) {
2178 pkt_dump_sense(&cgc);
2179 return ret;
2180 }
2181
2182 if (!(buf[6] & 0x40)) {
2183 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2184 return 1;
2185 }
2186 if (!(buf[6] & 0x4)) {
2187 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2188 return 1;
2189 }
2190
2191 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2192
2193 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2194
2195 /* Info from cdrecord */
2196 switch (st) {
2197 case 0: /* standard speed */
2198 *speed = clv_to_speed[sp];
2199 break;
2200 case 1: /* high speed */
2201 *speed = hs_clv_to_speed[sp];
2202 break;
2203 case 2: /* ultra high speed */
2204 *speed = us_clv_to_speed[sp];
2205 break;
2206 default:
2207 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2208 return 1;
2209 }
2210 if (*speed) {
2211 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2212 return 0;
2213 } else {
2214 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2215 return 1;
2216 }
2217 }
2218
2219 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2220 {
2221 struct packet_command cgc;
2222 struct request_sense sense;
2223 int ret;
2224
2225 VPRINTK(DRIVER_NAME": Performing OPC\n");
2226
2227 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2228 cgc.sense = &sense;
2229 cgc.timeout = 60*HZ;
2230 cgc.cmd[0] = GPCMD_SEND_OPC;
2231 cgc.cmd[1] = 1;
2232 if ((ret = pkt_generic_packet(pd, &cgc)))
2233 pkt_dump_sense(&cgc);
2234 return ret;
2235 }
2236
2237 static int pkt_open_write(struct pktcdvd_device *pd)
2238 {
2239 int ret;
2240 unsigned int write_speed, media_write_speed, read_speed;
2241
2242 if ((ret = pkt_probe_settings(pd))) {
2243 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2244 return ret;
2245 }
2246
2247 if ((ret = pkt_set_write_settings(pd))) {
2248 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2249 return -EIO;
2250 }
2251
2252 pkt_write_caching(pd, USE_WCACHING);
2253
2254 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2255 write_speed = 16 * 177;
2256 switch (pd->mmc3_profile) {
2257 case 0x13: /* DVD-RW */
2258 case 0x1a: /* DVD+RW */
2259 case 0x12: /* DVD-RAM */
2260 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2261 break;
2262 default:
2263 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2264 media_write_speed = 16;
2265 write_speed = min(write_speed, media_write_speed * 177);
2266 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2267 break;
2268 }
2269 read_speed = write_speed;
2270
2271 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2272 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2273 return -EIO;
2274 }
2275 pd->write_speed = write_speed;
2276 pd->read_speed = read_speed;
2277
2278 if ((ret = pkt_perform_opc(pd))) {
2279 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2280 }
2281
2282 return 0;
2283 }
2284
2285 /*
2286 * called at open time.
2287 */
2288 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2289 {
2290 int ret;
2291 long lba;
2292 struct request_queue *q;
2293
2294 /*
2295 * We need to re-open the cdrom device without O_NONBLOCK to be able
2296 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2297 * so bdget() can't fail.
2298 */
2299 bdget(pd->bdev->bd_dev);
2300 if ((ret = blkdev_get(pd->bdev, FMODE_READ)))
2301 goto out;
2302
2303 if ((ret = bd_claim(pd->bdev, pd)))
2304 goto out_putdev;
2305
2306 if ((ret = pkt_get_last_written(pd, &lba))) {
2307 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2308 goto out_unclaim;
2309 }
2310
2311 set_capacity(pd->disk, lba << 2);
2312 set_capacity(pd->bdev->bd_disk, lba << 2);
2313 bd_set_size(pd->bdev, (loff_t)lba << 11);
2314
2315 q = bdev_get_queue(pd->bdev);
2316 if (write) {
2317 if ((ret = pkt_open_write(pd)))
2318 goto out_unclaim;
2319 /*
2320 * Some CDRW drives can not handle writes larger than one packet,
2321 * even if the size is a multiple of the packet size.
2322 */
2323 spin_lock_irq(q->queue_lock);
2324 blk_queue_max_hw_sectors(q, pd->settings.size);
2325 spin_unlock_irq(q->queue_lock);
2326 set_bit(PACKET_WRITABLE, &pd->flags);
2327 } else {
2328 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2329 clear_bit(PACKET_WRITABLE, &pd->flags);
2330 }
2331
2332 if ((ret = pkt_set_segment_merging(pd, q)))
2333 goto out_unclaim;
2334
2335 if (write) {
2336 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2337 printk(DRIVER_NAME": not enough memory for buffers\n");
2338 ret = -ENOMEM;
2339 goto out_unclaim;
2340 }
2341 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2342 }
2343
2344 return 0;
2345
2346 out_unclaim:
2347 bd_release(pd->bdev);
2348 out_putdev:
2349 blkdev_put(pd->bdev, FMODE_READ);
2350 out:
2351 return ret;
2352 }
2353
2354 /*
2355 * called when the device is closed. makes sure that the device flushes
2356 * the internal cache before we close.
2357 */
2358 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2359 {
2360 if (flush && pkt_flush_cache(pd))
2361 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2362
2363 pkt_lock_door(pd, 0);
2364
2365 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2366 bd_release(pd->bdev);
2367 blkdev_put(pd->bdev, FMODE_READ);
2368
2369 pkt_shrink_pktlist(pd);
2370 }
2371
2372 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2373 {
2374 if (dev_minor >= MAX_WRITERS)
2375 return NULL;
2376 return pkt_devs[dev_minor];
2377 }
2378
2379 static int pkt_open(struct block_device *bdev, fmode_t mode)
2380 {
2381 struct pktcdvd_device *pd = NULL;
2382 int ret;
2383
2384 VPRINTK(DRIVER_NAME": entering open\n");
2385
2386 mutex_lock(&ctl_mutex);
2387 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2388 if (!pd) {
2389 ret = -ENODEV;
2390 goto out;
2391 }
2392 BUG_ON(pd->refcnt < 0);
2393
2394 pd->refcnt++;
2395 if (pd->refcnt > 1) {
2396 if ((mode & FMODE_WRITE) &&
2397 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2398 ret = -EBUSY;
2399 goto out_dec;
2400 }
2401 } else {
2402 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2403 if (ret)
2404 goto out_dec;
2405 /*
2406 * needed here as well, since ext2 (among others) may change
2407 * the blocksize at mount time
2408 */
2409 set_blocksize(bdev, CD_FRAMESIZE);
2410 }
2411
2412 mutex_unlock(&ctl_mutex);
2413 return 0;
2414
2415 out_dec:
2416 pd->refcnt--;
2417 out:
2418 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2419 mutex_unlock(&ctl_mutex);
2420 return ret;
2421 }
2422
2423 static int pkt_close(struct gendisk *disk, fmode_t mode)
2424 {
2425 struct pktcdvd_device *pd = disk->private_data;
2426 int ret = 0;
2427
2428 mutex_lock(&ctl_mutex);
2429 pd->refcnt--;
2430 BUG_ON(pd->refcnt < 0);
2431 if (pd->refcnt == 0) {
2432 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2433 pkt_release_dev(pd, flush);
2434 }
2435 mutex_unlock(&ctl_mutex);
2436 return ret;
2437 }
2438
2439
2440 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2441 {
2442 struct packet_stacked_data *psd = bio->bi_private;
2443 struct pktcdvd_device *pd = psd->pd;
2444
2445 bio_put(bio);
2446 bio_endio(psd->bio, err);
2447 mempool_free(psd, psd_pool);
2448 pkt_bio_finished(pd);
2449 }
2450
2451 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2452 {
2453 struct pktcdvd_device *pd;
2454 char b[BDEVNAME_SIZE];
2455 sector_t zone;
2456 struct packet_data *pkt;
2457 int was_empty, blocked_bio;
2458 struct pkt_rb_node *node;
2459
2460 pd = q->queuedata;
2461 if (!pd) {
2462 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2463 goto end_io;
2464 }
2465
2466 /*
2467 * Clone READ bios so we can have our own bi_end_io callback.
2468 */
2469 if (bio_data_dir(bio) == READ) {
2470 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2471 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2472
2473 psd->pd = pd;
2474 psd->bio = bio;
2475 cloned_bio->bi_bdev = pd->bdev;
2476 cloned_bio->bi_private = psd;
2477 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2478 pd->stats.secs_r += bio->bi_size >> 9;
2479 pkt_queue_bio(pd, cloned_bio);
2480 return 0;
2481 }
2482
2483 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2484 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2485 pd->name, (unsigned long long)bio->bi_sector);
2486 goto end_io;
2487 }
2488
2489 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2490 printk(DRIVER_NAME": wrong bio size\n");
2491 goto end_io;
2492 }
2493
2494 blk_queue_bounce(q, &bio);
2495
2496 zone = ZONE(bio->bi_sector, pd);
2497 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2498 (unsigned long long)bio->bi_sector,
2499 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2500
2501 /* Check if we have to split the bio */
2502 {
2503 struct bio_pair *bp;
2504 sector_t last_zone;
2505 int first_sectors;
2506
2507 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2508 if (last_zone != zone) {
2509 BUG_ON(last_zone != zone + pd->settings.size);
2510 first_sectors = last_zone - bio->bi_sector;
2511 bp = bio_split(bio, first_sectors);
2512 BUG_ON(!bp);
2513 pkt_make_request(q, &bp->bio1);
2514 pkt_make_request(q, &bp->bio2);
2515 bio_pair_release(bp);
2516 return 0;
2517 }
2518 }
2519
2520 /*
2521 * If we find a matching packet in state WAITING or READ_WAIT, we can
2522 * just append this bio to that packet.
2523 */
2524 spin_lock(&pd->cdrw.active_list_lock);
2525 blocked_bio = 0;
2526 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2527 if (pkt->sector == zone) {
2528 spin_lock(&pkt->lock);
2529 if ((pkt->state == PACKET_WAITING_STATE) ||
2530 (pkt->state == PACKET_READ_WAIT_STATE)) {
2531 bio_list_add(&pkt->orig_bios, bio);
2532 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2533 if ((pkt->write_size >= pkt->frames) &&
2534 (pkt->state == PACKET_WAITING_STATE)) {
2535 atomic_inc(&pkt->run_sm);
2536 wake_up(&pd->wqueue);
2537 }
2538 spin_unlock(&pkt->lock);
2539 spin_unlock(&pd->cdrw.active_list_lock);
2540 return 0;
2541 } else {
2542 blocked_bio = 1;
2543 }
2544 spin_unlock(&pkt->lock);
2545 }
2546 }
2547 spin_unlock(&pd->cdrw.active_list_lock);
2548
2549 /*
2550 * Test if there is enough room left in the bio work queue
2551 * (queue size >= congestion on mark).
2552 * If not, wait till the work queue size is below the congestion off mark.
2553 */
2554 spin_lock(&pd->lock);
2555 if (pd->write_congestion_on > 0
2556 && pd->bio_queue_size >= pd->write_congestion_on) {
2557 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2558 do {
2559 spin_unlock(&pd->lock);
2560 congestion_wait(BLK_RW_ASYNC, HZ);
2561 spin_lock(&pd->lock);
2562 } while(pd->bio_queue_size > pd->write_congestion_off);
2563 }
2564 spin_unlock(&pd->lock);
2565
2566 /*
2567 * No matching packet found. Store the bio in the work queue.
2568 */
2569 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2570 node->bio = bio;
2571 spin_lock(&pd->lock);
2572 BUG_ON(pd->bio_queue_size < 0);
2573 was_empty = (pd->bio_queue_size == 0);
2574 pkt_rbtree_insert(pd, node);
2575 spin_unlock(&pd->lock);
2576
2577 /*
2578 * Wake up the worker thread.
2579 */
2580 atomic_set(&pd->scan_queue, 1);
2581 if (was_empty) {
2582 /* This wake_up is required for correct operation */
2583 wake_up(&pd->wqueue);
2584 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2585 /*
2586 * This wake up is not required for correct operation,
2587 * but improves performance in some cases.
2588 */
2589 wake_up(&pd->wqueue);
2590 }
2591 return 0;
2592 end_io:
2593 bio_io_error(bio);
2594 return 0;
2595 }
2596
2597
2598
2599 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2600 struct bio_vec *bvec)
2601 {
2602 struct pktcdvd_device *pd = q->queuedata;
2603 sector_t zone = ZONE(bmd->bi_sector, pd);
2604 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2605 int remaining = (pd->settings.size << 9) - used;
2606 int remaining2;
2607
2608 /*
2609 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2610 * boundary, pkt_make_request() will split the bio.
2611 */
2612 remaining2 = PAGE_SIZE - bmd->bi_size;
2613 remaining = max(remaining, remaining2);
2614
2615 BUG_ON(remaining < 0);
2616 return remaining;
2617 }
2618
2619 static void pkt_init_queue(struct pktcdvd_device *pd)
2620 {
2621 struct request_queue *q = pd->disk->queue;
2622
2623 blk_queue_make_request(q, pkt_make_request);
2624 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2625 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2626 blk_queue_merge_bvec(q, pkt_merge_bvec);
2627 q->queuedata = pd;
2628 }
2629
2630 static int pkt_seq_show(struct seq_file *m, void *p)
2631 {
2632 struct pktcdvd_device *pd = m->private;
2633 char *msg;
2634 char bdev_buf[BDEVNAME_SIZE];
2635 int states[PACKET_NUM_STATES];
2636
2637 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2638 bdevname(pd->bdev, bdev_buf));
2639
2640 seq_printf(m, "\nSettings:\n");
2641 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2642
2643 if (pd->settings.write_type == 0)
2644 msg = "Packet";
2645 else
2646 msg = "Unknown";
2647 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2648
2649 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2650 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2651
2652 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2653
2654 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2655 msg = "Mode 1";
2656 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2657 msg = "Mode 2";
2658 else
2659 msg = "Unknown";
2660 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2661
2662 seq_printf(m, "\nStatistics:\n");
2663 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2664 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2665 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2666 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2667 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2668
2669 seq_printf(m, "\nMisc:\n");
2670 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2671 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2672 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2673 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2674 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2675 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2676
2677 seq_printf(m, "\nQueue state:\n");
2678 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2679 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2680 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2681
2682 pkt_count_states(pd, states);
2683 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2684 states[0], states[1], states[2], states[3], states[4], states[5]);
2685
2686 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2687 pd->write_congestion_off,
2688 pd->write_congestion_on);
2689 return 0;
2690 }
2691
2692 static int pkt_seq_open(struct inode *inode, struct file *file)
2693 {
2694 return single_open(file, pkt_seq_show, PDE(inode)->data);
2695 }
2696
2697 static const struct file_operations pkt_proc_fops = {
2698 .open = pkt_seq_open,
2699 .read = seq_read,
2700 .llseek = seq_lseek,
2701 .release = single_release
2702 };
2703
2704 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2705 {
2706 int i;
2707 int ret = 0;
2708 char b[BDEVNAME_SIZE];
2709 struct block_device *bdev;
2710
2711 if (pd->pkt_dev == dev) {
2712 printk(DRIVER_NAME": Recursive setup not allowed\n");
2713 return -EBUSY;
2714 }
2715 for (i = 0; i < MAX_WRITERS; i++) {
2716 struct pktcdvd_device *pd2 = pkt_devs[i];
2717 if (!pd2)
2718 continue;
2719 if (pd2->bdev->bd_dev == dev) {
2720 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2721 return -EBUSY;
2722 }
2723 if (pd2->pkt_dev == dev) {
2724 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2725 return -EBUSY;
2726 }
2727 }
2728
2729 bdev = bdget(dev);
2730 if (!bdev)
2731 return -ENOMEM;
2732 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY);
2733 if (ret)
2734 return ret;
2735
2736 /* This is safe, since we have a reference from open(). */
2737 __module_get(THIS_MODULE);
2738
2739 pd->bdev = bdev;
2740 set_blocksize(bdev, CD_FRAMESIZE);
2741
2742 pkt_init_queue(pd);
2743
2744 atomic_set(&pd->cdrw.pending_bios, 0);
2745 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2746 if (IS_ERR(pd->cdrw.thread)) {
2747 printk(DRIVER_NAME": can't start kernel thread\n");
2748 ret = -ENOMEM;
2749 goto out_mem;
2750 }
2751
2752 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2753 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2754 return 0;
2755
2756 out_mem:
2757 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2758 /* This is safe: open() is still holding a reference. */
2759 module_put(THIS_MODULE);
2760 return ret;
2761 }
2762
2763 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2764 {
2765 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2766 int ret;
2767
2768 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2769 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2770
2771 lock_kernel();
2772 switch (cmd) {
2773 case CDROMEJECT:
2774 /*
2775 * The door gets locked when the device is opened, so we
2776 * have to unlock it or else the eject command fails.
2777 */
2778 if (pd->refcnt == 1)
2779 pkt_lock_door(pd, 0);
2780 /* fallthru */
2781 /*
2782 * forward selected CDROM ioctls to CD-ROM, for UDF
2783 */
2784 case CDROMMULTISESSION:
2785 case CDROMREADTOCENTRY:
2786 case CDROM_LAST_WRITTEN:
2787 case CDROM_SEND_PACKET:
2788 case SCSI_IOCTL_SEND_COMMAND:
2789 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2790 break;
2791
2792 default:
2793 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2794 ret = -ENOTTY;
2795 }
2796 unlock_kernel();
2797
2798 return ret;
2799 }
2800
2801 static int pkt_media_changed(struct gendisk *disk)
2802 {
2803 struct pktcdvd_device *pd = disk->private_data;
2804 struct gendisk *attached_disk;
2805
2806 if (!pd)
2807 return 0;
2808 if (!pd->bdev)
2809 return 0;
2810 attached_disk = pd->bdev->bd_disk;
2811 if (!attached_disk)
2812 return 0;
2813 return attached_disk->fops->media_changed(attached_disk);
2814 }
2815
2816 static const struct block_device_operations pktcdvd_ops = {
2817 .owner = THIS_MODULE,
2818 .open = pkt_open,
2819 .release = pkt_close,
2820 .ioctl = pkt_ioctl,
2821 .media_changed = pkt_media_changed,
2822 };
2823
2824 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2825 {
2826 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2827 }
2828
2829 /*
2830 * Set up mapping from pktcdvd device to CD-ROM device.
2831 */
2832 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2833 {
2834 int idx;
2835 int ret = -ENOMEM;
2836 struct pktcdvd_device *pd;
2837 struct gendisk *disk;
2838
2839 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2840
2841 for (idx = 0; idx < MAX_WRITERS; idx++)
2842 if (!pkt_devs[idx])
2843 break;
2844 if (idx == MAX_WRITERS) {
2845 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2846 ret = -EBUSY;
2847 goto out_mutex;
2848 }
2849
2850 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2851 if (!pd)
2852 goto out_mutex;
2853
2854 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2855 sizeof(struct pkt_rb_node));
2856 if (!pd->rb_pool)
2857 goto out_mem;
2858
2859 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2860 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2861 spin_lock_init(&pd->cdrw.active_list_lock);
2862
2863 spin_lock_init(&pd->lock);
2864 spin_lock_init(&pd->iosched.lock);
2865 bio_list_init(&pd->iosched.read_queue);
2866 bio_list_init(&pd->iosched.write_queue);
2867 sprintf(pd->name, DRIVER_NAME"%d", idx);
2868 init_waitqueue_head(&pd->wqueue);
2869 pd->bio_queue = RB_ROOT;
2870
2871 pd->write_congestion_on = write_congestion_on;
2872 pd->write_congestion_off = write_congestion_off;
2873
2874 disk = alloc_disk(1);
2875 if (!disk)
2876 goto out_mem;
2877 pd->disk = disk;
2878 disk->major = pktdev_major;
2879 disk->first_minor = idx;
2880 disk->fops = &pktcdvd_ops;
2881 disk->flags = GENHD_FL_REMOVABLE;
2882 strcpy(disk->disk_name, pd->name);
2883 disk->devnode = pktcdvd_devnode;
2884 disk->private_data = pd;
2885 disk->queue = blk_alloc_queue(GFP_KERNEL);
2886 if (!disk->queue)
2887 goto out_mem2;
2888
2889 pd->pkt_dev = MKDEV(pktdev_major, idx);
2890 ret = pkt_new_dev(pd, dev);
2891 if (ret)
2892 goto out_new_dev;
2893
2894 add_disk(disk);
2895
2896 pkt_sysfs_dev_new(pd);
2897 pkt_debugfs_dev_new(pd);
2898
2899 pkt_devs[idx] = pd;
2900 if (pkt_dev)
2901 *pkt_dev = pd->pkt_dev;
2902
2903 mutex_unlock(&ctl_mutex);
2904 return 0;
2905
2906 out_new_dev:
2907 blk_cleanup_queue(disk->queue);
2908 out_mem2:
2909 put_disk(disk);
2910 out_mem:
2911 if (pd->rb_pool)
2912 mempool_destroy(pd->rb_pool);
2913 kfree(pd);
2914 out_mutex:
2915 mutex_unlock(&ctl_mutex);
2916 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2917 return ret;
2918 }
2919
2920 /*
2921 * Tear down mapping from pktcdvd device to CD-ROM device.
2922 */
2923 static int pkt_remove_dev(dev_t pkt_dev)
2924 {
2925 struct pktcdvd_device *pd;
2926 int idx;
2927 int ret = 0;
2928
2929 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2930
2931 for (idx = 0; idx < MAX_WRITERS; idx++) {
2932 pd = pkt_devs[idx];
2933 if (pd && (pd->pkt_dev == pkt_dev))
2934 break;
2935 }
2936 if (idx == MAX_WRITERS) {
2937 DPRINTK(DRIVER_NAME": dev not setup\n");
2938 ret = -ENXIO;
2939 goto out;
2940 }
2941
2942 if (pd->refcnt > 0) {
2943 ret = -EBUSY;
2944 goto out;
2945 }
2946 if (!IS_ERR(pd->cdrw.thread))
2947 kthread_stop(pd->cdrw.thread);
2948
2949 pkt_devs[idx] = NULL;
2950
2951 pkt_debugfs_dev_remove(pd);
2952 pkt_sysfs_dev_remove(pd);
2953
2954 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2955
2956 remove_proc_entry(pd->name, pkt_proc);
2957 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2958
2959 del_gendisk(pd->disk);
2960 blk_cleanup_queue(pd->disk->queue);
2961 put_disk(pd->disk);
2962
2963 mempool_destroy(pd->rb_pool);
2964 kfree(pd);
2965
2966 /* This is safe: open() is still holding a reference. */
2967 module_put(THIS_MODULE);
2968
2969 out:
2970 mutex_unlock(&ctl_mutex);
2971 return ret;
2972 }
2973
2974 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2975 {
2976 struct pktcdvd_device *pd;
2977
2978 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2979
2980 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2981 if (pd) {
2982 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2983 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2984 } else {
2985 ctrl_cmd->dev = 0;
2986 ctrl_cmd->pkt_dev = 0;
2987 }
2988 ctrl_cmd->num_devices = MAX_WRITERS;
2989
2990 mutex_unlock(&ctl_mutex);
2991 }
2992
2993 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2994 {
2995 void __user *argp = (void __user *)arg;
2996 struct pkt_ctrl_command ctrl_cmd;
2997 int ret = 0;
2998 dev_t pkt_dev = 0;
2999
3000 if (cmd != PACKET_CTRL_CMD)
3001 return -ENOTTY;
3002
3003 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3004 return -EFAULT;
3005
3006 switch (ctrl_cmd.command) {
3007 case PKT_CTRL_CMD_SETUP:
3008 if (!capable(CAP_SYS_ADMIN))
3009 return -EPERM;
3010 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3011 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3012 break;
3013 case PKT_CTRL_CMD_TEARDOWN:
3014 if (!capable(CAP_SYS_ADMIN))
3015 return -EPERM;
3016 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3017 break;
3018 case PKT_CTRL_CMD_STATUS:
3019 pkt_get_status(&ctrl_cmd);
3020 break;
3021 default:
3022 return -ENOTTY;
3023 }
3024
3025 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3026 return -EFAULT;
3027 return ret;
3028 }
3029
3030 #ifdef CONFIG_COMPAT
3031 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3032 {
3033 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3034 }
3035 #endif
3036
3037 static const struct file_operations pkt_ctl_fops = {
3038 .open = nonseekable_open,
3039 .unlocked_ioctl = pkt_ctl_ioctl,
3040 #ifdef CONFIG_COMPAT
3041 .compat_ioctl = pkt_ctl_compat_ioctl,
3042 #endif
3043 .owner = THIS_MODULE,
3044 };
3045
3046 static struct miscdevice pkt_misc = {
3047 .minor = MISC_DYNAMIC_MINOR,
3048 .name = DRIVER_NAME,
3049 .nodename = "pktcdvd/control",
3050 .fops = &pkt_ctl_fops
3051 };
3052
3053 static int __init pkt_init(void)
3054 {
3055 int ret;
3056
3057 mutex_init(&ctl_mutex);
3058
3059 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3060 sizeof(struct packet_stacked_data));
3061 if (!psd_pool)
3062 return -ENOMEM;
3063
3064 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3065 if (ret < 0) {
3066 printk(DRIVER_NAME": Unable to register block device\n");
3067 goto out2;
3068 }
3069 if (!pktdev_major)
3070 pktdev_major = ret;
3071
3072 ret = pkt_sysfs_init();
3073 if (ret)
3074 goto out;
3075
3076 pkt_debugfs_init();
3077
3078 ret = misc_register(&pkt_misc);
3079 if (ret) {
3080 printk(DRIVER_NAME": Unable to register misc device\n");
3081 goto out_misc;
3082 }
3083
3084 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3085
3086 return 0;
3087
3088 out_misc:
3089 pkt_debugfs_cleanup();
3090 pkt_sysfs_cleanup();
3091 out:
3092 unregister_blkdev(pktdev_major, DRIVER_NAME);
3093 out2:
3094 mempool_destroy(psd_pool);
3095 return ret;
3096 }
3097
3098 static void __exit pkt_exit(void)
3099 {
3100 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3101 misc_deregister(&pkt_misc);
3102
3103 pkt_debugfs_cleanup();
3104 pkt_sysfs_cleanup();
3105
3106 unregister_blkdev(pktdev_major, DRIVER_NAME);
3107 mempool_destroy(psd_pool);
3108 }
3109
3110 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3111 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3112 MODULE_LICENSE("GPL");
3113
3114 module_init(pkt_init);
3115 module_exit(pkt_exit);
This page took 0.271984 seconds and 5 git commands to generate.