pktcdvd: convert pr_notice to pkt_notice
[deliverable/linux.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
69
70 #include <asm/uaccess.h>
71
72 #define DRIVER_NAME "pktcdvd"
73
74 #define pkt_err(pd, fmt, ...) \
75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...) \
77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78
79 #define pkt_dbg(level, pd, fmt, ...) \
80 do { \
81 if (level == 2 && PACKET_DEBUG >= 2) \
82 pr_notice("%s: %s():" fmt, \
83 pd->name, __func__, ##__VA_ARGS__); \
84 else if (level == 1 && PACKET_DEBUG >= 1) \
85 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
86 } while (0)
87
88 #define MAX_SPEED 0xffff
89
90 static DEFINE_MUTEX(pktcdvd_mutex);
91 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
92 static struct proc_dir_entry *pkt_proc;
93 static int pktdev_major;
94 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
95 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
96 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
97 static mempool_t *psd_pool;
98
99 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
100 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
101
102 /* forward declaration */
103 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
104 static int pkt_remove_dev(dev_t pkt_dev);
105 static int pkt_seq_show(struct seq_file *m, void *p);
106
107 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
108 {
109 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
110 }
111
112 /*
113 * create and register a pktcdvd kernel object.
114 */
115 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
116 const char* name,
117 struct kobject* parent,
118 struct kobj_type* ktype)
119 {
120 struct pktcdvd_kobj *p;
121 int error;
122
123 p = kzalloc(sizeof(*p), GFP_KERNEL);
124 if (!p)
125 return NULL;
126 p->pd = pd;
127 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
128 if (error) {
129 kobject_put(&p->kobj);
130 return NULL;
131 }
132 kobject_uevent(&p->kobj, KOBJ_ADD);
133 return p;
134 }
135 /*
136 * remove a pktcdvd kernel object.
137 */
138 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
139 {
140 if (p)
141 kobject_put(&p->kobj);
142 }
143 /*
144 * default release function for pktcdvd kernel objects.
145 */
146 static void pkt_kobj_release(struct kobject *kobj)
147 {
148 kfree(to_pktcdvdkobj(kobj));
149 }
150
151
152 /**********************************************************
153 *
154 * sysfs interface for pktcdvd
155 * by (C) 2006 Thomas Maier <balagi@justmail.de>
156 *
157 **********************************************************/
158
159 #define DEF_ATTR(_obj,_name,_mode) \
160 static struct attribute _obj = { .name = _name, .mode = _mode }
161
162 /**********************************************************
163 /sys/class/pktcdvd/pktcdvd[0-7]/
164 stat/reset
165 stat/packets_started
166 stat/packets_finished
167 stat/kb_written
168 stat/kb_read
169 stat/kb_read_gather
170 write_queue/size
171 write_queue/congestion_off
172 write_queue/congestion_on
173 **********************************************************/
174
175 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
176 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
177 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
178 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
179 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
180 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
181
182 static struct attribute *kobj_pkt_attrs_stat[] = {
183 &kobj_pkt_attr_st1,
184 &kobj_pkt_attr_st2,
185 &kobj_pkt_attr_st3,
186 &kobj_pkt_attr_st4,
187 &kobj_pkt_attr_st5,
188 &kobj_pkt_attr_st6,
189 NULL
190 };
191
192 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
193 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
194 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
195
196 static struct attribute *kobj_pkt_attrs_wqueue[] = {
197 &kobj_pkt_attr_wq1,
198 &kobj_pkt_attr_wq2,
199 &kobj_pkt_attr_wq3,
200 NULL
201 };
202
203 static ssize_t kobj_pkt_show(struct kobject *kobj,
204 struct attribute *attr, char *data)
205 {
206 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
207 int n = 0;
208 int v;
209 if (strcmp(attr->name, "packets_started") == 0) {
210 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
211
212 } else if (strcmp(attr->name, "packets_finished") == 0) {
213 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
214
215 } else if (strcmp(attr->name, "kb_written") == 0) {
216 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
217
218 } else if (strcmp(attr->name, "kb_read") == 0) {
219 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
220
221 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
222 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
223
224 } else if (strcmp(attr->name, "size") == 0) {
225 spin_lock(&pd->lock);
226 v = pd->bio_queue_size;
227 spin_unlock(&pd->lock);
228 n = sprintf(data, "%d\n", v);
229
230 } else if (strcmp(attr->name, "congestion_off") == 0) {
231 spin_lock(&pd->lock);
232 v = pd->write_congestion_off;
233 spin_unlock(&pd->lock);
234 n = sprintf(data, "%d\n", v);
235
236 } else if (strcmp(attr->name, "congestion_on") == 0) {
237 spin_lock(&pd->lock);
238 v = pd->write_congestion_on;
239 spin_unlock(&pd->lock);
240 n = sprintf(data, "%d\n", v);
241 }
242 return n;
243 }
244
245 static void init_write_congestion_marks(int* lo, int* hi)
246 {
247 if (*hi > 0) {
248 *hi = max(*hi, 500);
249 *hi = min(*hi, 1000000);
250 if (*lo <= 0)
251 *lo = *hi - 100;
252 else {
253 *lo = min(*lo, *hi - 100);
254 *lo = max(*lo, 100);
255 }
256 } else {
257 *hi = -1;
258 *lo = -1;
259 }
260 }
261
262 static ssize_t kobj_pkt_store(struct kobject *kobj,
263 struct attribute *attr,
264 const char *data, size_t len)
265 {
266 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
267 int val;
268
269 if (strcmp(attr->name, "reset") == 0 && len > 0) {
270 pd->stats.pkt_started = 0;
271 pd->stats.pkt_ended = 0;
272 pd->stats.secs_w = 0;
273 pd->stats.secs_rg = 0;
274 pd->stats.secs_r = 0;
275
276 } else if (strcmp(attr->name, "congestion_off") == 0
277 && sscanf(data, "%d", &val) == 1) {
278 spin_lock(&pd->lock);
279 pd->write_congestion_off = val;
280 init_write_congestion_marks(&pd->write_congestion_off,
281 &pd->write_congestion_on);
282 spin_unlock(&pd->lock);
283
284 } else if (strcmp(attr->name, "congestion_on") == 0
285 && sscanf(data, "%d", &val) == 1) {
286 spin_lock(&pd->lock);
287 pd->write_congestion_on = val;
288 init_write_congestion_marks(&pd->write_congestion_off,
289 &pd->write_congestion_on);
290 spin_unlock(&pd->lock);
291 }
292 return len;
293 }
294
295 static const struct sysfs_ops kobj_pkt_ops = {
296 .show = kobj_pkt_show,
297 .store = kobj_pkt_store
298 };
299 static struct kobj_type kobj_pkt_type_stat = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_stat
303 };
304 static struct kobj_type kobj_pkt_type_wqueue = {
305 .release = pkt_kobj_release,
306 .sysfs_ops = &kobj_pkt_ops,
307 .default_attrs = kobj_pkt_attrs_wqueue
308 };
309
310 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
311 {
312 if (class_pktcdvd) {
313 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
314 "%s", pd->name);
315 if (IS_ERR(pd->dev))
316 pd->dev = NULL;
317 }
318 if (pd->dev) {
319 pd->kobj_stat = pkt_kobj_create(pd, "stat",
320 &pd->dev->kobj,
321 &kobj_pkt_type_stat);
322 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
323 &pd->dev->kobj,
324 &kobj_pkt_type_wqueue);
325 }
326 }
327
328 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
329 {
330 pkt_kobj_remove(pd->kobj_stat);
331 pkt_kobj_remove(pd->kobj_wqueue);
332 if (class_pktcdvd)
333 device_unregister(pd->dev);
334 }
335
336
337 /********************************************************************
338 /sys/class/pktcdvd/
339 add map block device
340 remove unmap packet dev
341 device_map show mappings
342 *******************************************************************/
343
344 static void class_pktcdvd_release(struct class *cls)
345 {
346 kfree(cls);
347 }
348 static ssize_t class_pktcdvd_show_map(struct class *c,
349 struct class_attribute *attr,
350 char *data)
351 {
352 int n = 0;
353 int idx;
354 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
355 for (idx = 0; idx < MAX_WRITERS; idx++) {
356 struct pktcdvd_device *pd = pkt_devs[idx];
357 if (!pd)
358 continue;
359 n += sprintf(data+n, "%s %u:%u %u:%u\n",
360 pd->name,
361 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
362 MAJOR(pd->bdev->bd_dev),
363 MINOR(pd->bdev->bd_dev));
364 }
365 mutex_unlock(&ctl_mutex);
366 return n;
367 }
368
369 static ssize_t class_pktcdvd_store_add(struct class *c,
370 struct class_attribute *attr,
371 const char *buf,
372 size_t count)
373 {
374 unsigned int major, minor;
375
376 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377 /* pkt_setup_dev() expects caller to hold reference to self */
378 if (!try_module_get(THIS_MODULE))
379 return -ENODEV;
380
381 pkt_setup_dev(MKDEV(major, minor), NULL);
382
383 module_put(THIS_MODULE);
384
385 return count;
386 }
387
388 return -EINVAL;
389 }
390
391 static ssize_t class_pktcdvd_store_remove(struct class *c,
392 struct class_attribute *attr,
393 const char *buf,
394 size_t count)
395 {
396 unsigned int major, minor;
397 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
398 pkt_remove_dev(MKDEV(major, minor));
399 return count;
400 }
401 return -EINVAL;
402 }
403
404 static struct class_attribute class_pktcdvd_attrs[] = {
405 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
406 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
407 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
408 __ATTR_NULL
409 };
410
411
412 static int pkt_sysfs_init(void)
413 {
414 int ret = 0;
415
416 /*
417 * create control files in sysfs
418 * /sys/class/pktcdvd/...
419 */
420 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
421 if (!class_pktcdvd)
422 return -ENOMEM;
423 class_pktcdvd->name = DRIVER_NAME;
424 class_pktcdvd->owner = THIS_MODULE;
425 class_pktcdvd->class_release = class_pktcdvd_release;
426 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
427 ret = class_register(class_pktcdvd);
428 if (ret) {
429 kfree(class_pktcdvd);
430 class_pktcdvd = NULL;
431 pr_err("failed to create class pktcdvd\n");
432 return ret;
433 }
434 return 0;
435 }
436
437 static void pkt_sysfs_cleanup(void)
438 {
439 if (class_pktcdvd)
440 class_destroy(class_pktcdvd);
441 class_pktcdvd = NULL;
442 }
443
444 /********************************************************************
445 entries in debugfs
446
447 /sys/kernel/debug/pktcdvd[0-7]/
448 info
449
450 *******************************************************************/
451
452 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
453 {
454 return pkt_seq_show(m, p);
455 }
456
457 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
458 {
459 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
460 }
461
462 static const struct file_operations debug_fops = {
463 .open = pkt_debugfs_fops_open,
464 .read = seq_read,
465 .llseek = seq_lseek,
466 .release = single_release,
467 .owner = THIS_MODULE,
468 };
469
470 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
471 {
472 if (!pkt_debugfs_root)
473 return;
474 pd->dfs_f_info = NULL;
475 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
476 if (IS_ERR(pd->dfs_d_root)) {
477 pd->dfs_d_root = NULL;
478 return;
479 }
480 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
481 pd->dfs_d_root, pd, &debug_fops);
482 if (IS_ERR(pd->dfs_f_info)) {
483 pd->dfs_f_info = NULL;
484 return;
485 }
486 }
487
488 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
489 {
490 if (!pkt_debugfs_root)
491 return;
492 if (pd->dfs_f_info)
493 debugfs_remove(pd->dfs_f_info);
494 pd->dfs_f_info = NULL;
495 if (pd->dfs_d_root)
496 debugfs_remove(pd->dfs_d_root);
497 pd->dfs_d_root = NULL;
498 }
499
500 static void pkt_debugfs_init(void)
501 {
502 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
503 if (IS_ERR(pkt_debugfs_root)) {
504 pkt_debugfs_root = NULL;
505 return;
506 }
507 }
508
509 static void pkt_debugfs_cleanup(void)
510 {
511 if (!pkt_debugfs_root)
512 return;
513 debugfs_remove(pkt_debugfs_root);
514 pkt_debugfs_root = NULL;
515 }
516
517 /* ----------------------------------------------------------*/
518
519
520 static void pkt_bio_finished(struct pktcdvd_device *pd)
521 {
522 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
523 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
524 pkt_dbg(2, pd, "queue empty\n");
525 atomic_set(&pd->iosched.attention, 1);
526 wake_up(&pd->wqueue);
527 }
528 }
529
530 /*
531 * Allocate a packet_data struct
532 */
533 static struct packet_data *pkt_alloc_packet_data(int frames)
534 {
535 int i;
536 struct packet_data *pkt;
537
538 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
539 if (!pkt)
540 goto no_pkt;
541
542 pkt->frames = frames;
543 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
544 if (!pkt->w_bio)
545 goto no_bio;
546
547 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
548 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
549 if (!pkt->pages[i])
550 goto no_page;
551 }
552
553 spin_lock_init(&pkt->lock);
554 bio_list_init(&pkt->orig_bios);
555
556 for (i = 0; i < frames; i++) {
557 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
558 if (!bio)
559 goto no_rd_bio;
560
561 pkt->r_bios[i] = bio;
562 }
563
564 return pkt;
565
566 no_rd_bio:
567 for (i = 0; i < frames; i++) {
568 struct bio *bio = pkt->r_bios[i];
569 if (bio)
570 bio_put(bio);
571 }
572
573 no_page:
574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
575 if (pkt->pages[i])
576 __free_page(pkt->pages[i]);
577 bio_put(pkt->w_bio);
578 no_bio:
579 kfree(pkt);
580 no_pkt:
581 return NULL;
582 }
583
584 /*
585 * Free a packet_data struct
586 */
587 static void pkt_free_packet_data(struct packet_data *pkt)
588 {
589 int i;
590
591 for (i = 0; i < pkt->frames; i++) {
592 struct bio *bio = pkt->r_bios[i];
593 if (bio)
594 bio_put(bio);
595 }
596 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
597 __free_page(pkt->pages[i]);
598 bio_put(pkt->w_bio);
599 kfree(pkt);
600 }
601
602 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
603 {
604 struct packet_data *pkt, *next;
605
606 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
607
608 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
609 pkt_free_packet_data(pkt);
610 }
611 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
612 }
613
614 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
615 {
616 struct packet_data *pkt;
617
618 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
619
620 while (nr_packets > 0) {
621 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
622 if (!pkt) {
623 pkt_shrink_pktlist(pd);
624 return 0;
625 }
626 pkt->id = nr_packets;
627 pkt->pd = pd;
628 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
629 nr_packets--;
630 }
631 return 1;
632 }
633
634 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
635 {
636 struct rb_node *n = rb_next(&node->rb_node);
637 if (!n)
638 return NULL;
639 return rb_entry(n, struct pkt_rb_node, rb_node);
640 }
641
642 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
643 {
644 rb_erase(&node->rb_node, &pd->bio_queue);
645 mempool_free(node, pd->rb_pool);
646 pd->bio_queue_size--;
647 BUG_ON(pd->bio_queue_size < 0);
648 }
649
650 /*
651 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
652 */
653 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
654 {
655 struct rb_node *n = pd->bio_queue.rb_node;
656 struct rb_node *next;
657 struct pkt_rb_node *tmp;
658
659 if (!n) {
660 BUG_ON(pd->bio_queue_size > 0);
661 return NULL;
662 }
663
664 for (;;) {
665 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
666 if (s <= tmp->bio->bi_sector)
667 next = n->rb_left;
668 else
669 next = n->rb_right;
670 if (!next)
671 break;
672 n = next;
673 }
674
675 if (s > tmp->bio->bi_sector) {
676 tmp = pkt_rbtree_next(tmp);
677 if (!tmp)
678 return NULL;
679 }
680 BUG_ON(s > tmp->bio->bi_sector);
681 return tmp;
682 }
683
684 /*
685 * Insert a node into the pd->bio_queue rb tree.
686 */
687 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
688 {
689 struct rb_node **p = &pd->bio_queue.rb_node;
690 struct rb_node *parent = NULL;
691 sector_t s = node->bio->bi_sector;
692 struct pkt_rb_node *tmp;
693
694 while (*p) {
695 parent = *p;
696 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
697 if (s < tmp->bio->bi_sector)
698 p = &(*p)->rb_left;
699 else
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&node->rb_node, parent, p);
703 rb_insert_color(&node->rb_node, &pd->bio_queue);
704 pd->bio_queue_size++;
705 }
706
707 /*
708 * Send a packet_command to the underlying block device and
709 * wait for completion.
710 */
711 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
712 {
713 struct request_queue *q = bdev_get_queue(pd->bdev);
714 struct request *rq;
715 int ret = 0;
716
717 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
718 WRITE : READ, __GFP_WAIT);
719
720 if (cgc->buflen) {
721 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
722 goto out;
723 }
724
725 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
726 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
727
728 rq->timeout = 60*HZ;
729 rq->cmd_type = REQ_TYPE_BLOCK_PC;
730 if (cgc->quiet)
731 rq->cmd_flags |= REQ_QUIET;
732
733 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
734 if (rq->errors)
735 ret = -EIO;
736 out:
737 blk_put_request(rq);
738 return ret;
739 }
740
741 static const char *sense_key_string(__u8 index)
742 {
743 static const char * const info[] = {
744 "No sense", "Recovered error", "Not ready",
745 "Medium error", "Hardware error", "Illegal request",
746 "Unit attention", "Data protect", "Blank check",
747 };
748
749 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
750 }
751
752 /*
753 * A generic sense dump / resolve mechanism should be implemented across
754 * all ATAPI + SCSI devices.
755 */
756 static void pkt_dump_sense(struct packet_command *cgc)
757 {
758 struct request_sense *sense = cgc->sense;
759
760 if (sense)
761 pr_err("%*ph - sense %02x.%02x.%02x (%s)\n",
762 CDROM_PACKET_SIZE, cgc->cmd,
763 sense->sense_key, sense->asc, sense->ascq,
764 sense_key_string(sense->sense_key));
765 else
766 pr_err("%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
767 }
768
769 /*
770 * flush the drive cache to media
771 */
772 static int pkt_flush_cache(struct pktcdvd_device *pd)
773 {
774 struct packet_command cgc;
775
776 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
777 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
778 cgc.quiet = 1;
779
780 /*
781 * the IMMED bit -- we default to not setting it, although that
782 * would allow a much faster close, this is safer
783 */
784 #if 0
785 cgc.cmd[1] = 1 << 1;
786 #endif
787 return pkt_generic_packet(pd, &cgc);
788 }
789
790 /*
791 * speed is given as the normal factor, e.g. 4 for 4x
792 */
793 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
794 unsigned write_speed, unsigned read_speed)
795 {
796 struct packet_command cgc;
797 struct request_sense sense;
798 int ret;
799
800 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
801 cgc.sense = &sense;
802 cgc.cmd[0] = GPCMD_SET_SPEED;
803 cgc.cmd[2] = (read_speed >> 8) & 0xff;
804 cgc.cmd[3] = read_speed & 0xff;
805 cgc.cmd[4] = (write_speed >> 8) & 0xff;
806 cgc.cmd[5] = write_speed & 0xff;
807
808 if ((ret = pkt_generic_packet(pd, &cgc)))
809 pkt_dump_sense(&cgc);
810
811 return ret;
812 }
813
814 /*
815 * Queue a bio for processing by the low-level CD device. Must be called
816 * from process context.
817 */
818 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
819 {
820 spin_lock(&pd->iosched.lock);
821 if (bio_data_dir(bio) == READ)
822 bio_list_add(&pd->iosched.read_queue, bio);
823 else
824 bio_list_add(&pd->iosched.write_queue, bio);
825 spin_unlock(&pd->iosched.lock);
826
827 atomic_set(&pd->iosched.attention, 1);
828 wake_up(&pd->wqueue);
829 }
830
831 /*
832 * Process the queued read/write requests. This function handles special
833 * requirements for CDRW drives:
834 * - A cache flush command must be inserted before a read request if the
835 * previous request was a write.
836 * - Switching between reading and writing is slow, so don't do it more often
837 * than necessary.
838 * - Optimize for throughput at the expense of latency. This means that streaming
839 * writes will never be interrupted by a read, but if the drive has to seek
840 * before the next write, switch to reading instead if there are any pending
841 * read requests.
842 * - Set the read speed according to current usage pattern. When only reading
843 * from the device, it's best to use the highest possible read speed, but
844 * when switching often between reading and writing, it's better to have the
845 * same read and write speeds.
846 */
847 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
848 {
849
850 if (atomic_read(&pd->iosched.attention) == 0)
851 return;
852 atomic_set(&pd->iosched.attention, 0);
853
854 for (;;) {
855 struct bio *bio;
856 int reads_queued, writes_queued;
857
858 spin_lock(&pd->iosched.lock);
859 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
860 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
861 spin_unlock(&pd->iosched.lock);
862
863 if (!reads_queued && !writes_queued)
864 break;
865
866 if (pd->iosched.writing) {
867 int need_write_seek = 1;
868 spin_lock(&pd->iosched.lock);
869 bio = bio_list_peek(&pd->iosched.write_queue);
870 spin_unlock(&pd->iosched.lock);
871 if (bio && (bio->bi_sector == pd->iosched.last_write))
872 need_write_seek = 0;
873 if (need_write_seek && reads_queued) {
874 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
875 pkt_dbg(2, pd, "write, waiting\n");
876 break;
877 }
878 pkt_flush_cache(pd);
879 pd->iosched.writing = 0;
880 }
881 } else {
882 if (!reads_queued && writes_queued) {
883 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
884 pkt_dbg(2, pd, "read, waiting\n");
885 break;
886 }
887 pd->iosched.writing = 1;
888 }
889 }
890
891 spin_lock(&pd->iosched.lock);
892 if (pd->iosched.writing)
893 bio = bio_list_pop(&pd->iosched.write_queue);
894 else
895 bio = bio_list_pop(&pd->iosched.read_queue);
896 spin_unlock(&pd->iosched.lock);
897
898 if (!bio)
899 continue;
900
901 if (bio_data_dir(bio) == READ)
902 pd->iosched.successive_reads += bio->bi_size >> 10;
903 else {
904 pd->iosched.successive_reads = 0;
905 pd->iosched.last_write = bio_end_sector(bio);
906 }
907 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
908 if (pd->read_speed == pd->write_speed) {
909 pd->read_speed = MAX_SPEED;
910 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
911 }
912 } else {
913 if (pd->read_speed != pd->write_speed) {
914 pd->read_speed = pd->write_speed;
915 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
916 }
917 }
918
919 atomic_inc(&pd->cdrw.pending_bios);
920 generic_make_request(bio);
921 }
922 }
923
924 /*
925 * Special care is needed if the underlying block device has a small
926 * max_phys_segments value.
927 */
928 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
929 {
930 if ((pd->settings.size << 9) / CD_FRAMESIZE
931 <= queue_max_segments(q)) {
932 /*
933 * The cdrom device can handle one segment/frame
934 */
935 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
936 return 0;
937 } else if ((pd->settings.size << 9) / PAGE_SIZE
938 <= queue_max_segments(q)) {
939 /*
940 * We can handle this case at the expense of some extra memory
941 * copies during write operations
942 */
943 set_bit(PACKET_MERGE_SEGS, &pd->flags);
944 return 0;
945 } else {
946 pkt_err(pd, "cdrom max_phys_segments too small\n");
947 return -EIO;
948 }
949 }
950
951 /*
952 * Copy all data for this packet to pkt->pages[], so that
953 * a) The number of required segments for the write bio is minimized, which
954 * is necessary for some scsi controllers.
955 * b) The data can be used as cache to avoid read requests if we receive a
956 * new write request for the same zone.
957 */
958 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
959 {
960 int f, p, offs;
961
962 /* Copy all data to pkt->pages[] */
963 p = 0;
964 offs = 0;
965 for (f = 0; f < pkt->frames; f++) {
966 if (bvec[f].bv_page != pkt->pages[p]) {
967 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
968 void *vto = page_address(pkt->pages[p]) + offs;
969 memcpy(vto, vfrom, CD_FRAMESIZE);
970 kunmap_atomic(vfrom);
971 bvec[f].bv_page = pkt->pages[p];
972 bvec[f].bv_offset = offs;
973 } else {
974 BUG_ON(bvec[f].bv_offset != offs);
975 }
976 offs += CD_FRAMESIZE;
977 if (offs >= PAGE_SIZE) {
978 offs = 0;
979 p++;
980 }
981 }
982 }
983
984 static void pkt_end_io_read(struct bio *bio, int err)
985 {
986 struct packet_data *pkt = bio->bi_private;
987 struct pktcdvd_device *pd = pkt->pd;
988 BUG_ON(!pd);
989
990 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
991 bio, (unsigned long long)pkt->sector,
992 (unsigned long long)bio->bi_sector, err);
993
994 if (err)
995 atomic_inc(&pkt->io_errors);
996 if (atomic_dec_and_test(&pkt->io_wait)) {
997 atomic_inc(&pkt->run_sm);
998 wake_up(&pd->wqueue);
999 }
1000 pkt_bio_finished(pd);
1001 }
1002
1003 static void pkt_end_io_packet_write(struct bio *bio, int err)
1004 {
1005 struct packet_data *pkt = bio->bi_private;
1006 struct pktcdvd_device *pd = pkt->pd;
1007 BUG_ON(!pd);
1008
1009 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
1010
1011 pd->stats.pkt_ended++;
1012
1013 pkt_bio_finished(pd);
1014 atomic_dec(&pkt->io_wait);
1015 atomic_inc(&pkt->run_sm);
1016 wake_up(&pd->wqueue);
1017 }
1018
1019 /*
1020 * Schedule reads for the holes in a packet
1021 */
1022 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1023 {
1024 int frames_read = 0;
1025 struct bio *bio;
1026 int f;
1027 char written[PACKET_MAX_SIZE];
1028
1029 BUG_ON(bio_list_empty(&pkt->orig_bios));
1030
1031 atomic_set(&pkt->io_wait, 0);
1032 atomic_set(&pkt->io_errors, 0);
1033
1034 /*
1035 * Figure out which frames we need to read before we can write.
1036 */
1037 memset(written, 0, sizeof(written));
1038 spin_lock(&pkt->lock);
1039 bio_list_for_each(bio, &pkt->orig_bios) {
1040 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1041 int num_frames = bio->bi_size / CD_FRAMESIZE;
1042 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1043 BUG_ON(first_frame < 0);
1044 BUG_ON(first_frame + num_frames > pkt->frames);
1045 for (f = first_frame; f < first_frame + num_frames; f++)
1046 written[f] = 1;
1047 }
1048 spin_unlock(&pkt->lock);
1049
1050 if (pkt->cache_valid) {
1051 pkt_dbg(2, pd, "zone %llx cached\n",
1052 (unsigned long long)pkt->sector);
1053 goto out_account;
1054 }
1055
1056 /*
1057 * Schedule reads for missing parts of the packet.
1058 */
1059 for (f = 0; f < pkt->frames; f++) {
1060 int p, offset;
1061
1062 if (written[f])
1063 continue;
1064
1065 bio = pkt->r_bios[f];
1066 bio_reset(bio);
1067 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1068 bio->bi_bdev = pd->bdev;
1069 bio->bi_end_io = pkt_end_io_read;
1070 bio->bi_private = pkt;
1071
1072 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1073 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1074 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1075 f, pkt->pages[p], offset);
1076 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1077 BUG();
1078
1079 atomic_inc(&pkt->io_wait);
1080 bio->bi_rw = READ;
1081 pkt_queue_bio(pd, bio);
1082 frames_read++;
1083 }
1084
1085 out_account:
1086 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1087 frames_read, (unsigned long long)pkt->sector);
1088 pd->stats.pkt_started++;
1089 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1090 }
1091
1092 /*
1093 * Find a packet matching zone, or the least recently used packet if
1094 * there is no match.
1095 */
1096 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1097 {
1098 struct packet_data *pkt;
1099
1100 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1101 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1102 list_del_init(&pkt->list);
1103 if (pkt->sector != zone)
1104 pkt->cache_valid = 0;
1105 return pkt;
1106 }
1107 }
1108 BUG();
1109 return NULL;
1110 }
1111
1112 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1113 {
1114 if (pkt->cache_valid) {
1115 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1116 } else {
1117 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1118 }
1119 }
1120
1121 /*
1122 * recover a failed write, query for relocation if possible
1123 *
1124 * returns 1 if recovery is possible, or 0 if not
1125 *
1126 */
1127 static int pkt_start_recovery(struct packet_data *pkt)
1128 {
1129 /*
1130 * FIXME. We need help from the file system to implement
1131 * recovery handling.
1132 */
1133 return 0;
1134 #if 0
1135 struct request *rq = pkt->rq;
1136 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1137 struct block_device *pkt_bdev;
1138 struct super_block *sb = NULL;
1139 unsigned long old_block, new_block;
1140 sector_t new_sector;
1141
1142 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1143 if (pkt_bdev) {
1144 sb = get_super(pkt_bdev);
1145 bdput(pkt_bdev);
1146 }
1147
1148 if (!sb)
1149 return 0;
1150
1151 if (!sb->s_op->relocate_blocks)
1152 goto out;
1153
1154 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1155 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1156 goto out;
1157
1158 new_sector = new_block * (CD_FRAMESIZE >> 9);
1159 pkt->sector = new_sector;
1160
1161 bio_reset(pkt->bio);
1162 pkt->bio->bi_bdev = pd->bdev;
1163 pkt->bio->bi_rw = REQ_WRITE;
1164 pkt->bio->bi_sector = new_sector;
1165 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1166 pkt->bio->bi_vcnt = pkt->frames;
1167
1168 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1169 pkt->bio->bi_private = pkt;
1170
1171 drop_super(sb);
1172 return 1;
1173
1174 out:
1175 drop_super(sb);
1176 return 0;
1177 #endif
1178 }
1179
1180 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1181 {
1182 #if PACKET_DEBUG > 1
1183 static const char *state_name[] = {
1184 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1185 };
1186 enum packet_data_state old_state = pkt->state;
1187 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1188 pkt->id, (unsigned long long)pkt->sector,
1189 state_name[old_state], state_name[state]);
1190 #endif
1191 pkt->state = state;
1192 }
1193
1194 /*
1195 * Scan the work queue to see if we can start a new packet.
1196 * returns non-zero if any work was done.
1197 */
1198 static int pkt_handle_queue(struct pktcdvd_device *pd)
1199 {
1200 struct packet_data *pkt, *p;
1201 struct bio *bio = NULL;
1202 sector_t zone = 0; /* Suppress gcc warning */
1203 struct pkt_rb_node *node, *first_node;
1204 struct rb_node *n;
1205 int wakeup;
1206
1207 atomic_set(&pd->scan_queue, 0);
1208
1209 if (list_empty(&pd->cdrw.pkt_free_list)) {
1210 pkt_dbg(2, pd, "no pkt\n");
1211 return 0;
1212 }
1213
1214 /*
1215 * Try to find a zone we are not already working on.
1216 */
1217 spin_lock(&pd->lock);
1218 first_node = pkt_rbtree_find(pd, pd->current_sector);
1219 if (!first_node) {
1220 n = rb_first(&pd->bio_queue);
1221 if (n)
1222 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1223 }
1224 node = first_node;
1225 while (node) {
1226 bio = node->bio;
1227 zone = get_zone(bio->bi_sector, pd);
1228 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1229 if (p->sector == zone) {
1230 bio = NULL;
1231 goto try_next_bio;
1232 }
1233 }
1234 break;
1235 try_next_bio:
1236 node = pkt_rbtree_next(node);
1237 if (!node) {
1238 n = rb_first(&pd->bio_queue);
1239 if (n)
1240 node = rb_entry(n, struct pkt_rb_node, rb_node);
1241 }
1242 if (node == first_node)
1243 node = NULL;
1244 }
1245 spin_unlock(&pd->lock);
1246 if (!bio) {
1247 pkt_dbg(2, pd, "no bio\n");
1248 return 0;
1249 }
1250
1251 pkt = pkt_get_packet_data(pd, zone);
1252
1253 pd->current_sector = zone + pd->settings.size;
1254 pkt->sector = zone;
1255 BUG_ON(pkt->frames != pd->settings.size >> 2);
1256 pkt->write_size = 0;
1257
1258 /*
1259 * Scan work queue for bios in the same zone and link them
1260 * to this packet.
1261 */
1262 spin_lock(&pd->lock);
1263 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1264 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1265 bio = node->bio;
1266 pkt_dbg(2, pd, "found zone=%llx\n",
1267 (unsigned long long)get_zone(bio->bi_sector, pd));
1268 if (get_zone(bio->bi_sector, pd) != zone)
1269 break;
1270 pkt_rbtree_erase(pd, node);
1271 spin_lock(&pkt->lock);
1272 bio_list_add(&pkt->orig_bios, bio);
1273 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1274 spin_unlock(&pkt->lock);
1275 }
1276 /* check write congestion marks, and if bio_queue_size is
1277 below, wake up any waiters */
1278 wakeup = (pd->write_congestion_on > 0
1279 && pd->bio_queue_size <= pd->write_congestion_off);
1280 spin_unlock(&pd->lock);
1281 if (wakeup) {
1282 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1283 BLK_RW_ASYNC);
1284 }
1285
1286 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1287 pkt_set_state(pkt, PACKET_WAITING_STATE);
1288 atomic_set(&pkt->run_sm, 1);
1289
1290 spin_lock(&pd->cdrw.active_list_lock);
1291 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1292 spin_unlock(&pd->cdrw.active_list_lock);
1293
1294 return 1;
1295 }
1296
1297 /*
1298 * Assemble a bio to write one packet and queue the bio for processing
1299 * by the underlying block device.
1300 */
1301 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1302 {
1303 int f;
1304 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1305
1306 bio_reset(pkt->w_bio);
1307 pkt->w_bio->bi_sector = pkt->sector;
1308 pkt->w_bio->bi_bdev = pd->bdev;
1309 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1310 pkt->w_bio->bi_private = pkt;
1311
1312 /* XXX: locking? */
1313 for (f = 0; f < pkt->frames; f++) {
1314 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1315 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1316 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1317 BUG();
1318 }
1319 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1320
1321 /*
1322 * Fill-in bvec with data from orig_bios.
1323 */
1324 spin_lock(&pkt->lock);
1325 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1326
1327 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1328 spin_unlock(&pkt->lock);
1329
1330 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1331 pkt->write_size, (unsigned long long)pkt->sector);
1332
1333 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1334 pkt_make_local_copy(pkt, bvec);
1335 pkt->cache_valid = 1;
1336 } else {
1337 pkt->cache_valid = 0;
1338 }
1339
1340 /* Start the write request */
1341 atomic_set(&pkt->io_wait, 1);
1342 pkt->w_bio->bi_rw = WRITE;
1343 pkt_queue_bio(pd, pkt->w_bio);
1344 }
1345
1346 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1347 {
1348 struct bio *bio;
1349
1350 if (!uptodate)
1351 pkt->cache_valid = 0;
1352
1353 /* Finish all bios corresponding to this packet */
1354 while ((bio = bio_list_pop(&pkt->orig_bios)))
1355 bio_endio(bio, uptodate ? 0 : -EIO);
1356 }
1357
1358 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1359 {
1360 int uptodate;
1361
1362 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1363
1364 for (;;) {
1365 switch (pkt->state) {
1366 case PACKET_WAITING_STATE:
1367 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1368 return;
1369
1370 pkt->sleep_time = 0;
1371 pkt_gather_data(pd, pkt);
1372 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1373 break;
1374
1375 case PACKET_READ_WAIT_STATE:
1376 if (atomic_read(&pkt->io_wait) > 0)
1377 return;
1378
1379 if (atomic_read(&pkt->io_errors) > 0) {
1380 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1381 } else {
1382 pkt_start_write(pd, pkt);
1383 }
1384 break;
1385
1386 case PACKET_WRITE_WAIT_STATE:
1387 if (atomic_read(&pkt->io_wait) > 0)
1388 return;
1389
1390 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1391 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1392 } else {
1393 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1394 }
1395 break;
1396
1397 case PACKET_RECOVERY_STATE:
1398 if (pkt_start_recovery(pkt)) {
1399 pkt_start_write(pd, pkt);
1400 } else {
1401 pkt_dbg(2, pd, "No recovery possible\n");
1402 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1403 }
1404 break;
1405
1406 case PACKET_FINISHED_STATE:
1407 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1408 pkt_finish_packet(pkt, uptodate);
1409 return;
1410
1411 default:
1412 BUG();
1413 break;
1414 }
1415 }
1416 }
1417
1418 static void pkt_handle_packets(struct pktcdvd_device *pd)
1419 {
1420 struct packet_data *pkt, *next;
1421
1422 /*
1423 * Run state machine for active packets
1424 */
1425 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1426 if (atomic_read(&pkt->run_sm) > 0) {
1427 atomic_set(&pkt->run_sm, 0);
1428 pkt_run_state_machine(pd, pkt);
1429 }
1430 }
1431
1432 /*
1433 * Move no longer active packets to the free list
1434 */
1435 spin_lock(&pd->cdrw.active_list_lock);
1436 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1437 if (pkt->state == PACKET_FINISHED_STATE) {
1438 list_del(&pkt->list);
1439 pkt_put_packet_data(pd, pkt);
1440 pkt_set_state(pkt, PACKET_IDLE_STATE);
1441 atomic_set(&pd->scan_queue, 1);
1442 }
1443 }
1444 spin_unlock(&pd->cdrw.active_list_lock);
1445 }
1446
1447 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1448 {
1449 struct packet_data *pkt;
1450 int i;
1451
1452 for (i = 0; i < PACKET_NUM_STATES; i++)
1453 states[i] = 0;
1454
1455 spin_lock(&pd->cdrw.active_list_lock);
1456 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1457 states[pkt->state]++;
1458 }
1459 spin_unlock(&pd->cdrw.active_list_lock);
1460 }
1461
1462 /*
1463 * kcdrwd is woken up when writes have been queued for one of our
1464 * registered devices
1465 */
1466 static int kcdrwd(void *foobar)
1467 {
1468 struct pktcdvd_device *pd = foobar;
1469 struct packet_data *pkt;
1470 long min_sleep_time, residue;
1471
1472 set_user_nice(current, -20);
1473 set_freezable();
1474
1475 for (;;) {
1476 DECLARE_WAITQUEUE(wait, current);
1477
1478 /*
1479 * Wait until there is something to do
1480 */
1481 add_wait_queue(&pd->wqueue, &wait);
1482 for (;;) {
1483 set_current_state(TASK_INTERRUPTIBLE);
1484
1485 /* Check if we need to run pkt_handle_queue */
1486 if (atomic_read(&pd->scan_queue) > 0)
1487 goto work_to_do;
1488
1489 /* Check if we need to run the state machine for some packet */
1490 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1491 if (atomic_read(&pkt->run_sm) > 0)
1492 goto work_to_do;
1493 }
1494
1495 /* Check if we need to process the iosched queues */
1496 if (atomic_read(&pd->iosched.attention) != 0)
1497 goto work_to_do;
1498
1499 /* Otherwise, go to sleep */
1500 if (PACKET_DEBUG > 1) {
1501 int states[PACKET_NUM_STATES];
1502 pkt_count_states(pd, states);
1503 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1504 states[0], states[1], states[2],
1505 states[3], states[4], states[5]);
1506 }
1507
1508 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1509 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1510 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1511 min_sleep_time = pkt->sleep_time;
1512 }
1513
1514 pkt_dbg(2, pd, "sleeping\n");
1515 residue = schedule_timeout(min_sleep_time);
1516 pkt_dbg(2, pd, "wake up\n");
1517
1518 /* make swsusp happy with our thread */
1519 try_to_freeze();
1520
1521 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1522 if (!pkt->sleep_time)
1523 continue;
1524 pkt->sleep_time -= min_sleep_time - residue;
1525 if (pkt->sleep_time <= 0) {
1526 pkt->sleep_time = 0;
1527 atomic_inc(&pkt->run_sm);
1528 }
1529 }
1530
1531 if (kthread_should_stop())
1532 break;
1533 }
1534 work_to_do:
1535 set_current_state(TASK_RUNNING);
1536 remove_wait_queue(&pd->wqueue, &wait);
1537
1538 if (kthread_should_stop())
1539 break;
1540
1541 /*
1542 * if pkt_handle_queue returns true, we can queue
1543 * another request.
1544 */
1545 while (pkt_handle_queue(pd))
1546 ;
1547
1548 /*
1549 * Handle packet state machine
1550 */
1551 pkt_handle_packets(pd);
1552
1553 /*
1554 * Handle iosched queues
1555 */
1556 pkt_iosched_process_queue(pd);
1557 }
1558
1559 return 0;
1560 }
1561
1562 static void pkt_print_settings(struct pktcdvd_device *pd)
1563 {
1564 pr_info("%s packets, %u blocks, Mode-%c disc\n",
1565 pd->settings.fp ? "Fixed" : "Variable",
1566 pd->settings.size >> 2,
1567 pd->settings.block_mode == 8 ? '1' : '2');
1568 }
1569
1570 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1571 {
1572 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1573
1574 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1575 cgc->cmd[2] = page_code | (page_control << 6);
1576 cgc->cmd[7] = cgc->buflen >> 8;
1577 cgc->cmd[8] = cgc->buflen & 0xff;
1578 cgc->data_direction = CGC_DATA_READ;
1579 return pkt_generic_packet(pd, cgc);
1580 }
1581
1582 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1583 {
1584 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1585 memset(cgc->buffer, 0, 2);
1586 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1587 cgc->cmd[1] = 0x10; /* PF */
1588 cgc->cmd[7] = cgc->buflen >> 8;
1589 cgc->cmd[8] = cgc->buflen & 0xff;
1590 cgc->data_direction = CGC_DATA_WRITE;
1591 return pkt_generic_packet(pd, cgc);
1592 }
1593
1594 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1595 {
1596 struct packet_command cgc;
1597 int ret;
1598
1599 /* set up command and get the disc info */
1600 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1601 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1602 cgc.cmd[8] = cgc.buflen = 2;
1603 cgc.quiet = 1;
1604
1605 if ((ret = pkt_generic_packet(pd, &cgc)))
1606 return ret;
1607
1608 /* not all drives have the same disc_info length, so requeue
1609 * packet with the length the drive tells us it can supply
1610 */
1611 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1612 sizeof(di->disc_information_length);
1613
1614 if (cgc.buflen > sizeof(disc_information))
1615 cgc.buflen = sizeof(disc_information);
1616
1617 cgc.cmd[8] = cgc.buflen;
1618 return pkt_generic_packet(pd, &cgc);
1619 }
1620
1621 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1622 {
1623 struct packet_command cgc;
1624 int ret;
1625
1626 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1627 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1628 cgc.cmd[1] = type & 3;
1629 cgc.cmd[4] = (track & 0xff00) >> 8;
1630 cgc.cmd[5] = track & 0xff;
1631 cgc.cmd[8] = 8;
1632 cgc.quiet = 1;
1633
1634 if ((ret = pkt_generic_packet(pd, &cgc)))
1635 return ret;
1636
1637 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1638 sizeof(ti->track_information_length);
1639
1640 if (cgc.buflen > sizeof(track_information))
1641 cgc.buflen = sizeof(track_information);
1642
1643 cgc.cmd[8] = cgc.buflen;
1644 return pkt_generic_packet(pd, &cgc);
1645 }
1646
1647 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1648 long *last_written)
1649 {
1650 disc_information di;
1651 track_information ti;
1652 __u32 last_track;
1653 int ret = -1;
1654
1655 if ((ret = pkt_get_disc_info(pd, &di)))
1656 return ret;
1657
1658 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1659 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1660 return ret;
1661
1662 /* if this track is blank, try the previous. */
1663 if (ti.blank) {
1664 last_track--;
1665 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1666 return ret;
1667 }
1668
1669 /* if last recorded field is valid, return it. */
1670 if (ti.lra_v) {
1671 *last_written = be32_to_cpu(ti.last_rec_address);
1672 } else {
1673 /* make it up instead */
1674 *last_written = be32_to_cpu(ti.track_start) +
1675 be32_to_cpu(ti.track_size);
1676 if (ti.free_blocks)
1677 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1678 }
1679 return 0;
1680 }
1681
1682 /*
1683 * write mode select package based on pd->settings
1684 */
1685 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1686 {
1687 struct packet_command cgc;
1688 struct request_sense sense;
1689 write_param_page *wp;
1690 char buffer[128];
1691 int ret, size;
1692
1693 /* doesn't apply to DVD+RW or DVD-RAM */
1694 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1695 return 0;
1696
1697 memset(buffer, 0, sizeof(buffer));
1698 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1699 cgc.sense = &sense;
1700 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1701 pkt_dump_sense(&cgc);
1702 return ret;
1703 }
1704
1705 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1706 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1707 if (size > sizeof(buffer))
1708 size = sizeof(buffer);
1709
1710 /*
1711 * now get it all
1712 */
1713 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1714 cgc.sense = &sense;
1715 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1716 pkt_dump_sense(&cgc);
1717 return ret;
1718 }
1719
1720 /*
1721 * write page is offset header + block descriptor length
1722 */
1723 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1724
1725 wp->fp = pd->settings.fp;
1726 wp->track_mode = pd->settings.track_mode;
1727 wp->write_type = pd->settings.write_type;
1728 wp->data_block_type = pd->settings.block_mode;
1729
1730 wp->multi_session = 0;
1731
1732 #ifdef PACKET_USE_LS
1733 wp->link_size = 7;
1734 wp->ls_v = 1;
1735 #endif
1736
1737 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1738 wp->session_format = 0;
1739 wp->subhdr2 = 0x20;
1740 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1741 wp->session_format = 0x20;
1742 wp->subhdr2 = 8;
1743 #if 0
1744 wp->mcn[0] = 0x80;
1745 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1746 #endif
1747 } else {
1748 /*
1749 * paranoia
1750 */
1751 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1752 return 1;
1753 }
1754 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1755
1756 cgc.buflen = cgc.cmd[8] = size;
1757 if ((ret = pkt_mode_select(pd, &cgc))) {
1758 pkt_dump_sense(&cgc);
1759 return ret;
1760 }
1761
1762 pkt_print_settings(pd);
1763 return 0;
1764 }
1765
1766 /*
1767 * 1 -- we can write to this track, 0 -- we can't
1768 */
1769 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1770 {
1771 switch (pd->mmc3_profile) {
1772 case 0x1a: /* DVD+RW */
1773 case 0x12: /* DVD-RAM */
1774 /* The track is always writable on DVD+RW/DVD-RAM */
1775 return 1;
1776 default:
1777 break;
1778 }
1779
1780 if (!ti->packet || !ti->fp)
1781 return 0;
1782
1783 /*
1784 * "good" settings as per Mt Fuji.
1785 */
1786 if (ti->rt == 0 && ti->blank == 0)
1787 return 1;
1788
1789 if (ti->rt == 0 && ti->blank == 1)
1790 return 1;
1791
1792 if (ti->rt == 1 && ti->blank == 0)
1793 return 1;
1794
1795 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1796 return 0;
1797 }
1798
1799 /*
1800 * 1 -- we can write to this disc, 0 -- we can't
1801 */
1802 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1803 {
1804 switch (pd->mmc3_profile) {
1805 case 0x0a: /* CD-RW */
1806 case 0xffff: /* MMC3 not supported */
1807 break;
1808 case 0x1a: /* DVD+RW */
1809 case 0x13: /* DVD-RW */
1810 case 0x12: /* DVD-RAM */
1811 return 1;
1812 default:
1813 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1814 pd->mmc3_profile);
1815 return 0;
1816 }
1817
1818 /*
1819 * for disc type 0xff we should probably reserve a new track.
1820 * but i'm not sure, should we leave this to user apps? probably.
1821 */
1822 if (di->disc_type == 0xff) {
1823 pkt_notice(pd, "unknown disc - no track?\n");
1824 return 0;
1825 }
1826
1827 if (di->disc_type != 0x20 && di->disc_type != 0) {
1828 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1829 return 0;
1830 }
1831
1832 if (di->erasable == 0) {
1833 pkt_notice(pd, "disc not erasable\n");
1834 return 0;
1835 }
1836
1837 if (di->border_status == PACKET_SESSION_RESERVED) {
1838 pkt_err(pd, "can't write to last track (reserved)\n");
1839 return 0;
1840 }
1841
1842 return 1;
1843 }
1844
1845 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1846 {
1847 struct packet_command cgc;
1848 unsigned char buf[12];
1849 disc_information di;
1850 track_information ti;
1851 int ret, track;
1852
1853 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1854 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1855 cgc.cmd[8] = 8;
1856 ret = pkt_generic_packet(pd, &cgc);
1857 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1858
1859 memset(&di, 0, sizeof(disc_information));
1860 memset(&ti, 0, sizeof(track_information));
1861
1862 if ((ret = pkt_get_disc_info(pd, &di))) {
1863 pkt_err(pd, "failed get_disc\n");
1864 return ret;
1865 }
1866
1867 if (!pkt_writable_disc(pd, &di))
1868 return -EROFS;
1869
1870 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1871
1872 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1873 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1874 pkt_err(pd, "failed get_track\n");
1875 return ret;
1876 }
1877
1878 if (!pkt_writable_track(pd, &ti)) {
1879 pkt_err(pd, "can't write to this track\n");
1880 return -EROFS;
1881 }
1882
1883 /*
1884 * we keep packet size in 512 byte units, makes it easier to
1885 * deal with request calculations.
1886 */
1887 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1888 if (pd->settings.size == 0) {
1889 pkt_notice(pd, "detected zero packet size!\n");
1890 return -ENXIO;
1891 }
1892 if (pd->settings.size > PACKET_MAX_SECTORS) {
1893 pkt_err(pd, "packet size is too big\n");
1894 return -EROFS;
1895 }
1896 pd->settings.fp = ti.fp;
1897 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1898
1899 if (ti.nwa_v) {
1900 pd->nwa = be32_to_cpu(ti.next_writable);
1901 set_bit(PACKET_NWA_VALID, &pd->flags);
1902 }
1903
1904 /*
1905 * in theory we could use lra on -RW media as well and just zero
1906 * blocks that haven't been written yet, but in practice that
1907 * is just a no-go. we'll use that for -R, naturally.
1908 */
1909 if (ti.lra_v) {
1910 pd->lra = be32_to_cpu(ti.last_rec_address);
1911 set_bit(PACKET_LRA_VALID, &pd->flags);
1912 } else {
1913 pd->lra = 0xffffffff;
1914 set_bit(PACKET_LRA_VALID, &pd->flags);
1915 }
1916
1917 /*
1918 * fine for now
1919 */
1920 pd->settings.link_loss = 7;
1921 pd->settings.write_type = 0; /* packet */
1922 pd->settings.track_mode = ti.track_mode;
1923
1924 /*
1925 * mode1 or mode2 disc
1926 */
1927 switch (ti.data_mode) {
1928 case PACKET_MODE1:
1929 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1930 break;
1931 case PACKET_MODE2:
1932 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1933 break;
1934 default:
1935 pkt_err(pd, "unknown data mode\n");
1936 return -EROFS;
1937 }
1938 return 0;
1939 }
1940
1941 /*
1942 * enable/disable write caching on drive
1943 */
1944 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1945 int set)
1946 {
1947 struct packet_command cgc;
1948 struct request_sense sense;
1949 unsigned char buf[64];
1950 int ret;
1951
1952 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1953 cgc.sense = &sense;
1954 cgc.buflen = pd->mode_offset + 12;
1955
1956 /*
1957 * caching mode page might not be there, so quiet this command
1958 */
1959 cgc.quiet = 1;
1960
1961 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1962 return ret;
1963
1964 buf[pd->mode_offset + 10] |= (!!set << 2);
1965
1966 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1967 ret = pkt_mode_select(pd, &cgc);
1968 if (ret) {
1969 pkt_err(pd, "write caching control failed\n");
1970 pkt_dump_sense(&cgc);
1971 } else if (!ret && set)
1972 pkt_notice(pd, "enabled write caching\n");
1973 return ret;
1974 }
1975
1976 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1977 {
1978 struct packet_command cgc;
1979
1980 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1981 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1982 cgc.cmd[4] = lockflag ? 1 : 0;
1983 return pkt_generic_packet(pd, &cgc);
1984 }
1985
1986 /*
1987 * Returns drive maximum write speed
1988 */
1989 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1990 unsigned *write_speed)
1991 {
1992 struct packet_command cgc;
1993 struct request_sense sense;
1994 unsigned char buf[256+18];
1995 unsigned char *cap_buf;
1996 int ret, offset;
1997
1998 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1999 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2000 cgc.sense = &sense;
2001
2002 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2003 if (ret) {
2004 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2005 sizeof(struct mode_page_header);
2006 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2007 if (ret) {
2008 pkt_dump_sense(&cgc);
2009 return ret;
2010 }
2011 }
2012
2013 offset = 20; /* Obsoleted field, used by older drives */
2014 if (cap_buf[1] >= 28)
2015 offset = 28; /* Current write speed selected */
2016 if (cap_buf[1] >= 30) {
2017 /* If the drive reports at least one "Logical Unit Write
2018 * Speed Performance Descriptor Block", use the information
2019 * in the first block. (contains the highest speed)
2020 */
2021 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2022 if (num_spdb > 0)
2023 offset = 34;
2024 }
2025
2026 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2027 return 0;
2028 }
2029
2030 /* These tables from cdrecord - I don't have orange book */
2031 /* standard speed CD-RW (1-4x) */
2032 static char clv_to_speed[16] = {
2033 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2034 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2035 };
2036 /* high speed CD-RW (-10x) */
2037 static char hs_clv_to_speed[16] = {
2038 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2039 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2040 };
2041 /* ultra high speed CD-RW */
2042 static char us_clv_to_speed[16] = {
2043 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2044 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2045 };
2046
2047 /*
2048 * reads the maximum media speed from ATIP
2049 */
2050 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2051 unsigned *speed)
2052 {
2053 struct packet_command cgc;
2054 struct request_sense sense;
2055 unsigned char buf[64];
2056 unsigned int size, st, sp;
2057 int ret;
2058
2059 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2060 cgc.sense = &sense;
2061 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2062 cgc.cmd[1] = 2;
2063 cgc.cmd[2] = 4; /* READ ATIP */
2064 cgc.cmd[8] = 2;
2065 ret = pkt_generic_packet(pd, &cgc);
2066 if (ret) {
2067 pkt_dump_sense(&cgc);
2068 return ret;
2069 }
2070 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2071 if (size > sizeof(buf))
2072 size = sizeof(buf);
2073
2074 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2075 cgc.sense = &sense;
2076 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2077 cgc.cmd[1] = 2;
2078 cgc.cmd[2] = 4;
2079 cgc.cmd[8] = size;
2080 ret = pkt_generic_packet(pd, &cgc);
2081 if (ret) {
2082 pkt_dump_sense(&cgc);
2083 return ret;
2084 }
2085
2086 if (!(buf[6] & 0x40)) {
2087 pkt_notice(pd, "disc type is not CD-RW\n");
2088 return 1;
2089 }
2090 if (!(buf[6] & 0x4)) {
2091 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2092 return 1;
2093 }
2094
2095 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2096
2097 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2098
2099 /* Info from cdrecord */
2100 switch (st) {
2101 case 0: /* standard speed */
2102 *speed = clv_to_speed[sp];
2103 break;
2104 case 1: /* high speed */
2105 *speed = hs_clv_to_speed[sp];
2106 break;
2107 case 2: /* ultra high speed */
2108 *speed = us_clv_to_speed[sp];
2109 break;
2110 default:
2111 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2112 return 1;
2113 }
2114 if (*speed) {
2115 pr_info("maximum media speed: %d\n", *speed);
2116 return 0;
2117 } else {
2118 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2119 return 1;
2120 }
2121 }
2122
2123 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2124 {
2125 struct packet_command cgc;
2126 struct request_sense sense;
2127 int ret;
2128
2129 pkt_dbg(2, pd, "Performing OPC\n");
2130
2131 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2132 cgc.sense = &sense;
2133 cgc.timeout = 60*HZ;
2134 cgc.cmd[0] = GPCMD_SEND_OPC;
2135 cgc.cmd[1] = 1;
2136 if ((ret = pkt_generic_packet(pd, &cgc)))
2137 pkt_dump_sense(&cgc);
2138 return ret;
2139 }
2140
2141 static int pkt_open_write(struct pktcdvd_device *pd)
2142 {
2143 int ret;
2144 unsigned int write_speed, media_write_speed, read_speed;
2145
2146 if ((ret = pkt_probe_settings(pd))) {
2147 pkt_dbg(2, pd, "failed probe\n");
2148 return ret;
2149 }
2150
2151 if ((ret = pkt_set_write_settings(pd))) {
2152 pkt_dbg(1, pd, "failed saving write settings\n");
2153 return -EIO;
2154 }
2155
2156 pkt_write_caching(pd, USE_WCACHING);
2157
2158 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2159 write_speed = 16 * 177;
2160 switch (pd->mmc3_profile) {
2161 case 0x13: /* DVD-RW */
2162 case 0x1a: /* DVD+RW */
2163 case 0x12: /* DVD-RAM */
2164 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2165 break;
2166 default:
2167 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2168 media_write_speed = 16;
2169 write_speed = min(write_speed, media_write_speed * 177);
2170 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2171 break;
2172 }
2173 read_speed = write_speed;
2174
2175 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2176 pkt_dbg(1, pd, "couldn't set write speed\n");
2177 return -EIO;
2178 }
2179 pd->write_speed = write_speed;
2180 pd->read_speed = read_speed;
2181
2182 if ((ret = pkt_perform_opc(pd))) {
2183 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2184 }
2185
2186 return 0;
2187 }
2188
2189 /*
2190 * called at open time.
2191 */
2192 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2193 {
2194 int ret;
2195 long lba;
2196 struct request_queue *q;
2197
2198 /*
2199 * We need to re-open the cdrom device without O_NONBLOCK to be able
2200 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2201 * so bdget() can't fail.
2202 */
2203 bdget(pd->bdev->bd_dev);
2204 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2205 goto out;
2206
2207 if ((ret = pkt_get_last_written(pd, &lba))) {
2208 pkt_err(pd, "pkt_get_last_written failed\n");
2209 goto out_putdev;
2210 }
2211
2212 set_capacity(pd->disk, lba << 2);
2213 set_capacity(pd->bdev->bd_disk, lba << 2);
2214 bd_set_size(pd->bdev, (loff_t)lba << 11);
2215
2216 q = bdev_get_queue(pd->bdev);
2217 if (write) {
2218 if ((ret = pkt_open_write(pd)))
2219 goto out_putdev;
2220 /*
2221 * Some CDRW drives can not handle writes larger than one packet,
2222 * even if the size is a multiple of the packet size.
2223 */
2224 spin_lock_irq(q->queue_lock);
2225 blk_queue_max_hw_sectors(q, pd->settings.size);
2226 spin_unlock_irq(q->queue_lock);
2227 set_bit(PACKET_WRITABLE, &pd->flags);
2228 } else {
2229 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2230 clear_bit(PACKET_WRITABLE, &pd->flags);
2231 }
2232
2233 if ((ret = pkt_set_segment_merging(pd, q)))
2234 goto out_putdev;
2235
2236 if (write) {
2237 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2238 pkt_err(pd, "not enough memory for buffers\n");
2239 ret = -ENOMEM;
2240 goto out_putdev;
2241 }
2242 pr_info("%lukB available on disc\n", lba << 1);
2243 }
2244
2245 return 0;
2246
2247 out_putdev:
2248 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2249 out:
2250 return ret;
2251 }
2252
2253 /*
2254 * called when the device is closed. makes sure that the device flushes
2255 * the internal cache before we close.
2256 */
2257 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2258 {
2259 if (flush && pkt_flush_cache(pd))
2260 pkt_dbg(1, pd, "not flushing cache\n");
2261
2262 pkt_lock_door(pd, 0);
2263
2264 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2265 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2266
2267 pkt_shrink_pktlist(pd);
2268 }
2269
2270 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2271 {
2272 if (dev_minor >= MAX_WRITERS)
2273 return NULL;
2274 return pkt_devs[dev_minor];
2275 }
2276
2277 static int pkt_open(struct block_device *bdev, fmode_t mode)
2278 {
2279 struct pktcdvd_device *pd = NULL;
2280 int ret;
2281
2282 mutex_lock(&pktcdvd_mutex);
2283 mutex_lock(&ctl_mutex);
2284 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2285 if (!pd) {
2286 ret = -ENODEV;
2287 goto out;
2288 }
2289 BUG_ON(pd->refcnt < 0);
2290
2291 pd->refcnt++;
2292 if (pd->refcnt > 1) {
2293 if ((mode & FMODE_WRITE) &&
2294 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2295 ret = -EBUSY;
2296 goto out_dec;
2297 }
2298 } else {
2299 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2300 if (ret)
2301 goto out_dec;
2302 /*
2303 * needed here as well, since ext2 (among others) may change
2304 * the blocksize at mount time
2305 */
2306 set_blocksize(bdev, CD_FRAMESIZE);
2307 }
2308
2309 mutex_unlock(&ctl_mutex);
2310 mutex_unlock(&pktcdvd_mutex);
2311 return 0;
2312
2313 out_dec:
2314 pd->refcnt--;
2315 out:
2316 mutex_unlock(&ctl_mutex);
2317 mutex_unlock(&pktcdvd_mutex);
2318 return ret;
2319 }
2320
2321 static void pkt_close(struct gendisk *disk, fmode_t mode)
2322 {
2323 struct pktcdvd_device *pd = disk->private_data;
2324
2325 mutex_lock(&pktcdvd_mutex);
2326 mutex_lock(&ctl_mutex);
2327 pd->refcnt--;
2328 BUG_ON(pd->refcnt < 0);
2329 if (pd->refcnt == 0) {
2330 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2331 pkt_release_dev(pd, flush);
2332 }
2333 mutex_unlock(&ctl_mutex);
2334 mutex_unlock(&pktcdvd_mutex);
2335 }
2336
2337
2338 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2339 {
2340 struct packet_stacked_data *psd = bio->bi_private;
2341 struct pktcdvd_device *pd = psd->pd;
2342
2343 bio_put(bio);
2344 bio_endio(psd->bio, err);
2345 mempool_free(psd, psd_pool);
2346 pkt_bio_finished(pd);
2347 }
2348
2349 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2350 {
2351 struct pktcdvd_device *pd;
2352 char b[BDEVNAME_SIZE];
2353 sector_t zone;
2354 struct packet_data *pkt;
2355 int was_empty, blocked_bio;
2356 struct pkt_rb_node *node;
2357
2358 pd = q->queuedata;
2359 if (!pd) {
2360 pkt_err(pd, "%s incorrect request queue\n",
2361 bdevname(bio->bi_bdev, b));
2362 goto end_io;
2363 }
2364
2365 /*
2366 * Clone READ bios so we can have our own bi_end_io callback.
2367 */
2368 if (bio_data_dir(bio) == READ) {
2369 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2370 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2371
2372 psd->pd = pd;
2373 psd->bio = bio;
2374 cloned_bio->bi_bdev = pd->bdev;
2375 cloned_bio->bi_private = psd;
2376 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2377 pd->stats.secs_r += bio_sectors(bio);
2378 pkt_queue_bio(pd, cloned_bio);
2379 return;
2380 }
2381
2382 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2383 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2384 (unsigned long long)bio->bi_sector);
2385 goto end_io;
2386 }
2387
2388 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2389 pkt_err(pd, "wrong bio size\n");
2390 goto end_io;
2391 }
2392
2393 blk_queue_bounce(q, &bio);
2394
2395 zone = get_zone(bio->bi_sector, pd);
2396 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2397 (unsigned long long)bio->bi_sector,
2398 (unsigned long long)bio_end_sector(bio));
2399
2400 /* Check if we have to split the bio */
2401 {
2402 struct bio_pair *bp;
2403 sector_t last_zone;
2404 int first_sectors;
2405
2406 last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2407 if (last_zone != zone) {
2408 BUG_ON(last_zone != zone + pd->settings.size);
2409 first_sectors = last_zone - bio->bi_sector;
2410 bp = bio_split(bio, first_sectors);
2411 BUG_ON(!bp);
2412 pkt_make_request(q, &bp->bio1);
2413 pkt_make_request(q, &bp->bio2);
2414 bio_pair_release(bp);
2415 return;
2416 }
2417 }
2418
2419 /*
2420 * If we find a matching packet in state WAITING or READ_WAIT, we can
2421 * just append this bio to that packet.
2422 */
2423 spin_lock(&pd->cdrw.active_list_lock);
2424 blocked_bio = 0;
2425 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2426 if (pkt->sector == zone) {
2427 spin_lock(&pkt->lock);
2428 if ((pkt->state == PACKET_WAITING_STATE) ||
2429 (pkt->state == PACKET_READ_WAIT_STATE)) {
2430 bio_list_add(&pkt->orig_bios, bio);
2431 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2432 if ((pkt->write_size >= pkt->frames) &&
2433 (pkt->state == PACKET_WAITING_STATE)) {
2434 atomic_inc(&pkt->run_sm);
2435 wake_up(&pd->wqueue);
2436 }
2437 spin_unlock(&pkt->lock);
2438 spin_unlock(&pd->cdrw.active_list_lock);
2439 return;
2440 } else {
2441 blocked_bio = 1;
2442 }
2443 spin_unlock(&pkt->lock);
2444 }
2445 }
2446 spin_unlock(&pd->cdrw.active_list_lock);
2447
2448 /*
2449 * Test if there is enough room left in the bio work queue
2450 * (queue size >= congestion on mark).
2451 * If not, wait till the work queue size is below the congestion off mark.
2452 */
2453 spin_lock(&pd->lock);
2454 if (pd->write_congestion_on > 0
2455 && pd->bio_queue_size >= pd->write_congestion_on) {
2456 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2457 do {
2458 spin_unlock(&pd->lock);
2459 congestion_wait(BLK_RW_ASYNC, HZ);
2460 spin_lock(&pd->lock);
2461 } while(pd->bio_queue_size > pd->write_congestion_off);
2462 }
2463 spin_unlock(&pd->lock);
2464
2465 /*
2466 * No matching packet found. Store the bio in the work queue.
2467 */
2468 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2469 node->bio = bio;
2470 spin_lock(&pd->lock);
2471 BUG_ON(pd->bio_queue_size < 0);
2472 was_empty = (pd->bio_queue_size == 0);
2473 pkt_rbtree_insert(pd, node);
2474 spin_unlock(&pd->lock);
2475
2476 /*
2477 * Wake up the worker thread.
2478 */
2479 atomic_set(&pd->scan_queue, 1);
2480 if (was_empty) {
2481 /* This wake_up is required for correct operation */
2482 wake_up(&pd->wqueue);
2483 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2484 /*
2485 * This wake up is not required for correct operation,
2486 * but improves performance in some cases.
2487 */
2488 wake_up(&pd->wqueue);
2489 }
2490 return;
2491 end_io:
2492 bio_io_error(bio);
2493 }
2494
2495
2496
2497 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2498 struct bio_vec *bvec)
2499 {
2500 struct pktcdvd_device *pd = q->queuedata;
2501 sector_t zone = get_zone(bmd->bi_sector, pd);
2502 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2503 int remaining = (pd->settings.size << 9) - used;
2504 int remaining2;
2505
2506 /*
2507 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2508 * boundary, pkt_make_request() will split the bio.
2509 */
2510 remaining2 = PAGE_SIZE - bmd->bi_size;
2511 remaining = max(remaining, remaining2);
2512
2513 BUG_ON(remaining < 0);
2514 return remaining;
2515 }
2516
2517 static void pkt_init_queue(struct pktcdvd_device *pd)
2518 {
2519 struct request_queue *q = pd->disk->queue;
2520
2521 blk_queue_make_request(q, pkt_make_request);
2522 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2523 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2524 blk_queue_merge_bvec(q, pkt_merge_bvec);
2525 q->queuedata = pd;
2526 }
2527
2528 static int pkt_seq_show(struct seq_file *m, void *p)
2529 {
2530 struct pktcdvd_device *pd = m->private;
2531 char *msg;
2532 char bdev_buf[BDEVNAME_SIZE];
2533 int states[PACKET_NUM_STATES];
2534
2535 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2536 bdevname(pd->bdev, bdev_buf));
2537
2538 seq_printf(m, "\nSettings:\n");
2539 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2540
2541 if (pd->settings.write_type == 0)
2542 msg = "Packet";
2543 else
2544 msg = "Unknown";
2545 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2546
2547 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2548 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2549
2550 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2551
2552 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2553 msg = "Mode 1";
2554 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2555 msg = "Mode 2";
2556 else
2557 msg = "Unknown";
2558 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2559
2560 seq_printf(m, "\nStatistics:\n");
2561 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2562 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2563 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2564 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2565 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2566
2567 seq_printf(m, "\nMisc:\n");
2568 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2569 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2570 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2571 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2572 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2573 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2574
2575 seq_printf(m, "\nQueue state:\n");
2576 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2577 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2578 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2579
2580 pkt_count_states(pd, states);
2581 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2582 states[0], states[1], states[2], states[3], states[4], states[5]);
2583
2584 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2585 pd->write_congestion_off,
2586 pd->write_congestion_on);
2587 return 0;
2588 }
2589
2590 static int pkt_seq_open(struct inode *inode, struct file *file)
2591 {
2592 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2593 }
2594
2595 static const struct file_operations pkt_proc_fops = {
2596 .open = pkt_seq_open,
2597 .read = seq_read,
2598 .llseek = seq_lseek,
2599 .release = single_release
2600 };
2601
2602 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2603 {
2604 int i;
2605 int ret = 0;
2606 char b[BDEVNAME_SIZE];
2607 struct block_device *bdev;
2608
2609 if (pd->pkt_dev == dev) {
2610 pkt_err(pd, "recursive setup not allowed\n");
2611 return -EBUSY;
2612 }
2613 for (i = 0; i < MAX_WRITERS; i++) {
2614 struct pktcdvd_device *pd2 = pkt_devs[i];
2615 if (!pd2)
2616 continue;
2617 if (pd2->bdev->bd_dev == dev) {
2618 pkt_err(pd, "%s already setup\n",
2619 bdevname(pd2->bdev, b));
2620 return -EBUSY;
2621 }
2622 if (pd2->pkt_dev == dev) {
2623 pkt_err(pd, "can't chain pktcdvd devices\n");
2624 return -EBUSY;
2625 }
2626 }
2627
2628 bdev = bdget(dev);
2629 if (!bdev)
2630 return -ENOMEM;
2631 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2632 if (ret)
2633 return ret;
2634
2635 /* This is safe, since we have a reference from open(). */
2636 __module_get(THIS_MODULE);
2637
2638 pd->bdev = bdev;
2639 set_blocksize(bdev, CD_FRAMESIZE);
2640
2641 pkt_init_queue(pd);
2642
2643 atomic_set(&pd->cdrw.pending_bios, 0);
2644 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2645 if (IS_ERR(pd->cdrw.thread)) {
2646 pkt_err(pd, "can't start kernel thread\n");
2647 ret = -ENOMEM;
2648 goto out_mem;
2649 }
2650
2651 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2652 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2653 return 0;
2654
2655 out_mem:
2656 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2657 /* This is safe: open() is still holding a reference. */
2658 module_put(THIS_MODULE);
2659 return ret;
2660 }
2661
2662 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2663 {
2664 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2665 int ret;
2666
2667 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2668 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2669
2670 mutex_lock(&pktcdvd_mutex);
2671 switch (cmd) {
2672 case CDROMEJECT:
2673 /*
2674 * The door gets locked when the device is opened, so we
2675 * have to unlock it or else the eject command fails.
2676 */
2677 if (pd->refcnt == 1)
2678 pkt_lock_door(pd, 0);
2679 /* fallthru */
2680 /*
2681 * forward selected CDROM ioctls to CD-ROM, for UDF
2682 */
2683 case CDROMMULTISESSION:
2684 case CDROMREADTOCENTRY:
2685 case CDROM_LAST_WRITTEN:
2686 case CDROM_SEND_PACKET:
2687 case SCSI_IOCTL_SEND_COMMAND:
2688 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2689 break;
2690
2691 default:
2692 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2693 ret = -ENOTTY;
2694 }
2695 mutex_unlock(&pktcdvd_mutex);
2696
2697 return ret;
2698 }
2699
2700 static unsigned int pkt_check_events(struct gendisk *disk,
2701 unsigned int clearing)
2702 {
2703 struct pktcdvd_device *pd = disk->private_data;
2704 struct gendisk *attached_disk;
2705
2706 if (!pd)
2707 return 0;
2708 if (!pd->bdev)
2709 return 0;
2710 attached_disk = pd->bdev->bd_disk;
2711 if (!attached_disk || !attached_disk->fops->check_events)
2712 return 0;
2713 return attached_disk->fops->check_events(attached_disk, clearing);
2714 }
2715
2716 static const struct block_device_operations pktcdvd_ops = {
2717 .owner = THIS_MODULE,
2718 .open = pkt_open,
2719 .release = pkt_close,
2720 .ioctl = pkt_ioctl,
2721 .check_events = pkt_check_events,
2722 };
2723
2724 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2725 {
2726 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2727 }
2728
2729 /*
2730 * Set up mapping from pktcdvd device to CD-ROM device.
2731 */
2732 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2733 {
2734 int idx;
2735 int ret = -ENOMEM;
2736 struct pktcdvd_device *pd;
2737 struct gendisk *disk;
2738
2739 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2740
2741 for (idx = 0; idx < MAX_WRITERS; idx++)
2742 if (!pkt_devs[idx])
2743 break;
2744 if (idx == MAX_WRITERS) {
2745 pr_err("max %d writers supported\n", MAX_WRITERS);
2746 ret = -EBUSY;
2747 goto out_mutex;
2748 }
2749
2750 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2751 if (!pd)
2752 goto out_mutex;
2753
2754 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2755 sizeof(struct pkt_rb_node));
2756 if (!pd->rb_pool)
2757 goto out_mem;
2758
2759 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2760 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2761 spin_lock_init(&pd->cdrw.active_list_lock);
2762
2763 spin_lock_init(&pd->lock);
2764 spin_lock_init(&pd->iosched.lock);
2765 bio_list_init(&pd->iosched.read_queue);
2766 bio_list_init(&pd->iosched.write_queue);
2767 sprintf(pd->name, DRIVER_NAME"%d", idx);
2768 init_waitqueue_head(&pd->wqueue);
2769 pd->bio_queue = RB_ROOT;
2770
2771 pd->write_congestion_on = write_congestion_on;
2772 pd->write_congestion_off = write_congestion_off;
2773
2774 disk = alloc_disk(1);
2775 if (!disk)
2776 goto out_mem;
2777 pd->disk = disk;
2778 disk->major = pktdev_major;
2779 disk->first_minor = idx;
2780 disk->fops = &pktcdvd_ops;
2781 disk->flags = GENHD_FL_REMOVABLE;
2782 strcpy(disk->disk_name, pd->name);
2783 disk->devnode = pktcdvd_devnode;
2784 disk->private_data = pd;
2785 disk->queue = blk_alloc_queue(GFP_KERNEL);
2786 if (!disk->queue)
2787 goto out_mem2;
2788
2789 pd->pkt_dev = MKDEV(pktdev_major, idx);
2790 ret = pkt_new_dev(pd, dev);
2791 if (ret)
2792 goto out_new_dev;
2793
2794 /* inherit events of the host device */
2795 disk->events = pd->bdev->bd_disk->events;
2796 disk->async_events = pd->bdev->bd_disk->async_events;
2797
2798 add_disk(disk);
2799
2800 pkt_sysfs_dev_new(pd);
2801 pkt_debugfs_dev_new(pd);
2802
2803 pkt_devs[idx] = pd;
2804 if (pkt_dev)
2805 *pkt_dev = pd->pkt_dev;
2806
2807 mutex_unlock(&ctl_mutex);
2808 return 0;
2809
2810 out_new_dev:
2811 blk_cleanup_queue(disk->queue);
2812 out_mem2:
2813 put_disk(disk);
2814 out_mem:
2815 if (pd->rb_pool)
2816 mempool_destroy(pd->rb_pool);
2817 kfree(pd);
2818 out_mutex:
2819 mutex_unlock(&ctl_mutex);
2820 pr_err("setup of pktcdvd device failed\n");
2821 return ret;
2822 }
2823
2824 /*
2825 * Tear down mapping from pktcdvd device to CD-ROM device.
2826 */
2827 static int pkt_remove_dev(dev_t pkt_dev)
2828 {
2829 struct pktcdvd_device *pd;
2830 int idx;
2831 int ret = 0;
2832
2833 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2834
2835 for (idx = 0; idx < MAX_WRITERS; idx++) {
2836 pd = pkt_devs[idx];
2837 if (pd && (pd->pkt_dev == pkt_dev))
2838 break;
2839 }
2840 if (idx == MAX_WRITERS) {
2841 pkt_dbg(1, pd, "dev not setup\n");
2842 ret = -ENXIO;
2843 goto out;
2844 }
2845
2846 if (pd->refcnt > 0) {
2847 ret = -EBUSY;
2848 goto out;
2849 }
2850 if (!IS_ERR(pd->cdrw.thread))
2851 kthread_stop(pd->cdrw.thread);
2852
2853 pkt_devs[idx] = NULL;
2854
2855 pkt_debugfs_dev_remove(pd);
2856 pkt_sysfs_dev_remove(pd);
2857
2858 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2859
2860 remove_proc_entry(pd->name, pkt_proc);
2861 pkt_dbg(1, pd, "writer unmapped\n");
2862
2863 del_gendisk(pd->disk);
2864 blk_cleanup_queue(pd->disk->queue);
2865 put_disk(pd->disk);
2866
2867 mempool_destroy(pd->rb_pool);
2868 kfree(pd);
2869
2870 /* This is safe: open() is still holding a reference. */
2871 module_put(THIS_MODULE);
2872
2873 out:
2874 mutex_unlock(&ctl_mutex);
2875 return ret;
2876 }
2877
2878 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2879 {
2880 struct pktcdvd_device *pd;
2881
2882 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2883
2884 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2885 if (pd) {
2886 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2887 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2888 } else {
2889 ctrl_cmd->dev = 0;
2890 ctrl_cmd->pkt_dev = 0;
2891 }
2892 ctrl_cmd->num_devices = MAX_WRITERS;
2893
2894 mutex_unlock(&ctl_mutex);
2895 }
2896
2897 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2898 {
2899 void __user *argp = (void __user *)arg;
2900 struct pkt_ctrl_command ctrl_cmd;
2901 int ret = 0;
2902 dev_t pkt_dev = 0;
2903
2904 if (cmd != PACKET_CTRL_CMD)
2905 return -ENOTTY;
2906
2907 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2908 return -EFAULT;
2909
2910 switch (ctrl_cmd.command) {
2911 case PKT_CTRL_CMD_SETUP:
2912 if (!capable(CAP_SYS_ADMIN))
2913 return -EPERM;
2914 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2915 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2916 break;
2917 case PKT_CTRL_CMD_TEARDOWN:
2918 if (!capable(CAP_SYS_ADMIN))
2919 return -EPERM;
2920 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2921 break;
2922 case PKT_CTRL_CMD_STATUS:
2923 pkt_get_status(&ctrl_cmd);
2924 break;
2925 default:
2926 return -ENOTTY;
2927 }
2928
2929 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2930 return -EFAULT;
2931 return ret;
2932 }
2933
2934 #ifdef CONFIG_COMPAT
2935 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2936 {
2937 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2938 }
2939 #endif
2940
2941 static const struct file_operations pkt_ctl_fops = {
2942 .open = nonseekable_open,
2943 .unlocked_ioctl = pkt_ctl_ioctl,
2944 #ifdef CONFIG_COMPAT
2945 .compat_ioctl = pkt_ctl_compat_ioctl,
2946 #endif
2947 .owner = THIS_MODULE,
2948 .llseek = no_llseek,
2949 };
2950
2951 static struct miscdevice pkt_misc = {
2952 .minor = MISC_DYNAMIC_MINOR,
2953 .name = DRIVER_NAME,
2954 .nodename = "pktcdvd/control",
2955 .fops = &pkt_ctl_fops
2956 };
2957
2958 static int __init pkt_init(void)
2959 {
2960 int ret;
2961
2962 mutex_init(&ctl_mutex);
2963
2964 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2965 sizeof(struct packet_stacked_data));
2966 if (!psd_pool)
2967 return -ENOMEM;
2968
2969 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2970 if (ret < 0) {
2971 pr_err("unable to register block device\n");
2972 goto out2;
2973 }
2974 if (!pktdev_major)
2975 pktdev_major = ret;
2976
2977 ret = pkt_sysfs_init();
2978 if (ret)
2979 goto out;
2980
2981 pkt_debugfs_init();
2982
2983 ret = misc_register(&pkt_misc);
2984 if (ret) {
2985 pr_err("unable to register misc device\n");
2986 goto out_misc;
2987 }
2988
2989 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2990
2991 return 0;
2992
2993 out_misc:
2994 pkt_debugfs_cleanup();
2995 pkt_sysfs_cleanup();
2996 out:
2997 unregister_blkdev(pktdev_major, DRIVER_NAME);
2998 out2:
2999 mempool_destroy(psd_pool);
3000 return ret;
3001 }
3002
3003 static void __exit pkt_exit(void)
3004 {
3005 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3006 misc_deregister(&pkt_misc);
3007
3008 pkt_debugfs_cleanup();
3009 pkt_sysfs_cleanup();
3010
3011 unregister_blkdev(pktdev_major, DRIVER_NAME);
3012 mempool_destroy(psd_pool);
3013 }
3014
3015 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3016 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3017 MODULE_LICENSE("GPL");
3018
3019 module_init(pkt_init);
3020 module_exit(pkt_exit);
This page took 0.142084 seconds and 6 git commands to generate.