pktcdvd: consolidate DPRINTK and VPRINTK macros
[deliverable/linux.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
69
70 #include <asm/uaccess.h>
71
72 #define DRIVER_NAME "pktcdvd"
73
74 #define pkt_dbg(level, fmt, ...) \
75 do { \
76 if (level == 2 && PACKET_DEBUG >= 2) \
77 pr_notice("%s: " fmt, __func__, ##__VA_ARGS__); \
78 else if (level == 1 && PACKET_DEBUG >= 1) \
79 pr_notice(fmt, ##__VA_ARGS__); \
80 } while (0)
81
82 #define MAX_SPEED 0xffff
83
84 static DEFINE_MUTEX(pktcdvd_mutex);
85 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
86 static struct proc_dir_entry *pkt_proc;
87 static int pktdev_major;
88 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
89 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
90 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
91 static mempool_t *psd_pool;
92
93 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
94 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
95
96 /* forward declaration */
97 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
98 static int pkt_remove_dev(dev_t pkt_dev);
99 static int pkt_seq_show(struct seq_file *m, void *p);
100
101 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
102 {
103 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
104 }
105
106 /*
107 * create and register a pktcdvd kernel object.
108 */
109 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
110 const char* name,
111 struct kobject* parent,
112 struct kobj_type* ktype)
113 {
114 struct pktcdvd_kobj *p;
115 int error;
116
117 p = kzalloc(sizeof(*p), GFP_KERNEL);
118 if (!p)
119 return NULL;
120 p->pd = pd;
121 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
122 if (error) {
123 kobject_put(&p->kobj);
124 return NULL;
125 }
126 kobject_uevent(&p->kobj, KOBJ_ADD);
127 return p;
128 }
129 /*
130 * remove a pktcdvd kernel object.
131 */
132 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
133 {
134 if (p)
135 kobject_put(&p->kobj);
136 }
137 /*
138 * default release function for pktcdvd kernel objects.
139 */
140 static void pkt_kobj_release(struct kobject *kobj)
141 {
142 kfree(to_pktcdvdkobj(kobj));
143 }
144
145
146 /**********************************************************
147 *
148 * sysfs interface for pktcdvd
149 * by (C) 2006 Thomas Maier <balagi@justmail.de>
150 *
151 **********************************************************/
152
153 #define DEF_ATTR(_obj,_name,_mode) \
154 static struct attribute _obj = { .name = _name, .mode = _mode }
155
156 /**********************************************************
157 /sys/class/pktcdvd/pktcdvd[0-7]/
158 stat/reset
159 stat/packets_started
160 stat/packets_finished
161 stat/kb_written
162 stat/kb_read
163 stat/kb_read_gather
164 write_queue/size
165 write_queue/congestion_off
166 write_queue/congestion_on
167 **********************************************************/
168
169 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
170 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
171 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
172 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
173 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
174 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
175
176 static struct attribute *kobj_pkt_attrs_stat[] = {
177 &kobj_pkt_attr_st1,
178 &kobj_pkt_attr_st2,
179 &kobj_pkt_attr_st3,
180 &kobj_pkt_attr_st4,
181 &kobj_pkt_attr_st5,
182 &kobj_pkt_attr_st6,
183 NULL
184 };
185
186 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
187 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
188 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
189
190 static struct attribute *kobj_pkt_attrs_wqueue[] = {
191 &kobj_pkt_attr_wq1,
192 &kobj_pkt_attr_wq2,
193 &kobj_pkt_attr_wq3,
194 NULL
195 };
196
197 static ssize_t kobj_pkt_show(struct kobject *kobj,
198 struct attribute *attr, char *data)
199 {
200 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
201 int n = 0;
202 int v;
203 if (strcmp(attr->name, "packets_started") == 0) {
204 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
205
206 } else if (strcmp(attr->name, "packets_finished") == 0) {
207 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
208
209 } else if (strcmp(attr->name, "kb_written") == 0) {
210 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
211
212 } else if (strcmp(attr->name, "kb_read") == 0) {
213 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
214
215 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
216 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
217
218 } else if (strcmp(attr->name, "size") == 0) {
219 spin_lock(&pd->lock);
220 v = pd->bio_queue_size;
221 spin_unlock(&pd->lock);
222 n = sprintf(data, "%d\n", v);
223
224 } else if (strcmp(attr->name, "congestion_off") == 0) {
225 spin_lock(&pd->lock);
226 v = pd->write_congestion_off;
227 spin_unlock(&pd->lock);
228 n = sprintf(data, "%d\n", v);
229
230 } else if (strcmp(attr->name, "congestion_on") == 0) {
231 spin_lock(&pd->lock);
232 v = pd->write_congestion_on;
233 spin_unlock(&pd->lock);
234 n = sprintf(data, "%d\n", v);
235 }
236 return n;
237 }
238
239 static void init_write_congestion_marks(int* lo, int* hi)
240 {
241 if (*hi > 0) {
242 *hi = max(*hi, 500);
243 *hi = min(*hi, 1000000);
244 if (*lo <= 0)
245 *lo = *hi - 100;
246 else {
247 *lo = min(*lo, *hi - 100);
248 *lo = max(*lo, 100);
249 }
250 } else {
251 *hi = -1;
252 *lo = -1;
253 }
254 }
255
256 static ssize_t kobj_pkt_store(struct kobject *kobj,
257 struct attribute *attr,
258 const char *data, size_t len)
259 {
260 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
261 int val;
262
263 if (strcmp(attr->name, "reset") == 0 && len > 0) {
264 pd->stats.pkt_started = 0;
265 pd->stats.pkt_ended = 0;
266 pd->stats.secs_w = 0;
267 pd->stats.secs_rg = 0;
268 pd->stats.secs_r = 0;
269
270 } else if (strcmp(attr->name, "congestion_off") == 0
271 && sscanf(data, "%d", &val) == 1) {
272 spin_lock(&pd->lock);
273 pd->write_congestion_off = val;
274 init_write_congestion_marks(&pd->write_congestion_off,
275 &pd->write_congestion_on);
276 spin_unlock(&pd->lock);
277
278 } else if (strcmp(attr->name, "congestion_on") == 0
279 && sscanf(data, "%d", &val) == 1) {
280 spin_lock(&pd->lock);
281 pd->write_congestion_on = val;
282 init_write_congestion_marks(&pd->write_congestion_off,
283 &pd->write_congestion_on);
284 spin_unlock(&pd->lock);
285 }
286 return len;
287 }
288
289 static const struct sysfs_ops kobj_pkt_ops = {
290 .show = kobj_pkt_show,
291 .store = kobj_pkt_store
292 };
293 static struct kobj_type kobj_pkt_type_stat = {
294 .release = pkt_kobj_release,
295 .sysfs_ops = &kobj_pkt_ops,
296 .default_attrs = kobj_pkt_attrs_stat
297 };
298 static struct kobj_type kobj_pkt_type_wqueue = {
299 .release = pkt_kobj_release,
300 .sysfs_ops = &kobj_pkt_ops,
301 .default_attrs = kobj_pkt_attrs_wqueue
302 };
303
304 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
305 {
306 if (class_pktcdvd) {
307 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
308 "%s", pd->name);
309 if (IS_ERR(pd->dev))
310 pd->dev = NULL;
311 }
312 if (pd->dev) {
313 pd->kobj_stat = pkt_kobj_create(pd, "stat",
314 &pd->dev->kobj,
315 &kobj_pkt_type_stat);
316 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
317 &pd->dev->kobj,
318 &kobj_pkt_type_wqueue);
319 }
320 }
321
322 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
323 {
324 pkt_kobj_remove(pd->kobj_stat);
325 pkt_kobj_remove(pd->kobj_wqueue);
326 if (class_pktcdvd)
327 device_unregister(pd->dev);
328 }
329
330
331 /********************************************************************
332 /sys/class/pktcdvd/
333 add map block device
334 remove unmap packet dev
335 device_map show mappings
336 *******************************************************************/
337
338 static void class_pktcdvd_release(struct class *cls)
339 {
340 kfree(cls);
341 }
342 static ssize_t class_pktcdvd_show_map(struct class *c,
343 struct class_attribute *attr,
344 char *data)
345 {
346 int n = 0;
347 int idx;
348 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
349 for (idx = 0; idx < MAX_WRITERS; idx++) {
350 struct pktcdvd_device *pd = pkt_devs[idx];
351 if (!pd)
352 continue;
353 n += sprintf(data+n, "%s %u:%u %u:%u\n",
354 pd->name,
355 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
356 MAJOR(pd->bdev->bd_dev),
357 MINOR(pd->bdev->bd_dev));
358 }
359 mutex_unlock(&ctl_mutex);
360 return n;
361 }
362
363 static ssize_t class_pktcdvd_store_add(struct class *c,
364 struct class_attribute *attr,
365 const char *buf,
366 size_t count)
367 {
368 unsigned int major, minor;
369
370 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
371 /* pkt_setup_dev() expects caller to hold reference to self */
372 if (!try_module_get(THIS_MODULE))
373 return -ENODEV;
374
375 pkt_setup_dev(MKDEV(major, minor), NULL);
376
377 module_put(THIS_MODULE);
378
379 return count;
380 }
381
382 return -EINVAL;
383 }
384
385 static ssize_t class_pktcdvd_store_remove(struct class *c,
386 struct class_attribute *attr,
387 const char *buf,
388 size_t count)
389 {
390 unsigned int major, minor;
391 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
392 pkt_remove_dev(MKDEV(major, minor));
393 return count;
394 }
395 return -EINVAL;
396 }
397
398 static struct class_attribute class_pktcdvd_attrs[] = {
399 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
400 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
401 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
402 __ATTR_NULL
403 };
404
405
406 static int pkt_sysfs_init(void)
407 {
408 int ret = 0;
409
410 /*
411 * create control files in sysfs
412 * /sys/class/pktcdvd/...
413 */
414 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
415 if (!class_pktcdvd)
416 return -ENOMEM;
417 class_pktcdvd->name = DRIVER_NAME;
418 class_pktcdvd->owner = THIS_MODULE;
419 class_pktcdvd->class_release = class_pktcdvd_release;
420 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
421 ret = class_register(class_pktcdvd);
422 if (ret) {
423 kfree(class_pktcdvd);
424 class_pktcdvd = NULL;
425 pr_err("failed to create class pktcdvd\n");
426 return ret;
427 }
428 return 0;
429 }
430
431 static void pkt_sysfs_cleanup(void)
432 {
433 if (class_pktcdvd)
434 class_destroy(class_pktcdvd);
435 class_pktcdvd = NULL;
436 }
437
438 /********************************************************************
439 entries in debugfs
440
441 /sys/kernel/debug/pktcdvd[0-7]/
442 info
443
444 *******************************************************************/
445
446 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
447 {
448 return pkt_seq_show(m, p);
449 }
450
451 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
452 {
453 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
454 }
455
456 static const struct file_operations debug_fops = {
457 .open = pkt_debugfs_fops_open,
458 .read = seq_read,
459 .llseek = seq_lseek,
460 .release = single_release,
461 .owner = THIS_MODULE,
462 };
463
464 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
465 {
466 if (!pkt_debugfs_root)
467 return;
468 pd->dfs_f_info = NULL;
469 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
470 if (IS_ERR(pd->dfs_d_root)) {
471 pd->dfs_d_root = NULL;
472 return;
473 }
474 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
475 pd->dfs_d_root, pd, &debug_fops);
476 if (IS_ERR(pd->dfs_f_info)) {
477 pd->dfs_f_info = NULL;
478 return;
479 }
480 }
481
482 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
483 {
484 if (!pkt_debugfs_root)
485 return;
486 if (pd->dfs_f_info)
487 debugfs_remove(pd->dfs_f_info);
488 pd->dfs_f_info = NULL;
489 if (pd->dfs_d_root)
490 debugfs_remove(pd->dfs_d_root);
491 pd->dfs_d_root = NULL;
492 }
493
494 static void pkt_debugfs_init(void)
495 {
496 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
497 if (IS_ERR(pkt_debugfs_root)) {
498 pkt_debugfs_root = NULL;
499 return;
500 }
501 }
502
503 static void pkt_debugfs_cleanup(void)
504 {
505 if (!pkt_debugfs_root)
506 return;
507 debugfs_remove(pkt_debugfs_root);
508 pkt_debugfs_root = NULL;
509 }
510
511 /* ----------------------------------------------------------*/
512
513
514 static void pkt_bio_finished(struct pktcdvd_device *pd)
515 {
516 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
517 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
518 pkt_dbg(2, "queue empty\n");
519 atomic_set(&pd->iosched.attention, 1);
520 wake_up(&pd->wqueue);
521 }
522 }
523
524 /*
525 * Allocate a packet_data struct
526 */
527 static struct packet_data *pkt_alloc_packet_data(int frames)
528 {
529 int i;
530 struct packet_data *pkt;
531
532 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
533 if (!pkt)
534 goto no_pkt;
535
536 pkt->frames = frames;
537 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
538 if (!pkt->w_bio)
539 goto no_bio;
540
541 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
542 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
543 if (!pkt->pages[i])
544 goto no_page;
545 }
546
547 spin_lock_init(&pkt->lock);
548 bio_list_init(&pkt->orig_bios);
549
550 for (i = 0; i < frames; i++) {
551 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
552 if (!bio)
553 goto no_rd_bio;
554
555 pkt->r_bios[i] = bio;
556 }
557
558 return pkt;
559
560 no_rd_bio:
561 for (i = 0; i < frames; i++) {
562 struct bio *bio = pkt->r_bios[i];
563 if (bio)
564 bio_put(bio);
565 }
566
567 no_page:
568 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
569 if (pkt->pages[i])
570 __free_page(pkt->pages[i]);
571 bio_put(pkt->w_bio);
572 no_bio:
573 kfree(pkt);
574 no_pkt:
575 return NULL;
576 }
577
578 /*
579 * Free a packet_data struct
580 */
581 static void pkt_free_packet_data(struct packet_data *pkt)
582 {
583 int i;
584
585 for (i = 0; i < pkt->frames; i++) {
586 struct bio *bio = pkt->r_bios[i];
587 if (bio)
588 bio_put(bio);
589 }
590 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
591 __free_page(pkt->pages[i]);
592 bio_put(pkt->w_bio);
593 kfree(pkt);
594 }
595
596 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
597 {
598 struct packet_data *pkt, *next;
599
600 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
601
602 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
603 pkt_free_packet_data(pkt);
604 }
605 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
606 }
607
608 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
609 {
610 struct packet_data *pkt;
611
612 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
613
614 while (nr_packets > 0) {
615 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
616 if (!pkt) {
617 pkt_shrink_pktlist(pd);
618 return 0;
619 }
620 pkt->id = nr_packets;
621 pkt->pd = pd;
622 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
623 nr_packets--;
624 }
625 return 1;
626 }
627
628 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
629 {
630 struct rb_node *n = rb_next(&node->rb_node);
631 if (!n)
632 return NULL;
633 return rb_entry(n, struct pkt_rb_node, rb_node);
634 }
635
636 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
637 {
638 rb_erase(&node->rb_node, &pd->bio_queue);
639 mempool_free(node, pd->rb_pool);
640 pd->bio_queue_size--;
641 BUG_ON(pd->bio_queue_size < 0);
642 }
643
644 /*
645 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
646 */
647 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
648 {
649 struct rb_node *n = pd->bio_queue.rb_node;
650 struct rb_node *next;
651 struct pkt_rb_node *tmp;
652
653 if (!n) {
654 BUG_ON(pd->bio_queue_size > 0);
655 return NULL;
656 }
657
658 for (;;) {
659 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
660 if (s <= tmp->bio->bi_sector)
661 next = n->rb_left;
662 else
663 next = n->rb_right;
664 if (!next)
665 break;
666 n = next;
667 }
668
669 if (s > tmp->bio->bi_sector) {
670 tmp = pkt_rbtree_next(tmp);
671 if (!tmp)
672 return NULL;
673 }
674 BUG_ON(s > tmp->bio->bi_sector);
675 return tmp;
676 }
677
678 /*
679 * Insert a node into the pd->bio_queue rb tree.
680 */
681 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
682 {
683 struct rb_node **p = &pd->bio_queue.rb_node;
684 struct rb_node *parent = NULL;
685 sector_t s = node->bio->bi_sector;
686 struct pkt_rb_node *tmp;
687
688 while (*p) {
689 parent = *p;
690 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
691 if (s < tmp->bio->bi_sector)
692 p = &(*p)->rb_left;
693 else
694 p = &(*p)->rb_right;
695 }
696 rb_link_node(&node->rb_node, parent, p);
697 rb_insert_color(&node->rb_node, &pd->bio_queue);
698 pd->bio_queue_size++;
699 }
700
701 /*
702 * Send a packet_command to the underlying block device and
703 * wait for completion.
704 */
705 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
706 {
707 struct request_queue *q = bdev_get_queue(pd->bdev);
708 struct request *rq;
709 int ret = 0;
710
711 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
712 WRITE : READ, __GFP_WAIT);
713
714 if (cgc->buflen) {
715 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
716 goto out;
717 }
718
719 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
720 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
721
722 rq->timeout = 60*HZ;
723 rq->cmd_type = REQ_TYPE_BLOCK_PC;
724 if (cgc->quiet)
725 rq->cmd_flags |= REQ_QUIET;
726
727 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
728 if (rq->errors)
729 ret = -EIO;
730 out:
731 blk_put_request(rq);
732 return ret;
733 }
734
735 static const char *sense_key_string(__u8 index)
736 {
737 static const char * const info[] = {
738 "No sense", "Recovered error", "Not ready",
739 "Medium error", "Hardware error", "Illegal request",
740 "Unit attention", "Data protect", "Blank check",
741 };
742
743 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
744 }
745
746 /*
747 * A generic sense dump / resolve mechanism should be implemented across
748 * all ATAPI + SCSI devices.
749 */
750 static void pkt_dump_sense(struct packet_command *cgc)
751 {
752 struct request_sense *sense = cgc->sense;
753
754 if (sense)
755 pr_err("%*ph - sense %02x.%02x.%02x (%s)\n",
756 CDROM_PACKET_SIZE, cgc->cmd,
757 sense->sense_key, sense->asc, sense->ascq,
758 sense_key_string(sense->sense_key));
759 else
760 pr_err("%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
761 }
762
763 /*
764 * flush the drive cache to media
765 */
766 static int pkt_flush_cache(struct pktcdvd_device *pd)
767 {
768 struct packet_command cgc;
769
770 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
771 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
772 cgc.quiet = 1;
773
774 /*
775 * the IMMED bit -- we default to not setting it, although that
776 * would allow a much faster close, this is safer
777 */
778 #if 0
779 cgc.cmd[1] = 1 << 1;
780 #endif
781 return pkt_generic_packet(pd, &cgc);
782 }
783
784 /*
785 * speed is given as the normal factor, e.g. 4 for 4x
786 */
787 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
788 unsigned write_speed, unsigned read_speed)
789 {
790 struct packet_command cgc;
791 struct request_sense sense;
792 int ret;
793
794 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
795 cgc.sense = &sense;
796 cgc.cmd[0] = GPCMD_SET_SPEED;
797 cgc.cmd[2] = (read_speed >> 8) & 0xff;
798 cgc.cmd[3] = read_speed & 0xff;
799 cgc.cmd[4] = (write_speed >> 8) & 0xff;
800 cgc.cmd[5] = write_speed & 0xff;
801
802 if ((ret = pkt_generic_packet(pd, &cgc)))
803 pkt_dump_sense(&cgc);
804
805 return ret;
806 }
807
808 /*
809 * Queue a bio for processing by the low-level CD device. Must be called
810 * from process context.
811 */
812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813 {
814 spin_lock(&pd->iosched.lock);
815 if (bio_data_dir(bio) == READ)
816 bio_list_add(&pd->iosched.read_queue, bio);
817 else
818 bio_list_add(&pd->iosched.write_queue, bio);
819 spin_unlock(&pd->iosched.lock);
820
821 atomic_set(&pd->iosched.attention, 1);
822 wake_up(&pd->wqueue);
823 }
824
825 /*
826 * Process the queued read/write requests. This function handles special
827 * requirements for CDRW drives:
828 * - A cache flush command must be inserted before a read request if the
829 * previous request was a write.
830 * - Switching between reading and writing is slow, so don't do it more often
831 * than necessary.
832 * - Optimize for throughput at the expense of latency. This means that streaming
833 * writes will never be interrupted by a read, but if the drive has to seek
834 * before the next write, switch to reading instead if there are any pending
835 * read requests.
836 * - Set the read speed according to current usage pattern. When only reading
837 * from the device, it's best to use the highest possible read speed, but
838 * when switching often between reading and writing, it's better to have the
839 * same read and write speeds.
840 */
841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
842 {
843
844 if (atomic_read(&pd->iosched.attention) == 0)
845 return;
846 atomic_set(&pd->iosched.attention, 0);
847
848 for (;;) {
849 struct bio *bio;
850 int reads_queued, writes_queued;
851
852 spin_lock(&pd->iosched.lock);
853 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 spin_unlock(&pd->iosched.lock);
856
857 if (!reads_queued && !writes_queued)
858 break;
859
860 if (pd->iosched.writing) {
861 int need_write_seek = 1;
862 spin_lock(&pd->iosched.lock);
863 bio = bio_list_peek(&pd->iosched.write_queue);
864 spin_unlock(&pd->iosched.lock);
865 if (bio && (bio->bi_sector == pd->iosched.last_write))
866 need_write_seek = 0;
867 if (need_write_seek && reads_queued) {
868 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
869 pkt_dbg(2, "write, waiting\n");
870 break;
871 }
872 pkt_flush_cache(pd);
873 pd->iosched.writing = 0;
874 }
875 } else {
876 if (!reads_queued && writes_queued) {
877 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
878 pkt_dbg(2, "read, waiting\n");
879 break;
880 }
881 pd->iosched.writing = 1;
882 }
883 }
884
885 spin_lock(&pd->iosched.lock);
886 if (pd->iosched.writing)
887 bio = bio_list_pop(&pd->iosched.write_queue);
888 else
889 bio = bio_list_pop(&pd->iosched.read_queue);
890 spin_unlock(&pd->iosched.lock);
891
892 if (!bio)
893 continue;
894
895 if (bio_data_dir(bio) == READ)
896 pd->iosched.successive_reads += bio->bi_size >> 10;
897 else {
898 pd->iosched.successive_reads = 0;
899 pd->iosched.last_write = bio_end_sector(bio);
900 }
901 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
902 if (pd->read_speed == pd->write_speed) {
903 pd->read_speed = MAX_SPEED;
904 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
905 }
906 } else {
907 if (pd->read_speed != pd->write_speed) {
908 pd->read_speed = pd->write_speed;
909 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
910 }
911 }
912
913 atomic_inc(&pd->cdrw.pending_bios);
914 generic_make_request(bio);
915 }
916 }
917
918 /*
919 * Special care is needed if the underlying block device has a small
920 * max_phys_segments value.
921 */
922 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
923 {
924 if ((pd->settings.size << 9) / CD_FRAMESIZE
925 <= queue_max_segments(q)) {
926 /*
927 * The cdrom device can handle one segment/frame
928 */
929 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
930 return 0;
931 } else if ((pd->settings.size << 9) / PAGE_SIZE
932 <= queue_max_segments(q)) {
933 /*
934 * We can handle this case at the expense of some extra memory
935 * copies during write operations
936 */
937 set_bit(PACKET_MERGE_SEGS, &pd->flags);
938 return 0;
939 } else {
940 pr_err("cdrom max_phys_segments too small\n");
941 return -EIO;
942 }
943 }
944
945 /*
946 * Copy all data for this packet to pkt->pages[], so that
947 * a) The number of required segments for the write bio is minimized, which
948 * is necessary for some scsi controllers.
949 * b) The data can be used as cache to avoid read requests if we receive a
950 * new write request for the same zone.
951 */
952 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
953 {
954 int f, p, offs;
955
956 /* Copy all data to pkt->pages[] */
957 p = 0;
958 offs = 0;
959 for (f = 0; f < pkt->frames; f++) {
960 if (bvec[f].bv_page != pkt->pages[p]) {
961 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
962 void *vto = page_address(pkt->pages[p]) + offs;
963 memcpy(vto, vfrom, CD_FRAMESIZE);
964 kunmap_atomic(vfrom);
965 bvec[f].bv_page = pkt->pages[p];
966 bvec[f].bv_offset = offs;
967 } else {
968 BUG_ON(bvec[f].bv_offset != offs);
969 }
970 offs += CD_FRAMESIZE;
971 if (offs >= PAGE_SIZE) {
972 offs = 0;
973 p++;
974 }
975 }
976 }
977
978 static void pkt_end_io_read(struct bio *bio, int err)
979 {
980 struct packet_data *pkt = bio->bi_private;
981 struct pktcdvd_device *pd = pkt->pd;
982 BUG_ON(!pd);
983
984 pkt_dbg(2, "bio=%p sec0=%llx sec=%llx err=%d\n",
985 bio, (unsigned long long)pkt->sector,
986 (unsigned long long)bio->bi_sector, err);
987
988 if (err)
989 atomic_inc(&pkt->io_errors);
990 if (atomic_dec_and_test(&pkt->io_wait)) {
991 atomic_inc(&pkt->run_sm);
992 wake_up(&pd->wqueue);
993 }
994 pkt_bio_finished(pd);
995 }
996
997 static void pkt_end_io_packet_write(struct bio *bio, int err)
998 {
999 struct packet_data *pkt = bio->bi_private;
1000 struct pktcdvd_device *pd = pkt->pd;
1001 BUG_ON(!pd);
1002
1003 pkt_dbg(2, "id=%d, err=%d\n", pkt->id, err);
1004
1005 pd->stats.pkt_ended++;
1006
1007 pkt_bio_finished(pd);
1008 atomic_dec(&pkt->io_wait);
1009 atomic_inc(&pkt->run_sm);
1010 wake_up(&pd->wqueue);
1011 }
1012
1013 /*
1014 * Schedule reads for the holes in a packet
1015 */
1016 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1017 {
1018 int frames_read = 0;
1019 struct bio *bio;
1020 int f;
1021 char written[PACKET_MAX_SIZE];
1022
1023 BUG_ON(bio_list_empty(&pkt->orig_bios));
1024
1025 atomic_set(&pkt->io_wait, 0);
1026 atomic_set(&pkt->io_errors, 0);
1027
1028 /*
1029 * Figure out which frames we need to read before we can write.
1030 */
1031 memset(written, 0, sizeof(written));
1032 spin_lock(&pkt->lock);
1033 bio_list_for_each(bio, &pkt->orig_bios) {
1034 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1035 int num_frames = bio->bi_size / CD_FRAMESIZE;
1036 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1037 BUG_ON(first_frame < 0);
1038 BUG_ON(first_frame + num_frames > pkt->frames);
1039 for (f = first_frame; f < first_frame + num_frames; f++)
1040 written[f] = 1;
1041 }
1042 spin_unlock(&pkt->lock);
1043
1044 if (pkt->cache_valid) {
1045 pkt_dbg(2, "zone %llx cached\n",
1046 (unsigned long long)pkt->sector);
1047 goto out_account;
1048 }
1049
1050 /*
1051 * Schedule reads for missing parts of the packet.
1052 */
1053 for (f = 0; f < pkt->frames; f++) {
1054 int p, offset;
1055
1056 if (written[f])
1057 continue;
1058
1059 bio = pkt->r_bios[f];
1060 bio_reset(bio);
1061 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1062 bio->bi_bdev = pd->bdev;
1063 bio->bi_end_io = pkt_end_io_read;
1064 bio->bi_private = pkt;
1065
1066 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1067 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1068 pkt_dbg(2, "Adding frame %d, page:%p offs:%d\n",
1069 f, pkt->pages[p], offset);
1070 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1071 BUG();
1072
1073 atomic_inc(&pkt->io_wait);
1074 bio->bi_rw = READ;
1075 pkt_queue_bio(pd, bio);
1076 frames_read++;
1077 }
1078
1079 out_account:
1080 pkt_dbg(2, "need %d frames for zone %llx\n",
1081 frames_read, (unsigned long long)pkt->sector);
1082 pd->stats.pkt_started++;
1083 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1084 }
1085
1086 /*
1087 * Find a packet matching zone, or the least recently used packet if
1088 * there is no match.
1089 */
1090 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1091 {
1092 struct packet_data *pkt;
1093
1094 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1095 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1096 list_del_init(&pkt->list);
1097 if (pkt->sector != zone)
1098 pkt->cache_valid = 0;
1099 return pkt;
1100 }
1101 }
1102 BUG();
1103 return NULL;
1104 }
1105
1106 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1107 {
1108 if (pkt->cache_valid) {
1109 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1110 } else {
1111 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1112 }
1113 }
1114
1115 /*
1116 * recover a failed write, query for relocation if possible
1117 *
1118 * returns 1 if recovery is possible, or 0 if not
1119 *
1120 */
1121 static int pkt_start_recovery(struct packet_data *pkt)
1122 {
1123 /*
1124 * FIXME. We need help from the file system to implement
1125 * recovery handling.
1126 */
1127 return 0;
1128 #if 0
1129 struct request *rq = pkt->rq;
1130 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1131 struct block_device *pkt_bdev;
1132 struct super_block *sb = NULL;
1133 unsigned long old_block, new_block;
1134 sector_t new_sector;
1135
1136 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1137 if (pkt_bdev) {
1138 sb = get_super(pkt_bdev);
1139 bdput(pkt_bdev);
1140 }
1141
1142 if (!sb)
1143 return 0;
1144
1145 if (!sb->s_op->relocate_blocks)
1146 goto out;
1147
1148 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1149 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1150 goto out;
1151
1152 new_sector = new_block * (CD_FRAMESIZE >> 9);
1153 pkt->sector = new_sector;
1154
1155 bio_reset(pkt->bio);
1156 pkt->bio->bi_bdev = pd->bdev;
1157 pkt->bio->bi_rw = REQ_WRITE;
1158 pkt->bio->bi_sector = new_sector;
1159 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1160 pkt->bio->bi_vcnt = pkt->frames;
1161
1162 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1163 pkt->bio->bi_private = pkt;
1164
1165 drop_super(sb);
1166 return 1;
1167
1168 out:
1169 drop_super(sb);
1170 return 0;
1171 #endif
1172 }
1173
1174 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1175 {
1176 #if PACKET_DEBUG > 1
1177 static const char *state_name[] = {
1178 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1179 };
1180 enum packet_data_state old_state = pkt->state;
1181 pkt_dbg(2, "pkt %2d : s=%6llx %s -> %s\n",
1182 pkt->id, (unsigned long long)pkt->sector,
1183 state_name[old_state], state_name[state]);
1184 #endif
1185 pkt->state = state;
1186 }
1187
1188 /*
1189 * Scan the work queue to see if we can start a new packet.
1190 * returns non-zero if any work was done.
1191 */
1192 static int pkt_handle_queue(struct pktcdvd_device *pd)
1193 {
1194 struct packet_data *pkt, *p;
1195 struct bio *bio = NULL;
1196 sector_t zone = 0; /* Suppress gcc warning */
1197 struct pkt_rb_node *node, *first_node;
1198 struct rb_node *n;
1199 int wakeup;
1200
1201 pkt_dbg(2, "\n");
1202
1203 atomic_set(&pd->scan_queue, 0);
1204
1205 if (list_empty(&pd->cdrw.pkt_free_list)) {
1206 pkt_dbg(2, "no pkt\n");
1207 return 0;
1208 }
1209
1210 /*
1211 * Try to find a zone we are not already working on.
1212 */
1213 spin_lock(&pd->lock);
1214 first_node = pkt_rbtree_find(pd, pd->current_sector);
1215 if (!first_node) {
1216 n = rb_first(&pd->bio_queue);
1217 if (n)
1218 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1219 }
1220 node = first_node;
1221 while (node) {
1222 bio = node->bio;
1223 zone = get_zone(bio->bi_sector, pd);
1224 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1225 if (p->sector == zone) {
1226 bio = NULL;
1227 goto try_next_bio;
1228 }
1229 }
1230 break;
1231 try_next_bio:
1232 node = pkt_rbtree_next(node);
1233 if (!node) {
1234 n = rb_first(&pd->bio_queue);
1235 if (n)
1236 node = rb_entry(n, struct pkt_rb_node, rb_node);
1237 }
1238 if (node == first_node)
1239 node = NULL;
1240 }
1241 spin_unlock(&pd->lock);
1242 if (!bio) {
1243 pkt_dbg(2, "no bio\n");
1244 return 0;
1245 }
1246
1247 pkt = pkt_get_packet_data(pd, zone);
1248
1249 pd->current_sector = zone + pd->settings.size;
1250 pkt->sector = zone;
1251 BUG_ON(pkt->frames != pd->settings.size >> 2);
1252 pkt->write_size = 0;
1253
1254 /*
1255 * Scan work queue for bios in the same zone and link them
1256 * to this packet.
1257 */
1258 spin_lock(&pd->lock);
1259 pkt_dbg(2, "looking for zone %llx\n", (unsigned long long)zone);
1260 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1261 bio = node->bio;
1262 pkt_dbg(2, "found zone=%llx\n",
1263 (unsigned long long)get_zone(bio->bi_sector, pd));
1264 if (get_zone(bio->bi_sector, pd) != zone)
1265 break;
1266 pkt_rbtree_erase(pd, node);
1267 spin_lock(&pkt->lock);
1268 bio_list_add(&pkt->orig_bios, bio);
1269 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1270 spin_unlock(&pkt->lock);
1271 }
1272 /* check write congestion marks, and if bio_queue_size is
1273 below, wake up any waiters */
1274 wakeup = (pd->write_congestion_on > 0
1275 && pd->bio_queue_size <= pd->write_congestion_off);
1276 spin_unlock(&pd->lock);
1277 if (wakeup) {
1278 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1279 BLK_RW_ASYNC);
1280 }
1281
1282 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1283 pkt_set_state(pkt, PACKET_WAITING_STATE);
1284 atomic_set(&pkt->run_sm, 1);
1285
1286 spin_lock(&pd->cdrw.active_list_lock);
1287 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1288 spin_unlock(&pd->cdrw.active_list_lock);
1289
1290 return 1;
1291 }
1292
1293 /*
1294 * Assemble a bio to write one packet and queue the bio for processing
1295 * by the underlying block device.
1296 */
1297 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1298 {
1299 int f;
1300 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1301
1302 bio_reset(pkt->w_bio);
1303 pkt->w_bio->bi_sector = pkt->sector;
1304 pkt->w_bio->bi_bdev = pd->bdev;
1305 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1306 pkt->w_bio->bi_private = pkt;
1307
1308 /* XXX: locking? */
1309 for (f = 0; f < pkt->frames; f++) {
1310 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1311 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1312 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1313 BUG();
1314 }
1315 pkt_dbg(2, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1316
1317 /*
1318 * Fill-in bvec with data from orig_bios.
1319 */
1320 spin_lock(&pkt->lock);
1321 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1322
1323 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1324 spin_unlock(&pkt->lock);
1325
1326 pkt_dbg(2, "Writing %d frames for zone %llx\n",
1327 pkt->write_size, (unsigned long long)pkt->sector);
1328
1329 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1330 pkt_make_local_copy(pkt, bvec);
1331 pkt->cache_valid = 1;
1332 } else {
1333 pkt->cache_valid = 0;
1334 }
1335
1336 /* Start the write request */
1337 atomic_set(&pkt->io_wait, 1);
1338 pkt->w_bio->bi_rw = WRITE;
1339 pkt_queue_bio(pd, pkt->w_bio);
1340 }
1341
1342 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1343 {
1344 struct bio *bio;
1345
1346 if (!uptodate)
1347 pkt->cache_valid = 0;
1348
1349 /* Finish all bios corresponding to this packet */
1350 while ((bio = bio_list_pop(&pkt->orig_bios)))
1351 bio_endio(bio, uptodate ? 0 : -EIO);
1352 }
1353
1354 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1355 {
1356 int uptodate;
1357
1358 pkt_dbg(2, "pkt %d\n", pkt->id);
1359
1360 for (;;) {
1361 switch (pkt->state) {
1362 case PACKET_WAITING_STATE:
1363 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1364 return;
1365
1366 pkt->sleep_time = 0;
1367 pkt_gather_data(pd, pkt);
1368 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1369 break;
1370
1371 case PACKET_READ_WAIT_STATE:
1372 if (atomic_read(&pkt->io_wait) > 0)
1373 return;
1374
1375 if (atomic_read(&pkt->io_errors) > 0) {
1376 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1377 } else {
1378 pkt_start_write(pd, pkt);
1379 }
1380 break;
1381
1382 case PACKET_WRITE_WAIT_STATE:
1383 if (atomic_read(&pkt->io_wait) > 0)
1384 return;
1385
1386 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1387 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1388 } else {
1389 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1390 }
1391 break;
1392
1393 case PACKET_RECOVERY_STATE:
1394 if (pkt_start_recovery(pkt)) {
1395 pkt_start_write(pd, pkt);
1396 } else {
1397 pkt_dbg(2, "No recovery possible\n");
1398 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1399 }
1400 break;
1401
1402 case PACKET_FINISHED_STATE:
1403 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1404 pkt_finish_packet(pkt, uptodate);
1405 return;
1406
1407 default:
1408 BUG();
1409 break;
1410 }
1411 }
1412 }
1413
1414 static void pkt_handle_packets(struct pktcdvd_device *pd)
1415 {
1416 struct packet_data *pkt, *next;
1417
1418 pkt_dbg(2, "\n");
1419
1420 /*
1421 * Run state machine for active packets
1422 */
1423 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1424 if (atomic_read(&pkt->run_sm) > 0) {
1425 atomic_set(&pkt->run_sm, 0);
1426 pkt_run_state_machine(pd, pkt);
1427 }
1428 }
1429
1430 /*
1431 * Move no longer active packets to the free list
1432 */
1433 spin_lock(&pd->cdrw.active_list_lock);
1434 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1435 if (pkt->state == PACKET_FINISHED_STATE) {
1436 list_del(&pkt->list);
1437 pkt_put_packet_data(pd, pkt);
1438 pkt_set_state(pkt, PACKET_IDLE_STATE);
1439 atomic_set(&pd->scan_queue, 1);
1440 }
1441 }
1442 spin_unlock(&pd->cdrw.active_list_lock);
1443 }
1444
1445 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1446 {
1447 struct packet_data *pkt;
1448 int i;
1449
1450 for (i = 0; i < PACKET_NUM_STATES; i++)
1451 states[i] = 0;
1452
1453 spin_lock(&pd->cdrw.active_list_lock);
1454 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1455 states[pkt->state]++;
1456 }
1457 spin_unlock(&pd->cdrw.active_list_lock);
1458 }
1459
1460 /*
1461 * kcdrwd is woken up when writes have been queued for one of our
1462 * registered devices
1463 */
1464 static int kcdrwd(void *foobar)
1465 {
1466 struct pktcdvd_device *pd = foobar;
1467 struct packet_data *pkt;
1468 long min_sleep_time, residue;
1469
1470 set_user_nice(current, -20);
1471 set_freezable();
1472
1473 for (;;) {
1474 DECLARE_WAITQUEUE(wait, current);
1475
1476 /*
1477 * Wait until there is something to do
1478 */
1479 add_wait_queue(&pd->wqueue, &wait);
1480 for (;;) {
1481 set_current_state(TASK_INTERRUPTIBLE);
1482
1483 /* Check if we need to run pkt_handle_queue */
1484 if (atomic_read(&pd->scan_queue) > 0)
1485 goto work_to_do;
1486
1487 /* Check if we need to run the state machine for some packet */
1488 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1489 if (atomic_read(&pkt->run_sm) > 0)
1490 goto work_to_do;
1491 }
1492
1493 /* Check if we need to process the iosched queues */
1494 if (atomic_read(&pd->iosched.attention) != 0)
1495 goto work_to_do;
1496
1497 /* Otherwise, go to sleep */
1498 if (PACKET_DEBUG > 1) {
1499 int states[PACKET_NUM_STATES];
1500 pkt_count_states(pd, states);
1501 pkt_dbg(2, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1502 states[0], states[1], states[2],
1503 states[3], states[4], states[5]);
1504 }
1505
1506 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1507 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1508 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1509 min_sleep_time = pkt->sleep_time;
1510 }
1511
1512 pkt_dbg(2, "sleeping\n");
1513 residue = schedule_timeout(min_sleep_time);
1514 pkt_dbg(2, "wake up\n");
1515
1516 /* make swsusp happy with our thread */
1517 try_to_freeze();
1518
1519 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1520 if (!pkt->sleep_time)
1521 continue;
1522 pkt->sleep_time -= min_sleep_time - residue;
1523 if (pkt->sleep_time <= 0) {
1524 pkt->sleep_time = 0;
1525 atomic_inc(&pkt->run_sm);
1526 }
1527 }
1528
1529 if (kthread_should_stop())
1530 break;
1531 }
1532 work_to_do:
1533 set_current_state(TASK_RUNNING);
1534 remove_wait_queue(&pd->wqueue, &wait);
1535
1536 if (kthread_should_stop())
1537 break;
1538
1539 /*
1540 * if pkt_handle_queue returns true, we can queue
1541 * another request.
1542 */
1543 while (pkt_handle_queue(pd))
1544 ;
1545
1546 /*
1547 * Handle packet state machine
1548 */
1549 pkt_handle_packets(pd);
1550
1551 /*
1552 * Handle iosched queues
1553 */
1554 pkt_iosched_process_queue(pd);
1555 }
1556
1557 return 0;
1558 }
1559
1560 static void pkt_print_settings(struct pktcdvd_device *pd)
1561 {
1562 pr_info("%s packets, %u blocks, Mode-%c disc\n",
1563 pd->settings.fp ? "Fixed" : "Variable",
1564 pd->settings.size >> 2,
1565 pd->settings.block_mode == 8 ? '1' : '2');
1566 }
1567
1568 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1569 {
1570 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1571
1572 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1573 cgc->cmd[2] = page_code | (page_control << 6);
1574 cgc->cmd[7] = cgc->buflen >> 8;
1575 cgc->cmd[8] = cgc->buflen & 0xff;
1576 cgc->data_direction = CGC_DATA_READ;
1577 return pkt_generic_packet(pd, cgc);
1578 }
1579
1580 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1581 {
1582 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1583 memset(cgc->buffer, 0, 2);
1584 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1585 cgc->cmd[1] = 0x10; /* PF */
1586 cgc->cmd[7] = cgc->buflen >> 8;
1587 cgc->cmd[8] = cgc->buflen & 0xff;
1588 cgc->data_direction = CGC_DATA_WRITE;
1589 return pkt_generic_packet(pd, cgc);
1590 }
1591
1592 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1593 {
1594 struct packet_command cgc;
1595 int ret;
1596
1597 /* set up command and get the disc info */
1598 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1599 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1600 cgc.cmd[8] = cgc.buflen = 2;
1601 cgc.quiet = 1;
1602
1603 if ((ret = pkt_generic_packet(pd, &cgc)))
1604 return ret;
1605
1606 /* not all drives have the same disc_info length, so requeue
1607 * packet with the length the drive tells us it can supply
1608 */
1609 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1610 sizeof(di->disc_information_length);
1611
1612 if (cgc.buflen > sizeof(disc_information))
1613 cgc.buflen = sizeof(disc_information);
1614
1615 cgc.cmd[8] = cgc.buflen;
1616 return pkt_generic_packet(pd, &cgc);
1617 }
1618
1619 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1620 {
1621 struct packet_command cgc;
1622 int ret;
1623
1624 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1625 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1626 cgc.cmd[1] = type & 3;
1627 cgc.cmd[4] = (track & 0xff00) >> 8;
1628 cgc.cmd[5] = track & 0xff;
1629 cgc.cmd[8] = 8;
1630 cgc.quiet = 1;
1631
1632 if ((ret = pkt_generic_packet(pd, &cgc)))
1633 return ret;
1634
1635 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1636 sizeof(ti->track_information_length);
1637
1638 if (cgc.buflen > sizeof(track_information))
1639 cgc.buflen = sizeof(track_information);
1640
1641 cgc.cmd[8] = cgc.buflen;
1642 return pkt_generic_packet(pd, &cgc);
1643 }
1644
1645 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1646 long *last_written)
1647 {
1648 disc_information di;
1649 track_information ti;
1650 __u32 last_track;
1651 int ret = -1;
1652
1653 if ((ret = pkt_get_disc_info(pd, &di)))
1654 return ret;
1655
1656 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1657 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1658 return ret;
1659
1660 /* if this track is blank, try the previous. */
1661 if (ti.blank) {
1662 last_track--;
1663 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1664 return ret;
1665 }
1666
1667 /* if last recorded field is valid, return it. */
1668 if (ti.lra_v) {
1669 *last_written = be32_to_cpu(ti.last_rec_address);
1670 } else {
1671 /* make it up instead */
1672 *last_written = be32_to_cpu(ti.track_start) +
1673 be32_to_cpu(ti.track_size);
1674 if (ti.free_blocks)
1675 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1676 }
1677 return 0;
1678 }
1679
1680 /*
1681 * write mode select package based on pd->settings
1682 */
1683 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1684 {
1685 struct packet_command cgc;
1686 struct request_sense sense;
1687 write_param_page *wp;
1688 char buffer[128];
1689 int ret, size;
1690
1691 /* doesn't apply to DVD+RW or DVD-RAM */
1692 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1693 return 0;
1694
1695 memset(buffer, 0, sizeof(buffer));
1696 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1697 cgc.sense = &sense;
1698 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1699 pkt_dump_sense(&cgc);
1700 return ret;
1701 }
1702
1703 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1704 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1705 if (size > sizeof(buffer))
1706 size = sizeof(buffer);
1707
1708 /*
1709 * now get it all
1710 */
1711 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1712 cgc.sense = &sense;
1713 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1714 pkt_dump_sense(&cgc);
1715 return ret;
1716 }
1717
1718 /*
1719 * write page is offset header + block descriptor length
1720 */
1721 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1722
1723 wp->fp = pd->settings.fp;
1724 wp->track_mode = pd->settings.track_mode;
1725 wp->write_type = pd->settings.write_type;
1726 wp->data_block_type = pd->settings.block_mode;
1727
1728 wp->multi_session = 0;
1729
1730 #ifdef PACKET_USE_LS
1731 wp->link_size = 7;
1732 wp->ls_v = 1;
1733 #endif
1734
1735 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1736 wp->session_format = 0;
1737 wp->subhdr2 = 0x20;
1738 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1739 wp->session_format = 0x20;
1740 wp->subhdr2 = 8;
1741 #if 0
1742 wp->mcn[0] = 0x80;
1743 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1744 #endif
1745 } else {
1746 /*
1747 * paranoia
1748 */
1749 pr_err("write mode wrong %d\n", wp->data_block_type);
1750 return 1;
1751 }
1752 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1753
1754 cgc.buflen = cgc.cmd[8] = size;
1755 if ((ret = pkt_mode_select(pd, &cgc))) {
1756 pkt_dump_sense(&cgc);
1757 return ret;
1758 }
1759
1760 pkt_print_settings(pd);
1761 return 0;
1762 }
1763
1764 /*
1765 * 1 -- we can write to this track, 0 -- we can't
1766 */
1767 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1768 {
1769 switch (pd->mmc3_profile) {
1770 case 0x1a: /* DVD+RW */
1771 case 0x12: /* DVD-RAM */
1772 /* The track is always writable on DVD+RW/DVD-RAM */
1773 return 1;
1774 default:
1775 break;
1776 }
1777
1778 if (!ti->packet || !ti->fp)
1779 return 0;
1780
1781 /*
1782 * "good" settings as per Mt Fuji.
1783 */
1784 if (ti->rt == 0 && ti->blank == 0)
1785 return 1;
1786
1787 if (ti->rt == 0 && ti->blank == 1)
1788 return 1;
1789
1790 if (ti->rt == 1 && ti->blank == 0)
1791 return 1;
1792
1793 pr_err("bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1794 return 0;
1795 }
1796
1797 /*
1798 * 1 -- we can write to this disc, 0 -- we can't
1799 */
1800 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1801 {
1802 switch (pd->mmc3_profile) {
1803 case 0x0a: /* CD-RW */
1804 case 0xffff: /* MMC3 not supported */
1805 break;
1806 case 0x1a: /* DVD+RW */
1807 case 0x13: /* DVD-RW */
1808 case 0x12: /* DVD-RAM */
1809 return 1;
1810 default:
1811 pkt_dbg(2, "Wrong disc profile (%x)\n",
1812 pd->mmc3_profile);
1813 return 0;
1814 }
1815
1816 /*
1817 * for disc type 0xff we should probably reserve a new track.
1818 * but i'm not sure, should we leave this to user apps? probably.
1819 */
1820 if (di->disc_type == 0xff) {
1821 pr_notice("unknown disc - no track?\n");
1822 return 0;
1823 }
1824
1825 if (di->disc_type != 0x20 && di->disc_type != 0) {
1826 pr_err("wrong disc type (%x)\n", di->disc_type);
1827 return 0;
1828 }
1829
1830 if (di->erasable == 0) {
1831 pr_notice("disc not erasable\n");
1832 return 0;
1833 }
1834
1835 if (di->border_status == PACKET_SESSION_RESERVED) {
1836 pr_err("can't write to last track (reserved)\n");
1837 return 0;
1838 }
1839
1840 return 1;
1841 }
1842
1843 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1844 {
1845 struct packet_command cgc;
1846 unsigned char buf[12];
1847 disc_information di;
1848 track_information ti;
1849 int ret, track;
1850
1851 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1852 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1853 cgc.cmd[8] = 8;
1854 ret = pkt_generic_packet(pd, &cgc);
1855 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1856
1857 memset(&di, 0, sizeof(disc_information));
1858 memset(&ti, 0, sizeof(track_information));
1859
1860 if ((ret = pkt_get_disc_info(pd, &di))) {
1861 pr_err("failed get_disc\n");
1862 return ret;
1863 }
1864
1865 if (!pkt_writable_disc(pd, &di))
1866 return -EROFS;
1867
1868 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1869
1870 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1871 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1872 pr_err("failed get_track\n");
1873 return ret;
1874 }
1875
1876 if (!pkt_writable_track(pd, &ti)) {
1877 pr_err("can't write to this track\n");
1878 return -EROFS;
1879 }
1880
1881 /*
1882 * we keep packet size in 512 byte units, makes it easier to
1883 * deal with request calculations.
1884 */
1885 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1886 if (pd->settings.size == 0) {
1887 pr_notice("detected zero packet size!\n");
1888 return -ENXIO;
1889 }
1890 if (pd->settings.size > PACKET_MAX_SECTORS) {
1891 pr_err("packet size is too big\n");
1892 return -EROFS;
1893 }
1894 pd->settings.fp = ti.fp;
1895 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1896
1897 if (ti.nwa_v) {
1898 pd->nwa = be32_to_cpu(ti.next_writable);
1899 set_bit(PACKET_NWA_VALID, &pd->flags);
1900 }
1901
1902 /*
1903 * in theory we could use lra on -RW media as well and just zero
1904 * blocks that haven't been written yet, but in practice that
1905 * is just a no-go. we'll use that for -R, naturally.
1906 */
1907 if (ti.lra_v) {
1908 pd->lra = be32_to_cpu(ti.last_rec_address);
1909 set_bit(PACKET_LRA_VALID, &pd->flags);
1910 } else {
1911 pd->lra = 0xffffffff;
1912 set_bit(PACKET_LRA_VALID, &pd->flags);
1913 }
1914
1915 /*
1916 * fine for now
1917 */
1918 pd->settings.link_loss = 7;
1919 pd->settings.write_type = 0; /* packet */
1920 pd->settings.track_mode = ti.track_mode;
1921
1922 /*
1923 * mode1 or mode2 disc
1924 */
1925 switch (ti.data_mode) {
1926 case PACKET_MODE1:
1927 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1928 break;
1929 case PACKET_MODE2:
1930 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1931 break;
1932 default:
1933 pr_err("unknown data mode\n");
1934 return -EROFS;
1935 }
1936 return 0;
1937 }
1938
1939 /*
1940 * enable/disable write caching on drive
1941 */
1942 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1943 int set)
1944 {
1945 struct packet_command cgc;
1946 struct request_sense sense;
1947 unsigned char buf[64];
1948 int ret;
1949
1950 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1951 cgc.sense = &sense;
1952 cgc.buflen = pd->mode_offset + 12;
1953
1954 /*
1955 * caching mode page might not be there, so quiet this command
1956 */
1957 cgc.quiet = 1;
1958
1959 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1960 return ret;
1961
1962 buf[pd->mode_offset + 10] |= (!!set << 2);
1963
1964 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1965 ret = pkt_mode_select(pd, &cgc);
1966 if (ret) {
1967 pr_err("write caching control failed\n");
1968 pkt_dump_sense(&cgc);
1969 } else if (!ret && set)
1970 pr_notice("enabled write caching on %s\n", pd->name);
1971 return ret;
1972 }
1973
1974 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1975 {
1976 struct packet_command cgc;
1977
1978 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1979 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1980 cgc.cmd[4] = lockflag ? 1 : 0;
1981 return pkt_generic_packet(pd, &cgc);
1982 }
1983
1984 /*
1985 * Returns drive maximum write speed
1986 */
1987 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1988 unsigned *write_speed)
1989 {
1990 struct packet_command cgc;
1991 struct request_sense sense;
1992 unsigned char buf[256+18];
1993 unsigned char *cap_buf;
1994 int ret, offset;
1995
1996 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1997 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1998 cgc.sense = &sense;
1999
2000 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2001 if (ret) {
2002 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2003 sizeof(struct mode_page_header);
2004 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2005 if (ret) {
2006 pkt_dump_sense(&cgc);
2007 return ret;
2008 }
2009 }
2010
2011 offset = 20; /* Obsoleted field, used by older drives */
2012 if (cap_buf[1] >= 28)
2013 offset = 28; /* Current write speed selected */
2014 if (cap_buf[1] >= 30) {
2015 /* If the drive reports at least one "Logical Unit Write
2016 * Speed Performance Descriptor Block", use the information
2017 * in the first block. (contains the highest speed)
2018 */
2019 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2020 if (num_spdb > 0)
2021 offset = 34;
2022 }
2023
2024 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2025 return 0;
2026 }
2027
2028 /* These tables from cdrecord - I don't have orange book */
2029 /* standard speed CD-RW (1-4x) */
2030 static char clv_to_speed[16] = {
2031 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2032 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2033 };
2034 /* high speed CD-RW (-10x) */
2035 static char hs_clv_to_speed[16] = {
2036 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2037 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2038 };
2039 /* ultra high speed CD-RW */
2040 static char us_clv_to_speed[16] = {
2041 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2042 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2043 };
2044
2045 /*
2046 * reads the maximum media speed from ATIP
2047 */
2048 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2049 unsigned *speed)
2050 {
2051 struct packet_command cgc;
2052 struct request_sense sense;
2053 unsigned char buf[64];
2054 unsigned int size, st, sp;
2055 int ret;
2056
2057 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2058 cgc.sense = &sense;
2059 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2060 cgc.cmd[1] = 2;
2061 cgc.cmd[2] = 4; /* READ ATIP */
2062 cgc.cmd[8] = 2;
2063 ret = pkt_generic_packet(pd, &cgc);
2064 if (ret) {
2065 pkt_dump_sense(&cgc);
2066 return ret;
2067 }
2068 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2069 if (size > sizeof(buf))
2070 size = sizeof(buf);
2071
2072 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2073 cgc.sense = &sense;
2074 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2075 cgc.cmd[1] = 2;
2076 cgc.cmd[2] = 4;
2077 cgc.cmd[8] = size;
2078 ret = pkt_generic_packet(pd, &cgc);
2079 if (ret) {
2080 pkt_dump_sense(&cgc);
2081 return ret;
2082 }
2083
2084 if (!(buf[6] & 0x40)) {
2085 pr_notice("disc type is not CD-RW\n");
2086 return 1;
2087 }
2088 if (!(buf[6] & 0x4)) {
2089 pr_notice("A1 values on media are not valid, maybe not CDRW?\n");
2090 return 1;
2091 }
2092
2093 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2094
2095 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2096
2097 /* Info from cdrecord */
2098 switch (st) {
2099 case 0: /* standard speed */
2100 *speed = clv_to_speed[sp];
2101 break;
2102 case 1: /* high speed */
2103 *speed = hs_clv_to_speed[sp];
2104 break;
2105 case 2: /* ultra high speed */
2106 *speed = us_clv_to_speed[sp];
2107 break;
2108 default:
2109 pr_notice("unknown disc sub-type %d\n", st);
2110 return 1;
2111 }
2112 if (*speed) {
2113 pr_info("maximum media speed: %d\n", *speed);
2114 return 0;
2115 } else {
2116 pr_notice("unknown speed %d for sub-type %d\n", sp, st);
2117 return 1;
2118 }
2119 }
2120
2121 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2122 {
2123 struct packet_command cgc;
2124 struct request_sense sense;
2125 int ret;
2126
2127 pkt_dbg(2, "Performing OPC\n");
2128
2129 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2130 cgc.sense = &sense;
2131 cgc.timeout = 60*HZ;
2132 cgc.cmd[0] = GPCMD_SEND_OPC;
2133 cgc.cmd[1] = 1;
2134 if ((ret = pkt_generic_packet(pd, &cgc)))
2135 pkt_dump_sense(&cgc);
2136 return ret;
2137 }
2138
2139 static int pkt_open_write(struct pktcdvd_device *pd)
2140 {
2141 int ret;
2142 unsigned int write_speed, media_write_speed, read_speed;
2143
2144 if ((ret = pkt_probe_settings(pd))) {
2145 pkt_dbg(2, "%s failed probe\n", pd->name);
2146 return ret;
2147 }
2148
2149 if ((ret = pkt_set_write_settings(pd))) {
2150 pkt_dbg(1, "%s failed saving write settings\n", pd->name);
2151 return -EIO;
2152 }
2153
2154 pkt_write_caching(pd, USE_WCACHING);
2155
2156 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2157 write_speed = 16 * 177;
2158 switch (pd->mmc3_profile) {
2159 case 0x13: /* DVD-RW */
2160 case 0x1a: /* DVD+RW */
2161 case 0x12: /* DVD-RAM */
2162 pkt_dbg(1, "write speed %ukB/s\n", write_speed);
2163 break;
2164 default:
2165 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2166 media_write_speed = 16;
2167 write_speed = min(write_speed, media_write_speed * 177);
2168 pkt_dbg(1, "write speed %ux\n", write_speed / 176);
2169 break;
2170 }
2171 read_speed = write_speed;
2172
2173 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2174 pkt_dbg(1, "%s couldn't set write speed\n", pd->name);
2175 return -EIO;
2176 }
2177 pd->write_speed = write_speed;
2178 pd->read_speed = read_speed;
2179
2180 if ((ret = pkt_perform_opc(pd))) {
2181 pkt_dbg(1, "%s Optimum Power Calibration failed\n", pd->name);
2182 }
2183
2184 return 0;
2185 }
2186
2187 /*
2188 * called at open time.
2189 */
2190 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2191 {
2192 int ret;
2193 long lba;
2194 struct request_queue *q;
2195
2196 /*
2197 * We need to re-open the cdrom device without O_NONBLOCK to be able
2198 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2199 * so bdget() can't fail.
2200 */
2201 bdget(pd->bdev->bd_dev);
2202 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2203 goto out;
2204
2205 if ((ret = pkt_get_last_written(pd, &lba))) {
2206 pr_err("pkt_get_last_written failed\n");
2207 goto out_putdev;
2208 }
2209
2210 set_capacity(pd->disk, lba << 2);
2211 set_capacity(pd->bdev->bd_disk, lba << 2);
2212 bd_set_size(pd->bdev, (loff_t)lba << 11);
2213
2214 q = bdev_get_queue(pd->bdev);
2215 if (write) {
2216 if ((ret = pkt_open_write(pd)))
2217 goto out_putdev;
2218 /*
2219 * Some CDRW drives can not handle writes larger than one packet,
2220 * even if the size is a multiple of the packet size.
2221 */
2222 spin_lock_irq(q->queue_lock);
2223 blk_queue_max_hw_sectors(q, pd->settings.size);
2224 spin_unlock_irq(q->queue_lock);
2225 set_bit(PACKET_WRITABLE, &pd->flags);
2226 } else {
2227 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2228 clear_bit(PACKET_WRITABLE, &pd->flags);
2229 }
2230
2231 if ((ret = pkt_set_segment_merging(pd, q)))
2232 goto out_putdev;
2233
2234 if (write) {
2235 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2236 pr_err("not enough memory for buffers\n");
2237 ret = -ENOMEM;
2238 goto out_putdev;
2239 }
2240 pr_info("%lukB available on disc\n", lba << 1);
2241 }
2242
2243 return 0;
2244
2245 out_putdev:
2246 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2247 out:
2248 return ret;
2249 }
2250
2251 /*
2252 * called when the device is closed. makes sure that the device flushes
2253 * the internal cache before we close.
2254 */
2255 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2256 {
2257 if (flush && pkt_flush_cache(pd))
2258 pkt_dbg(1, "%s not flushing cache\n", pd->name);
2259
2260 pkt_lock_door(pd, 0);
2261
2262 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2263 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2264
2265 pkt_shrink_pktlist(pd);
2266 }
2267
2268 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2269 {
2270 if (dev_minor >= MAX_WRITERS)
2271 return NULL;
2272 return pkt_devs[dev_minor];
2273 }
2274
2275 static int pkt_open(struct block_device *bdev, fmode_t mode)
2276 {
2277 struct pktcdvd_device *pd = NULL;
2278 int ret;
2279
2280 pkt_dbg(2, "entering\n");
2281
2282 mutex_lock(&pktcdvd_mutex);
2283 mutex_lock(&ctl_mutex);
2284 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2285 if (!pd) {
2286 ret = -ENODEV;
2287 goto out;
2288 }
2289 BUG_ON(pd->refcnt < 0);
2290
2291 pd->refcnt++;
2292 if (pd->refcnt > 1) {
2293 if ((mode & FMODE_WRITE) &&
2294 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2295 ret = -EBUSY;
2296 goto out_dec;
2297 }
2298 } else {
2299 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2300 if (ret)
2301 goto out_dec;
2302 /*
2303 * needed here as well, since ext2 (among others) may change
2304 * the blocksize at mount time
2305 */
2306 set_blocksize(bdev, CD_FRAMESIZE);
2307 }
2308
2309 mutex_unlock(&ctl_mutex);
2310 mutex_unlock(&pktcdvd_mutex);
2311 return 0;
2312
2313 out_dec:
2314 pd->refcnt--;
2315 out:
2316 pkt_dbg(2, "failed (%d)\n", ret);
2317 mutex_unlock(&ctl_mutex);
2318 mutex_unlock(&pktcdvd_mutex);
2319 return ret;
2320 }
2321
2322 static void pkt_close(struct gendisk *disk, fmode_t mode)
2323 {
2324 struct pktcdvd_device *pd = disk->private_data;
2325
2326 mutex_lock(&pktcdvd_mutex);
2327 mutex_lock(&ctl_mutex);
2328 pd->refcnt--;
2329 BUG_ON(pd->refcnt < 0);
2330 if (pd->refcnt == 0) {
2331 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2332 pkt_release_dev(pd, flush);
2333 }
2334 mutex_unlock(&ctl_mutex);
2335 mutex_unlock(&pktcdvd_mutex);
2336 }
2337
2338
2339 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2340 {
2341 struct packet_stacked_data *psd = bio->bi_private;
2342 struct pktcdvd_device *pd = psd->pd;
2343
2344 bio_put(bio);
2345 bio_endio(psd->bio, err);
2346 mempool_free(psd, psd_pool);
2347 pkt_bio_finished(pd);
2348 }
2349
2350 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2351 {
2352 struct pktcdvd_device *pd;
2353 char b[BDEVNAME_SIZE];
2354 sector_t zone;
2355 struct packet_data *pkt;
2356 int was_empty, blocked_bio;
2357 struct pkt_rb_node *node;
2358
2359 pd = q->queuedata;
2360 if (!pd) {
2361 pr_err("%s incorrect request queue\n",
2362 bdevname(bio->bi_bdev, b));
2363 goto end_io;
2364 }
2365
2366 /*
2367 * Clone READ bios so we can have our own bi_end_io callback.
2368 */
2369 if (bio_data_dir(bio) == READ) {
2370 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2371 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2372
2373 psd->pd = pd;
2374 psd->bio = bio;
2375 cloned_bio->bi_bdev = pd->bdev;
2376 cloned_bio->bi_private = psd;
2377 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2378 pd->stats.secs_r += bio_sectors(bio);
2379 pkt_queue_bio(pd, cloned_bio);
2380 return;
2381 }
2382
2383 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2384 pr_notice("WRITE for ro device %s (%llu)\n",
2385 pd->name, (unsigned long long)bio->bi_sector);
2386 goto end_io;
2387 }
2388
2389 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2390 pr_err("wrong bio size\n");
2391 goto end_io;
2392 }
2393
2394 blk_queue_bounce(q, &bio);
2395
2396 zone = get_zone(bio->bi_sector, pd);
2397 pkt_dbg(2, "start = %6llx stop = %6llx\n",
2398 (unsigned long long)bio->bi_sector,
2399 (unsigned long long)bio_end_sector(bio));
2400
2401 /* Check if we have to split the bio */
2402 {
2403 struct bio_pair *bp;
2404 sector_t last_zone;
2405 int first_sectors;
2406
2407 last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2408 if (last_zone != zone) {
2409 BUG_ON(last_zone != zone + pd->settings.size);
2410 first_sectors = last_zone - bio->bi_sector;
2411 bp = bio_split(bio, first_sectors);
2412 BUG_ON(!bp);
2413 pkt_make_request(q, &bp->bio1);
2414 pkt_make_request(q, &bp->bio2);
2415 bio_pair_release(bp);
2416 return;
2417 }
2418 }
2419
2420 /*
2421 * If we find a matching packet in state WAITING or READ_WAIT, we can
2422 * just append this bio to that packet.
2423 */
2424 spin_lock(&pd->cdrw.active_list_lock);
2425 blocked_bio = 0;
2426 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2427 if (pkt->sector == zone) {
2428 spin_lock(&pkt->lock);
2429 if ((pkt->state == PACKET_WAITING_STATE) ||
2430 (pkt->state == PACKET_READ_WAIT_STATE)) {
2431 bio_list_add(&pkt->orig_bios, bio);
2432 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2433 if ((pkt->write_size >= pkt->frames) &&
2434 (pkt->state == PACKET_WAITING_STATE)) {
2435 atomic_inc(&pkt->run_sm);
2436 wake_up(&pd->wqueue);
2437 }
2438 spin_unlock(&pkt->lock);
2439 spin_unlock(&pd->cdrw.active_list_lock);
2440 return;
2441 } else {
2442 blocked_bio = 1;
2443 }
2444 spin_unlock(&pkt->lock);
2445 }
2446 }
2447 spin_unlock(&pd->cdrw.active_list_lock);
2448
2449 /*
2450 * Test if there is enough room left in the bio work queue
2451 * (queue size >= congestion on mark).
2452 * If not, wait till the work queue size is below the congestion off mark.
2453 */
2454 spin_lock(&pd->lock);
2455 if (pd->write_congestion_on > 0
2456 && pd->bio_queue_size >= pd->write_congestion_on) {
2457 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2458 do {
2459 spin_unlock(&pd->lock);
2460 congestion_wait(BLK_RW_ASYNC, HZ);
2461 spin_lock(&pd->lock);
2462 } while(pd->bio_queue_size > pd->write_congestion_off);
2463 }
2464 spin_unlock(&pd->lock);
2465
2466 /*
2467 * No matching packet found. Store the bio in the work queue.
2468 */
2469 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2470 node->bio = bio;
2471 spin_lock(&pd->lock);
2472 BUG_ON(pd->bio_queue_size < 0);
2473 was_empty = (pd->bio_queue_size == 0);
2474 pkt_rbtree_insert(pd, node);
2475 spin_unlock(&pd->lock);
2476
2477 /*
2478 * Wake up the worker thread.
2479 */
2480 atomic_set(&pd->scan_queue, 1);
2481 if (was_empty) {
2482 /* This wake_up is required for correct operation */
2483 wake_up(&pd->wqueue);
2484 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2485 /*
2486 * This wake up is not required for correct operation,
2487 * but improves performance in some cases.
2488 */
2489 wake_up(&pd->wqueue);
2490 }
2491 return;
2492 end_io:
2493 bio_io_error(bio);
2494 }
2495
2496
2497
2498 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2499 struct bio_vec *bvec)
2500 {
2501 struct pktcdvd_device *pd = q->queuedata;
2502 sector_t zone = get_zone(bmd->bi_sector, pd);
2503 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2504 int remaining = (pd->settings.size << 9) - used;
2505 int remaining2;
2506
2507 /*
2508 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2509 * boundary, pkt_make_request() will split the bio.
2510 */
2511 remaining2 = PAGE_SIZE - bmd->bi_size;
2512 remaining = max(remaining, remaining2);
2513
2514 BUG_ON(remaining < 0);
2515 return remaining;
2516 }
2517
2518 static void pkt_init_queue(struct pktcdvd_device *pd)
2519 {
2520 struct request_queue *q = pd->disk->queue;
2521
2522 blk_queue_make_request(q, pkt_make_request);
2523 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2524 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2525 blk_queue_merge_bvec(q, pkt_merge_bvec);
2526 q->queuedata = pd;
2527 }
2528
2529 static int pkt_seq_show(struct seq_file *m, void *p)
2530 {
2531 struct pktcdvd_device *pd = m->private;
2532 char *msg;
2533 char bdev_buf[BDEVNAME_SIZE];
2534 int states[PACKET_NUM_STATES];
2535
2536 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2537 bdevname(pd->bdev, bdev_buf));
2538
2539 seq_printf(m, "\nSettings:\n");
2540 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2541
2542 if (pd->settings.write_type == 0)
2543 msg = "Packet";
2544 else
2545 msg = "Unknown";
2546 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2547
2548 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2549 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2550
2551 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2552
2553 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2554 msg = "Mode 1";
2555 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2556 msg = "Mode 2";
2557 else
2558 msg = "Unknown";
2559 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2560
2561 seq_printf(m, "\nStatistics:\n");
2562 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2563 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2564 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2565 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2566 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2567
2568 seq_printf(m, "\nMisc:\n");
2569 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2570 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2571 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2572 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2573 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2574 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2575
2576 seq_printf(m, "\nQueue state:\n");
2577 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2578 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2579 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2580
2581 pkt_count_states(pd, states);
2582 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2583 states[0], states[1], states[2], states[3], states[4], states[5]);
2584
2585 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2586 pd->write_congestion_off,
2587 pd->write_congestion_on);
2588 return 0;
2589 }
2590
2591 static int pkt_seq_open(struct inode *inode, struct file *file)
2592 {
2593 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2594 }
2595
2596 static const struct file_operations pkt_proc_fops = {
2597 .open = pkt_seq_open,
2598 .read = seq_read,
2599 .llseek = seq_lseek,
2600 .release = single_release
2601 };
2602
2603 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2604 {
2605 int i;
2606 int ret = 0;
2607 char b[BDEVNAME_SIZE];
2608 struct block_device *bdev;
2609
2610 if (pd->pkt_dev == dev) {
2611 pr_err("recursive setup not allowed\n");
2612 return -EBUSY;
2613 }
2614 for (i = 0; i < MAX_WRITERS; i++) {
2615 struct pktcdvd_device *pd2 = pkt_devs[i];
2616 if (!pd2)
2617 continue;
2618 if (pd2->bdev->bd_dev == dev) {
2619 pr_err("%s already setup\n", bdevname(pd2->bdev, b));
2620 return -EBUSY;
2621 }
2622 if (pd2->pkt_dev == dev) {
2623 pr_err("can't chain pktcdvd devices\n");
2624 return -EBUSY;
2625 }
2626 }
2627
2628 bdev = bdget(dev);
2629 if (!bdev)
2630 return -ENOMEM;
2631 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2632 if (ret)
2633 return ret;
2634
2635 /* This is safe, since we have a reference from open(). */
2636 __module_get(THIS_MODULE);
2637
2638 pd->bdev = bdev;
2639 set_blocksize(bdev, CD_FRAMESIZE);
2640
2641 pkt_init_queue(pd);
2642
2643 atomic_set(&pd->cdrw.pending_bios, 0);
2644 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2645 if (IS_ERR(pd->cdrw.thread)) {
2646 pr_err("can't start kernel thread\n");
2647 ret = -ENOMEM;
2648 goto out_mem;
2649 }
2650
2651 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2652 pkt_dbg(1, "writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2653 return 0;
2654
2655 out_mem:
2656 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2657 /* This is safe: open() is still holding a reference. */
2658 module_put(THIS_MODULE);
2659 return ret;
2660 }
2661
2662 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2663 {
2664 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2665 int ret;
2666
2667 pkt_dbg(2, "cmd %x, dev %d:%d\n",
2668 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2669
2670 mutex_lock(&pktcdvd_mutex);
2671 switch (cmd) {
2672 case CDROMEJECT:
2673 /*
2674 * The door gets locked when the device is opened, so we
2675 * have to unlock it or else the eject command fails.
2676 */
2677 if (pd->refcnt == 1)
2678 pkt_lock_door(pd, 0);
2679 /* fallthru */
2680 /*
2681 * forward selected CDROM ioctls to CD-ROM, for UDF
2682 */
2683 case CDROMMULTISESSION:
2684 case CDROMREADTOCENTRY:
2685 case CDROM_LAST_WRITTEN:
2686 case CDROM_SEND_PACKET:
2687 case SCSI_IOCTL_SEND_COMMAND:
2688 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2689 break;
2690
2691 default:
2692 pkt_dbg(2, "Unknown ioctl for %s (%x)\n", pd->name, cmd);
2693 ret = -ENOTTY;
2694 }
2695 mutex_unlock(&pktcdvd_mutex);
2696
2697 return ret;
2698 }
2699
2700 static unsigned int pkt_check_events(struct gendisk *disk,
2701 unsigned int clearing)
2702 {
2703 struct pktcdvd_device *pd = disk->private_data;
2704 struct gendisk *attached_disk;
2705
2706 if (!pd)
2707 return 0;
2708 if (!pd->bdev)
2709 return 0;
2710 attached_disk = pd->bdev->bd_disk;
2711 if (!attached_disk || !attached_disk->fops->check_events)
2712 return 0;
2713 return attached_disk->fops->check_events(attached_disk, clearing);
2714 }
2715
2716 static const struct block_device_operations pktcdvd_ops = {
2717 .owner = THIS_MODULE,
2718 .open = pkt_open,
2719 .release = pkt_close,
2720 .ioctl = pkt_ioctl,
2721 .check_events = pkt_check_events,
2722 };
2723
2724 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2725 {
2726 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2727 }
2728
2729 /*
2730 * Set up mapping from pktcdvd device to CD-ROM device.
2731 */
2732 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2733 {
2734 int idx;
2735 int ret = -ENOMEM;
2736 struct pktcdvd_device *pd;
2737 struct gendisk *disk;
2738
2739 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2740
2741 for (idx = 0; idx < MAX_WRITERS; idx++)
2742 if (!pkt_devs[idx])
2743 break;
2744 if (idx == MAX_WRITERS) {
2745 pr_err("max %d writers supported\n", MAX_WRITERS);
2746 ret = -EBUSY;
2747 goto out_mutex;
2748 }
2749
2750 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2751 if (!pd)
2752 goto out_mutex;
2753
2754 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2755 sizeof(struct pkt_rb_node));
2756 if (!pd->rb_pool)
2757 goto out_mem;
2758
2759 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2760 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2761 spin_lock_init(&pd->cdrw.active_list_lock);
2762
2763 spin_lock_init(&pd->lock);
2764 spin_lock_init(&pd->iosched.lock);
2765 bio_list_init(&pd->iosched.read_queue);
2766 bio_list_init(&pd->iosched.write_queue);
2767 sprintf(pd->name, DRIVER_NAME"%d", idx);
2768 init_waitqueue_head(&pd->wqueue);
2769 pd->bio_queue = RB_ROOT;
2770
2771 pd->write_congestion_on = write_congestion_on;
2772 pd->write_congestion_off = write_congestion_off;
2773
2774 disk = alloc_disk(1);
2775 if (!disk)
2776 goto out_mem;
2777 pd->disk = disk;
2778 disk->major = pktdev_major;
2779 disk->first_minor = idx;
2780 disk->fops = &pktcdvd_ops;
2781 disk->flags = GENHD_FL_REMOVABLE;
2782 strcpy(disk->disk_name, pd->name);
2783 disk->devnode = pktcdvd_devnode;
2784 disk->private_data = pd;
2785 disk->queue = blk_alloc_queue(GFP_KERNEL);
2786 if (!disk->queue)
2787 goto out_mem2;
2788
2789 pd->pkt_dev = MKDEV(pktdev_major, idx);
2790 ret = pkt_new_dev(pd, dev);
2791 if (ret)
2792 goto out_new_dev;
2793
2794 /* inherit events of the host device */
2795 disk->events = pd->bdev->bd_disk->events;
2796 disk->async_events = pd->bdev->bd_disk->async_events;
2797
2798 add_disk(disk);
2799
2800 pkt_sysfs_dev_new(pd);
2801 pkt_debugfs_dev_new(pd);
2802
2803 pkt_devs[idx] = pd;
2804 if (pkt_dev)
2805 *pkt_dev = pd->pkt_dev;
2806
2807 mutex_unlock(&ctl_mutex);
2808 return 0;
2809
2810 out_new_dev:
2811 blk_cleanup_queue(disk->queue);
2812 out_mem2:
2813 put_disk(disk);
2814 out_mem:
2815 if (pd->rb_pool)
2816 mempool_destroy(pd->rb_pool);
2817 kfree(pd);
2818 out_mutex:
2819 mutex_unlock(&ctl_mutex);
2820 pr_err("setup of pktcdvd device failed\n");
2821 return ret;
2822 }
2823
2824 /*
2825 * Tear down mapping from pktcdvd device to CD-ROM device.
2826 */
2827 static int pkt_remove_dev(dev_t pkt_dev)
2828 {
2829 struct pktcdvd_device *pd;
2830 int idx;
2831 int ret = 0;
2832
2833 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2834
2835 for (idx = 0; idx < MAX_WRITERS; idx++) {
2836 pd = pkt_devs[idx];
2837 if (pd && (pd->pkt_dev == pkt_dev))
2838 break;
2839 }
2840 if (idx == MAX_WRITERS) {
2841 pkt_dbg(1, "dev not setup\n");
2842 ret = -ENXIO;
2843 goto out;
2844 }
2845
2846 if (pd->refcnt > 0) {
2847 ret = -EBUSY;
2848 goto out;
2849 }
2850 if (!IS_ERR(pd->cdrw.thread))
2851 kthread_stop(pd->cdrw.thread);
2852
2853 pkt_devs[idx] = NULL;
2854
2855 pkt_debugfs_dev_remove(pd);
2856 pkt_sysfs_dev_remove(pd);
2857
2858 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2859
2860 remove_proc_entry(pd->name, pkt_proc);
2861 pkt_dbg(1, "writer %s unmapped\n", pd->name);
2862
2863 del_gendisk(pd->disk);
2864 blk_cleanup_queue(pd->disk->queue);
2865 put_disk(pd->disk);
2866
2867 mempool_destroy(pd->rb_pool);
2868 kfree(pd);
2869
2870 /* This is safe: open() is still holding a reference. */
2871 module_put(THIS_MODULE);
2872
2873 out:
2874 mutex_unlock(&ctl_mutex);
2875 return ret;
2876 }
2877
2878 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2879 {
2880 struct pktcdvd_device *pd;
2881
2882 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2883
2884 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2885 if (pd) {
2886 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2887 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2888 } else {
2889 ctrl_cmd->dev = 0;
2890 ctrl_cmd->pkt_dev = 0;
2891 }
2892 ctrl_cmd->num_devices = MAX_WRITERS;
2893
2894 mutex_unlock(&ctl_mutex);
2895 }
2896
2897 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2898 {
2899 void __user *argp = (void __user *)arg;
2900 struct pkt_ctrl_command ctrl_cmd;
2901 int ret = 0;
2902 dev_t pkt_dev = 0;
2903
2904 if (cmd != PACKET_CTRL_CMD)
2905 return -ENOTTY;
2906
2907 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2908 return -EFAULT;
2909
2910 switch (ctrl_cmd.command) {
2911 case PKT_CTRL_CMD_SETUP:
2912 if (!capable(CAP_SYS_ADMIN))
2913 return -EPERM;
2914 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2915 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2916 break;
2917 case PKT_CTRL_CMD_TEARDOWN:
2918 if (!capable(CAP_SYS_ADMIN))
2919 return -EPERM;
2920 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2921 break;
2922 case PKT_CTRL_CMD_STATUS:
2923 pkt_get_status(&ctrl_cmd);
2924 break;
2925 default:
2926 return -ENOTTY;
2927 }
2928
2929 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2930 return -EFAULT;
2931 return ret;
2932 }
2933
2934 #ifdef CONFIG_COMPAT
2935 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2936 {
2937 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2938 }
2939 #endif
2940
2941 static const struct file_operations pkt_ctl_fops = {
2942 .open = nonseekable_open,
2943 .unlocked_ioctl = pkt_ctl_ioctl,
2944 #ifdef CONFIG_COMPAT
2945 .compat_ioctl = pkt_ctl_compat_ioctl,
2946 #endif
2947 .owner = THIS_MODULE,
2948 .llseek = no_llseek,
2949 };
2950
2951 static struct miscdevice pkt_misc = {
2952 .minor = MISC_DYNAMIC_MINOR,
2953 .name = DRIVER_NAME,
2954 .nodename = "pktcdvd/control",
2955 .fops = &pkt_ctl_fops
2956 };
2957
2958 static int __init pkt_init(void)
2959 {
2960 int ret;
2961
2962 mutex_init(&ctl_mutex);
2963
2964 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2965 sizeof(struct packet_stacked_data));
2966 if (!psd_pool)
2967 return -ENOMEM;
2968
2969 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2970 if (ret < 0) {
2971 pr_err("unable to register block device\n");
2972 goto out2;
2973 }
2974 if (!pktdev_major)
2975 pktdev_major = ret;
2976
2977 ret = pkt_sysfs_init();
2978 if (ret)
2979 goto out;
2980
2981 pkt_debugfs_init();
2982
2983 ret = misc_register(&pkt_misc);
2984 if (ret) {
2985 pr_err("unable to register misc device\n");
2986 goto out_misc;
2987 }
2988
2989 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2990
2991 return 0;
2992
2993 out_misc:
2994 pkt_debugfs_cleanup();
2995 pkt_sysfs_cleanup();
2996 out:
2997 unregister_blkdev(pktdev_major, DRIVER_NAME);
2998 out2:
2999 mempool_destroy(psd_pool);
3000 return ret;
3001 }
3002
3003 static void __exit pkt_exit(void)
3004 {
3005 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3006 misc_deregister(&pkt_misc);
3007
3008 pkt_debugfs_cleanup();
3009 pkt_sysfs_cleanup();
3010
3011 unregister_blkdev(pktdev_major, DRIVER_NAME);
3012 mempool_destroy(psd_pool);
3013 }
3014
3015 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3016 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3017 MODULE_LICENSE("GPL");
3018
3019 module_init(pkt_init);
3020 module_exit(pkt_exit);
This page took 0.089094 seconds and 6 git commands to generate.