3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
48 #include "rbd_types.h"
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
67 static int atomic_inc_return_safe(atomic_t
*v
)
71 counter
= (unsigned int)__atomic_add_unless(v
, 1, 0);
72 if (counter
<= (unsigned int)INT_MAX
)
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t
*v
)
85 counter
= atomic_dec_return(v
);
94 #define RBD_DRV_NAME "rbd"
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
99 #define RBD_MAX_PARENT_CHAIN_LEN 16
101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN \
103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
107 #define RBD_SNAP_HEAD_NAME "-"
109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX 64
115 #define RBD_OBJ_PREFIX_LEN_MAX 64
119 #define RBD_FEATURE_LAYERING (1<<0)
120 #define RBD_FEATURE_STRIPINGV2 (1<<1)
121 #define RBD_FEATURES_ALL \
122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
124 /* Features supported by this (client software) implementation. */
126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
129 * An RBD device name will be "rbd#", where the "rbd" comes from
130 * RBD_DRV_NAME above, and # is a unique integer identifier.
131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132 * enough to hold all possible device names.
134 #define DEV_NAME_LEN 32
135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
138 * block device image metadata (in-memory version)
140 struct rbd_image_header
{
141 /* These six fields never change for a given rbd image */
148 u64 features
; /* Might be changeable someday? */
150 /* The remaining fields need to be updated occasionally */
152 struct ceph_snap_context
*snapc
;
153 char *snap_names
; /* format 1 only */
154 u64
*snap_sizes
; /* format 1 only */
158 * An rbd image specification.
160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161 * identify an image. Each rbd_dev structure includes a pointer to
162 * an rbd_spec structure that encapsulates this identity.
164 * Each of the id's in an rbd_spec has an associated name. For a
165 * user-mapped image, the names are supplied and the id's associated
166 * with them are looked up. For a layered image, a parent image is
167 * defined by the tuple, and the names are looked up.
169 * An rbd_dev structure contains a parent_spec pointer which is
170 * non-null if the image it represents is a child in a layered
171 * image. This pointer will refer to the rbd_spec structure used
172 * by the parent rbd_dev for its own identity (i.e., the structure
173 * is shared between the parent and child).
175 * Since these structures are populated once, during the discovery
176 * phase of image construction, they are effectively immutable so
177 * we make no effort to synchronize access to them.
179 * Note that code herein does not assume the image name is known (it
180 * could be a null pointer).
184 const char *pool_name
;
186 const char *image_id
;
187 const char *image_name
;
190 const char *snap_name
;
196 * an instance of the client. multiple devices may share an rbd client.
199 struct ceph_client
*client
;
201 struct list_head node
;
204 struct rbd_img_request
;
205 typedef void (*rbd_img_callback_t
)(struct rbd_img_request
*);
207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
209 struct rbd_obj_request
;
210 typedef void (*rbd_obj_callback_t
)(struct rbd_obj_request
*);
212 enum obj_request_type
{
213 OBJ_REQUEST_NODATA
, OBJ_REQUEST_BIO
, OBJ_REQUEST_PAGES
216 enum obj_operation_type
{
223 OBJ_REQ_DONE
, /* completion flag: not done = 0, done = 1 */
224 OBJ_REQ_IMG_DATA
, /* object usage: standalone = 0, image = 1 */
225 OBJ_REQ_KNOWN
, /* EXISTS flag valid: no = 0, yes = 1 */
226 OBJ_REQ_EXISTS
, /* target exists: no = 0, yes = 1 */
229 struct rbd_obj_request
{
230 const char *object_name
;
231 u64 offset
; /* object start byte */
232 u64 length
; /* bytes from offset */
236 * An object request associated with an image will have its
237 * img_data flag set; a standalone object request will not.
239 * A standalone object request will have which == BAD_WHICH
240 * and a null obj_request pointer.
242 * An object request initiated in support of a layered image
243 * object (to check for its existence before a write) will
244 * have which == BAD_WHICH and a non-null obj_request pointer.
246 * Finally, an object request for rbd image data will have
247 * which != BAD_WHICH, and will have a non-null img_request
248 * pointer. The value of which will be in the range
249 * 0..(img_request->obj_request_count-1).
252 struct rbd_obj_request
*obj_request
; /* STAT op */
254 struct rbd_img_request
*img_request
;
256 /* links for img_request->obj_requests list */
257 struct list_head links
;
260 u32 which
; /* posn image request list */
262 enum obj_request_type type
;
264 struct bio
*bio_list
;
270 struct page
**copyup_pages
;
271 u32 copyup_page_count
;
273 struct ceph_osd_request
*osd_req
;
275 u64 xferred
; /* bytes transferred */
278 rbd_obj_callback_t callback
;
279 struct completion completion
;
285 IMG_REQ_WRITE
, /* I/O direction: read = 0, write = 1 */
286 IMG_REQ_CHILD
, /* initiator: block = 0, child image = 1 */
287 IMG_REQ_LAYERED
, /* ENOENT handling: normal = 0, layered = 1 */
288 IMG_REQ_DISCARD
, /* discard: normal = 0, discard request = 1 */
291 struct rbd_img_request
{
292 struct rbd_device
*rbd_dev
;
293 u64 offset
; /* starting image byte offset */
294 u64 length
; /* byte count from offset */
297 u64 snap_id
; /* for reads */
298 struct ceph_snap_context
*snapc
; /* for writes */
301 struct request
*rq
; /* block request */
302 struct rbd_obj_request
*obj_request
; /* obj req initiator */
304 struct page
**copyup_pages
;
305 u32 copyup_page_count
;
306 spinlock_t completion_lock
;/* protects next_completion */
308 rbd_img_callback_t callback
;
309 u64 xferred
;/* aggregate bytes transferred */
310 int result
; /* first nonzero obj_request result */
312 u32 obj_request_count
;
313 struct list_head obj_requests
; /* rbd_obj_request structs */
318 #define for_each_obj_request(ireq, oreq) \
319 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
335 int dev_id
; /* blkdev unique id */
337 int major
; /* blkdev assigned major */
339 struct gendisk
*disk
; /* blkdev's gendisk and rq */
341 u32 image_format
; /* Either 1 or 2 */
342 struct rbd_client
*rbd_client
;
344 char name
[DEV_NAME_LEN
]; /* blkdev name, e.g. rbd3 */
346 spinlock_t lock
; /* queue, flags, open_count */
348 struct rbd_image_header header
;
349 unsigned long flags
; /* possibly lock protected */
350 struct rbd_spec
*spec
;
351 struct rbd_options
*opts
;
355 struct ceph_file_layout layout
;
357 struct ceph_osd_event
*watch_event
;
358 struct rbd_obj_request
*watch_request
;
360 struct rbd_spec
*parent_spec
;
363 struct rbd_device
*parent
;
365 /* Block layer tags. */
366 struct blk_mq_tag_set tag_set
;
368 /* protects updating the header */
369 struct rw_semaphore header_rwsem
;
371 struct rbd_mapping mapping
;
373 struct list_head node
;
377 unsigned long open_count
; /* protected by lock */
381 * Flag bits for rbd_dev->flags. If atomicity is required,
382 * rbd_dev->lock is used to protect access.
384 * Currently, only the "removing" flag (which is coupled with the
385 * "open_count" field) requires atomic access.
388 RBD_DEV_FLAG_EXISTS
, /* mapped snapshot has not been deleted */
389 RBD_DEV_FLAG_REMOVING
, /* this mapping is being removed */
392 static DEFINE_MUTEX(client_mutex
); /* Serialize client creation */
394 static LIST_HEAD(rbd_dev_list
); /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock
);
397 static LIST_HEAD(rbd_client_list
); /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock
);
400 /* Slab caches for frequently-allocated structures */
402 static struct kmem_cache
*rbd_img_request_cache
;
403 static struct kmem_cache
*rbd_obj_request_cache
;
404 static struct kmem_cache
*rbd_segment_name_cache
;
406 static int rbd_major
;
407 static DEFINE_IDA(rbd_dev_id_ida
);
409 static struct workqueue_struct
*rbd_wq
;
412 * Default to false for now, as single-major requires >= 0.75 version of
413 * userspace rbd utility.
415 static bool single_major
= false;
416 module_param(single_major
, bool, S_IRUGO
);
417 MODULE_PARM_DESC(single_major
, "Use a single major number for all rbd devices (default: false)");
419 static int rbd_img_request_submit(struct rbd_img_request
*img_request
);
421 static ssize_t
rbd_add(struct bus_type
*bus
, const char *buf
,
423 static ssize_t
rbd_remove(struct bus_type
*bus
, const char *buf
,
425 static ssize_t
rbd_add_single_major(struct bus_type
*bus
, const char *buf
,
427 static ssize_t
rbd_remove_single_major(struct bus_type
*bus
, const char *buf
,
429 static int rbd_dev_image_probe(struct rbd_device
*rbd_dev
, int depth
);
430 static void rbd_spec_put(struct rbd_spec
*spec
);
432 static int rbd_dev_id_to_minor(int dev_id
)
434 return dev_id
<< RBD_SINGLE_MAJOR_PART_SHIFT
;
437 static int minor_to_rbd_dev_id(int minor
)
439 return minor
>> RBD_SINGLE_MAJOR_PART_SHIFT
;
442 static BUS_ATTR(add
, S_IWUSR
, NULL
, rbd_add
);
443 static BUS_ATTR(remove
, S_IWUSR
, NULL
, rbd_remove
);
444 static BUS_ATTR(add_single_major
, S_IWUSR
, NULL
, rbd_add_single_major
);
445 static BUS_ATTR(remove_single_major
, S_IWUSR
, NULL
, rbd_remove_single_major
);
447 static struct attribute
*rbd_bus_attrs
[] = {
449 &bus_attr_remove
.attr
,
450 &bus_attr_add_single_major
.attr
,
451 &bus_attr_remove_single_major
.attr
,
455 static umode_t
rbd_bus_is_visible(struct kobject
*kobj
,
456 struct attribute
*attr
, int index
)
459 (attr
== &bus_attr_add_single_major
.attr
||
460 attr
== &bus_attr_remove_single_major
.attr
))
466 static const struct attribute_group rbd_bus_group
= {
467 .attrs
= rbd_bus_attrs
,
468 .is_visible
= rbd_bus_is_visible
,
470 __ATTRIBUTE_GROUPS(rbd_bus
);
472 static struct bus_type rbd_bus_type
= {
474 .bus_groups
= rbd_bus_groups
,
477 static void rbd_root_dev_release(struct device
*dev
)
481 static struct device rbd_root_dev
= {
483 .release
= rbd_root_dev_release
,
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device
*rbd_dev
, const char *fmt
, ...)
489 struct va_format vaf
;
497 printk(KERN_WARNING
"%s: %pV\n", RBD_DRV_NAME
, &vaf
);
498 else if (rbd_dev
->disk
)
499 printk(KERN_WARNING
"%s: %s: %pV\n",
500 RBD_DRV_NAME
, rbd_dev
->disk
->disk_name
, &vaf
);
501 else if (rbd_dev
->spec
&& rbd_dev
->spec
->image_name
)
502 printk(KERN_WARNING
"%s: image %s: %pV\n",
503 RBD_DRV_NAME
, rbd_dev
->spec
->image_name
, &vaf
);
504 else if (rbd_dev
->spec
&& rbd_dev
->spec
->image_id
)
505 printk(KERN_WARNING
"%s: id %s: %pV\n",
506 RBD_DRV_NAME
, rbd_dev
->spec
->image_id
, &vaf
);
508 printk(KERN_WARNING
"%s: rbd_dev %p: %pV\n",
509 RBD_DRV_NAME
, rbd_dev
, &vaf
);
514 #define rbd_assert(expr) \
515 if (unlikely(!(expr))) { \
516 printk(KERN_ERR "\nAssertion failure in %s() " \
518 "\trbd_assert(%s);\n\n", \
519 __func__, __LINE__, #expr); \
522 #else /* !RBD_DEBUG */
523 # define rbd_assert(expr) ((void) 0)
524 #endif /* !RBD_DEBUG */
526 static void rbd_osd_copyup_callback(struct rbd_obj_request
*obj_request
);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request
*obj_request
);
528 static void rbd_img_parent_read(struct rbd_obj_request
*obj_request
);
529 static void rbd_dev_remove_parent(struct rbd_device
*rbd_dev
);
531 static int rbd_dev_refresh(struct rbd_device
*rbd_dev
);
532 static int rbd_dev_v2_header_onetime(struct rbd_device
*rbd_dev
);
533 static int rbd_dev_header_info(struct rbd_device
*rbd_dev
);
534 static int rbd_dev_v2_parent_info(struct rbd_device
*rbd_dev
);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device
*rbd_dev
,
537 static int _rbd_dev_v2_snap_size(struct rbd_device
*rbd_dev
, u64 snap_id
,
538 u8
*order
, u64
*snap_size
);
539 static int _rbd_dev_v2_snap_features(struct rbd_device
*rbd_dev
, u64 snap_id
,
542 static int rbd_open(struct block_device
*bdev
, fmode_t mode
)
544 struct rbd_device
*rbd_dev
= bdev
->bd_disk
->private_data
;
545 bool removing
= false;
547 if ((mode
& FMODE_WRITE
) && rbd_dev
->mapping
.read_only
)
550 spin_lock_irq(&rbd_dev
->lock
);
551 if (test_bit(RBD_DEV_FLAG_REMOVING
, &rbd_dev
->flags
))
554 rbd_dev
->open_count
++;
555 spin_unlock_irq(&rbd_dev
->lock
);
559 (void) get_device(&rbd_dev
->dev
);
564 static void rbd_release(struct gendisk
*disk
, fmode_t mode
)
566 struct rbd_device
*rbd_dev
= disk
->private_data
;
567 unsigned long open_count_before
;
569 spin_lock_irq(&rbd_dev
->lock
);
570 open_count_before
= rbd_dev
->open_count
--;
571 spin_unlock_irq(&rbd_dev
->lock
);
572 rbd_assert(open_count_before
> 0);
574 put_device(&rbd_dev
->dev
);
577 static int rbd_ioctl_set_ro(struct rbd_device
*rbd_dev
, unsigned long arg
)
582 bool ro_changed
= false;
584 /* get_user() may sleep, so call it before taking rbd_dev->lock */
585 if (get_user(val
, (int __user
*)(arg
)))
588 ro
= val
? true : false;
589 /* Snapshot doesn't allow to write*/
590 if (rbd_dev
->spec
->snap_id
!= CEPH_NOSNAP
&& !ro
)
593 spin_lock_irq(&rbd_dev
->lock
);
594 /* prevent others open this device */
595 if (rbd_dev
->open_count
> 1) {
600 if (rbd_dev
->mapping
.read_only
!= ro
) {
601 rbd_dev
->mapping
.read_only
= ro
;
606 spin_unlock_irq(&rbd_dev
->lock
);
607 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608 if (ret
== 0 && ro_changed
)
609 set_disk_ro(rbd_dev
->disk
, ro
? 1 : 0);
614 static int rbd_ioctl(struct block_device
*bdev
, fmode_t mode
,
615 unsigned int cmd
, unsigned long arg
)
617 struct rbd_device
*rbd_dev
= bdev
->bd_disk
->private_data
;
622 ret
= rbd_ioctl_set_ro(rbd_dev
, arg
);
632 static int rbd_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
633 unsigned int cmd
, unsigned long arg
)
635 return rbd_ioctl(bdev
, mode
, cmd
, arg
);
637 #endif /* CONFIG_COMPAT */
639 static const struct block_device_operations rbd_bd_ops
= {
640 .owner
= THIS_MODULE
,
642 .release
= rbd_release
,
645 .compat_ioctl
= rbd_compat_ioctl
,
650 * Initialize an rbd client instance. Success or not, this function
651 * consumes ceph_opts. Caller holds client_mutex.
653 static struct rbd_client
*rbd_client_create(struct ceph_options
*ceph_opts
)
655 struct rbd_client
*rbdc
;
658 dout("%s:\n", __func__
);
659 rbdc
= kmalloc(sizeof(struct rbd_client
), GFP_KERNEL
);
663 kref_init(&rbdc
->kref
);
664 INIT_LIST_HEAD(&rbdc
->node
);
666 rbdc
->client
= ceph_create_client(ceph_opts
, rbdc
, 0, 0);
667 if (IS_ERR(rbdc
->client
))
669 ceph_opts
= NULL
; /* Now rbdc->client is responsible for ceph_opts */
671 ret
= ceph_open_session(rbdc
->client
);
675 spin_lock(&rbd_client_list_lock
);
676 list_add_tail(&rbdc
->node
, &rbd_client_list
);
677 spin_unlock(&rbd_client_list_lock
);
679 dout("%s: rbdc %p\n", __func__
, rbdc
);
683 ceph_destroy_client(rbdc
->client
);
688 ceph_destroy_options(ceph_opts
);
689 dout("%s: error %d\n", __func__
, ret
);
694 static struct rbd_client
*__rbd_get_client(struct rbd_client
*rbdc
)
696 kref_get(&rbdc
->kref
);
702 * Find a ceph client with specific addr and configuration. If
703 * found, bump its reference count.
705 static struct rbd_client
*rbd_client_find(struct ceph_options
*ceph_opts
)
707 struct rbd_client
*client_node
;
710 if (ceph_opts
->flags
& CEPH_OPT_NOSHARE
)
713 spin_lock(&rbd_client_list_lock
);
714 list_for_each_entry(client_node
, &rbd_client_list
, node
) {
715 if (!ceph_compare_options(ceph_opts
, client_node
->client
)) {
716 __rbd_get_client(client_node
);
722 spin_unlock(&rbd_client_list_lock
);
724 return found
? client_node
: NULL
;
728 * (Per device) rbd map options
735 /* string args above */
741 static match_table_t rbd_opts_tokens
= {
742 {Opt_queue_depth
, "queue_depth=%d"},
744 /* string args above */
745 {Opt_read_only
, "read_only"},
746 {Opt_read_only
, "ro"}, /* Alternate spelling */
747 {Opt_read_write
, "read_write"},
748 {Opt_read_write
, "rw"}, /* Alternate spelling */
757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT false
760 static int parse_rbd_opts_token(char *c
, void *private)
762 struct rbd_options
*rbd_opts
= private;
763 substring_t argstr
[MAX_OPT_ARGS
];
764 int token
, intval
, ret
;
766 token
= match_token(c
, rbd_opts_tokens
, argstr
);
767 if (token
< Opt_last_int
) {
768 ret
= match_int(&argstr
[0], &intval
);
770 pr_err("bad mount option arg (not int) at '%s'\n", c
);
773 dout("got int token %d val %d\n", token
, intval
);
774 } else if (token
> Opt_last_int
&& token
< Opt_last_string
) {
775 dout("got string token %d val %s\n", token
, argstr
[0].from
);
777 dout("got token %d\n", token
);
781 case Opt_queue_depth
:
783 pr_err("queue_depth out of range\n");
786 rbd_opts
->queue_depth
= intval
;
789 rbd_opts
->read_only
= true;
792 rbd_opts
->read_only
= false;
795 /* libceph prints "bad option" msg */
802 static char* obj_op_name(enum obj_operation_type op_type
)
817 * Get a ceph client with specific addr and configuration, if one does
818 * not exist create it. Either way, ceph_opts is consumed by this
821 static struct rbd_client
*rbd_get_client(struct ceph_options
*ceph_opts
)
823 struct rbd_client
*rbdc
;
825 mutex_lock_nested(&client_mutex
, SINGLE_DEPTH_NESTING
);
826 rbdc
= rbd_client_find(ceph_opts
);
827 if (rbdc
) /* using an existing client */
828 ceph_destroy_options(ceph_opts
);
830 rbdc
= rbd_client_create(ceph_opts
);
831 mutex_unlock(&client_mutex
);
837 * Destroy ceph client
839 * Caller must hold rbd_client_list_lock.
841 static void rbd_client_release(struct kref
*kref
)
843 struct rbd_client
*rbdc
= container_of(kref
, struct rbd_client
, kref
);
845 dout("%s: rbdc %p\n", __func__
, rbdc
);
846 spin_lock(&rbd_client_list_lock
);
847 list_del(&rbdc
->node
);
848 spin_unlock(&rbd_client_list_lock
);
850 ceph_destroy_client(rbdc
->client
);
855 * Drop reference to ceph client node. If it's not referenced anymore, release
858 static void rbd_put_client(struct rbd_client
*rbdc
)
861 kref_put(&rbdc
->kref
, rbd_client_release
);
864 static bool rbd_image_format_valid(u32 image_format
)
866 return image_format
== 1 || image_format
== 2;
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk
*ondisk
)
874 /* The header has to start with the magic rbd header text */
875 if (memcmp(&ondisk
->text
, RBD_HEADER_TEXT
, sizeof (RBD_HEADER_TEXT
)))
878 /* The bio layer requires at least sector-sized I/O */
880 if (ondisk
->options
.order
< SECTOR_SHIFT
)
883 /* If we use u64 in a few spots we may be able to loosen this */
885 if (ondisk
->options
.order
> 8 * sizeof (int) - 1)
889 * The size of a snapshot header has to fit in a size_t, and
890 * that limits the number of snapshots.
892 snap_count
= le32_to_cpu(ondisk
->snap_count
);
893 size
= SIZE_MAX
- sizeof (struct ceph_snap_context
);
894 if (snap_count
> size
/ sizeof (__le64
))
898 * Not only that, but the size of the entire the snapshot
899 * header must also be representable in a size_t.
901 size
-= snap_count
* sizeof (__le64
);
902 if ((u64
) size
< le64_to_cpu(ondisk
->snap_names_len
))
909 * Fill an rbd image header with information from the given format 1
912 static int rbd_header_from_disk(struct rbd_device
*rbd_dev
,
913 struct rbd_image_header_ondisk
*ondisk
)
915 struct rbd_image_header
*header
= &rbd_dev
->header
;
916 bool first_time
= header
->object_prefix
== NULL
;
917 struct ceph_snap_context
*snapc
;
918 char *object_prefix
= NULL
;
919 char *snap_names
= NULL
;
920 u64
*snap_sizes
= NULL
;
926 /* Allocate this now to avoid having to handle failure below */
931 len
= strnlen(ondisk
->object_prefix
,
932 sizeof (ondisk
->object_prefix
));
933 object_prefix
= kmalloc(len
+ 1, GFP_KERNEL
);
936 memcpy(object_prefix
, ondisk
->object_prefix
, len
);
937 object_prefix
[len
] = '\0';
940 /* Allocate the snapshot context and fill it in */
942 snap_count
= le32_to_cpu(ondisk
->snap_count
);
943 snapc
= ceph_create_snap_context(snap_count
, GFP_KERNEL
);
946 snapc
->seq
= le64_to_cpu(ondisk
->snap_seq
);
948 struct rbd_image_snap_ondisk
*snaps
;
949 u64 snap_names_len
= le64_to_cpu(ondisk
->snap_names_len
);
951 /* We'll keep a copy of the snapshot names... */
953 if (snap_names_len
> (u64
)SIZE_MAX
)
955 snap_names
= kmalloc(snap_names_len
, GFP_KERNEL
);
959 /* ...as well as the array of their sizes. */
961 size
= snap_count
* sizeof (*header
->snap_sizes
);
962 snap_sizes
= kmalloc(size
, GFP_KERNEL
);
967 * Copy the names, and fill in each snapshot's id
970 * Note that rbd_dev_v1_header_info() guarantees the
971 * ondisk buffer we're working with has
972 * snap_names_len bytes beyond the end of the
973 * snapshot id array, this memcpy() is safe.
975 memcpy(snap_names
, &ondisk
->snaps
[snap_count
], snap_names_len
);
976 snaps
= ondisk
->snaps
;
977 for (i
= 0; i
< snap_count
; i
++) {
978 snapc
->snaps
[i
] = le64_to_cpu(snaps
[i
].id
);
979 snap_sizes
[i
] = le64_to_cpu(snaps
[i
].image_size
);
983 /* We won't fail any more, fill in the header */
986 header
->object_prefix
= object_prefix
;
987 header
->obj_order
= ondisk
->options
.order
;
988 header
->crypt_type
= ondisk
->options
.crypt_type
;
989 header
->comp_type
= ondisk
->options
.comp_type
;
990 /* The rest aren't used for format 1 images */
991 header
->stripe_unit
= 0;
992 header
->stripe_count
= 0;
993 header
->features
= 0;
995 ceph_put_snap_context(header
->snapc
);
996 kfree(header
->snap_names
);
997 kfree(header
->snap_sizes
);
1000 /* The remaining fields always get updated (when we refresh) */
1002 header
->image_size
= le64_to_cpu(ondisk
->image_size
);
1003 header
->snapc
= snapc
;
1004 header
->snap_names
= snap_names
;
1005 header
->snap_sizes
= snap_sizes
;
1013 ceph_put_snap_context(snapc
);
1014 kfree(object_prefix
);
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device
*rbd_dev
, u32 which
)
1021 const char *snap_name
;
1023 rbd_assert(which
< rbd_dev
->header
.snapc
->num_snaps
);
1025 /* Skip over names until we find the one we are looking for */
1027 snap_name
= rbd_dev
->header
.snap_names
;
1029 snap_name
+= strlen(snap_name
) + 1;
1031 return kstrdup(snap_name
, GFP_KERNEL
);
1035 * Snapshot id comparison function for use with qsort()/bsearch().
1036 * Note that result is for snapshots in *descending* order.
1038 static int snapid_compare_reverse(const void *s1
, const void *s2
)
1040 u64 snap_id1
= *(u64
*)s1
;
1041 u64 snap_id2
= *(u64
*)s2
;
1043 if (snap_id1
< snap_id2
)
1045 return snap_id1
== snap_id2
? 0 : -1;
1049 * Search a snapshot context to see if the given snapshot id is
1052 * Returns the position of the snapshot id in the array if it's found,
1053 * or BAD_SNAP_INDEX otherwise.
1055 * Note: The snapshot array is in kept sorted (by the osd) in
1056 * reverse order, highest snapshot id first.
1058 static u32
rbd_dev_snap_index(struct rbd_device
*rbd_dev
, u64 snap_id
)
1060 struct ceph_snap_context
*snapc
= rbd_dev
->header
.snapc
;
1063 found
= bsearch(&snap_id
, &snapc
->snaps
, snapc
->num_snaps
,
1064 sizeof (snap_id
), snapid_compare_reverse
);
1066 return found
? (u32
)(found
- &snapc
->snaps
[0]) : BAD_SNAP_INDEX
;
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device
*rbd_dev
,
1073 const char *snap_name
;
1075 which
= rbd_dev_snap_index(rbd_dev
, snap_id
);
1076 if (which
== BAD_SNAP_INDEX
)
1077 return ERR_PTR(-ENOENT
);
1079 snap_name
= _rbd_dev_v1_snap_name(rbd_dev
, which
);
1080 return snap_name
? snap_name
: ERR_PTR(-ENOMEM
);
1083 static const char *rbd_snap_name(struct rbd_device
*rbd_dev
, u64 snap_id
)
1085 if (snap_id
== CEPH_NOSNAP
)
1086 return RBD_SNAP_HEAD_NAME
;
1088 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
1089 if (rbd_dev
->image_format
== 1)
1090 return rbd_dev_v1_snap_name(rbd_dev
, snap_id
);
1092 return rbd_dev_v2_snap_name(rbd_dev
, snap_id
);
1095 static int rbd_snap_size(struct rbd_device
*rbd_dev
, u64 snap_id
,
1098 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
1099 if (snap_id
== CEPH_NOSNAP
) {
1100 *snap_size
= rbd_dev
->header
.image_size
;
1101 } else if (rbd_dev
->image_format
== 1) {
1104 which
= rbd_dev_snap_index(rbd_dev
, snap_id
);
1105 if (which
== BAD_SNAP_INDEX
)
1108 *snap_size
= rbd_dev
->header
.snap_sizes
[which
];
1113 ret
= _rbd_dev_v2_snap_size(rbd_dev
, snap_id
, NULL
, &size
);
1122 static int rbd_snap_features(struct rbd_device
*rbd_dev
, u64 snap_id
,
1125 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
1126 if (snap_id
== CEPH_NOSNAP
) {
1127 *snap_features
= rbd_dev
->header
.features
;
1128 } else if (rbd_dev
->image_format
== 1) {
1129 *snap_features
= 0; /* No features for format 1 */
1134 ret
= _rbd_dev_v2_snap_features(rbd_dev
, snap_id
, &features
);
1138 *snap_features
= features
;
1143 static int rbd_dev_mapping_set(struct rbd_device
*rbd_dev
)
1145 u64 snap_id
= rbd_dev
->spec
->snap_id
;
1150 ret
= rbd_snap_size(rbd_dev
, snap_id
, &size
);
1153 ret
= rbd_snap_features(rbd_dev
, snap_id
, &features
);
1157 rbd_dev
->mapping
.size
= size
;
1158 rbd_dev
->mapping
.features
= features
;
1163 static void rbd_dev_mapping_clear(struct rbd_device
*rbd_dev
)
1165 rbd_dev
->mapping
.size
= 0;
1166 rbd_dev
->mapping
.features
= 0;
1169 static void rbd_segment_name_free(const char *name
)
1171 /* The explicit cast here is needed to drop the const qualifier */
1173 kmem_cache_free(rbd_segment_name_cache
, (void *)name
);
1176 static const char *rbd_segment_name(struct rbd_device
*rbd_dev
, u64 offset
)
1183 name
= kmem_cache_alloc(rbd_segment_name_cache
, GFP_NOIO
);
1186 segment
= offset
>> rbd_dev
->header
.obj_order
;
1187 name_format
= "%s.%012llx";
1188 if (rbd_dev
->image_format
== 2)
1189 name_format
= "%s.%016llx";
1190 ret
= snprintf(name
, CEPH_MAX_OID_NAME_LEN
+ 1, name_format
,
1191 rbd_dev
->header
.object_prefix
, segment
);
1192 if (ret
< 0 || ret
> CEPH_MAX_OID_NAME_LEN
) {
1193 pr_err("error formatting segment name for #%llu (%d)\n",
1195 rbd_segment_name_free(name
);
1202 static u64
rbd_segment_offset(struct rbd_device
*rbd_dev
, u64 offset
)
1204 u64 segment_size
= (u64
) 1 << rbd_dev
->header
.obj_order
;
1206 return offset
& (segment_size
- 1);
1209 static u64
rbd_segment_length(struct rbd_device
*rbd_dev
,
1210 u64 offset
, u64 length
)
1212 u64 segment_size
= (u64
) 1 << rbd_dev
->header
.obj_order
;
1214 offset
&= segment_size
- 1;
1216 rbd_assert(length
<= U64_MAX
- offset
);
1217 if (offset
+ length
> segment_size
)
1218 length
= segment_size
- offset
;
1224 * returns the size of an object in the image
1226 static u64
rbd_obj_bytes(struct rbd_image_header
*header
)
1228 return 1 << header
->obj_order
;
1235 static void bio_chain_put(struct bio
*chain
)
1241 chain
= chain
->bi_next
;
1247 * zeros a bio chain, starting at specific offset
1249 static void zero_bio_chain(struct bio
*chain
, int start_ofs
)
1252 struct bvec_iter iter
;
1253 unsigned long flags
;
1258 bio_for_each_segment(bv
, chain
, iter
) {
1259 if (pos
+ bv
.bv_len
> start_ofs
) {
1260 int remainder
= max(start_ofs
- pos
, 0);
1261 buf
= bvec_kmap_irq(&bv
, &flags
);
1262 memset(buf
+ remainder
, 0,
1263 bv
.bv_len
- remainder
);
1264 flush_dcache_page(bv
.bv_page
);
1265 bvec_kunmap_irq(buf
, &flags
);
1270 chain
= chain
->bi_next
;
1275 * similar to zero_bio_chain(), zeros data defined by a page array,
1276 * starting at the given byte offset from the start of the array and
1277 * continuing up to the given end offset. The pages array is
1278 * assumed to be big enough to hold all bytes up to the end.
1280 static void zero_pages(struct page
**pages
, u64 offset
, u64 end
)
1282 struct page
**page
= &pages
[offset
>> PAGE_SHIFT
];
1284 rbd_assert(end
> offset
);
1285 rbd_assert(end
- offset
<= (u64
)SIZE_MAX
);
1286 while (offset
< end
) {
1289 unsigned long flags
;
1292 page_offset
= offset
& ~PAGE_MASK
;
1293 length
= min_t(size_t, PAGE_SIZE
- page_offset
, end
- offset
);
1294 local_irq_save(flags
);
1295 kaddr
= kmap_atomic(*page
);
1296 memset(kaddr
+ page_offset
, 0, length
);
1297 flush_dcache_page(*page
);
1298 kunmap_atomic(kaddr
);
1299 local_irq_restore(flags
);
1307 * Clone a portion of a bio, starting at the given byte offset
1308 * and continuing for the number of bytes indicated.
1310 static struct bio
*bio_clone_range(struct bio
*bio_src
,
1311 unsigned int offset
,
1317 bio
= bio_clone(bio_src
, gfpmask
);
1319 return NULL
; /* ENOMEM */
1321 bio_advance(bio
, offset
);
1322 bio
->bi_iter
.bi_size
= len
;
1328 * Clone a portion of a bio chain, starting at the given byte offset
1329 * into the first bio in the source chain and continuing for the
1330 * number of bytes indicated. The result is another bio chain of
1331 * exactly the given length, or a null pointer on error.
1333 * The bio_src and offset parameters are both in-out. On entry they
1334 * refer to the first source bio and the offset into that bio where
1335 * the start of data to be cloned is located.
1337 * On return, bio_src is updated to refer to the bio in the source
1338 * chain that contains first un-cloned byte, and *offset will
1339 * contain the offset of that byte within that bio.
1341 static struct bio
*bio_chain_clone_range(struct bio
**bio_src
,
1342 unsigned int *offset
,
1346 struct bio
*bi
= *bio_src
;
1347 unsigned int off
= *offset
;
1348 struct bio
*chain
= NULL
;
1351 /* Build up a chain of clone bios up to the limit */
1353 if (!bi
|| off
>= bi
->bi_iter
.bi_size
|| !len
)
1354 return NULL
; /* Nothing to clone */
1358 unsigned int bi_size
;
1362 rbd_warn(NULL
, "bio_chain exhausted with %u left", len
);
1363 goto out_err
; /* EINVAL; ran out of bio's */
1365 bi_size
= min_t(unsigned int, bi
->bi_iter
.bi_size
- off
, len
);
1366 bio
= bio_clone_range(bi
, off
, bi_size
, gfpmask
);
1368 goto out_err
; /* ENOMEM */
1371 end
= &bio
->bi_next
;
1374 if (off
== bi
->bi_iter
.bi_size
) {
1385 bio_chain_put(chain
);
1391 * The default/initial value for all object request flags is 0. For
1392 * each flag, once its value is set to 1 it is never reset to 0
1395 static void obj_request_img_data_set(struct rbd_obj_request
*obj_request
)
1397 if (test_and_set_bit(OBJ_REQ_IMG_DATA
, &obj_request
->flags
)) {
1398 struct rbd_device
*rbd_dev
;
1400 rbd_dev
= obj_request
->img_request
->rbd_dev
;
1401 rbd_warn(rbd_dev
, "obj_request %p already marked img_data",
1406 static bool obj_request_img_data_test(struct rbd_obj_request
*obj_request
)
1409 return test_bit(OBJ_REQ_IMG_DATA
, &obj_request
->flags
) != 0;
1412 static void obj_request_done_set(struct rbd_obj_request
*obj_request
)
1414 if (test_and_set_bit(OBJ_REQ_DONE
, &obj_request
->flags
)) {
1415 struct rbd_device
*rbd_dev
= NULL
;
1417 if (obj_request_img_data_test(obj_request
))
1418 rbd_dev
= obj_request
->img_request
->rbd_dev
;
1419 rbd_warn(rbd_dev
, "obj_request %p already marked done",
1424 static bool obj_request_done_test(struct rbd_obj_request
*obj_request
)
1427 return test_bit(OBJ_REQ_DONE
, &obj_request
->flags
) != 0;
1431 * This sets the KNOWN flag after (possibly) setting the EXISTS
1432 * flag. The latter is set based on the "exists" value provided.
1434 * Note that for our purposes once an object exists it never goes
1435 * away again. It's possible that the response from two existence
1436 * checks are separated by the creation of the target object, and
1437 * the first ("doesn't exist") response arrives *after* the second
1438 * ("does exist"). In that case we ignore the second one.
1440 static void obj_request_existence_set(struct rbd_obj_request
*obj_request
,
1444 set_bit(OBJ_REQ_EXISTS
, &obj_request
->flags
);
1445 set_bit(OBJ_REQ_KNOWN
, &obj_request
->flags
);
1449 static bool obj_request_known_test(struct rbd_obj_request
*obj_request
)
1452 return test_bit(OBJ_REQ_KNOWN
, &obj_request
->flags
) != 0;
1455 static bool obj_request_exists_test(struct rbd_obj_request
*obj_request
)
1458 return test_bit(OBJ_REQ_EXISTS
, &obj_request
->flags
) != 0;
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request
*obj_request
)
1463 struct rbd_device
*rbd_dev
= obj_request
->img_request
->rbd_dev
;
1465 return obj_request
->img_offset
<
1466 round_up(rbd_dev
->parent_overlap
, rbd_obj_bytes(&rbd_dev
->header
));
1469 static void rbd_obj_request_get(struct rbd_obj_request
*obj_request
)
1471 dout("%s: obj %p (was %d)\n", __func__
, obj_request
,
1472 atomic_read(&obj_request
->kref
.refcount
));
1473 kref_get(&obj_request
->kref
);
1476 static void rbd_obj_request_destroy(struct kref
*kref
);
1477 static void rbd_obj_request_put(struct rbd_obj_request
*obj_request
)
1479 rbd_assert(obj_request
!= NULL
);
1480 dout("%s: obj %p (was %d)\n", __func__
, obj_request
,
1481 atomic_read(&obj_request
->kref
.refcount
));
1482 kref_put(&obj_request
->kref
, rbd_obj_request_destroy
);
1485 static void rbd_img_request_get(struct rbd_img_request
*img_request
)
1487 dout("%s: img %p (was %d)\n", __func__
, img_request
,
1488 atomic_read(&img_request
->kref
.refcount
));
1489 kref_get(&img_request
->kref
);
1492 static bool img_request_child_test(struct rbd_img_request
*img_request
);
1493 static void rbd_parent_request_destroy(struct kref
*kref
);
1494 static void rbd_img_request_destroy(struct kref
*kref
);
1495 static void rbd_img_request_put(struct rbd_img_request
*img_request
)
1497 rbd_assert(img_request
!= NULL
);
1498 dout("%s: img %p (was %d)\n", __func__
, img_request
,
1499 atomic_read(&img_request
->kref
.refcount
));
1500 if (img_request_child_test(img_request
))
1501 kref_put(&img_request
->kref
, rbd_parent_request_destroy
);
1503 kref_put(&img_request
->kref
, rbd_img_request_destroy
);
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request
*img_request
,
1507 struct rbd_obj_request
*obj_request
)
1509 rbd_assert(obj_request
->img_request
== NULL
);
1511 /* Image request now owns object's original reference */
1512 obj_request
->img_request
= img_request
;
1513 obj_request
->which
= img_request
->obj_request_count
;
1514 rbd_assert(!obj_request_img_data_test(obj_request
));
1515 obj_request_img_data_set(obj_request
);
1516 rbd_assert(obj_request
->which
!= BAD_WHICH
);
1517 img_request
->obj_request_count
++;
1518 list_add_tail(&obj_request
->links
, &img_request
->obj_requests
);
1519 dout("%s: img %p obj %p w=%u\n", __func__
, img_request
, obj_request
,
1520 obj_request
->which
);
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request
*img_request
,
1524 struct rbd_obj_request
*obj_request
)
1526 rbd_assert(obj_request
->which
!= BAD_WHICH
);
1528 dout("%s: img %p obj %p w=%u\n", __func__
, img_request
, obj_request
,
1529 obj_request
->which
);
1530 list_del(&obj_request
->links
);
1531 rbd_assert(img_request
->obj_request_count
> 0);
1532 img_request
->obj_request_count
--;
1533 rbd_assert(obj_request
->which
== img_request
->obj_request_count
);
1534 obj_request
->which
= BAD_WHICH
;
1535 rbd_assert(obj_request_img_data_test(obj_request
));
1536 rbd_assert(obj_request
->img_request
== img_request
);
1537 obj_request
->img_request
= NULL
;
1538 obj_request
->callback
= NULL
;
1539 rbd_obj_request_put(obj_request
);
1542 static bool obj_request_type_valid(enum obj_request_type type
)
1545 case OBJ_REQUEST_NODATA
:
1546 case OBJ_REQUEST_BIO
:
1547 case OBJ_REQUEST_PAGES
:
1554 static int rbd_obj_request_submit(struct ceph_osd_client
*osdc
,
1555 struct rbd_obj_request
*obj_request
)
1557 dout("%s %p\n", __func__
, obj_request
);
1558 return ceph_osdc_start_request(osdc
, obj_request
->osd_req
, false);
1561 static void rbd_obj_request_end(struct rbd_obj_request
*obj_request
)
1563 dout("%s %p\n", __func__
, obj_request
);
1564 ceph_osdc_cancel_request(obj_request
->osd_req
);
1568 * Wait for an object request to complete. If interrupted, cancel the
1569 * underlying osd request.
1571 * @timeout: in jiffies, 0 means "wait forever"
1573 static int __rbd_obj_request_wait(struct rbd_obj_request
*obj_request
,
1574 unsigned long timeout
)
1578 dout("%s %p\n", __func__
, obj_request
);
1579 ret
= wait_for_completion_interruptible_timeout(
1580 &obj_request
->completion
,
1581 ceph_timeout_jiffies(timeout
));
1585 rbd_obj_request_end(obj_request
);
1590 dout("%s %p ret %d\n", __func__
, obj_request
, (int)ret
);
1594 static int rbd_obj_request_wait(struct rbd_obj_request
*obj_request
)
1596 return __rbd_obj_request_wait(obj_request
, 0);
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request
*obj_request
,
1600 unsigned long timeout
)
1602 return __rbd_obj_request_wait(obj_request
, timeout
);
1605 static void rbd_img_request_complete(struct rbd_img_request
*img_request
)
1608 dout("%s: img %p\n", __func__
, img_request
);
1611 * If no error occurred, compute the aggregate transfer
1612 * count for the image request. We could instead use
1613 * atomic64_cmpxchg() to update it as each object request
1614 * completes; not clear which way is better off hand.
1616 if (!img_request
->result
) {
1617 struct rbd_obj_request
*obj_request
;
1620 for_each_obj_request(img_request
, obj_request
)
1621 xferred
+= obj_request
->xferred
;
1622 img_request
->xferred
= xferred
;
1625 if (img_request
->callback
)
1626 img_request
->callback(img_request
);
1628 rbd_img_request_put(img_request
);
1632 * The default/initial value for all image request flags is 0. Each
1633 * is conditionally set to 1 at image request initialization time
1634 * and currently never change thereafter.
1636 static void img_request_write_set(struct rbd_img_request
*img_request
)
1638 set_bit(IMG_REQ_WRITE
, &img_request
->flags
);
1642 static bool img_request_write_test(struct rbd_img_request
*img_request
)
1645 return test_bit(IMG_REQ_WRITE
, &img_request
->flags
) != 0;
1649 * Set the discard flag when the img_request is an discard request
1651 static void img_request_discard_set(struct rbd_img_request
*img_request
)
1653 set_bit(IMG_REQ_DISCARD
, &img_request
->flags
);
1657 static bool img_request_discard_test(struct rbd_img_request
*img_request
)
1660 return test_bit(IMG_REQ_DISCARD
, &img_request
->flags
) != 0;
1663 static void img_request_child_set(struct rbd_img_request
*img_request
)
1665 set_bit(IMG_REQ_CHILD
, &img_request
->flags
);
1669 static void img_request_child_clear(struct rbd_img_request
*img_request
)
1671 clear_bit(IMG_REQ_CHILD
, &img_request
->flags
);
1675 static bool img_request_child_test(struct rbd_img_request
*img_request
)
1678 return test_bit(IMG_REQ_CHILD
, &img_request
->flags
) != 0;
1681 static void img_request_layered_set(struct rbd_img_request
*img_request
)
1683 set_bit(IMG_REQ_LAYERED
, &img_request
->flags
);
1687 static void img_request_layered_clear(struct rbd_img_request
*img_request
)
1689 clear_bit(IMG_REQ_LAYERED
, &img_request
->flags
);
1693 static bool img_request_layered_test(struct rbd_img_request
*img_request
)
1696 return test_bit(IMG_REQ_LAYERED
, &img_request
->flags
) != 0;
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request
*img_request
)
1702 if (img_request_write_test(img_request
))
1703 return OBJ_OP_WRITE
;
1704 else if (img_request_discard_test(img_request
))
1705 return OBJ_OP_DISCARD
;
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request
*obj_request
)
1713 u64 xferred
= obj_request
->xferred
;
1714 u64 length
= obj_request
->length
;
1716 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__
,
1717 obj_request
, obj_request
->img_request
, obj_request
->result
,
1720 * ENOENT means a hole in the image. We zero-fill the entire
1721 * length of the request. A short read also implies zero-fill
1722 * to the end of the request. An error requires the whole
1723 * length of the request to be reported finished with an error
1724 * to the block layer. In each case we update the xferred
1725 * count to indicate the whole request was satisfied.
1727 rbd_assert(obj_request
->type
!= OBJ_REQUEST_NODATA
);
1728 if (obj_request
->result
== -ENOENT
) {
1729 if (obj_request
->type
== OBJ_REQUEST_BIO
)
1730 zero_bio_chain(obj_request
->bio_list
, 0);
1732 zero_pages(obj_request
->pages
, 0, length
);
1733 obj_request
->result
= 0;
1734 } else if (xferred
< length
&& !obj_request
->result
) {
1735 if (obj_request
->type
== OBJ_REQUEST_BIO
)
1736 zero_bio_chain(obj_request
->bio_list
, xferred
);
1738 zero_pages(obj_request
->pages
, xferred
, length
);
1740 obj_request
->xferred
= length
;
1741 obj_request_done_set(obj_request
);
1744 static void rbd_obj_request_complete(struct rbd_obj_request
*obj_request
)
1746 dout("%s: obj %p cb %p\n", __func__
, obj_request
,
1747 obj_request
->callback
);
1748 if (obj_request
->callback
)
1749 obj_request
->callback(obj_request
);
1751 complete_all(&obj_request
->completion
);
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request
*obj_request
)
1756 dout("%s: obj %p\n", __func__
, obj_request
);
1757 obj_request_done_set(obj_request
);
1760 static void rbd_osd_read_callback(struct rbd_obj_request
*obj_request
)
1762 struct rbd_img_request
*img_request
= NULL
;
1763 struct rbd_device
*rbd_dev
= NULL
;
1764 bool layered
= false;
1766 if (obj_request_img_data_test(obj_request
)) {
1767 img_request
= obj_request
->img_request
;
1768 layered
= img_request
&& img_request_layered_test(img_request
);
1769 rbd_dev
= img_request
->rbd_dev
;
1772 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__
,
1773 obj_request
, img_request
, obj_request
->result
,
1774 obj_request
->xferred
, obj_request
->length
);
1775 if (layered
&& obj_request
->result
== -ENOENT
&&
1776 obj_request
->img_offset
< rbd_dev
->parent_overlap
)
1777 rbd_img_parent_read(obj_request
);
1778 else if (img_request
)
1779 rbd_img_obj_request_read_callback(obj_request
);
1781 obj_request_done_set(obj_request
);
1784 static void rbd_osd_write_callback(struct rbd_obj_request
*obj_request
)
1786 dout("%s: obj %p result %d %llu\n", __func__
, obj_request
,
1787 obj_request
->result
, obj_request
->length
);
1789 * There is no such thing as a successful short write. Set
1790 * it to our originally-requested length.
1792 obj_request
->xferred
= obj_request
->length
;
1793 obj_request_done_set(obj_request
);
1796 static void rbd_osd_discard_callback(struct rbd_obj_request
*obj_request
)
1798 dout("%s: obj %p result %d %llu\n", __func__
, obj_request
,
1799 obj_request
->result
, obj_request
->length
);
1801 * There is no such thing as a successful short discard. Set
1802 * it to our originally-requested length.
1804 obj_request
->xferred
= obj_request
->length
;
1805 /* discarding a non-existent object is not a problem */
1806 if (obj_request
->result
== -ENOENT
)
1807 obj_request
->result
= 0;
1808 obj_request_done_set(obj_request
);
1812 * For a simple stat call there's nothing to do. We'll do more if
1813 * this is part of a write sequence for a layered image.
1815 static void rbd_osd_stat_callback(struct rbd_obj_request
*obj_request
)
1817 dout("%s: obj %p\n", __func__
, obj_request
);
1818 obj_request_done_set(obj_request
);
1821 static void rbd_osd_call_callback(struct rbd_obj_request
*obj_request
)
1823 dout("%s: obj %p\n", __func__
, obj_request
);
1825 if (obj_request_img_data_test(obj_request
))
1826 rbd_osd_copyup_callback(obj_request
);
1828 obj_request_done_set(obj_request
);
1831 static void rbd_osd_req_callback(struct ceph_osd_request
*osd_req
,
1832 struct ceph_msg
*msg
)
1834 struct rbd_obj_request
*obj_request
= osd_req
->r_priv
;
1837 dout("%s: osd_req %p msg %p\n", __func__
, osd_req
, msg
);
1838 rbd_assert(osd_req
== obj_request
->osd_req
);
1839 if (obj_request_img_data_test(obj_request
)) {
1840 rbd_assert(obj_request
->img_request
);
1841 rbd_assert(obj_request
->which
!= BAD_WHICH
);
1843 rbd_assert(obj_request
->which
== BAD_WHICH
);
1846 if (osd_req
->r_result
< 0)
1847 obj_request
->result
= osd_req
->r_result
;
1850 * We support a 64-bit length, but ultimately it has to be
1851 * passed to the block layer, which just supports a 32-bit
1854 obj_request
->xferred
= osd_req
->r_ops
[0].outdata_len
;
1855 rbd_assert(obj_request
->xferred
< (u64
)UINT_MAX
);
1857 opcode
= osd_req
->r_ops
[0].op
;
1859 case CEPH_OSD_OP_READ
:
1860 rbd_osd_read_callback(obj_request
);
1862 case CEPH_OSD_OP_SETALLOCHINT
:
1863 rbd_assert(osd_req
->r_ops
[1].op
== CEPH_OSD_OP_WRITE
||
1864 osd_req
->r_ops
[1].op
== CEPH_OSD_OP_WRITEFULL
);
1866 case CEPH_OSD_OP_WRITE
:
1867 case CEPH_OSD_OP_WRITEFULL
:
1868 rbd_osd_write_callback(obj_request
);
1870 case CEPH_OSD_OP_STAT
:
1871 rbd_osd_stat_callback(obj_request
);
1873 case CEPH_OSD_OP_DELETE
:
1874 case CEPH_OSD_OP_TRUNCATE
:
1875 case CEPH_OSD_OP_ZERO
:
1876 rbd_osd_discard_callback(obj_request
);
1878 case CEPH_OSD_OP_CALL
:
1879 rbd_osd_call_callback(obj_request
);
1881 case CEPH_OSD_OP_NOTIFY_ACK
:
1882 case CEPH_OSD_OP_WATCH
:
1883 rbd_osd_trivial_callback(obj_request
);
1886 rbd_warn(NULL
, "%s: unsupported op %hu",
1887 obj_request
->object_name
, (unsigned short) opcode
);
1891 if (obj_request_done_test(obj_request
))
1892 rbd_obj_request_complete(obj_request
);
1895 static void rbd_osd_req_format_read(struct rbd_obj_request
*obj_request
)
1897 struct rbd_img_request
*img_request
= obj_request
->img_request
;
1898 struct ceph_osd_request
*osd_req
= obj_request
->osd_req
;
1901 rbd_assert(osd_req
!= NULL
);
1903 snap_id
= img_request
? img_request
->snap_id
: CEPH_NOSNAP
;
1904 ceph_osdc_build_request(osd_req
, obj_request
->offset
,
1905 NULL
, snap_id
, NULL
);
1908 static void rbd_osd_req_format_write(struct rbd_obj_request
*obj_request
)
1910 struct rbd_img_request
*img_request
= obj_request
->img_request
;
1911 struct ceph_osd_request
*osd_req
= obj_request
->osd_req
;
1912 struct ceph_snap_context
*snapc
;
1913 struct timespec mtime
= CURRENT_TIME
;
1915 rbd_assert(osd_req
!= NULL
);
1917 snapc
= img_request
? img_request
->snapc
: NULL
;
1918 ceph_osdc_build_request(osd_req
, obj_request
->offset
,
1919 snapc
, CEPH_NOSNAP
, &mtime
);
1923 * Create an osd request. A read request has one osd op (read).
1924 * A write request has either one (watch) or two (hint+write) osd ops.
1925 * (All rbd data writes are prefixed with an allocation hint op, but
1926 * technically osd watch is a write request, hence this distinction.)
1928 static struct ceph_osd_request
*rbd_osd_req_create(
1929 struct rbd_device
*rbd_dev
,
1930 enum obj_operation_type op_type
,
1931 unsigned int num_ops
,
1932 struct rbd_obj_request
*obj_request
)
1934 struct ceph_snap_context
*snapc
= NULL
;
1935 struct ceph_osd_client
*osdc
;
1936 struct ceph_osd_request
*osd_req
;
1938 if (obj_request_img_data_test(obj_request
) &&
1939 (op_type
== OBJ_OP_DISCARD
|| op_type
== OBJ_OP_WRITE
)) {
1940 struct rbd_img_request
*img_request
= obj_request
->img_request
;
1941 if (op_type
== OBJ_OP_WRITE
) {
1942 rbd_assert(img_request_write_test(img_request
));
1944 rbd_assert(img_request_discard_test(img_request
));
1946 snapc
= img_request
->snapc
;
1949 rbd_assert(num_ops
== 1 || ((op_type
== OBJ_OP_WRITE
) && num_ops
== 2));
1951 /* Allocate and initialize the request, for the num_ops ops */
1953 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
1954 osd_req
= ceph_osdc_alloc_request(osdc
, snapc
, num_ops
, false,
1957 return NULL
; /* ENOMEM */
1959 if (op_type
== OBJ_OP_WRITE
|| op_type
== OBJ_OP_DISCARD
)
1960 osd_req
->r_flags
= CEPH_OSD_FLAG_WRITE
| CEPH_OSD_FLAG_ONDISK
;
1962 osd_req
->r_flags
= CEPH_OSD_FLAG_READ
;
1964 osd_req
->r_callback
= rbd_osd_req_callback
;
1965 osd_req
->r_priv
= obj_request
;
1967 osd_req
->r_base_oloc
.pool
= ceph_file_layout_pg_pool(rbd_dev
->layout
);
1968 ceph_oid_set_name(&osd_req
->r_base_oid
, obj_request
->object_name
);
1974 * Create a copyup osd request based on the information in the object
1975 * request supplied. A copyup request has two or three osd ops, a
1976 * copyup method call, potentially a hint op, and a write or truncate
1979 static struct ceph_osd_request
*
1980 rbd_osd_req_create_copyup(struct rbd_obj_request
*obj_request
)
1982 struct rbd_img_request
*img_request
;
1983 struct ceph_snap_context
*snapc
;
1984 struct rbd_device
*rbd_dev
;
1985 struct ceph_osd_client
*osdc
;
1986 struct ceph_osd_request
*osd_req
;
1987 int num_osd_ops
= 3;
1989 rbd_assert(obj_request_img_data_test(obj_request
));
1990 img_request
= obj_request
->img_request
;
1991 rbd_assert(img_request
);
1992 rbd_assert(img_request_write_test(img_request
) ||
1993 img_request_discard_test(img_request
));
1995 if (img_request_discard_test(img_request
))
1998 /* Allocate and initialize the request, for all the ops */
2000 snapc
= img_request
->snapc
;
2001 rbd_dev
= img_request
->rbd_dev
;
2002 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2003 osd_req
= ceph_osdc_alloc_request(osdc
, snapc
, num_osd_ops
,
2006 return NULL
; /* ENOMEM */
2008 osd_req
->r_flags
= CEPH_OSD_FLAG_WRITE
| CEPH_OSD_FLAG_ONDISK
;
2009 osd_req
->r_callback
= rbd_osd_req_callback
;
2010 osd_req
->r_priv
= obj_request
;
2012 osd_req
->r_base_oloc
.pool
= ceph_file_layout_pg_pool(rbd_dev
->layout
);
2013 ceph_oid_set_name(&osd_req
->r_base_oid
, obj_request
->object_name
);
2019 static void rbd_osd_req_destroy(struct ceph_osd_request
*osd_req
)
2021 ceph_osdc_put_request(osd_req
);
2024 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2026 static struct rbd_obj_request
*rbd_obj_request_create(const char *object_name
,
2027 u64 offset
, u64 length
,
2028 enum obj_request_type type
)
2030 struct rbd_obj_request
*obj_request
;
2034 rbd_assert(obj_request_type_valid(type
));
2036 size
= strlen(object_name
) + 1;
2037 name
= kmalloc(size
, GFP_NOIO
);
2041 obj_request
= kmem_cache_zalloc(rbd_obj_request_cache
, GFP_NOIO
);
2047 obj_request
->object_name
= memcpy(name
, object_name
, size
);
2048 obj_request
->offset
= offset
;
2049 obj_request
->length
= length
;
2050 obj_request
->flags
= 0;
2051 obj_request
->which
= BAD_WHICH
;
2052 obj_request
->type
= type
;
2053 INIT_LIST_HEAD(&obj_request
->links
);
2054 init_completion(&obj_request
->completion
);
2055 kref_init(&obj_request
->kref
);
2057 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__
, object_name
,
2058 offset
, length
, (int)type
, obj_request
);
2063 static void rbd_obj_request_destroy(struct kref
*kref
)
2065 struct rbd_obj_request
*obj_request
;
2067 obj_request
= container_of(kref
, struct rbd_obj_request
, kref
);
2069 dout("%s: obj %p\n", __func__
, obj_request
);
2071 rbd_assert(obj_request
->img_request
== NULL
);
2072 rbd_assert(obj_request
->which
== BAD_WHICH
);
2074 if (obj_request
->osd_req
)
2075 rbd_osd_req_destroy(obj_request
->osd_req
);
2077 rbd_assert(obj_request_type_valid(obj_request
->type
));
2078 switch (obj_request
->type
) {
2079 case OBJ_REQUEST_NODATA
:
2080 break; /* Nothing to do */
2081 case OBJ_REQUEST_BIO
:
2082 if (obj_request
->bio_list
)
2083 bio_chain_put(obj_request
->bio_list
);
2085 case OBJ_REQUEST_PAGES
:
2086 if (obj_request
->pages
)
2087 ceph_release_page_vector(obj_request
->pages
,
2088 obj_request
->page_count
);
2092 kfree(obj_request
->object_name
);
2093 obj_request
->object_name
= NULL
;
2094 kmem_cache_free(rbd_obj_request_cache
, obj_request
);
2097 /* It's OK to call this for a device with no parent */
2099 static void rbd_spec_put(struct rbd_spec
*spec
);
2100 static void rbd_dev_unparent(struct rbd_device
*rbd_dev
)
2102 rbd_dev_remove_parent(rbd_dev
);
2103 rbd_spec_put(rbd_dev
->parent_spec
);
2104 rbd_dev
->parent_spec
= NULL
;
2105 rbd_dev
->parent_overlap
= 0;
2109 * Parent image reference counting is used to determine when an
2110 * image's parent fields can be safely torn down--after there are no
2111 * more in-flight requests to the parent image. When the last
2112 * reference is dropped, cleaning them up is safe.
2114 static void rbd_dev_parent_put(struct rbd_device
*rbd_dev
)
2118 if (!rbd_dev
->parent_spec
)
2121 counter
= atomic_dec_return_safe(&rbd_dev
->parent_ref
);
2125 /* Last reference; clean up parent data structures */
2128 rbd_dev_unparent(rbd_dev
);
2130 rbd_warn(rbd_dev
, "parent reference underflow");
2134 * If an image has a non-zero parent overlap, get a reference to its
2137 * Returns true if the rbd device has a parent with a non-zero
2138 * overlap and a reference for it was successfully taken, or
2141 static bool rbd_dev_parent_get(struct rbd_device
*rbd_dev
)
2145 if (!rbd_dev
->parent_spec
)
2148 down_read(&rbd_dev
->header_rwsem
);
2149 if (rbd_dev
->parent_overlap
)
2150 counter
= atomic_inc_return_safe(&rbd_dev
->parent_ref
);
2151 up_read(&rbd_dev
->header_rwsem
);
2154 rbd_warn(rbd_dev
, "parent reference overflow");
2160 * Caller is responsible for filling in the list of object requests
2161 * that comprises the image request, and the Linux request pointer
2162 * (if there is one).
2164 static struct rbd_img_request
*rbd_img_request_create(
2165 struct rbd_device
*rbd_dev
,
2166 u64 offset
, u64 length
,
2167 enum obj_operation_type op_type
,
2168 struct ceph_snap_context
*snapc
)
2170 struct rbd_img_request
*img_request
;
2172 img_request
= kmem_cache_alloc(rbd_img_request_cache
, GFP_NOIO
);
2176 img_request
->rq
= NULL
;
2177 img_request
->rbd_dev
= rbd_dev
;
2178 img_request
->offset
= offset
;
2179 img_request
->length
= length
;
2180 img_request
->flags
= 0;
2181 if (op_type
== OBJ_OP_DISCARD
) {
2182 img_request_discard_set(img_request
);
2183 img_request
->snapc
= snapc
;
2184 } else if (op_type
== OBJ_OP_WRITE
) {
2185 img_request_write_set(img_request
);
2186 img_request
->snapc
= snapc
;
2188 img_request
->snap_id
= rbd_dev
->spec
->snap_id
;
2190 if (rbd_dev_parent_get(rbd_dev
))
2191 img_request_layered_set(img_request
);
2192 spin_lock_init(&img_request
->completion_lock
);
2193 img_request
->next_completion
= 0;
2194 img_request
->callback
= NULL
;
2195 img_request
->result
= 0;
2196 img_request
->obj_request_count
= 0;
2197 INIT_LIST_HEAD(&img_request
->obj_requests
);
2198 kref_init(&img_request
->kref
);
2200 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__
, rbd_dev
,
2201 obj_op_name(op_type
), offset
, length
, img_request
);
2206 static void rbd_img_request_destroy(struct kref
*kref
)
2208 struct rbd_img_request
*img_request
;
2209 struct rbd_obj_request
*obj_request
;
2210 struct rbd_obj_request
*next_obj_request
;
2212 img_request
= container_of(kref
, struct rbd_img_request
, kref
);
2214 dout("%s: img %p\n", __func__
, img_request
);
2216 for_each_obj_request_safe(img_request
, obj_request
, next_obj_request
)
2217 rbd_img_obj_request_del(img_request
, obj_request
);
2218 rbd_assert(img_request
->obj_request_count
== 0);
2220 if (img_request_layered_test(img_request
)) {
2221 img_request_layered_clear(img_request
);
2222 rbd_dev_parent_put(img_request
->rbd_dev
);
2225 if (img_request_write_test(img_request
) ||
2226 img_request_discard_test(img_request
))
2227 ceph_put_snap_context(img_request
->snapc
);
2229 kmem_cache_free(rbd_img_request_cache
, img_request
);
2232 static struct rbd_img_request
*rbd_parent_request_create(
2233 struct rbd_obj_request
*obj_request
,
2234 u64 img_offset
, u64 length
)
2236 struct rbd_img_request
*parent_request
;
2237 struct rbd_device
*rbd_dev
;
2239 rbd_assert(obj_request
->img_request
);
2240 rbd_dev
= obj_request
->img_request
->rbd_dev
;
2242 parent_request
= rbd_img_request_create(rbd_dev
->parent
, img_offset
,
2243 length
, OBJ_OP_READ
, NULL
);
2244 if (!parent_request
)
2247 img_request_child_set(parent_request
);
2248 rbd_obj_request_get(obj_request
);
2249 parent_request
->obj_request
= obj_request
;
2251 return parent_request
;
2254 static void rbd_parent_request_destroy(struct kref
*kref
)
2256 struct rbd_img_request
*parent_request
;
2257 struct rbd_obj_request
*orig_request
;
2259 parent_request
= container_of(kref
, struct rbd_img_request
, kref
);
2260 orig_request
= parent_request
->obj_request
;
2262 parent_request
->obj_request
= NULL
;
2263 rbd_obj_request_put(orig_request
);
2264 img_request_child_clear(parent_request
);
2266 rbd_img_request_destroy(kref
);
2269 static bool rbd_img_obj_end_request(struct rbd_obj_request
*obj_request
)
2271 struct rbd_img_request
*img_request
;
2272 unsigned int xferred
;
2276 rbd_assert(obj_request_img_data_test(obj_request
));
2277 img_request
= obj_request
->img_request
;
2279 rbd_assert(obj_request
->xferred
<= (u64
)UINT_MAX
);
2280 xferred
= (unsigned int)obj_request
->xferred
;
2281 result
= obj_request
->result
;
2283 struct rbd_device
*rbd_dev
= img_request
->rbd_dev
;
2284 enum obj_operation_type op_type
;
2286 if (img_request_discard_test(img_request
))
2287 op_type
= OBJ_OP_DISCARD
;
2288 else if (img_request_write_test(img_request
))
2289 op_type
= OBJ_OP_WRITE
;
2291 op_type
= OBJ_OP_READ
;
2293 rbd_warn(rbd_dev
, "%s %llx at %llx (%llx)",
2294 obj_op_name(op_type
), obj_request
->length
,
2295 obj_request
->img_offset
, obj_request
->offset
);
2296 rbd_warn(rbd_dev
, " result %d xferred %x",
2298 if (!img_request
->result
)
2299 img_request
->result
= result
;
2301 * Need to end I/O on the entire obj_request worth of
2302 * bytes in case of error.
2304 xferred
= obj_request
->length
;
2307 /* Image object requests don't own their page array */
2309 if (obj_request
->type
== OBJ_REQUEST_PAGES
) {
2310 obj_request
->pages
= NULL
;
2311 obj_request
->page_count
= 0;
2314 if (img_request_child_test(img_request
)) {
2315 rbd_assert(img_request
->obj_request
!= NULL
);
2316 more
= obj_request
->which
< img_request
->obj_request_count
- 1;
2318 rbd_assert(img_request
->rq
!= NULL
);
2320 more
= blk_update_request(img_request
->rq
, result
, xferred
);
2322 __blk_mq_end_request(img_request
->rq
, result
);
2328 static void rbd_img_obj_callback(struct rbd_obj_request
*obj_request
)
2330 struct rbd_img_request
*img_request
;
2331 u32 which
= obj_request
->which
;
2334 rbd_assert(obj_request_img_data_test(obj_request
));
2335 img_request
= obj_request
->img_request
;
2337 dout("%s: img %p obj %p\n", __func__
, img_request
, obj_request
);
2338 rbd_assert(img_request
!= NULL
);
2339 rbd_assert(img_request
->obj_request_count
> 0);
2340 rbd_assert(which
!= BAD_WHICH
);
2341 rbd_assert(which
< img_request
->obj_request_count
);
2343 spin_lock_irq(&img_request
->completion_lock
);
2344 if (which
!= img_request
->next_completion
)
2347 for_each_obj_request_from(img_request
, obj_request
) {
2349 rbd_assert(which
< img_request
->obj_request_count
);
2351 if (!obj_request_done_test(obj_request
))
2353 more
= rbd_img_obj_end_request(obj_request
);
2357 rbd_assert(more
^ (which
== img_request
->obj_request_count
));
2358 img_request
->next_completion
= which
;
2360 spin_unlock_irq(&img_request
->completion_lock
);
2361 rbd_img_request_put(img_request
);
2364 rbd_img_request_complete(img_request
);
2368 * Add individual osd ops to the given ceph_osd_request and prepare
2369 * them for submission. num_ops is the current number of
2370 * osd operations already to the object request.
2372 static void rbd_img_obj_request_fill(struct rbd_obj_request
*obj_request
,
2373 struct ceph_osd_request
*osd_request
,
2374 enum obj_operation_type op_type
,
2375 unsigned int num_ops
)
2377 struct rbd_img_request
*img_request
= obj_request
->img_request
;
2378 struct rbd_device
*rbd_dev
= img_request
->rbd_dev
;
2379 u64 object_size
= rbd_obj_bytes(&rbd_dev
->header
);
2380 u64 offset
= obj_request
->offset
;
2381 u64 length
= obj_request
->length
;
2385 if (op_type
== OBJ_OP_DISCARD
) {
2386 if (!offset
&& length
== object_size
&&
2387 (!img_request_layered_test(img_request
) ||
2388 !obj_request_overlaps_parent(obj_request
))) {
2389 opcode
= CEPH_OSD_OP_DELETE
;
2390 } else if ((offset
+ length
== object_size
)) {
2391 opcode
= CEPH_OSD_OP_TRUNCATE
;
2393 down_read(&rbd_dev
->header_rwsem
);
2394 img_end
= rbd_dev
->header
.image_size
;
2395 up_read(&rbd_dev
->header_rwsem
);
2397 if (obj_request
->img_offset
+ length
== img_end
)
2398 opcode
= CEPH_OSD_OP_TRUNCATE
;
2400 opcode
= CEPH_OSD_OP_ZERO
;
2402 } else if (op_type
== OBJ_OP_WRITE
) {
2403 if (!offset
&& length
== object_size
)
2404 opcode
= CEPH_OSD_OP_WRITEFULL
;
2406 opcode
= CEPH_OSD_OP_WRITE
;
2407 osd_req_op_alloc_hint_init(osd_request
, num_ops
,
2408 object_size
, object_size
);
2411 opcode
= CEPH_OSD_OP_READ
;
2414 if (opcode
== CEPH_OSD_OP_DELETE
)
2415 osd_req_op_init(osd_request
, num_ops
, opcode
, 0);
2417 osd_req_op_extent_init(osd_request
, num_ops
, opcode
,
2418 offset
, length
, 0, 0);
2420 if (obj_request
->type
== OBJ_REQUEST_BIO
)
2421 osd_req_op_extent_osd_data_bio(osd_request
, num_ops
,
2422 obj_request
->bio_list
, length
);
2423 else if (obj_request
->type
== OBJ_REQUEST_PAGES
)
2424 osd_req_op_extent_osd_data_pages(osd_request
, num_ops
,
2425 obj_request
->pages
, length
,
2426 offset
& ~PAGE_MASK
, false, false);
2428 /* Discards are also writes */
2429 if (op_type
== OBJ_OP_WRITE
|| op_type
== OBJ_OP_DISCARD
)
2430 rbd_osd_req_format_write(obj_request
);
2432 rbd_osd_req_format_read(obj_request
);
2436 * Split up an image request into one or more object requests, each
2437 * to a different object. The "type" parameter indicates whether
2438 * "data_desc" is the pointer to the head of a list of bio
2439 * structures, or the base of a page array. In either case this
2440 * function assumes data_desc describes memory sufficient to hold
2441 * all data described by the image request.
2443 static int rbd_img_request_fill(struct rbd_img_request
*img_request
,
2444 enum obj_request_type type
,
2447 struct rbd_device
*rbd_dev
= img_request
->rbd_dev
;
2448 struct rbd_obj_request
*obj_request
= NULL
;
2449 struct rbd_obj_request
*next_obj_request
;
2450 struct bio
*bio_list
= NULL
;
2451 unsigned int bio_offset
= 0;
2452 struct page
**pages
= NULL
;
2453 enum obj_operation_type op_type
;
2457 dout("%s: img %p type %d data_desc %p\n", __func__
, img_request
,
2458 (int)type
, data_desc
);
2460 img_offset
= img_request
->offset
;
2461 resid
= img_request
->length
;
2462 rbd_assert(resid
> 0);
2463 op_type
= rbd_img_request_op_type(img_request
);
2465 if (type
== OBJ_REQUEST_BIO
) {
2466 bio_list
= data_desc
;
2467 rbd_assert(img_offset
==
2468 bio_list
->bi_iter
.bi_sector
<< SECTOR_SHIFT
);
2469 } else if (type
== OBJ_REQUEST_PAGES
) {
2474 struct ceph_osd_request
*osd_req
;
2475 const char *object_name
;
2479 object_name
= rbd_segment_name(rbd_dev
, img_offset
);
2482 offset
= rbd_segment_offset(rbd_dev
, img_offset
);
2483 length
= rbd_segment_length(rbd_dev
, img_offset
, resid
);
2484 obj_request
= rbd_obj_request_create(object_name
,
2485 offset
, length
, type
);
2486 /* object request has its own copy of the object name */
2487 rbd_segment_name_free(object_name
);
2492 * set obj_request->img_request before creating the
2493 * osd_request so that it gets the right snapc
2495 rbd_img_obj_request_add(img_request
, obj_request
);
2497 if (type
== OBJ_REQUEST_BIO
) {
2498 unsigned int clone_size
;
2500 rbd_assert(length
<= (u64
)UINT_MAX
);
2501 clone_size
= (unsigned int)length
;
2502 obj_request
->bio_list
=
2503 bio_chain_clone_range(&bio_list
,
2507 if (!obj_request
->bio_list
)
2509 } else if (type
== OBJ_REQUEST_PAGES
) {
2510 unsigned int page_count
;
2512 obj_request
->pages
= pages
;
2513 page_count
= (u32
)calc_pages_for(offset
, length
);
2514 obj_request
->page_count
= page_count
;
2515 if ((offset
+ length
) & ~PAGE_MASK
)
2516 page_count
--; /* more on last page */
2517 pages
+= page_count
;
2520 osd_req
= rbd_osd_req_create(rbd_dev
, op_type
,
2521 (op_type
== OBJ_OP_WRITE
) ? 2 : 1,
2526 obj_request
->osd_req
= osd_req
;
2527 obj_request
->callback
= rbd_img_obj_callback
;
2528 obj_request
->img_offset
= img_offset
;
2530 rbd_img_obj_request_fill(obj_request
, osd_req
, op_type
, 0);
2532 rbd_img_request_get(img_request
);
2534 img_offset
+= length
;
2541 for_each_obj_request_safe(img_request
, obj_request
, next_obj_request
)
2542 rbd_img_obj_request_del(img_request
, obj_request
);
2548 rbd_osd_copyup_callback(struct rbd_obj_request
*obj_request
)
2550 struct rbd_img_request
*img_request
;
2551 struct rbd_device
*rbd_dev
;
2552 struct page
**pages
;
2555 dout("%s: obj %p\n", __func__
, obj_request
);
2557 rbd_assert(obj_request
->type
== OBJ_REQUEST_BIO
||
2558 obj_request
->type
== OBJ_REQUEST_NODATA
);
2559 rbd_assert(obj_request_img_data_test(obj_request
));
2560 img_request
= obj_request
->img_request
;
2561 rbd_assert(img_request
);
2563 rbd_dev
= img_request
->rbd_dev
;
2564 rbd_assert(rbd_dev
);
2566 pages
= obj_request
->copyup_pages
;
2567 rbd_assert(pages
!= NULL
);
2568 obj_request
->copyup_pages
= NULL
;
2569 page_count
= obj_request
->copyup_page_count
;
2570 rbd_assert(page_count
);
2571 obj_request
->copyup_page_count
= 0;
2572 ceph_release_page_vector(pages
, page_count
);
2575 * We want the transfer count to reflect the size of the
2576 * original write request. There is no such thing as a
2577 * successful short write, so if the request was successful
2578 * we can just set it to the originally-requested length.
2580 if (!obj_request
->result
)
2581 obj_request
->xferred
= obj_request
->length
;
2583 obj_request_done_set(obj_request
);
2587 rbd_img_obj_parent_read_full_callback(struct rbd_img_request
*img_request
)
2589 struct rbd_obj_request
*orig_request
;
2590 struct ceph_osd_request
*osd_req
;
2591 struct ceph_osd_client
*osdc
;
2592 struct rbd_device
*rbd_dev
;
2593 struct page
**pages
;
2594 enum obj_operation_type op_type
;
2599 rbd_assert(img_request_child_test(img_request
));
2601 /* First get what we need from the image request */
2603 pages
= img_request
->copyup_pages
;
2604 rbd_assert(pages
!= NULL
);
2605 img_request
->copyup_pages
= NULL
;
2606 page_count
= img_request
->copyup_page_count
;
2607 rbd_assert(page_count
);
2608 img_request
->copyup_page_count
= 0;
2610 orig_request
= img_request
->obj_request
;
2611 rbd_assert(orig_request
!= NULL
);
2612 rbd_assert(obj_request_type_valid(orig_request
->type
));
2613 img_result
= img_request
->result
;
2614 parent_length
= img_request
->length
;
2615 rbd_assert(parent_length
== img_request
->xferred
);
2616 rbd_img_request_put(img_request
);
2618 rbd_assert(orig_request
->img_request
);
2619 rbd_dev
= orig_request
->img_request
->rbd_dev
;
2620 rbd_assert(rbd_dev
);
2623 * If the overlap has become 0 (most likely because the
2624 * image has been flattened) we need to free the pages
2625 * and re-submit the original write request.
2627 if (!rbd_dev
->parent_overlap
) {
2628 struct ceph_osd_client
*osdc
;
2630 ceph_release_page_vector(pages
, page_count
);
2631 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2632 img_result
= rbd_obj_request_submit(osdc
, orig_request
);
2641 * The original osd request is of no use to use any more.
2642 * We need a new one that can hold the three ops in a copyup
2643 * request. Allocate the new copyup osd request for the
2644 * original request, and release the old one.
2646 img_result
= -ENOMEM
;
2647 osd_req
= rbd_osd_req_create_copyup(orig_request
);
2650 rbd_osd_req_destroy(orig_request
->osd_req
);
2651 orig_request
->osd_req
= osd_req
;
2652 orig_request
->copyup_pages
= pages
;
2653 orig_request
->copyup_page_count
= page_count
;
2655 /* Initialize the copyup op */
2657 osd_req_op_cls_init(osd_req
, 0, CEPH_OSD_OP_CALL
, "rbd", "copyup");
2658 osd_req_op_cls_request_data_pages(osd_req
, 0, pages
, parent_length
, 0,
2661 /* Add the other op(s) */
2663 op_type
= rbd_img_request_op_type(orig_request
->img_request
);
2664 rbd_img_obj_request_fill(orig_request
, osd_req
, op_type
, 1);
2666 /* All set, send it off. */
2668 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2669 img_result
= rbd_obj_request_submit(osdc
, orig_request
);
2673 /* Record the error code and complete the request */
2675 orig_request
->result
= img_result
;
2676 orig_request
->xferred
= 0;
2677 obj_request_done_set(orig_request
);
2678 rbd_obj_request_complete(orig_request
);
2682 * Read from the parent image the range of data that covers the
2683 * entire target of the given object request. This is used for
2684 * satisfying a layered image write request when the target of an
2685 * object request from the image request does not exist.
2687 * A page array big enough to hold the returned data is allocated
2688 * and supplied to rbd_img_request_fill() as the "data descriptor."
2689 * When the read completes, this page array will be transferred to
2690 * the original object request for the copyup operation.
2692 * If an error occurs, record it as the result of the original
2693 * object request and mark it done so it gets completed.
2695 static int rbd_img_obj_parent_read_full(struct rbd_obj_request
*obj_request
)
2697 struct rbd_img_request
*img_request
= NULL
;
2698 struct rbd_img_request
*parent_request
= NULL
;
2699 struct rbd_device
*rbd_dev
;
2702 struct page
**pages
= NULL
;
2706 rbd_assert(obj_request_img_data_test(obj_request
));
2707 rbd_assert(obj_request_type_valid(obj_request
->type
));
2709 img_request
= obj_request
->img_request
;
2710 rbd_assert(img_request
!= NULL
);
2711 rbd_dev
= img_request
->rbd_dev
;
2712 rbd_assert(rbd_dev
->parent
!= NULL
);
2715 * Determine the byte range covered by the object in the
2716 * child image to which the original request was to be sent.
2718 img_offset
= obj_request
->img_offset
- obj_request
->offset
;
2719 length
= (u64
)1 << rbd_dev
->header
.obj_order
;
2722 * There is no defined parent data beyond the parent
2723 * overlap, so limit what we read at that boundary if
2726 if (img_offset
+ length
> rbd_dev
->parent_overlap
) {
2727 rbd_assert(img_offset
< rbd_dev
->parent_overlap
);
2728 length
= rbd_dev
->parent_overlap
- img_offset
;
2732 * Allocate a page array big enough to receive the data read
2735 page_count
= (u32
)calc_pages_for(0, length
);
2736 pages
= ceph_alloc_page_vector(page_count
, GFP_KERNEL
);
2737 if (IS_ERR(pages
)) {
2738 result
= PTR_ERR(pages
);
2744 parent_request
= rbd_parent_request_create(obj_request
,
2745 img_offset
, length
);
2746 if (!parent_request
)
2749 result
= rbd_img_request_fill(parent_request
, OBJ_REQUEST_PAGES
, pages
);
2752 parent_request
->copyup_pages
= pages
;
2753 parent_request
->copyup_page_count
= page_count
;
2755 parent_request
->callback
= rbd_img_obj_parent_read_full_callback
;
2756 result
= rbd_img_request_submit(parent_request
);
2760 parent_request
->copyup_pages
= NULL
;
2761 parent_request
->copyup_page_count
= 0;
2762 parent_request
->obj_request
= NULL
;
2763 rbd_obj_request_put(obj_request
);
2766 ceph_release_page_vector(pages
, page_count
);
2768 rbd_img_request_put(parent_request
);
2769 obj_request
->result
= result
;
2770 obj_request
->xferred
= 0;
2771 obj_request_done_set(obj_request
);
2776 static void rbd_img_obj_exists_callback(struct rbd_obj_request
*obj_request
)
2778 struct rbd_obj_request
*orig_request
;
2779 struct rbd_device
*rbd_dev
;
2782 rbd_assert(!obj_request_img_data_test(obj_request
));
2785 * All we need from the object request is the original
2786 * request and the result of the STAT op. Grab those, then
2787 * we're done with the request.
2789 orig_request
= obj_request
->obj_request
;
2790 obj_request
->obj_request
= NULL
;
2791 rbd_obj_request_put(orig_request
);
2792 rbd_assert(orig_request
);
2793 rbd_assert(orig_request
->img_request
);
2795 result
= obj_request
->result
;
2796 obj_request
->result
= 0;
2798 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__
,
2799 obj_request
, orig_request
, result
,
2800 obj_request
->xferred
, obj_request
->length
);
2801 rbd_obj_request_put(obj_request
);
2804 * If the overlap has become 0 (most likely because the
2805 * image has been flattened) we need to free the pages
2806 * and re-submit the original write request.
2808 rbd_dev
= orig_request
->img_request
->rbd_dev
;
2809 if (!rbd_dev
->parent_overlap
) {
2810 struct ceph_osd_client
*osdc
;
2812 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2813 result
= rbd_obj_request_submit(osdc
, orig_request
);
2819 * Our only purpose here is to determine whether the object
2820 * exists, and we don't want to treat the non-existence as
2821 * an error. If something else comes back, transfer the
2822 * error to the original request and complete it now.
2825 obj_request_existence_set(orig_request
, true);
2826 } else if (result
== -ENOENT
) {
2827 obj_request_existence_set(orig_request
, false);
2828 } else if (result
) {
2829 orig_request
->result
= result
;
2834 * Resubmit the original request now that we have recorded
2835 * whether the target object exists.
2837 orig_request
->result
= rbd_img_obj_request_submit(orig_request
);
2839 if (orig_request
->result
)
2840 rbd_obj_request_complete(orig_request
);
2843 static int rbd_img_obj_exists_submit(struct rbd_obj_request
*obj_request
)
2845 struct rbd_obj_request
*stat_request
;
2846 struct rbd_device
*rbd_dev
;
2847 struct ceph_osd_client
*osdc
;
2848 struct page
**pages
= NULL
;
2854 * The response data for a STAT call consists of:
2861 size
= sizeof (__le64
) + sizeof (__le32
) + sizeof (__le32
);
2862 page_count
= (u32
)calc_pages_for(0, size
);
2863 pages
= ceph_alloc_page_vector(page_count
, GFP_KERNEL
);
2865 return PTR_ERR(pages
);
2868 stat_request
= rbd_obj_request_create(obj_request
->object_name
, 0, 0,
2873 rbd_obj_request_get(obj_request
);
2874 stat_request
->obj_request
= obj_request
;
2875 stat_request
->pages
= pages
;
2876 stat_request
->page_count
= page_count
;
2878 rbd_assert(obj_request
->img_request
);
2879 rbd_dev
= obj_request
->img_request
->rbd_dev
;
2880 stat_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_READ
, 1,
2882 if (!stat_request
->osd_req
)
2884 stat_request
->callback
= rbd_img_obj_exists_callback
;
2886 osd_req_op_init(stat_request
->osd_req
, 0, CEPH_OSD_OP_STAT
, 0);
2887 osd_req_op_raw_data_in_pages(stat_request
->osd_req
, 0, pages
, size
, 0,
2889 rbd_osd_req_format_read(stat_request
);
2891 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2892 ret
= rbd_obj_request_submit(osdc
, stat_request
);
2895 rbd_obj_request_put(obj_request
);
2900 static bool img_obj_request_simple(struct rbd_obj_request
*obj_request
)
2902 struct rbd_img_request
*img_request
;
2903 struct rbd_device
*rbd_dev
;
2905 rbd_assert(obj_request_img_data_test(obj_request
));
2907 img_request
= obj_request
->img_request
;
2908 rbd_assert(img_request
);
2909 rbd_dev
= img_request
->rbd_dev
;
2912 if (!img_request_write_test(img_request
) &&
2913 !img_request_discard_test(img_request
))
2916 /* Non-layered writes */
2917 if (!img_request_layered_test(img_request
))
2921 * Layered writes outside of the parent overlap range don't
2922 * share any data with the parent.
2924 if (!obj_request_overlaps_parent(obj_request
))
2928 * Entire-object layered writes - we will overwrite whatever
2929 * parent data there is anyway.
2931 if (!obj_request
->offset
&&
2932 obj_request
->length
== rbd_obj_bytes(&rbd_dev
->header
))
2936 * If the object is known to already exist, its parent data has
2937 * already been copied.
2939 if (obj_request_known_test(obj_request
) &&
2940 obj_request_exists_test(obj_request
))
2946 static int rbd_img_obj_request_submit(struct rbd_obj_request
*obj_request
)
2948 if (img_obj_request_simple(obj_request
)) {
2949 struct rbd_device
*rbd_dev
;
2950 struct ceph_osd_client
*osdc
;
2952 rbd_dev
= obj_request
->img_request
->rbd_dev
;
2953 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
2955 return rbd_obj_request_submit(osdc
, obj_request
);
2959 * It's a layered write. The target object might exist but
2960 * we may not know that yet. If we know it doesn't exist,
2961 * start by reading the data for the full target object from
2962 * the parent so we can use it for a copyup to the target.
2964 if (obj_request_known_test(obj_request
))
2965 return rbd_img_obj_parent_read_full(obj_request
);
2967 /* We don't know whether the target exists. Go find out. */
2969 return rbd_img_obj_exists_submit(obj_request
);
2972 static int rbd_img_request_submit(struct rbd_img_request
*img_request
)
2974 struct rbd_obj_request
*obj_request
;
2975 struct rbd_obj_request
*next_obj_request
;
2977 dout("%s: img %p\n", __func__
, img_request
);
2978 for_each_obj_request_safe(img_request
, obj_request
, next_obj_request
) {
2981 ret
= rbd_img_obj_request_submit(obj_request
);
2989 static void rbd_img_parent_read_callback(struct rbd_img_request
*img_request
)
2991 struct rbd_obj_request
*obj_request
;
2992 struct rbd_device
*rbd_dev
;
2997 rbd_assert(img_request_child_test(img_request
));
2999 /* First get what we need from the image request and release it */
3001 obj_request
= img_request
->obj_request
;
3002 img_xferred
= img_request
->xferred
;
3003 img_result
= img_request
->result
;
3004 rbd_img_request_put(img_request
);
3007 * If the overlap has become 0 (most likely because the
3008 * image has been flattened) we need to re-submit the
3011 rbd_assert(obj_request
);
3012 rbd_assert(obj_request
->img_request
);
3013 rbd_dev
= obj_request
->img_request
->rbd_dev
;
3014 if (!rbd_dev
->parent_overlap
) {
3015 struct ceph_osd_client
*osdc
;
3017 osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3018 img_result
= rbd_obj_request_submit(osdc
, obj_request
);
3023 obj_request
->result
= img_result
;
3024 if (obj_request
->result
)
3028 * We need to zero anything beyond the parent overlap
3029 * boundary. Since rbd_img_obj_request_read_callback()
3030 * will zero anything beyond the end of a short read, an
3031 * easy way to do this is to pretend the data from the
3032 * parent came up short--ending at the overlap boundary.
3034 rbd_assert(obj_request
->img_offset
< U64_MAX
- obj_request
->length
);
3035 obj_end
= obj_request
->img_offset
+ obj_request
->length
;
3036 if (obj_end
> rbd_dev
->parent_overlap
) {
3039 if (obj_request
->img_offset
< rbd_dev
->parent_overlap
)
3040 xferred
= rbd_dev
->parent_overlap
-
3041 obj_request
->img_offset
;
3043 obj_request
->xferred
= min(img_xferred
, xferred
);
3045 obj_request
->xferred
= img_xferred
;
3048 rbd_img_obj_request_read_callback(obj_request
);
3049 rbd_obj_request_complete(obj_request
);
3052 static void rbd_img_parent_read(struct rbd_obj_request
*obj_request
)
3054 struct rbd_img_request
*img_request
;
3057 rbd_assert(obj_request_img_data_test(obj_request
));
3058 rbd_assert(obj_request
->img_request
!= NULL
);
3059 rbd_assert(obj_request
->result
== (s32
) -ENOENT
);
3060 rbd_assert(obj_request_type_valid(obj_request
->type
));
3062 /* rbd_read_finish(obj_request, obj_request->length); */
3063 img_request
= rbd_parent_request_create(obj_request
,
3064 obj_request
->img_offset
,
3065 obj_request
->length
);
3070 if (obj_request
->type
== OBJ_REQUEST_BIO
)
3071 result
= rbd_img_request_fill(img_request
, OBJ_REQUEST_BIO
,
3072 obj_request
->bio_list
);
3074 result
= rbd_img_request_fill(img_request
, OBJ_REQUEST_PAGES
,
3075 obj_request
->pages
);
3079 img_request
->callback
= rbd_img_parent_read_callback
;
3080 result
= rbd_img_request_submit(img_request
);
3087 rbd_img_request_put(img_request
);
3088 obj_request
->result
= result
;
3089 obj_request
->xferred
= 0;
3090 obj_request_done_set(obj_request
);
3093 static int rbd_obj_notify_ack_sync(struct rbd_device
*rbd_dev
, u64 notify_id
)
3095 struct rbd_obj_request
*obj_request
;
3096 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3099 obj_request
= rbd_obj_request_create(rbd_dev
->header_name
, 0, 0,
3100 OBJ_REQUEST_NODATA
);
3105 obj_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_READ
, 1,
3107 if (!obj_request
->osd_req
)
3110 osd_req_op_watch_init(obj_request
->osd_req
, 0, CEPH_OSD_OP_NOTIFY_ACK
,
3112 rbd_osd_req_format_read(obj_request
);
3114 ret
= rbd_obj_request_submit(osdc
, obj_request
);
3117 ret
= rbd_obj_request_wait(obj_request
);
3119 rbd_obj_request_put(obj_request
);
3124 static void rbd_watch_cb(u64 ver
, u64 notify_id
, u8 opcode
, void *data
)
3126 struct rbd_device
*rbd_dev
= (struct rbd_device
*)data
;
3129 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__
,
3130 rbd_dev
->header_name
, (unsigned long long)notify_id
,
3131 (unsigned int)opcode
);
3134 * Until adequate refresh error handling is in place, there is
3135 * not much we can do here, except warn.
3137 * See http://tracker.ceph.com/issues/5040
3139 ret
= rbd_dev_refresh(rbd_dev
);
3141 rbd_warn(rbd_dev
, "refresh failed: %d", ret
);
3143 ret
= rbd_obj_notify_ack_sync(rbd_dev
, notify_id
);
3145 rbd_warn(rbd_dev
, "notify_ack ret %d", ret
);
3149 * Send a (un)watch request and wait for the ack. Return a request
3150 * with a ref held on success or error.
3152 static struct rbd_obj_request
*rbd_obj_watch_request_helper(
3153 struct rbd_device
*rbd_dev
,
3156 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3157 struct ceph_options
*opts
= osdc
->client
->options
;
3158 struct rbd_obj_request
*obj_request
;
3161 obj_request
= rbd_obj_request_create(rbd_dev
->header_name
, 0, 0,
3162 OBJ_REQUEST_NODATA
);
3164 return ERR_PTR(-ENOMEM
);
3166 obj_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_WRITE
, 1,
3168 if (!obj_request
->osd_req
) {
3173 osd_req_op_watch_init(obj_request
->osd_req
, 0, CEPH_OSD_OP_WATCH
,
3174 rbd_dev
->watch_event
->cookie
, 0, watch
);
3175 rbd_osd_req_format_write(obj_request
);
3178 ceph_osdc_set_request_linger(osdc
, obj_request
->osd_req
);
3180 ret
= rbd_obj_request_submit(osdc
, obj_request
);
3184 ret
= rbd_obj_request_wait_timeout(obj_request
, opts
->mount_timeout
);
3188 ret
= obj_request
->result
;
3191 rbd_obj_request_end(obj_request
);
3198 rbd_obj_request_put(obj_request
);
3199 return ERR_PTR(ret
);
3203 * Initiate a watch request, synchronously.
3205 static int rbd_dev_header_watch_sync(struct rbd_device
*rbd_dev
)
3207 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3208 struct rbd_obj_request
*obj_request
;
3211 rbd_assert(!rbd_dev
->watch_event
);
3212 rbd_assert(!rbd_dev
->watch_request
);
3214 ret
= ceph_osdc_create_event(osdc
, rbd_watch_cb
, rbd_dev
,
3215 &rbd_dev
->watch_event
);
3219 obj_request
= rbd_obj_watch_request_helper(rbd_dev
, true);
3220 if (IS_ERR(obj_request
)) {
3221 ceph_osdc_cancel_event(rbd_dev
->watch_event
);
3222 rbd_dev
->watch_event
= NULL
;
3223 return PTR_ERR(obj_request
);
3227 * A watch request is set to linger, so the underlying osd
3228 * request won't go away until we unregister it. We retain
3229 * a pointer to the object request during that time (in
3230 * rbd_dev->watch_request), so we'll keep a reference to it.
3231 * We'll drop that reference after we've unregistered it in
3232 * rbd_dev_header_unwatch_sync().
3234 rbd_dev
->watch_request
= obj_request
;
3240 * Tear down a watch request, synchronously.
3242 static void rbd_dev_header_unwatch_sync(struct rbd_device
*rbd_dev
)
3244 struct rbd_obj_request
*obj_request
;
3246 rbd_assert(rbd_dev
->watch_event
);
3247 rbd_assert(rbd_dev
->watch_request
);
3249 rbd_obj_request_end(rbd_dev
->watch_request
);
3250 rbd_obj_request_put(rbd_dev
->watch_request
);
3251 rbd_dev
->watch_request
= NULL
;
3253 obj_request
= rbd_obj_watch_request_helper(rbd_dev
, false);
3254 if (!IS_ERR(obj_request
))
3255 rbd_obj_request_put(obj_request
);
3257 rbd_warn(rbd_dev
, "unable to tear down watch request (%ld)",
3258 PTR_ERR(obj_request
));
3260 ceph_osdc_cancel_event(rbd_dev
->watch_event
);
3261 rbd_dev
->watch_event
= NULL
;
3263 dout("%s flushing notifies\n", __func__
);
3264 ceph_osdc_flush_notifies(&rbd_dev
->rbd_client
->client
->osdc
);
3268 * Synchronous osd object method call. Returns the number of bytes
3269 * returned in the outbound buffer, or a negative error code.
3271 static int rbd_obj_method_sync(struct rbd_device
*rbd_dev
,
3272 const char *object_name
,
3273 const char *class_name
,
3274 const char *method_name
,
3275 const void *outbound
,
3276 size_t outbound_size
,
3278 size_t inbound_size
)
3280 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3281 struct rbd_obj_request
*obj_request
;
3282 struct page
**pages
;
3287 * Method calls are ultimately read operations. The result
3288 * should placed into the inbound buffer provided. They
3289 * also supply outbound data--parameters for the object
3290 * method. Currently if this is present it will be a
3293 page_count
= (u32
)calc_pages_for(0, inbound_size
);
3294 pages
= ceph_alloc_page_vector(page_count
, GFP_KERNEL
);
3296 return PTR_ERR(pages
);
3299 obj_request
= rbd_obj_request_create(object_name
, 0, inbound_size
,
3304 obj_request
->pages
= pages
;
3305 obj_request
->page_count
= page_count
;
3307 obj_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_READ
, 1,
3309 if (!obj_request
->osd_req
)
3312 osd_req_op_cls_init(obj_request
->osd_req
, 0, CEPH_OSD_OP_CALL
,
3313 class_name
, method_name
);
3314 if (outbound_size
) {
3315 struct ceph_pagelist
*pagelist
;
3317 pagelist
= kmalloc(sizeof (*pagelist
), GFP_NOFS
);
3321 ceph_pagelist_init(pagelist
);
3322 ceph_pagelist_append(pagelist
, outbound
, outbound_size
);
3323 osd_req_op_cls_request_data_pagelist(obj_request
->osd_req
, 0,
3326 osd_req_op_cls_response_data_pages(obj_request
->osd_req
, 0,
3327 obj_request
->pages
, inbound_size
,
3329 rbd_osd_req_format_read(obj_request
);
3331 ret
= rbd_obj_request_submit(osdc
, obj_request
);
3334 ret
= rbd_obj_request_wait(obj_request
);
3338 ret
= obj_request
->result
;
3342 rbd_assert(obj_request
->xferred
< (u64
)INT_MAX
);
3343 ret
= (int)obj_request
->xferred
;
3344 ceph_copy_from_page_vector(pages
, inbound
, 0, obj_request
->xferred
);
3347 rbd_obj_request_put(obj_request
);
3349 ceph_release_page_vector(pages
, page_count
);
3354 static void rbd_queue_workfn(struct work_struct
*work
)
3356 struct request
*rq
= blk_mq_rq_from_pdu(work
);
3357 struct rbd_device
*rbd_dev
= rq
->q
->queuedata
;
3358 struct rbd_img_request
*img_request
;
3359 struct ceph_snap_context
*snapc
= NULL
;
3360 u64 offset
= (u64
)blk_rq_pos(rq
) << SECTOR_SHIFT
;
3361 u64 length
= blk_rq_bytes(rq
);
3362 enum obj_operation_type op_type
;
3366 if (rq
->cmd_type
!= REQ_TYPE_FS
) {
3367 dout("%s: non-fs request type %d\n", __func__
,
3368 (int) rq
->cmd_type
);
3373 if (rq
->cmd_flags
& REQ_DISCARD
)
3374 op_type
= OBJ_OP_DISCARD
;
3375 else if (rq
->cmd_flags
& REQ_WRITE
)
3376 op_type
= OBJ_OP_WRITE
;
3378 op_type
= OBJ_OP_READ
;
3380 /* Ignore/skip any zero-length requests */
3383 dout("%s: zero-length request\n", __func__
);
3388 /* Only reads are allowed to a read-only device */
3390 if (op_type
!= OBJ_OP_READ
) {
3391 if (rbd_dev
->mapping
.read_only
) {
3395 rbd_assert(rbd_dev
->spec
->snap_id
== CEPH_NOSNAP
);
3399 * Quit early if the mapped snapshot no longer exists. It's
3400 * still possible the snapshot will have disappeared by the
3401 * time our request arrives at the osd, but there's no sense in
3402 * sending it if we already know.
3404 if (!test_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
)) {
3405 dout("request for non-existent snapshot");
3406 rbd_assert(rbd_dev
->spec
->snap_id
!= CEPH_NOSNAP
);
3411 if (offset
&& length
> U64_MAX
- offset
+ 1) {
3412 rbd_warn(rbd_dev
, "bad request range (%llu~%llu)", offset
,
3415 goto err_rq
; /* Shouldn't happen */
3418 blk_mq_start_request(rq
);
3420 down_read(&rbd_dev
->header_rwsem
);
3421 mapping_size
= rbd_dev
->mapping
.size
;
3422 if (op_type
!= OBJ_OP_READ
) {
3423 snapc
= rbd_dev
->header
.snapc
;
3424 ceph_get_snap_context(snapc
);
3426 up_read(&rbd_dev
->header_rwsem
);
3428 if (offset
+ length
> mapping_size
) {
3429 rbd_warn(rbd_dev
, "beyond EOD (%llu~%llu > %llu)", offset
,
3430 length
, mapping_size
);
3435 img_request
= rbd_img_request_create(rbd_dev
, offset
, length
, op_type
,
3441 img_request
->rq
= rq
;
3442 snapc
= NULL
; /* img_request consumes a ref */
3444 if (op_type
== OBJ_OP_DISCARD
)
3445 result
= rbd_img_request_fill(img_request
, OBJ_REQUEST_NODATA
,
3448 result
= rbd_img_request_fill(img_request
, OBJ_REQUEST_BIO
,
3451 goto err_img_request
;
3453 result
= rbd_img_request_submit(img_request
);
3455 goto err_img_request
;
3460 rbd_img_request_put(img_request
);
3463 rbd_warn(rbd_dev
, "%s %llx at %llx result %d",
3464 obj_op_name(op_type
), length
, offset
, result
);
3465 ceph_put_snap_context(snapc
);
3467 blk_mq_end_request(rq
, result
);
3470 static int rbd_queue_rq(struct blk_mq_hw_ctx
*hctx
,
3471 const struct blk_mq_queue_data
*bd
)
3473 struct request
*rq
= bd
->rq
;
3474 struct work_struct
*work
= blk_mq_rq_to_pdu(rq
);
3476 queue_work(rbd_wq
, work
);
3477 return BLK_MQ_RQ_QUEUE_OK
;
3480 static void rbd_free_disk(struct rbd_device
*rbd_dev
)
3482 struct gendisk
*disk
= rbd_dev
->disk
;
3487 rbd_dev
->disk
= NULL
;
3488 if (disk
->flags
& GENHD_FL_UP
) {
3491 blk_cleanup_queue(disk
->queue
);
3492 blk_mq_free_tag_set(&rbd_dev
->tag_set
);
3497 static int rbd_obj_read_sync(struct rbd_device
*rbd_dev
,
3498 const char *object_name
,
3499 u64 offset
, u64 length
, void *buf
)
3502 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
3503 struct rbd_obj_request
*obj_request
;
3504 struct page
**pages
= NULL
;
3509 page_count
= (u32
) calc_pages_for(offset
, length
);
3510 pages
= ceph_alloc_page_vector(page_count
, GFP_KERNEL
);
3512 return PTR_ERR(pages
);
3515 obj_request
= rbd_obj_request_create(object_name
, offset
, length
,
3520 obj_request
->pages
= pages
;
3521 obj_request
->page_count
= page_count
;
3523 obj_request
->osd_req
= rbd_osd_req_create(rbd_dev
, OBJ_OP_READ
, 1,
3525 if (!obj_request
->osd_req
)
3528 osd_req_op_extent_init(obj_request
->osd_req
, 0, CEPH_OSD_OP_READ
,
3529 offset
, length
, 0, 0);
3530 osd_req_op_extent_osd_data_pages(obj_request
->osd_req
, 0,
3532 obj_request
->length
,
3533 obj_request
->offset
& ~PAGE_MASK
,
3535 rbd_osd_req_format_read(obj_request
);
3537 ret
= rbd_obj_request_submit(osdc
, obj_request
);
3540 ret
= rbd_obj_request_wait(obj_request
);
3544 ret
= obj_request
->result
;
3548 rbd_assert(obj_request
->xferred
<= (u64
) SIZE_MAX
);
3549 size
= (size_t) obj_request
->xferred
;
3550 ceph_copy_from_page_vector(pages
, buf
, 0, size
);
3551 rbd_assert(size
<= (size_t)INT_MAX
);
3555 rbd_obj_request_put(obj_request
);
3557 ceph_release_page_vector(pages
, page_count
);
3563 * Read the complete header for the given rbd device. On successful
3564 * return, the rbd_dev->header field will contain up-to-date
3565 * information about the image.
3567 static int rbd_dev_v1_header_info(struct rbd_device
*rbd_dev
)
3569 struct rbd_image_header_ondisk
*ondisk
= NULL
;
3576 * The complete header will include an array of its 64-bit
3577 * snapshot ids, followed by the names of those snapshots as
3578 * a contiguous block of NUL-terminated strings. Note that
3579 * the number of snapshots could change by the time we read
3580 * it in, in which case we re-read it.
3587 size
= sizeof (*ondisk
);
3588 size
+= snap_count
* sizeof (struct rbd_image_snap_ondisk
);
3590 ondisk
= kmalloc(size
, GFP_KERNEL
);
3594 ret
= rbd_obj_read_sync(rbd_dev
, rbd_dev
->header_name
,
3598 if ((size_t)ret
< size
) {
3600 rbd_warn(rbd_dev
, "short header read (want %zd got %d)",
3604 if (!rbd_dev_ondisk_valid(ondisk
)) {
3606 rbd_warn(rbd_dev
, "invalid header");
3610 names_size
= le64_to_cpu(ondisk
->snap_names_len
);
3611 want_count
= snap_count
;
3612 snap_count
= le32_to_cpu(ondisk
->snap_count
);
3613 } while (snap_count
!= want_count
);
3615 ret
= rbd_header_from_disk(rbd_dev
, ondisk
);
3623 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3624 * has disappeared from the (just updated) snapshot context.
3626 static void rbd_exists_validate(struct rbd_device
*rbd_dev
)
3630 if (!test_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
))
3633 snap_id
= rbd_dev
->spec
->snap_id
;
3634 if (snap_id
== CEPH_NOSNAP
)
3637 if (rbd_dev_snap_index(rbd_dev
, snap_id
) == BAD_SNAP_INDEX
)
3638 clear_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
);
3641 static void rbd_dev_update_size(struct rbd_device
*rbd_dev
)
3646 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3647 * try to update its size. If REMOVING is set, updating size
3648 * is just useless work since the device can't be opened.
3650 if (test_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
) &&
3651 !test_bit(RBD_DEV_FLAG_REMOVING
, &rbd_dev
->flags
)) {
3652 size
= (sector_t
)rbd_dev
->mapping
.size
/ SECTOR_SIZE
;
3653 dout("setting size to %llu sectors", (unsigned long long)size
);
3654 set_capacity(rbd_dev
->disk
, size
);
3655 revalidate_disk(rbd_dev
->disk
);
3659 static int rbd_dev_refresh(struct rbd_device
*rbd_dev
)
3664 down_write(&rbd_dev
->header_rwsem
);
3665 mapping_size
= rbd_dev
->mapping
.size
;
3667 ret
= rbd_dev_header_info(rbd_dev
);
3672 * If there is a parent, see if it has disappeared due to the
3673 * mapped image getting flattened.
3675 if (rbd_dev
->parent
) {
3676 ret
= rbd_dev_v2_parent_info(rbd_dev
);
3681 if (rbd_dev
->spec
->snap_id
== CEPH_NOSNAP
) {
3682 rbd_dev
->mapping
.size
= rbd_dev
->header
.image_size
;
3684 /* validate mapped snapshot's EXISTS flag */
3685 rbd_exists_validate(rbd_dev
);
3689 up_write(&rbd_dev
->header_rwsem
);
3690 if (!ret
&& mapping_size
!= rbd_dev
->mapping
.size
)
3691 rbd_dev_update_size(rbd_dev
);
3696 static int rbd_init_request(void *data
, struct request
*rq
,
3697 unsigned int hctx_idx
, unsigned int request_idx
,
3698 unsigned int numa_node
)
3700 struct work_struct
*work
= blk_mq_rq_to_pdu(rq
);
3702 INIT_WORK(work
, rbd_queue_workfn
);
3706 static struct blk_mq_ops rbd_mq_ops
= {
3707 .queue_rq
= rbd_queue_rq
,
3708 .map_queue
= blk_mq_map_queue
,
3709 .init_request
= rbd_init_request
,
3712 static int rbd_init_disk(struct rbd_device
*rbd_dev
)
3714 struct gendisk
*disk
;
3715 struct request_queue
*q
;
3719 /* create gendisk info */
3720 disk
= alloc_disk(single_major
?
3721 (1 << RBD_SINGLE_MAJOR_PART_SHIFT
) :
3722 RBD_MINORS_PER_MAJOR
);
3726 snprintf(disk
->disk_name
, sizeof(disk
->disk_name
), RBD_DRV_NAME
"%d",
3728 disk
->major
= rbd_dev
->major
;
3729 disk
->first_minor
= rbd_dev
->minor
;
3731 disk
->flags
|= GENHD_FL_EXT_DEVT
;
3732 disk
->fops
= &rbd_bd_ops
;
3733 disk
->private_data
= rbd_dev
;
3735 memset(&rbd_dev
->tag_set
, 0, sizeof(rbd_dev
->tag_set
));
3736 rbd_dev
->tag_set
.ops
= &rbd_mq_ops
;
3737 rbd_dev
->tag_set
.queue_depth
= rbd_dev
->opts
->queue_depth
;
3738 rbd_dev
->tag_set
.numa_node
= NUMA_NO_NODE
;
3739 rbd_dev
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
3740 rbd_dev
->tag_set
.nr_hw_queues
= 1;
3741 rbd_dev
->tag_set
.cmd_size
= sizeof(struct work_struct
);
3743 err
= blk_mq_alloc_tag_set(&rbd_dev
->tag_set
);
3747 q
= blk_mq_init_queue(&rbd_dev
->tag_set
);
3753 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, q
);
3754 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3756 /* set io sizes to object size */
3757 segment_size
= rbd_obj_bytes(&rbd_dev
->header
);
3758 blk_queue_max_hw_sectors(q
, segment_size
/ SECTOR_SIZE
);
3759 q
->limits
.max_sectors
= queue_max_hw_sectors(q
);
3760 blk_queue_max_segments(q
, segment_size
/ SECTOR_SIZE
);
3761 blk_queue_max_segment_size(q
, segment_size
);
3762 blk_queue_io_min(q
, segment_size
);
3763 blk_queue_io_opt(q
, segment_size
);
3765 /* enable the discard support */
3766 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
3767 q
->limits
.discard_granularity
= segment_size
;
3768 q
->limits
.discard_alignment
= segment_size
;
3769 blk_queue_max_discard_sectors(q
, segment_size
/ SECTOR_SIZE
);
3770 q
->limits
.discard_zeroes_data
= 1;
3772 if (!ceph_test_opt(rbd_dev
->rbd_client
->client
, NOCRC
))
3773 q
->backing_dev_info
.capabilities
|= BDI_CAP_STABLE_WRITES
;
3777 q
->queuedata
= rbd_dev
;
3779 rbd_dev
->disk
= disk
;
3783 blk_mq_free_tag_set(&rbd_dev
->tag_set
);
3793 static struct rbd_device
*dev_to_rbd_dev(struct device
*dev
)
3795 return container_of(dev
, struct rbd_device
, dev
);
3798 static ssize_t
rbd_size_show(struct device
*dev
,
3799 struct device_attribute
*attr
, char *buf
)
3801 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3803 return sprintf(buf
, "%llu\n",
3804 (unsigned long long)rbd_dev
->mapping
.size
);
3808 * Note this shows the features for whatever's mapped, which is not
3809 * necessarily the base image.
3811 static ssize_t
rbd_features_show(struct device
*dev
,
3812 struct device_attribute
*attr
, char *buf
)
3814 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3816 return sprintf(buf
, "0x%016llx\n",
3817 (unsigned long long)rbd_dev
->mapping
.features
);
3820 static ssize_t
rbd_major_show(struct device
*dev
,
3821 struct device_attribute
*attr
, char *buf
)
3823 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3826 return sprintf(buf
, "%d\n", rbd_dev
->major
);
3828 return sprintf(buf
, "(none)\n");
3831 static ssize_t
rbd_minor_show(struct device
*dev
,
3832 struct device_attribute
*attr
, char *buf
)
3834 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3836 return sprintf(buf
, "%d\n", rbd_dev
->minor
);
3839 static ssize_t
rbd_client_id_show(struct device
*dev
,
3840 struct device_attribute
*attr
, char *buf
)
3842 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3844 return sprintf(buf
, "client%lld\n",
3845 ceph_client_id(rbd_dev
->rbd_client
->client
));
3848 static ssize_t
rbd_pool_show(struct device
*dev
,
3849 struct device_attribute
*attr
, char *buf
)
3851 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3853 return sprintf(buf
, "%s\n", rbd_dev
->spec
->pool_name
);
3856 static ssize_t
rbd_pool_id_show(struct device
*dev
,
3857 struct device_attribute
*attr
, char *buf
)
3859 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3861 return sprintf(buf
, "%llu\n",
3862 (unsigned long long) rbd_dev
->spec
->pool_id
);
3865 static ssize_t
rbd_name_show(struct device
*dev
,
3866 struct device_attribute
*attr
, char *buf
)
3868 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3870 if (rbd_dev
->spec
->image_name
)
3871 return sprintf(buf
, "%s\n", rbd_dev
->spec
->image_name
);
3873 return sprintf(buf
, "(unknown)\n");
3876 static ssize_t
rbd_image_id_show(struct device
*dev
,
3877 struct device_attribute
*attr
, char *buf
)
3879 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3881 return sprintf(buf
, "%s\n", rbd_dev
->spec
->image_id
);
3885 * Shows the name of the currently-mapped snapshot (or
3886 * RBD_SNAP_HEAD_NAME for the base image).
3888 static ssize_t
rbd_snap_show(struct device
*dev
,
3889 struct device_attribute
*attr
,
3892 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3894 return sprintf(buf
, "%s\n", rbd_dev
->spec
->snap_name
);
3898 * For a v2 image, shows the chain of parent images, separated by empty
3899 * lines. For v1 images or if there is no parent, shows "(no parent
3902 static ssize_t
rbd_parent_show(struct device
*dev
,
3903 struct device_attribute
*attr
,
3906 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3909 if (!rbd_dev
->parent
)
3910 return sprintf(buf
, "(no parent image)\n");
3912 for ( ; rbd_dev
->parent
; rbd_dev
= rbd_dev
->parent
) {
3913 struct rbd_spec
*spec
= rbd_dev
->parent_spec
;
3915 count
+= sprintf(&buf
[count
], "%s"
3916 "pool_id %llu\npool_name %s\n"
3917 "image_id %s\nimage_name %s\n"
3918 "snap_id %llu\nsnap_name %s\n"
3920 !count
? "" : "\n", /* first? */
3921 spec
->pool_id
, spec
->pool_name
,
3922 spec
->image_id
, spec
->image_name
?: "(unknown)",
3923 spec
->snap_id
, spec
->snap_name
,
3924 rbd_dev
->parent_overlap
);
3930 static ssize_t
rbd_image_refresh(struct device
*dev
,
3931 struct device_attribute
*attr
,
3935 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
3938 ret
= rbd_dev_refresh(rbd_dev
);
3945 static DEVICE_ATTR(size
, S_IRUGO
, rbd_size_show
, NULL
);
3946 static DEVICE_ATTR(features
, S_IRUGO
, rbd_features_show
, NULL
);
3947 static DEVICE_ATTR(major
, S_IRUGO
, rbd_major_show
, NULL
);
3948 static DEVICE_ATTR(minor
, S_IRUGO
, rbd_minor_show
, NULL
);
3949 static DEVICE_ATTR(client_id
, S_IRUGO
, rbd_client_id_show
, NULL
);
3950 static DEVICE_ATTR(pool
, S_IRUGO
, rbd_pool_show
, NULL
);
3951 static DEVICE_ATTR(pool_id
, S_IRUGO
, rbd_pool_id_show
, NULL
);
3952 static DEVICE_ATTR(name
, S_IRUGO
, rbd_name_show
, NULL
);
3953 static DEVICE_ATTR(image_id
, S_IRUGO
, rbd_image_id_show
, NULL
);
3954 static DEVICE_ATTR(refresh
, S_IWUSR
, NULL
, rbd_image_refresh
);
3955 static DEVICE_ATTR(current_snap
, S_IRUGO
, rbd_snap_show
, NULL
);
3956 static DEVICE_ATTR(parent
, S_IRUGO
, rbd_parent_show
, NULL
);
3958 static struct attribute
*rbd_attrs
[] = {
3959 &dev_attr_size
.attr
,
3960 &dev_attr_features
.attr
,
3961 &dev_attr_major
.attr
,
3962 &dev_attr_minor
.attr
,
3963 &dev_attr_client_id
.attr
,
3964 &dev_attr_pool
.attr
,
3965 &dev_attr_pool_id
.attr
,
3966 &dev_attr_name
.attr
,
3967 &dev_attr_image_id
.attr
,
3968 &dev_attr_current_snap
.attr
,
3969 &dev_attr_parent
.attr
,
3970 &dev_attr_refresh
.attr
,
3974 static struct attribute_group rbd_attr_group
= {
3978 static const struct attribute_group
*rbd_attr_groups
[] = {
3983 static void rbd_dev_release(struct device
*dev
);
3985 static struct device_type rbd_device_type
= {
3987 .groups
= rbd_attr_groups
,
3988 .release
= rbd_dev_release
,
3991 static struct rbd_spec
*rbd_spec_get(struct rbd_spec
*spec
)
3993 kref_get(&spec
->kref
);
3998 static void rbd_spec_free(struct kref
*kref
);
3999 static void rbd_spec_put(struct rbd_spec
*spec
)
4002 kref_put(&spec
->kref
, rbd_spec_free
);
4005 static struct rbd_spec
*rbd_spec_alloc(void)
4007 struct rbd_spec
*spec
;
4009 spec
= kzalloc(sizeof (*spec
), GFP_KERNEL
);
4013 spec
->pool_id
= CEPH_NOPOOL
;
4014 spec
->snap_id
= CEPH_NOSNAP
;
4015 kref_init(&spec
->kref
);
4020 static void rbd_spec_free(struct kref
*kref
)
4022 struct rbd_spec
*spec
= container_of(kref
, struct rbd_spec
, kref
);
4024 kfree(spec
->pool_name
);
4025 kfree(spec
->image_id
);
4026 kfree(spec
->image_name
);
4027 kfree(spec
->snap_name
);
4031 static void rbd_dev_release(struct device
*dev
)
4033 struct rbd_device
*rbd_dev
= dev_to_rbd_dev(dev
);
4034 bool need_put
= !!rbd_dev
->opts
;
4036 rbd_put_client(rbd_dev
->rbd_client
);
4037 rbd_spec_put(rbd_dev
->spec
);
4038 kfree(rbd_dev
->opts
);
4042 * This is racy, but way better than putting module outside of
4043 * the release callback. The race window is pretty small, so
4044 * doing something similar to dm (dm-builtin.c) is overkill.
4047 module_put(THIS_MODULE
);
4050 static struct rbd_device
*rbd_dev_create(struct rbd_client
*rbdc
,
4051 struct rbd_spec
*spec
,
4052 struct rbd_options
*opts
)
4054 struct rbd_device
*rbd_dev
;
4056 rbd_dev
= kzalloc(sizeof (*rbd_dev
), GFP_KERNEL
);
4060 spin_lock_init(&rbd_dev
->lock
);
4062 atomic_set(&rbd_dev
->parent_ref
, 0);
4063 INIT_LIST_HEAD(&rbd_dev
->node
);
4064 init_rwsem(&rbd_dev
->header_rwsem
);
4066 rbd_dev
->dev
.bus
= &rbd_bus_type
;
4067 rbd_dev
->dev
.type
= &rbd_device_type
;
4068 rbd_dev
->dev
.parent
= &rbd_root_dev
;
4069 device_initialize(&rbd_dev
->dev
);
4071 rbd_dev
->rbd_client
= rbdc
;
4072 rbd_dev
->spec
= spec
;
4073 rbd_dev
->opts
= opts
;
4075 /* Initialize the layout used for all rbd requests */
4077 rbd_dev
->layout
.fl_stripe_unit
= cpu_to_le32(1 << RBD_MAX_OBJ_ORDER
);
4078 rbd_dev
->layout
.fl_stripe_count
= cpu_to_le32(1);
4079 rbd_dev
->layout
.fl_object_size
= cpu_to_le32(1 << RBD_MAX_OBJ_ORDER
);
4080 rbd_dev
->layout
.fl_pg_pool
= cpu_to_le32((u32
) spec
->pool_id
);
4083 * If this is a mapping rbd_dev (as opposed to a parent one),
4084 * pin our module. We have a ref from do_rbd_add(), so use
4088 __module_get(THIS_MODULE
);
4093 static void rbd_dev_destroy(struct rbd_device
*rbd_dev
)
4096 put_device(&rbd_dev
->dev
);
4100 * Get the size and object order for an image snapshot, or if
4101 * snap_id is CEPH_NOSNAP, gets this information for the base
4104 static int _rbd_dev_v2_snap_size(struct rbd_device
*rbd_dev
, u64 snap_id
,
4105 u8
*order
, u64
*snap_size
)
4107 __le64 snapid
= cpu_to_le64(snap_id
);
4112 } __attribute__ ((packed
)) size_buf
= { 0 };
4114 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4116 &snapid
, sizeof (snapid
),
4117 &size_buf
, sizeof (size_buf
));
4118 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4121 if (ret
< sizeof (size_buf
))
4125 *order
= size_buf
.order
;
4126 dout(" order %u", (unsigned int)*order
);
4128 *snap_size
= le64_to_cpu(size_buf
.size
);
4130 dout(" snap_id 0x%016llx snap_size = %llu\n",
4131 (unsigned long long)snap_id
,
4132 (unsigned long long)*snap_size
);
4137 static int rbd_dev_v2_image_size(struct rbd_device
*rbd_dev
)
4139 return _rbd_dev_v2_snap_size(rbd_dev
, CEPH_NOSNAP
,
4140 &rbd_dev
->header
.obj_order
,
4141 &rbd_dev
->header
.image_size
);
4144 static int rbd_dev_v2_object_prefix(struct rbd_device
*rbd_dev
)
4150 reply_buf
= kzalloc(RBD_OBJ_PREFIX_LEN_MAX
, GFP_KERNEL
);
4154 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4155 "rbd", "get_object_prefix", NULL
, 0,
4156 reply_buf
, RBD_OBJ_PREFIX_LEN_MAX
);
4157 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4162 rbd_dev
->header
.object_prefix
= ceph_extract_encoded_string(&p
,
4163 p
+ ret
, NULL
, GFP_NOIO
);
4166 if (IS_ERR(rbd_dev
->header
.object_prefix
)) {
4167 ret
= PTR_ERR(rbd_dev
->header
.object_prefix
);
4168 rbd_dev
->header
.object_prefix
= NULL
;
4170 dout(" object_prefix = %s\n", rbd_dev
->header
.object_prefix
);
4178 static int _rbd_dev_v2_snap_features(struct rbd_device
*rbd_dev
, u64 snap_id
,
4181 __le64 snapid
= cpu_to_le64(snap_id
);
4185 } __attribute__ ((packed
)) features_buf
= { 0 };
4189 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4190 "rbd", "get_features",
4191 &snapid
, sizeof (snapid
),
4192 &features_buf
, sizeof (features_buf
));
4193 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4196 if (ret
< sizeof (features_buf
))
4199 unsup
= le64_to_cpu(features_buf
.incompat
) & ~RBD_FEATURES_SUPPORTED
;
4201 rbd_warn(rbd_dev
, "image uses unsupported features: 0x%llx",
4206 *snap_features
= le64_to_cpu(features_buf
.features
);
4208 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4209 (unsigned long long)snap_id
,
4210 (unsigned long long)*snap_features
,
4211 (unsigned long long)le64_to_cpu(features_buf
.incompat
));
4216 static int rbd_dev_v2_features(struct rbd_device
*rbd_dev
)
4218 return _rbd_dev_v2_snap_features(rbd_dev
, CEPH_NOSNAP
,
4219 &rbd_dev
->header
.features
);
4222 static int rbd_dev_v2_parent_info(struct rbd_device
*rbd_dev
)
4224 struct rbd_spec
*parent_spec
;
4226 void *reply_buf
= NULL
;
4236 parent_spec
= rbd_spec_alloc();
4240 size
= sizeof (__le64
) + /* pool_id */
4241 sizeof (__le32
) + RBD_IMAGE_ID_LEN_MAX
+ /* image_id */
4242 sizeof (__le64
) + /* snap_id */
4243 sizeof (__le64
); /* overlap */
4244 reply_buf
= kmalloc(size
, GFP_KERNEL
);
4250 snapid
= cpu_to_le64(rbd_dev
->spec
->snap_id
);
4251 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4252 "rbd", "get_parent",
4253 &snapid
, sizeof (snapid
),
4255 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4260 end
= reply_buf
+ ret
;
4262 ceph_decode_64_safe(&p
, end
, pool_id
, out_err
);
4263 if (pool_id
== CEPH_NOPOOL
) {
4265 * Either the parent never existed, or we have
4266 * record of it but the image got flattened so it no
4267 * longer has a parent. When the parent of a
4268 * layered image disappears we immediately set the
4269 * overlap to 0. The effect of this is that all new
4270 * requests will be treated as if the image had no
4273 if (rbd_dev
->parent_overlap
) {
4274 rbd_dev
->parent_overlap
= 0;
4275 rbd_dev_parent_put(rbd_dev
);
4276 pr_info("%s: clone image has been flattened\n",
4277 rbd_dev
->disk
->disk_name
);
4280 goto out
; /* No parent? No problem. */
4283 /* The ceph file layout needs to fit pool id in 32 bits */
4286 if (pool_id
> (u64
)U32_MAX
) {
4287 rbd_warn(NULL
, "parent pool id too large (%llu > %u)",
4288 (unsigned long long)pool_id
, U32_MAX
);
4292 image_id
= ceph_extract_encoded_string(&p
, end
, NULL
, GFP_KERNEL
);
4293 if (IS_ERR(image_id
)) {
4294 ret
= PTR_ERR(image_id
);
4297 ceph_decode_64_safe(&p
, end
, snap_id
, out_err
);
4298 ceph_decode_64_safe(&p
, end
, overlap
, out_err
);
4301 * The parent won't change (except when the clone is
4302 * flattened, already handled that). So we only need to
4303 * record the parent spec we have not already done so.
4305 if (!rbd_dev
->parent_spec
) {
4306 parent_spec
->pool_id
= pool_id
;
4307 parent_spec
->image_id
= image_id
;
4308 parent_spec
->snap_id
= snap_id
;
4309 rbd_dev
->parent_spec
= parent_spec
;
4310 parent_spec
= NULL
; /* rbd_dev now owns this */
4316 * We always update the parent overlap. If it's zero we issue
4317 * a warning, as we will proceed as if there was no parent.
4321 /* refresh, careful to warn just once */
4322 if (rbd_dev
->parent_overlap
)
4324 "clone now standalone (overlap became 0)");
4327 rbd_warn(rbd_dev
, "clone is standalone (overlap 0)");
4330 rbd_dev
->parent_overlap
= overlap
;
4336 rbd_spec_put(parent_spec
);
4341 static int rbd_dev_v2_striping_info(struct rbd_device
*rbd_dev
)
4345 __le64 stripe_count
;
4346 } __attribute__ ((packed
)) striping_info_buf
= { 0 };
4347 size_t size
= sizeof (striping_info_buf
);
4354 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4355 "rbd", "get_stripe_unit_count", NULL
, 0,
4356 (char *)&striping_info_buf
, size
);
4357 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4364 * We don't actually support the "fancy striping" feature
4365 * (STRIPINGV2) yet, but if the striping sizes are the
4366 * defaults the behavior is the same as before. So find
4367 * out, and only fail if the image has non-default values.
4370 obj_size
= (u64
)1 << rbd_dev
->header
.obj_order
;
4371 p
= &striping_info_buf
;
4372 stripe_unit
= ceph_decode_64(&p
);
4373 if (stripe_unit
!= obj_size
) {
4374 rbd_warn(rbd_dev
, "unsupported stripe unit "
4375 "(got %llu want %llu)",
4376 stripe_unit
, obj_size
);
4379 stripe_count
= ceph_decode_64(&p
);
4380 if (stripe_count
!= 1) {
4381 rbd_warn(rbd_dev
, "unsupported stripe count "
4382 "(got %llu want 1)", stripe_count
);
4385 rbd_dev
->header
.stripe_unit
= stripe_unit
;
4386 rbd_dev
->header
.stripe_count
= stripe_count
;
4391 static char *rbd_dev_image_name(struct rbd_device
*rbd_dev
)
4393 size_t image_id_size
;
4398 void *reply_buf
= NULL
;
4400 char *image_name
= NULL
;
4403 rbd_assert(!rbd_dev
->spec
->image_name
);
4405 len
= strlen(rbd_dev
->spec
->image_id
);
4406 image_id_size
= sizeof (__le32
) + len
;
4407 image_id
= kmalloc(image_id_size
, GFP_KERNEL
);
4412 end
= image_id
+ image_id_size
;
4413 ceph_encode_string(&p
, end
, rbd_dev
->spec
->image_id
, (u32
)len
);
4415 size
= sizeof (__le32
) + RBD_IMAGE_NAME_LEN_MAX
;
4416 reply_buf
= kmalloc(size
, GFP_KERNEL
);
4420 ret
= rbd_obj_method_sync(rbd_dev
, RBD_DIRECTORY
,
4421 "rbd", "dir_get_name",
4422 image_id
, image_id_size
,
4427 end
= reply_buf
+ ret
;
4429 image_name
= ceph_extract_encoded_string(&p
, end
, &len
, GFP_KERNEL
);
4430 if (IS_ERR(image_name
))
4433 dout("%s: name is %s len is %zd\n", __func__
, image_name
, len
);
4441 static u64
rbd_v1_snap_id_by_name(struct rbd_device
*rbd_dev
, const char *name
)
4443 struct ceph_snap_context
*snapc
= rbd_dev
->header
.snapc
;
4444 const char *snap_name
;
4447 /* Skip over names until we find the one we are looking for */
4449 snap_name
= rbd_dev
->header
.snap_names
;
4450 while (which
< snapc
->num_snaps
) {
4451 if (!strcmp(name
, snap_name
))
4452 return snapc
->snaps
[which
];
4453 snap_name
+= strlen(snap_name
) + 1;
4459 static u64
rbd_v2_snap_id_by_name(struct rbd_device
*rbd_dev
, const char *name
)
4461 struct ceph_snap_context
*snapc
= rbd_dev
->header
.snapc
;
4466 for (which
= 0; !found
&& which
< snapc
->num_snaps
; which
++) {
4467 const char *snap_name
;
4469 snap_id
= snapc
->snaps
[which
];
4470 snap_name
= rbd_dev_v2_snap_name(rbd_dev
, snap_id
);
4471 if (IS_ERR(snap_name
)) {
4472 /* ignore no-longer existing snapshots */
4473 if (PTR_ERR(snap_name
) == -ENOENT
)
4478 found
= !strcmp(name
, snap_name
);
4481 return found
? snap_id
: CEPH_NOSNAP
;
4485 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4486 * no snapshot by that name is found, or if an error occurs.
4488 static u64
rbd_snap_id_by_name(struct rbd_device
*rbd_dev
, const char *name
)
4490 if (rbd_dev
->image_format
== 1)
4491 return rbd_v1_snap_id_by_name(rbd_dev
, name
);
4493 return rbd_v2_snap_id_by_name(rbd_dev
, name
);
4497 * An image being mapped will have everything but the snap id.
4499 static int rbd_spec_fill_snap_id(struct rbd_device
*rbd_dev
)
4501 struct rbd_spec
*spec
= rbd_dev
->spec
;
4503 rbd_assert(spec
->pool_id
!= CEPH_NOPOOL
&& spec
->pool_name
);
4504 rbd_assert(spec
->image_id
&& spec
->image_name
);
4505 rbd_assert(spec
->snap_name
);
4507 if (strcmp(spec
->snap_name
, RBD_SNAP_HEAD_NAME
)) {
4510 snap_id
= rbd_snap_id_by_name(rbd_dev
, spec
->snap_name
);
4511 if (snap_id
== CEPH_NOSNAP
)
4514 spec
->snap_id
= snap_id
;
4516 spec
->snap_id
= CEPH_NOSNAP
;
4523 * A parent image will have all ids but none of the names.
4525 * All names in an rbd spec are dynamically allocated. It's OK if we
4526 * can't figure out the name for an image id.
4528 static int rbd_spec_fill_names(struct rbd_device
*rbd_dev
)
4530 struct ceph_osd_client
*osdc
= &rbd_dev
->rbd_client
->client
->osdc
;
4531 struct rbd_spec
*spec
= rbd_dev
->spec
;
4532 const char *pool_name
;
4533 const char *image_name
;
4534 const char *snap_name
;
4537 rbd_assert(spec
->pool_id
!= CEPH_NOPOOL
);
4538 rbd_assert(spec
->image_id
);
4539 rbd_assert(spec
->snap_id
!= CEPH_NOSNAP
);
4541 /* Get the pool name; we have to make our own copy of this */
4543 pool_name
= ceph_pg_pool_name_by_id(osdc
->osdmap
, spec
->pool_id
);
4545 rbd_warn(rbd_dev
, "no pool with id %llu", spec
->pool_id
);
4548 pool_name
= kstrdup(pool_name
, GFP_KERNEL
);
4552 /* Fetch the image name; tolerate failure here */
4554 image_name
= rbd_dev_image_name(rbd_dev
);
4556 rbd_warn(rbd_dev
, "unable to get image name");
4558 /* Fetch the snapshot name */
4560 snap_name
= rbd_snap_name(rbd_dev
, spec
->snap_id
);
4561 if (IS_ERR(snap_name
)) {
4562 ret
= PTR_ERR(snap_name
);
4566 spec
->pool_name
= pool_name
;
4567 spec
->image_name
= image_name
;
4568 spec
->snap_name
= snap_name
;
4578 static int rbd_dev_v2_snap_context(struct rbd_device
*rbd_dev
)
4587 struct ceph_snap_context
*snapc
;
4591 * We'll need room for the seq value (maximum snapshot id),
4592 * snapshot count, and array of that many snapshot ids.
4593 * For now we have a fixed upper limit on the number we're
4594 * prepared to receive.
4596 size
= sizeof (__le64
) + sizeof (__le32
) +
4597 RBD_MAX_SNAP_COUNT
* sizeof (__le64
);
4598 reply_buf
= kzalloc(size
, GFP_KERNEL
);
4602 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4603 "rbd", "get_snapcontext", NULL
, 0,
4605 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4610 end
= reply_buf
+ ret
;
4612 ceph_decode_64_safe(&p
, end
, seq
, out
);
4613 ceph_decode_32_safe(&p
, end
, snap_count
, out
);
4616 * Make sure the reported number of snapshot ids wouldn't go
4617 * beyond the end of our buffer. But before checking that,
4618 * make sure the computed size of the snapshot context we
4619 * allocate is representable in a size_t.
4621 if (snap_count
> (SIZE_MAX
- sizeof (struct ceph_snap_context
))
4626 if (!ceph_has_room(&p
, end
, snap_count
* sizeof (__le64
)))
4630 snapc
= ceph_create_snap_context(snap_count
, GFP_KERNEL
);
4636 for (i
= 0; i
< snap_count
; i
++)
4637 snapc
->snaps
[i
] = ceph_decode_64(&p
);
4639 ceph_put_snap_context(rbd_dev
->header
.snapc
);
4640 rbd_dev
->header
.snapc
= snapc
;
4642 dout(" snap context seq = %llu, snap_count = %u\n",
4643 (unsigned long long)seq
, (unsigned int)snap_count
);
4650 static const char *rbd_dev_v2_snap_name(struct rbd_device
*rbd_dev
,
4661 size
= sizeof (__le32
) + RBD_MAX_SNAP_NAME_LEN
;
4662 reply_buf
= kmalloc(size
, GFP_KERNEL
);
4664 return ERR_PTR(-ENOMEM
);
4666 snapid
= cpu_to_le64(snap_id
);
4667 ret
= rbd_obj_method_sync(rbd_dev
, rbd_dev
->header_name
,
4668 "rbd", "get_snapshot_name",
4669 &snapid
, sizeof (snapid
),
4671 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
4673 snap_name
= ERR_PTR(ret
);
4678 end
= reply_buf
+ ret
;
4679 snap_name
= ceph_extract_encoded_string(&p
, end
, NULL
, GFP_KERNEL
);
4680 if (IS_ERR(snap_name
))
4683 dout(" snap_id 0x%016llx snap_name = %s\n",
4684 (unsigned long long)snap_id
, snap_name
);
4691 static int rbd_dev_v2_header_info(struct rbd_device
*rbd_dev
)
4693 bool first_time
= rbd_dev
->header
.object_prefix
== NULL
;
4696 ret
= rbd_dev_v2_image_size(rbd_dev
);
4701 ret
= rbd_dev_v2_header_onetime(rbd_dev
);
4706 ret
= rbd_dev_v2_snap_context(rbd_dev
);
4707 if (ret
&& first_time
) {
4708 kfree(rbd_dev
->header
.object_prefix
);
4709 rbd_dev
->header
.object_prefix
= NULL
;
4715 static int rbd_dev_header_info(struct rbd_device
*rbd_dev
)
4717 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
4719 if (rbd_dev
->image_format
== 1)
4720 return rbd_dev_v1_header_info(rbd_dev
);
4722 return rbd_dev_v2_header_info(rbd_dev
);
4726 * Get a unique rbd identifier for the given new rbd_dev, and add
4727 * the rbd_dev to the global list.
4729 static int rbd_dev_id_get(struct rbd_device
*rbd_dev
)
4733 new_dev_id
= ida_simple_get(&rbd_dev_id_ida
,
4734 0, minor_to_rbd_dev_id(1 << MINORBITS
),
4739 rbd_dev
->dev_id
= new_dev_id
;
4741 spin_lock(&rbd_dev_list_lock
);
4742 list_add_tail(&rbd_dev
->node
, &rbd_dev_list
);
4743 spin_unlock(&rbd_dev_list_lock
);
4745 dout("rbd_dev %p given dev id %d\n", rbd_dev
, rbd_dev
->dev_id
);
4751 * Remove an rbd_dev from the global list, and record that its
4752 * identifier is no longer in use.
4754 static void rbd_dev_id_put(struct rbd_device
*rbd_dev
)
4756 spin_lock(&rbd_dev_list_lock
);
4757 list_del_init(&rbd_dev
->node
);
4758 spin_unlock(&rbd_dev_list_lock
);
4760 ida_simple_remove(&rbd_dev_id_ida
, rbd_dev
->dev_id
);
4762 dout("rbd_dev %p released dev id %d\n", rbd_dev
, rbd_dev
->dev_id
);
4766 * Skips over white space at *buf, and updates *buf to point to the
4767 * first found non-space character (if any). Returns the length of
4768 * the token (string of non-white space characters) found. Note
4769 * that *buf must be terminated with '\0'.
4771 static inline size_t next_token(const char **buf
)
4774 * These are the characters that produce nonzero for
4775 * isspace() in the "C" and "POSIX" locales.
4777 const char *spaces
= " \f\n\r\t\v";
4779 *buf
+= strspn(*buf
, spaces
); /* Find start of token */
4781 return strcspn(*buf
, spaces
); /* Return token length */
4785 * Finds the next token in *buf, dynamically allocates a buffer big
4786 * enough to hold a copy of it, and copies the token into the new
4787 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4788 * that a duplicate buffer is created even for a zero-length token.
4790 * Returns a pointer to the newly-allocated duplicate, or a null
4791 * pointer if memory for the duplicate was not available. If
4792 * the lenp argument is a non-null pointer, the length of the token
4793 * (not including the '\0') is returned in *lenp.
4795 * If successful, the *buf pointer will be updated to point beyond
4796 * the end of the found token.
4798 * Note: uses GFP_KERNEL for allocation.
4800 static inline char *dup_token(const char **buf
, size_t *lenp
)
4805 len
= next_token(buf
);
4806 dup
= kmemdup(*buf
, len
+ 1, GFP_KERNEL
);
4809 *(dup
+ len
) = '\0';
4819 * Parse the options provided for an "rbd add" (i.e., rbd image
4820 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4821 * and the data written is passed here via a NUL-terminated buffer.
4822 * Returns 0 if successful or an error code otherwise.
4824 * The information extracted from these options is recorded in
4825 * the other parameters which return dynamically-allocated
4828 * The address of a pointer that will refer to a ceph options
4829 * structure. Caller must release the returned pointer using
4830 * ceph_destroy_options() when it is no longer needed.
4832 * Address of an rbd options pointer. Fully initialized by
4833 * this function; caller must release with kfree().
4835 * Address of an rbd image specification pointer. Fully
4836 * initialized by this function based on parsed options.
4837 * Caller must release with rbd_spec_put().
4839 * The options passed take this form:
4840 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4843 * A comma-separated list of one or more monitor addresses.
4844 * A monitor address is an ip address, optionally followed
4845 * by a port number (separated by a colon).
4846 * I.e.: ip1[:port1][,ip2[:port2]...]
4848 * A comma-separated list of ceph and/or rbd options.
4850 * The name of the rados pool containing the rbd image.
4852 * The name of the image in that pool to map.
4854 * An optional snapshot id. If provided, the mapping will
4855 * present data from the image at the time that snapshot was
4856 * created. The image head is used if no snapshot id is
4857 * provided. Snapshot mappings are always read-only.
4859 static int rbd_add_parse_args(const char *buf
,
4860 struct ceph_options
**ceph_opts
,
4861 struct rbd_options
**opts
,
4862 struct rbd_spec
**rbd_spec
)
4866 const char *mon_addrs
;
4868 size_t mon_addrs_size
;
4869 struct rbd_spec
*spec
= NULL
;
4870 struct rbd_options
*rbd_opts
= NULL
;
4871 struct ceph_options
*copts
;
4874 /* The first four tokens are required */
4876 len
= next_token(&buf
);
4878 rbd_warn(NULL
, "no monitor address(es) provided");
4882 mon_addrs_size
= len
+ 1;
4886 options
= dup_token(&buf
, NULL
);
4890 rbd_warn(NULL
, "no options provided");
4894 spec
= rbd_spec_alloc();
4898 spec
->pool_name
= dup_token(&buf
, NULL
);
4899 if (!spec
->pool_name
)
4901 if (!*spec
->pool_name
) {
4902 rbd_warn(NULL
, "no pool name provided");
4906 spec
->image_name
= dup_token(&buf
, NULL
);
4907 if (!spec
->image_name
)
4909 if (!*spec
->image_name
) {
4910 rbd_warn(NULL
, "no image name provided");
4915 * Snapshot name is optional; default is to use "-"
4916 * (indicating the head/no snapshot).
4918 len
= next_token(&buf
);
4920 buf
= RBD_SNAP_HEAD_NAME
; /* No snapshot supplied */
4921 len
= sizeof (RBD_SNAP_HEAD_NAME
) - 1;
4922 } else if (len
> RBD_MAX_SNAP_NAME_LEN
) {
4923 ret
= -ENAMETOOLONG
;
4926 snap_name
= kmemdup(buf
, len
+ 1, GFP_KERNEL
);
4929 *(snap_name
+ len
) = '\0';
4930 spec
->snap_name
= snap_name
;
4932 /* Initialize all rbd options to the defaults */
4934 rbd_opts
= kzalloc(sizeof (*rbd_opts
), GFP_KERNEL
);
4938 rbd_opts
->read_only
= RBD_READ_ONLY_DEFAULT
;
4939 rbd_opts
->queue_depth
= RBD_QUEUE_DEPTH_DEFAULT
;
4941 copts
= ceph_parse_options(options
, mon_addrs
,
4942 mon_addrs
+ mon_addrs_size
- 1,
4943 parse_rbd_opts_token
, rbd_opts
);
4944 if (IS_ERR(copts
)) {
4945 ret
= PTR_ERR(copts
);
4966 * Return pool id (>= 0) or a negative error code.
4968 static int rbd_add_get_pool_id(struct rbd_client
*rbdc
, const char *pool_name
)
4970 struct ceph_options
*opts
= rbdc
->client
->options
;
4976 ret
= ceph_pg_poolid_by_name(rbdc
->client
->osdc
.osdmap
, pool_name
);
4977 if (ret
== -ENOENT
&& tries
++ < 1) {
4978 ret
= ceph_monc_do_get_version(&rbdc
->client
->monc
, "osdmap",
4983 if (rbdc
->client
->osdc
.osdmap
->epoch
< newest_epoch
) {
4984 ceph_monc_request_next_osdmap(&rbdc
->client
->monc
);
4985 (void) ceph_monc_wait_osdmap(&rbdc
->client
->monc
,
4987 opts
->mount_timeout
);
4990 /* the osdmap we have is new enough */
4999 * An rbd format 2 image has a unique identifier, distinct from the
5000 * name given to it by the user. Internally, that identifier is
5001 * what's used to specify the names of objects related to the image.
5003 * A special "rbd id" object is used to map an rbd image name to its
5004 * id. If that object doesn't exist, then there is no v2 rbd image
5005 * with the supplied name.
5007 * This function will record the given rbd_dev's image_id field if
5008 * it can be determined, and in that case will return 0. If any
5009 * errors occur a negative errno will be returned and the rbd_dev's
5010 * image_id field will be unchanged (and should be NULL).
5012 static int rbd_dev_image_id(struct rbd_device
*rbd_dev
)
5021 * When probing a parent image, the image id is already
5022 * known (and the image name likely is not). There's no
5023 * need to fetch the image id again in this case. We
5024 * do still need to set the image format though.
5026 if (rbd_dev
->spec
->image_id
) {
5027 rbd_dev
->image_format
= *rbd_dev
->spec
->image_id
? 2 : 1;
5033 * First, see if the format 2 image id file exists, and if
5034 * so, get the image's persistent id from it.
5036 size
= sizeof (RBD_ID_PREFIX
) + strlen(rbd_dev
->spec
->image_name
);
5037 object_name
= kmalloc(size
, GFP_NOIO
);
5040 sprintf(object_name
, "%s%s", RBD_ID_PREFIX
, rbd_dev
->spec
->image_name
);
5041 dout("rbd id object name is %s\n", object_name
);
5043 /* Response will be an encoded string, which includes a length */
5045 size
= sizeof (__le32
) + RBD_IMAGE_ID_LEN_MAX
;
5046 response
= kzalloc(size
, GFP_NOIO
);
5052 /* If it doesn't exist we'll assume it's a format 1 image */
5054 ret
= rbd_obj_method_sync(rbd_dev
, object_name
,
5055 "rbd", "get_id", NULL
, 0,
5056 response
, RBD_IMAGE_ID_LEN_MAX
);
5057 dout("%s: rbd_obj_method_sync returned %d\n", __func__
, ret
);
5058 if (ret
== -ENOENT
) {
5059 image_id
= kstrdup("", GFP_KERNEL
);
5060 ret
= image_id
? 0 : -ENOMEM
;
5062 rbd_dev
->image_format
= 1;
5063 } else if (ret
>= 0) {
5066 image_id
= ceph_extract_encoded_string(&p
, p
+ ret
,
5068 ret
= PTR_ERR_OR_ZERO(image_id
);
5070 rbd_dev
->image_format
= 2;
5074 rbd_dev
->spec
->image_id
= image_id
;
5075 dout("image_id is %s\n", image_id
);
5085 * Undo whatever state changes are made by v1 or v2 header info
5088 static void rbd_dev_unprobe(struct rbd_device
*rbd_dev
)
5090 struct rbd_image_header
*header
;
5092 rbd_dev_parent_put(rbd_dev
);
5094 /* Free dynamic fields from the header, then zero it out */
5096 header
= &rbd_dev
->header
;
5097 ceph_put_snap_context(header
->snapc
);
5098 kfree(header
->snap_sizes
);
5099 kfree(header
->snap_names
);
5100 kfree(header
->object_prefix
);
5101 memset(header
, 0, sizeof (*header
));
5104 static int rbd_dev_v2_header_onetime(struct rbd_device
*rbd_dev
)
5108 ret
= rbd_dev_v2_object_prefix(rbd_dev
);
5113 * Get the and check features for the image. Currently the
5114 * features are assumed to never change.
5116 ret
= rbd_dev_v2_features(rbd_dev
);
5120 /* If the image supports fancy striping, get its parameters */
5122 if (rbd_dev
->header
.features
& RBD_FEATURE_STRIPINGV2
) {
5123 ret
= rbd_dev_v2_striping_info(rbd_dev
);
5127 /* No support for crypto and compression type format 2 images */
5131 rbd_dev
->header
.features
= 0;
5132 kfree(rbd_dev
->header
.object_prefix
);
5133 rbd_dev
->header
.object_prefix
= NULL
;
5139 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5140 * rbd_dev_image_probe() recursion depth, which means it's also the
5141 * length of the already discovered part of the parent chain.
5143 static int rbd_dev_probe_parent(struct rbd_device
*rbd_dev
, int depth
)
5145 struct rbd_device
*parent
= NULL
;
5148 if (!rbd_dev
->parent_spec
)
5151 if (++depth
> RBD_MAX_PARENT_CHAIN_LEN
) {
5152 pr_info("parent chain is too long (%d)\n", depth
);
5157 parent
= rbd_dev_create(rbd_dev
->rbd_client
, rbd_dev
->parent_spec
,
5165 * Images related by parent/child relationships always share
5166 * rbd_client and spec/parent_spec, so bump their refcounts.
5168 __rbd_get_client(rbd_dev
->rbd_client
);
5169 rbd_spec_get(rbd_dev
->parent_spec
);
5171 ret
= rbd_dev_image_probe(parent
, depth
);
5175 rbd_dev
->parent
= parent
;
5176 atomic_set(&rbd_dev
->parent_ref
, 1);
5180 rbd_dev_unparent(rbd_dev
);
5181 rbd_dev_destroy(parent
);
5186 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5189 static int rbd_dev_device_setup(struct rbd_device
*rbd_dev
)
5193 /* Get an id and fill in device name. */
5195 ret
= rbd_dev_id_get(rbd_dev
);
5197 goto err_out_unlock
;
5199 BUILD_BUG_ON(DEV_NAME_LEN
5200 < sizeof (RBD_DRV_NAME
) + MAX_INT_FORMAT_WIDTH
);
5201 sprintf(rbd_dev
->name
, "%s%d", RBD_DRV_NAME
, rbd_dev
->dev_id
);
5203 /* Record our major and minor device numbers. */
5205 if (!single_major
) {
5206 ret
= register_blkdev(0, rbd_dev
->name
);
5210 rbd_dev
->major
= ret
;
5213 rbd_dev
->major
= rbd_major
;
5214 rbd_dev
->minor
= rbd_dev_id_to_minor(rbd_dev
->dev_id
);
5217 /* Set up the blkdev mapping. */
5219 ret
= rbd_init_disk(rbd_dev
);
5221 goto err_out_blkdev
;
5223 ret
= rbd_dev_mapping_set(rbd_dev
);
5227 set_capacity(rbd_dev
->disk
, rbd_dev
->mapping
.size
/ SECTOR_SIZE
);
5228 set_disk_ro(rbd_dev
->disk
, rbd_dev
->mapping
.read_only
);
5230 dev_set_name(&rbd_dev
->dev
, "%d", rbd_dev
->dev_id
);
5231 ret
= device_add(&rbd_dev
->dev
);
5233 goto err_out_mapping
;
5235 /* Everything's ready. Announce the disk to the world. */
5237 set_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
);
5238 up_write(&rbd_dev
->header_rwsem
);
5240 add_disk(rbd_dev
->disk
);
5241 pr_info("%s: added with size 0x%llx\n", rbd_dev
->disk
->disk_name
,
5242 (unsigned long long) rbd_dev
->mapping
.size
);
5247 rbd_dev_mapping_clear(rbd_dev
);
5249 rbd_free_disk(rbd_dev
);
5252 unregister_blkdev(rbd_dev
->major
, rbd_dev
->name
);
5254 rbd_dev_id_put(rbd_dev
);
5256 up_write(&rbd_dev
->header_rwsem
);
5260 static int rbd_dev_header_name(struct rbd_device
*rbd_dev
)
5262 struct rbd_spec
*spec
= rbd_dev
->spec
;
5265 /* Record the header object name for this rbd image. */
5267 rbd_assert(rbd_image_format_valid(rbd_dev
->image_format
));
5269 if (rbd_dev
->image_format
== 1)
5270 size
= strlen(spec
->image_name
) + sizeof (RBD_SUFFIX
);
5272 size
= sizeof (RBD_HEADER_PREFIX
) + strlen(spec
->image_id
);
5274 rbd_dev
->header_name
= kmalloc(size
, GFP_KERNEL
);
5275 if (!rbd_dev
->header_name
)
5278 if (rbd_dev
->image_format
== 1)
5279 sprintf(rbd_dev
->header_name
, "%s%s",
5280 spec
->image_name
, RBD_SUFFIX
);
5282 sprintf(rbd_dev
->header_name
, "%s%s",
5283 RBD_HEADER_PREFIX
, spec
->image_id
);
5287 static void rbd_dev_image_release(struct rbd_device
*rbd_dev
)
5289 rbd_dev_unprobe(rbd_dev
);
5290 kfree(rbd_dev
->header_name
);
5291 rbd_dev
->header_name
= NULL
;
5292 rbd_dev
->image_format
= 0;
5293 kfree(rbd_dev
->spec
->image_id
);
5294 rbd_dev
->spec
->image_id
= NULL
;
5296 rbd_dev_destroy(rbd_dev
);
5300 * Probe for the existence of the header object for the given rbd
5301 * device. If this image is the one being mapped (i.e., not a
5302 * parent), initiate a watch on its header object before using that
5303 * object to get detailed information about the rbd image.
5305 static int rbd_dev_image_probe(struct rbd_device
*rbd_dev
, int depth
)
5310 * Get the id from the image id object. Unless there's an
5311 * error, rbd_dev->spec->image_id will be filled in with
5312 * a dynamically-allocated string, and rbd_dev->image_format
5313 * will be set to either 1 or 2.
5315 ret
= rbd_dev_image_id(rbd_dev
);
5319 ret
= rbd_dev_header_name(rbd_dev
);
5321 goto err_out_format
;
5324 ret
= rbd_dev_header_watch_sync(rbd_dev
);
5327 pr_info("image %s/%s does not exist\n",
5328 rbd_dev
->spec
->pool_name
,
5329 rbd_dev
->spec
->image_name
);
5330 goto out_header_name
;
5334 ret
= rbd_dev_header_info(rbd_dev
);
5339 * If this image is the one being mapped, we have pool name and
5340 * id, image name and id, and snap name - need to fill snap id.
5341 * Otherwise this is a parent image, identified by pool, image
5342 * and snap ids - need to fill in names for those ids.
5345 ret
= rbd_spec_fill_snap_id(rbd_dev
);
5347 ret
= rbd_spec_fill_names(rbd_dev
);
5350 pr_info("snap %s/%s@%s does not exist\n",
5351 rbd_dev
->spec
->pool_name
,
5352 rbd_dev
->spec
->image_name
,
5353 rbd_dev
->spec
->snap_name
);
5357 if (rbd_dev
->header
.features
& RBD_FEATURE_LAYERING
) {
5358 ret
= rbd_dev_v2_parent_info(rbd_dev
);
5363 * Need to warn users if this image is the one being
5364 * mapped and has a parent.
5366 if (!depth
&& rbd_dev
->parent_spec
)
5368 "WARNING: kernel layering is EXPERIMENTAL!");
5371 ret
= rbd_dev_probe_parent(rbd_dev
, depth
);
5375 dout("discovered format %u image, header name is %s\n",
5376 rbd_dev
->image_format
, rbd_dev
->header_name
);
5380 rbd_dev_unprobe(rbd_dev
);
5383 rbd_dev_header_unwatch_sync(rbd_dev
);
5385 kfree(rbd_dev
->header_name
);
5386 rbd_dev
->header_name
= NULL
;
5388 rbd_dev
->image_format
= 0;
5389 kfree(rbd_dev
->spec
->image_id
);
5390 rbd_dev
->spec
->image_id
= NULL
;
5394 static ssize_t
do_rbd_add(struct bus_type
*bus
,
5398 struct rbd_device
*rbd_dev
= NULL
;
5399 struct ceph_options
*ceph_opts
= NULL
;
5400 struct rbd_options
*rbd_opts
= NULL
;
5401 struct rbd_spec
*spec
= NULL
;
5402 struct rbd_client
*rbdc
;
5406 if (!try_module_get(THIS_MODULE
))
5409 /* parse add command */
5410 rc
= rbd_add_parse_args(buf
, &ceph_opts
, &rbd_opts
, &spec
);
5414 rbdc
= rbd_get_client(ceph_opts
);
5421 rc
= rbd_add_get_pool_id(rbdc
, spec
->pool_name
);
5424 pr_info("pool %s does not exist\n", spec
->pool_name
);
5425 goto err_out_client
;
5427 spec
->pool_id
= (u64
)rc
;
5429 /* The ceph file layout needs to fit pool id in 32 bits */
5431 if (spec
->pool_id
> (u64
)U32_MAX
) {
5432 rbd_warn(NULL
, "pool id too large (%llu > %u)",
5433 (unsigned long long)spec
->pool_id
, U32_MAX
);
5435 goto err_out_client
;
5438 rbd_dev
= rbd_dev_create(rbdc
, spec
, rbd_opts
);
5441 goto err_out_client
;
5443 rbdc
= NULL
; /* rbd_dev now owns this */
5444 spec
= NULL
; /* rbd_dev now owns this */
5445 rbd_opts
= NULL
; /* rbd_dev now owns this */
5447 down_write(&rbd_dev
->header_rwsem
);
5448 rc
= rbd_dev_image_probe(rbd_dev
, 0);
5450 goto err_out_rbd_dev
;
5452 /* If we are mapping a snapshot it must be marked read-only */
5454 read_only
= rbd_dev
->opts
->read_only
;
5455 if (rbd_dev
->spec
->snap_id
!= CEPH_NOSNAP
)
5457 rbd_dev
->mapping
.read_only
= read_only
;
5459 rc
= rbd_dev_device_setup(rbd_dev
);
5462 * rbd_dev_header_unwatch_sync() can't be moved into
5463 * rbd_dev_image_release() without refactoring, see
5464 * commit 1f3ef78861ac.
5466 rbd_dev_header_unwatch_sync(rbd_dev
);
5467 rbd_dev_image_release(rbd_dev
);
5473 module_put(THIS_MODULE
);
5477 up_write(&rbd_dev
->header_rwsem
);
5478 rbd_dev_destroy(rbd_dev
);
5480 rbd_put_client(rbdc
);
5487 static ssize_t
rbd_add(struct bus_type
*bus
,
5494 return do_rbd_add(bus
, buf
, count
);
5497 static ssize_t
rbd_add_single_major(struct bus_type
*bus
,
5501 return do_rbd_add(bus
, buf
, count
);
5504 static void rbd_dev_device_release(struct rbd_device
*rbd_dev
)
5506 rbd_free_disk(rbd_dev
);
5507 clear_bit(RBD_DEV_FLAG_EXISTS
, &rbd_dev
->flags
);
5508 device_del(&rbd_dev
->dev
);
5509 rbd_dev_mapping_clear(rbd_dev
);
5511 unregister_blkdev(rbd_dev
->major
, rbd_dev
->name
);
5512 rbd_dev_id_put(rbd_dev
);
5515 static void rbd_dev_remove_parent(struct rbd_device
*rbd_dev
)
5517 while (rbd_dev
->parent
) {
5518 struct rbd_device
*first
= rbd_dev
;
5519 struct rbd_device
*second
= first
->parent
;
5520 struct rbd_device
*third
;
5523 * Follow to the parent with no grandparent and
5526 while (second
&& (third
= second
->parent
)) {
5531 rbd_dev_image_release(second
);
5532 first
->parent
= NULL
;
5533 first
->parent_overlap
= 0;
5535 rbd_assert(first
->parent_spec
);
5536 rbd_spec_put(first
->parent_spec
);
5537 first
->parent_spec
= NULL
;
5541 static ssize_t
do_rbd_remove(struct bus_type
*bus
,
5545 struct rbd_device
*rbd_dev
= NULL
;
5546 struct list_head
*tmp
;
5549 bool already
= false;
5552 ret
= kstrtoul(buf
, 10, &ul
);
5556 /* convert to int; abort if we lost anything in the conversion */
5562 spin_lock(&rbd_dev_list_lock
);
5563 list_for_each(tmp
, &rbd_dev_list
) {
5564 rbd_dev
= list_entry(tmp
, struct rbd_device
, node
);
5565 if (rbd_dev
->dev_id
== dev_id
) {
5571 spin_lock_irq(&rbd_dev
->lock
);
5572 if (rbd_dev
->open_count
)
5575 already
= test_and_set_bit(RBD_DEV_FLAG_REMOVING
,
5577 spin_unlock_irq(&rbd_dev
->lock
);
5579 spin_unlock(&rbd_dev_list_lock
);
5580 if (ret
< 0 || already
)
5583 rbd_dev_header_unwatch_sync(rbd_dev
);
5586 * Don't free anything from rbd_dev->disk until after all
5587 * notifies are completely processed. Otherwise
5588 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5589 * in a potential use after free of rbd_dev->disk or rbd_dev.
5591 rbd_dev_device_release(rbd_dev
);
5592 rbd_dev_image_release(rbd_dev
);
5597 static ssize_t
rbd_remove(struct bus_type
*bus
,
5604 return do_rbd_remove(bus
, buf
, count
);
5607 static ssize_t
rbd_remove_single_major(struct bus_type
*bus
,
5611 return do_rbd_remove(bus
, buf
, count
);
5615 * create control files in sysfs
5618 static int rbd_sysfs_init(void)
5622 ret
= device_register(&rbd_root_dev
);
5626 ret
= bus_register(&rbd_bus_type
);
5628 device_unregister(&rbd_root_dev
);
5633 static void rbd_sysfs_cleanup(void)
5635 bus_unregister(&rbd_bus_type
);
5636 device_unregister(&rbd_root_dev
);
5639 static int rbd_slab_init(void)
5641 rbd_assert(!rbd_img_request_cache
);
5642 rbd_img_request_cache
= KMEM_CACHE(rbd_img_request
, 0);
5643 if (!rbd_img_request_cache
)
5646 rbd_assert(!rbd_obj_request_cache
);
5647 rbd_obj_request_cache
= KMEM_CACHE(rbd_obj_request
, 0);
5648 if (!rbd_obj_request_cache
)
5651 rbd_assert(!rbd_segment_name_cache
);
5652 rbd_segment_name_cache
= kmem_cache_create("rbd_segment_name",
5653 CEPH_MAX_OID_NAME_LEN
+ 1, 1, 0, NULL
);
5654 if (rbd_segment_name_cache
)
5657 kmem_cache_destroy(rbd_obj_request_cache
);
5658 rbd_obj_request_cache
= NULL
;
5660 kmem_cache_destroy(rbd_img_request_cache
);
5661 rbd_img_request_cache
= NULL
;
5666 static void rbd_slab_exit(void)
5668 rbd_assert(rbd_segment_name_cache
);
5669 kmem_cache_destroy(rbd_segment_name_cache
);
5670 rbd_segment_name_cache
= NULL
;
5672 rbd_assert(rbd_obj_request_cache
);
5673 kmem_cache_destroy(rbd_obj_request_cache
);
5674 rbd_obj_request_cache
= NULL
;
5676 rbd_assert(rbd_img_request_cache
);
5677 kmem_cache_destroy(rbd_img_request_cache
);
5678 rbd_img_request_cache
= NULL
;
5681 static int __init
rbd_init(void)
5685 if (!libceph_compatible(NULL
)) {
5686 rbd_warn(NULL
, "libceph incompatibility (quitting)");
5690 rc
= rbd_slab_init();
5695 * The number of active work items is limited by the number of
5696 * rbd devices * queue depth, so leave @max_active at default.
5698 rbd_wq
= alloc_workqueue(RBD_DRV_NAME
, WQ_MEM_RECLAIM
, 0);
5705 rbd_major
= register_blkdev(0, RBD_DRV_NAME
);
5706 if (rbd_major
< 0) {
5712 rc
= rbd_sysfs_init();
5714 goto err_out_blkdev
;
5717 pr_info("loaded (major %d)\n", rbd_major
);
5719 pr_info("loaded\n");
5725 unregister_blkdev(rbd_major
, RBD_DRV_NAME
);
5727 destroy_workqueue(rbd_wq
);
5733 static void __exit
rbd_exit(void)
5735 ida_destroy(&rbd_dev_id_ida
);
5736 rbd_sysfs_cleanup();
5738 unregister_blkdev(rbd_major
, RBD_DRV_NAME
);
5739 destroy_workqueue(rbd_wq
);
5743 module_init(rbd_init
);
5744 module_exit(rbd_exit
);
5746 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5747 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5748 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5749 /* following authorship retained from original osdblk.c */
5750 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5752 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5753 MODULE_LICENSE("GPL");