Merge tag 'master-2014-11-25' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46
47 #include "rbd_types.h"
48
49 #define RBD_DEBUG /* Activate rbd_assert() calls */
50
51 /*
52 * The basic unit of block I/O is a sector. It is interpreted in a
53 * number of contexts in Linux (blk, bio, genhd), but the default is
54 * universally 512 bytes. These symbols are just slightly more
55 * meaningful than the bare numbers they represent.
56 */
57 #define SECTOR_SHIFT 9
58 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
59
60 /*
61 * Increment the given counter and return its updated value.
62 * If the counter is already 0 it will not be incremented.
63 * If the counter is already at its maximum value returns
64 * -EINVAL without updating it.
65 */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68 unsigned int counter;
69
70 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 if (counter <= (unsigned int)INT_MAX)
72 return (int)counter;
73
74 atomic_dec(v);
75
76 return -EINVAL;
77 }
78
79 /* Decrement the counter. Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82 int counter;
83
84 counter = atomic_dec_return(v);
85 if (counter >= 0)
86 return counter;
87
88 atomic_inc(v);
89
90 return -EINVAL;
91 }
92
93 #define RBD_DRV_NAME "rbd"
94
95 #define RBD_MINORS_PER_MAJOR 256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
97
98 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN \
100 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101
102 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
103
104 #define RBD_SNAP_HEAD_NAME "-"
105
106 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
107
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX 64
111
112 #define RBD_OBJ_PREFIX_LEN_MAX 64
113
114 /* Feature bits */
115
116 #define RBD_FEATURE_LAYERING (1<<0)
117 #define RBD_FEATURE_STRIPINGV2 (1<<1)
118 #define RBD_FEATURES_ALL \
119 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120
121 /* Features supported by this (client software) implementation. */
122
123 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
124
125 /*
126 * An RBD device name will be "rbd#", where the "rbd" comes from
127 * RBD_DRV_NAME above, and # is a unique integer identifier.
128 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129 * enough to hold all possible device names.
130 */
131 #define DEV_NAME_LEN 32
132 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
133
134 /*
135 * block device image metadata (in-memory version)
136 */
137 struct rbd_image_header {
138 /* These six fields never change for a given rbd image */
139 char *object_prefix;
140 __u8 obj_order;
141 __u8 crypt_type;
142 __u8 comp_type;
143 u64 stripe_unit;
144 u64 stripe_count;
145 u64 features; /* Might be changeable someday? */
146
147 /* The remaining fields need to be updated occasionally */
148 u64 image_size;
149 struct ceph_snap_context *snapc;
150 char *snap_names; /* format 1 only */
151 u64 *snap_sizes; /* format 1 only */
152 };
153
154 /*
155 * An rbd image specification.
156 *
157 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158 * identify an image. Each rbd_dev structure includes a pointer to
159 * an rbd_spec structure that encapsulates this identity.
160 *
161 * Each of the id's in an rbd_spec has an associated name. For a
162 * user-mapped image, the names are supplied and the id's associated
163 * with them are looked up. For a layered image, a parent image is
164 * defined by the tuple, and the names are looked up.
165 *
166 * An rbd_dev structure contains a parent_spec pointer which is
167 * non-null if the image it represents is a child in a layered
168 * image. This pointer will refer to the rbd_spec structure used
169 * by the parent rbd_dev for its own identity (i.e., the structure
170 * is shared between the parent and child).
171 *
172 * Since these structures are populated once, during the discovery
173 * phase of image construction, they are effectively immutable so
174 * we make no effort to synchronize access to them.
175 *
176 * Note that code herein does not assume the image name is known (it
177 * could be a null pointer).
178 */
179 struct rbd_spec {
180 u64 pool_id;
181 const char *pool_name;
182
183 const char *image_id;
184 const char *image_name;
185
186 u64 snap_id;
187 const char *snap_name;
188
189 struct kref kref;
190 };
191
192 /*
193 * an instance of the client. multiple devices may share an rbd client.
194 */
195 struct rbd_client {
196 struct ceph_client *client;
197 struct kref kref;
198 struct list_head node;
199 };
200
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203
204 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
205
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208
209 enum obj_request_type {
210 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212
213 enum obj_operation_type {
214 OBJ_OP_WRITE,
215 OBJ_OP_READ,
216 OBJ_OP_DISCARD,
217 };
218
219 enum obj_req_flags {
220 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
221 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
222 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
223 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
224 };
225
226 struct rbd_obj_request {
227 const char *object_name;
228 u64 offset; /* object start byte */
229 u64 length; /* bytes from offset */
230 unsigned long flags;
231
232 /*
233 * An object request associated with an image will have its
234 * img_data flag set; a standalone object request will not.
235 *
236 * A standalone object request will have which == BAD_WHICH
237 * and a null obj_request pointer.
238 *
239 * An object request initiated in support of a layered image
240 * object (to check for its existence before a write) will
241 * have which == BAD_WHICH and a non-null obj_request pointer.
242 *
243 * Finally, an object request for rbd image data will have
244 * which != BAD_WHICH, and will have a non-null img_request
245 * pointer. The value of which will be in the range
246 * 0..(img_request->obj_request_count-1).
247 */
248 union {
249 struct rbd_obj_request *obj_request; /* STAT op */
250 struct {
251 struct rbd_img_request *img_request;
252 u64 img_offset;
253 /* links for img_request->obj_requests list */
254 struct list_head links;
255 };
256 };
257 u32 which; /* posn image request list */
258
259 enum obj_request_type type;
260 union {
261 struct bio *bio_list;
262 struct {
263 struct page **pages;
264 u32 page_count;
265 };
266 };
267 struct page **copyup_pages;
268 u32 copyup_page_count;
269
270 struct ceph_osd_request *osd_req;
271
272 u64 xferred; /* bytes transferred */
273 int result;
274
275 rbd_obj_callback_t callback;
276 struct completion completion;
277
278 struct kref kref;
279 };
280
281 enum img_req_flags {
282 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
283 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
284 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
285 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
286 };
287
288 struct rbd_img_request {
289 struct rbd_device *rbd_dev;
290 u64 offset; /* starting image byte offset */
291 u64 length; /* byte count from offset */
292 unsigned long flags;
293 union {
294 u64 snap_id; /* for reads */
295 struct ceph_snap_context *snapc; /* for writes */
296 };
297 union {
298 struct request *rq; /* block request */
299 struct rbd_obj_request *obj_request; /* obj req initiator */
300 };
301 struct page **copyup_pages;
302 u32 copyup_page_count;
303 spinlock_t completion_lock;/* protects next_completion */
304 u32 next_completion;
305 rbd_img_callback_t callback;
306 u64 xferred;/* aggregate bytes transferred */
307 int result; /* first nonzero obj_request result */
308
309 u32 obj_request_count;
310 struct list_head obj_requests; /* rbd_obj_request structs */
311
312 struct kref kref;
313 };
314
315 #define for_each_obj_request(ireq, oreq) \
316 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321
322 struct rbd_mapping {
323 u64 size;
324 u64 features;
325 bool read_only;
326 };
327
328 /*
329 * a single device
330 */
331 struct rbd_device {
332 int dev_id; /* blkdev unique id */
333
334 int major; /* blkdev assigned major */
335 int minor;
336 struct gendisk *disk; /* blkdev's gendisk and rq */
337
338 u32 image_format; /* Either 1 or 2 */
339 struct rbd_client *rbd_client;
340
341 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343 struct list_head rq_queue; /* incoming rq queue */
344 spinlock_t lock; /* queue, flags, open_count */
345 struct work_struct rq_work;
346
347 struct rbd_image_header header;
348 unsigned long flags; /* possibly lock protected */
349 struct rbd_spec *spec;
350
351 char *header_name;
352
353 struct ceph_file_layout layout;
354
355 struct ceph_osd_event *watch_event;
356 struct rbd_obj_request *watch_request;
357
358 struct rbd_spec *parent_spec;
359 u64 parent_overlap;
360 atomic_t parent_ref;
361 struct rbd_device *parent;
362
363 /* protects updating the header */
364 struct rw_semaphore header_rwsem;
365
366 struct rbd_mapping mapping;
367
368 struct list_head node;
369
370 /* sysfs related */
371 struct device dev;
372 unsigned long open_count; /* protected by lock */
373 };
374
375 /*
376 * Flag bits for rbd_dev->flags. If atomicity is required,
377 * rbd_dev->lock is used to protect access.
378 *
379 * Currently, only the "removing" flag (which is coupled with the
380 * "open_count" field) requires atomic access.
381 */
382 enum rbd_dev_flags {
383 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
384 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
385 };
386
387 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
388
389 static LIST_HEAD(rbd_dev_list); /* devices */
390 static DEFINE_SPINLOCK(rbd_dev_list_lock);
391
392 static LIST_HEAD(rbd_client_list); /* clients */
393 static DEFINE_SPINLOCK(rbd_client_list_lock);
394
395 /* Slab caches for frequently-allocated structures */
396
397 static struct kmem_cache *rbd_img_request_cache;
398 static struct kmem_cache *rbd_obj_request_cache;
399 static struct kmem_cache *rbd_segment_name_cache;
400
401 static int rbd_major;
402 static DEFINE_IDA(rbd_dev_id_ida);
403
404 static struct workqueue_struct *rbd_wq;
405
406 /*
407 * Default to false for now, as single-major requires >= 0.75 version of
408 * userspace rbd utility.
409 */
410 static bool single_major = false;
411 module_param(single_major, bool, S_IRUGO);
412 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
413
414 static int rbd_img_request_submit(struct rbd_img_request *img_request);
415
416 static void rbd_dev_device_release(struct device *dev);
417
418 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
419 size_t count);
420 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
421 size_t count);
422 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
423 size_t count);
424 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
425 size_t count);
426 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
427 static void rbd_spec_put(struct rbd_spec *spec);
428
429 static int rbd_dev_id_to_minor(int dev_id)
430 {
431 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
432 }
433
434 static int minor_to_rbd_dev_id(int minor)
435 {
436 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438
439 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
440 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
441 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
442 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
443
444 static struct attribute *rbd_bus_attrs[] = {
445 &bus_attr_add.attr,
446 &bus_attr_remove.attr,
447 &bus_attr_add_single_major.attr,
448 &bus_attr_remove_single_major.attr,
449 NULL,
450 };
451
452 static umode_t rbd_bus_is_visible(struct kobject *kobj,
453 struct attribute *attr, int index)
454 {
455 if (!single_major &&
456 (attr == &bus_attr_add_single_major.attr ||
457 attr == &bus_attr_remove_single_major.attr))
458 return 0;
459
460 return attr->mode;
461 }
462
463 static const struct attribute_group rbd_bus_group = {
464 .attrs = rbd_bus_attrs,
465 .is_visible = rbd_bus_is_visible,
466 };
467 __ATTRIBUTE_GROUPS(rbd_bus);
468
469 static struct bus_type rbd_bus_type = {
470 .name = "rbd",
471 .bus_groups = rbd_bus_groups,
472 };
473
474 static void rbd_root_dev_release(struct device *dev)
475 {
476 }
477
478 static struct device rbd_root_dev = {
479 .init_name = "rbd",
480 .release = rbd_root_dev_release,
481 };
482
483 static __printf(2, 3)
484 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
485 {
486 struct va_format vaf;
487 va_list args;
488
489 va_start(args, fmt);
490 vaf.fmt = fmt;
491 vaf.va = &args;
492
493 if (!rbd_dev)
494 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
495 else if (rbd_dev->disk)
496 printk(KERN_WARNING "%s: %s: %pV\n",
497 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
498 else if (rbd_dev->spec && rbd_dev->spec->image_name)
499 printk(KERN_WARNING "%s: image %s: %pV\n",
500 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
501 else if (rbd_dev->spec && rbd_dev->spec->image_id)
502 printk(KERN_WARNING "%s: id %s: %pV\n",
503 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
504 else /* punt */
505 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
506 RBD_DRV_NAME, rbd_dev, &vaf);
507 va_end(args);
508 }
509
510 #ifdef RBD_DEBUG
511 #define rbd_assert(expr) \
512 if (unlikely(!(expr))) { \
513 printk(KERN_ERR "\nAssertion failure in %s() " \
514 "at line %d:\n\n" \
515 "\trbd_assert(%s);\n\n", \
516 __func__, __LINE__, #expr); \
517 BUG(); \
518 }
519 #else /* !RBD_DEBUG */
520 # define rbd_assert(expr) ((void) 0)
521 #endif /* !RBD_DEBUG */
522
523 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
524 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
525 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
526
527 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
528 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
529 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
531 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
532 u64 snap_id);
533 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
534 u8 *order, u64 *snap_size);
535 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
536 u64 *snap_features);
537 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
538
539 static int rbd_open(struct block_device *bdev, fmode_t mode)
540 {
541 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
542 bool removing = false;
543
544 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
545 return -EROFS;
546
547 spin_lock_irq(&rbd_dev->lock);
548 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
549 removing = true;
550 else
551 rbd_dev->open_count++;
552 spin_unlock_irq(&rbd_dev->lock);
553 if (removing)
554 return -ENOENT;
555
556 (void) get_device(&rbd_dev->dev);
557
558 return 0;
559 }
560
561 static void rbd_release(struct gendisk *disk, fmode_t mode)
562 {
563 struct rbd_device *rbd_dev = disk->private_data;
564 unsigned long open_count_before;
565
566 spin_lock_irq(&rbd_dev->lock);
567 open_count_before = rbd_dev->open_count--;
568 spin_unlock_irq(&rbd_dev->lock);
569 rbd_assert(open_count_before > 0);
570
571 put_device(&rbd_dev->dev);
572 }
573
574 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
575 {
576 int ret = 0;
577 int val;
578 bool ro;
579 bool ro_changed = false;
580
581 /* get_user() may sleep, so call it before taking rbd_dev->lock */
582 if (get_user(val, (int __user *)(arg)))
583 return -EFAULT;
584
585 ro = val ? true : false;
586 /* Snapshot doesn't allow to write*/
587 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
588 return -EROFS;
589
590 spin_lock_irq(&rbd_dev->lock);
591 /* prevent others open this device */
592 if (rbd_dev->open_count > 1) {
593 ret = -EBUSY;
594 goto out;
595 }
596
597 if (rbd_dev->mapping.read_only != ro) {
598 rbd_dev->mapping.read_only = ro;
599 ro_changed = true;
600 }
601
602 out:
603 spin_unlock_irq(&rbd_dev->lock);
604 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
605 if (ret == 0 && ro_changed)
606 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
607
608 return ret;
609 }
610
611 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
612 unsigned int cmd, unsigned long arg)
613 {
614 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
615 int ret = 0;
616
617 switch (cmd) {
618 case BLKROSET:
619 ret = rbd_ioctl_set_ro(rbd_dev, arg);
620 break;
621 default:
622 ret = -ENOTTY;
623 }
624
625 return ret;
626 }
627
628 #ifdef CONFIG_COMPAT
629 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
630 unsigned int cmd, unsigned long arg)
631 {
632 return rbd_ioctl(bdev, mode, cmd, arg);
633 }
634 #endif /* CONFIG_COMPAT */
635
636 static const struct block_device_operations rbd_bd_ops = {
637 .owner = THIS_MODULE,
638 .open = rbd_open,
639 .release = rbd_release,
640 .ioctl = rbd_ioctl,
641 #ifdef CONFIG_COMPAT
642 .compat_ioctl = rbd_compat_ioctl,
643 #endif
644 };
645
646 /*
647 * Initialize an rbd client instance. Success or not, this function
648 * consumes ceph_opts. Caller holds client_mutex.
649 */
650 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
651 {
652 struct rbd_client *rbdc;
653 int ret = -ENOMEM;
654
655 dout("%s:\n", __func__);
656 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
657 if (!rbdc)
658 goto out_opt;
659
660 kref_init(&rbdc->kref);
661 INIT_LIST_HEAD(&rbdc->node);
662
663 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
664 if (IS_ERR(rbdc->client))
665 goto out_rbdc;
666 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
667
668 ret = ceph_open_session(rbdc->client);
669 if (ret < 0)
670 goto out_client;
671
672 spin_lock(&rbd_client_list_lock);
673 list_add_tail(&rbdc->node, &rbd_client_list);
674 spin_unlock(&rbd_client_list_lock);
675
676 dout("%s: rbdc %p\n", __func__, rbdc);
677
678 return rbdc;
679 out_client:
680 ceph_destroy_client(rbdc->client);
681 out_rbdc:
682 kfree(rbdc);
683 out_opt:
684 if (ceph_opts)
685 ceph_destroy_options(ceph_opts);
686 dout("%s: error %d\n", __func__, ret);
687
688 return ERR_PTR(ret);
689 }
690
691 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
692 {
693 kref_get(&rbdc->kref);
694
695 return rbdc;
696 }
697
698 /*
699 * Find a ceph client with specific addr and configuration. If
700 * found, bump its reference count.
701 */
702 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
703 {
704 struct rbd_client *client_node;
705 bool found = false;
706
707 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
708 return NULL;
709
710 spin_lock(&rbd_client_list_lock);
711 list_for_each_entry(client_node, &rbd_client_list, node) {
712 if (!ceph_compare_options(ceph_opts, client_node->client)) {
713 __rbd_get_client(client_node);
714
715 found = true;
716 break;
717 }
718 }
719 spin_unlock(&rbd_client_list_lock);
720
721 return found ? client_node : NULL;
722 }
723
724 /*
725 * mount options
726 */
727 enum {
728 Opt_last_int,
729 /* int args above */
730 Opt_last_string,
731 /* string args above */
732 Opt_read_only,
733 Opt_read_write,
734 /* Boolean args above */
735 Opt_last_bool,
736 };
737
738 static match_table_t rbd_opts_tokens = {
739 /* int args above */
740 /* string args above */
741 {Opt_read_only, "read_only"},
742 {Opt_read_only, "ro"}, /* Alternate spelling */
743 {Opt_read_write, "read_write"},
744 {Opt_read_write, "rw"}, /* Alternate spelling */
745 /* Boolean args above */
746 {-1, NULL}
747 };
748
749 struct rbd_options {
750 bool read_only;
751 };
752
753 #define RBD_READ_ONLY_DEFAULT false
754
755 static int parse_rbd_opts_token(char *c, void *private)
756 {
757 struct rbd_options *rbd_opts = private;
758 substring_t argstr[MAX_OPT_ARGS];
759 int token, intval, ret;
760
761 token = match_token(c, rbd_opts_tokens, argstr);
762 if (token < 0)
763 return -EINVAL;
764
765 if (token < Opt_last_int) {
766 ret = match_int(&argstr[0], &intval);
767 if (ret < 0) {
768 pr_err("bad mount option arg (not int) "
769 "at '%s'\n", c);
770 return ret;
771 }
772 dout("got int token %d val %d\n", token, intval);
773 } else if (token > Opt_last_int && token < Opt_last_string) {
774 dout("got string token %d val %s\n", token,
775 argstr[0].from);
776 } else if (token > Opt_last_string && token < Opt_last_bool) {
777 dout("got Boolean token %d\n", token);
778 } else {
779 dout("got token %d\n", token);
780 }
781
782 switch (token) {
783 case Opt_read_only:
784 rbd_opts->read_only = true;
785 break;
786 case Opt_read_write:
787 rbd_opts->read_only = false;
788 break;
789 default:
790 rbd_assert(false);
791 break;
792 }
793 return 0;
794 }
795
796 static char* obj_op_name(enum obj_operation_type op_type)
797 {
798 switch (op_type) {
799 case OBJ_OP_READ:
800 return "read";
801 case OBJ_OP_WRITE:
802 return "write";
803 case OBJ_OP_DISCARD:
804 return "discard";
805 default:
806 return "???";
807 }
808 }
809
810 /*
811 * Get a ceph client with specific addr and configuration, if one does
812 * not exist create it. Either way, ceph_opts is consumed by this
813 * function.
814 */
815 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
816 {
817 struct rbd_client *rbdc;
818
819 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
820 rbdc = rbd_client_find(ceph_opts);
821 if (rbdc) /* using an existing client */
822 ceph_destroy_options(ceph_opts);
823 else
824 rbdc = rbd_client_create(ceph_opts);
825 mutex_unlock(&client_mutex);
826
827 return rbdc;
828 }
829
830 /*
831 * Destroy ceph client
832 *
833 * Caller must hold rbd_client_list_lock.
834 */
835 static void rbd_client_release(struct kref *kref)
836 {
837 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
838
839 dout("%s: rbdc %p\n", __func__, rbdc);
840 spin_lock(&rbd_client_list_lock);
841 list_del(&rbdc->node);
842 spin_unlock(&rbd_client_list_lock);
843
844 ceph_destroy_client(rbdc->client);
845 kfree(rbdc);
846 }
847
848 /*
849 * Drop reference to ceph client node. If it's not referenced anymore, release
850 * it.
851 */
852 static void rbd_put_client(struct rbd_client *rbdc)
853 {
854 if (rbdc)
855 kref_put(&rbdc->kref, rbd_client_release);
856 }
857
858 static bool rbd_image_format_valid(u32 image_format)
859 {
860 return image_format == 1 || image_format == 2;
861 }
862
863 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
864 {
865 size_t size;
866 u32 snap_count;
867
868 /* The header has to start with the magic rbd header text */
869 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
870 return false;
871
872 /* The bio layer requires at least sector-sized I/O */
873
874 if (ondisk->options.order < SECTOR_SHIFT)
875 return false;
876
877 /* If we use u64 in a few spots we may be able to loosen this */
878
879 if (ondisk->options.order > 8 * sizeof (int) - 1)
880 return false;
881
882 /*
883 * The size of a snapshot header has to fit in a size_t, and
884 * that limits the number of snapshots.
885 */
886 snap_count = le32_to_cpu(ondisk->snap_count);
887 size = SIZE_MAX - sizeof (struct ceph_snap_context);
888 if (snap_count > size / sizeof (__le64))
889 return false;
890
891 /*
892 * Not only that, but the size of the entire the snapshot
893 * header must also be representable in a size_t.
894 */
895 size -= snap_count * sizeof (__le64);
896 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
897 return false;
898
899 return true;
900 }
901
902 /*
903 * Fill an rbd image header with information from the given format 1
904 * on-disk header.
905 */
906 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
907 struct rbd_image_header_ondisk *ondisk)
908 {
909 struct rbd_image_header *header = &rbd_dev->header;
910 bool first_time = header->object_prefix == NULL;
911 struct ceph_snap_context *snapc;
912 char *object_prefix = NULL;
913 char *snap_names = NULL;
914 u64 *snap_sizes = NULL;
915 u32 snap_count;
916 size_t size;
917 int ret = -ENOMEM;
918 u32 i;
919
920 /* Allocate this now to avoid having to handle failure below */
921
922 if (first_time) {
923 size_t len;
924
925 len = strnlen(ondisk->object_prefix,
926 sizeof (ondisk->object_prefix));
927 object_prefix = kmalloc(len + 1, GFP_KERNEL);
928 if (!object_prefix)
929 return -ENOMEM;
930 memcpy(object_prefix, ondisk->object_prefix, len);
931 object_prefix[len] = '\0';
932 }
933
934 /* Allocate the snapshot context and fill it in */
935
936 snap_count = le32_to_cpu(ondisk->snap_count);
937 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
938 if (!snapc)
939 goto out_err;
940 snapc->seq = le64_to_cpu(ondisk->snap_seq);
941 if (snap_count) {
942 struct rbd_image_snap_ondisk *snaps;
943 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
944
945 /* We'll keep a copy of the snapshot names... */
946
947 if (snap_names_len > (u64)SIZE_MAX)
948 goto out_2big;
949 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
950 if (!snap_names)
951 goto out_err;
952
953 /* ...as well as the array of their sizes. */
954
955 size = snap_count * sizeof (*header->snap_sizes);
956 snap_sizes = kmalloc(size, GFP_KERNEL);
957 if (!snap_sizes)
958 goto out_err;
959
960 /*
961 * Copy the names, and fill in each snapshot's id
962 * and size.
963 *
964 * Note that rbd_dev_v1_header_info() guarantees the
965 * ondisk buffer we're working with has
966 * snap_names_len bytes beyond the end of the
967 * snapshot id array, this memcpy() is safe.
968 */
969 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
970 snaps = ondisk->snaps;
971 for (i = 0; i < snap_count; i++) {
972 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
973 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
974 }
975 }
976
977 /* We won't fail any more, fill in the header */
978
979 if (first_time) {
980 header->object_prefix = object_prefix;
981 header->obj_order = ondisk->options.order;
982 header->crypt_type = ondisk->options.crypt_type;
983 header->comp_type = ondisk->options.comp_type;
984 /* The rest aren't used for format 1 images */
985 header->stripe_unit = 0;
986 header->stripe_count = 0;
987 header->features = 0;
988 } else {
989 ceph_put_snap_context(header->snapc);
990 kfree(header->snap_names);
991 kfree(header->snap_sizes);
992 }
993
994 /* The remaining fields always get updated (when we refresh) */
995
996 header->image_size = le64_to_cpu(ondisk->image_size);
997 header->snapc = snapc;
998 header->snap_names = snap_names;
999 header->snap_sizes = snap_sizes;
1000
1001 return 0;
1002 out_2big:
1003 ret = -EIO;
1004 out_err:
1005 kfree(snap_sizes);
1006 kfree(snap_names);
1007 ceph_put_snap_context(snapc);
1008 kfree(object_prefix);
1009
1010 return ret;
1011 }
1012
1013 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1014 {
1015 const char *snap_name;
1016
1017 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1018
1019 /* Skip over names until we find the one we are looking for */
1020
1021 snap_name = rbd_dev->header.snap_names;
1022 while (which--)
1023 snap_name += strlen(snap_name) + 1;
1024
1025 return kstrdup(snap_name, GFP_KERNEL);
1026 }
1027
1028 /*
1029 * Snapshot id comparison function for use with qsort()/bsearch().
1030 * Note that result is for snapshots in *descending* order.
1031 */
1032 static int snapid_compare_reverse(const void *s1, const void *s2)
1033 {
1034 u64 snap_id1 = *(u64 *)s1;
1035 u64 snap_id2 = *(u64 *)s2;
1036
1037 if (snap_id1 < snap_id2)
1038 return 1;
1039 return snap_id1 == snap_id2 ? 0 : -1;
1040 }
1041
1042 /*
1043 * Search a snapshot context to see if the given snapshot id is
1044 * present.
1045 *
1046 * Returns the position of the snapshot id in the array if it's found,
1047 * or BAD_SNAP_INDEX otherwise.
1048 *
1049 * Note: The snapshot array is in kept sorted (by the osd) in
1050 * reverse order, highest snapshot id first.
1051 */
1052 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1053 {
1054 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1055 u64 *found;
1056
1057 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1058 sizeof (snap_id), snapid_compare_reverse);
1059
1060 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1061 }
1062
1063 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1064 u64 snap_id)
1065 {
1066 u32 which;
1067 const char *snap_name;
1068
1069 which = rbd_dev_snap_index(rbd_dev, snap_id);
1070 if (which == BAD_SNAP_INDEX)
1071 return ERR_PTR(-ENOENT);
1072
1073 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1074 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1075 }
1076
1077 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1078 {
1079 if (snap_id == CEPH_NOSNAP)
1080 return RBD_SNAP_HEAD_NAME;
1081
1082 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1083 if (rbd_dev->image_format == 1)
1084 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1085
1086 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1087 }
1088
1089 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1090 u64 *snap_size)
1091 {
1092 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1093 if (snap_id == CEPH_NOSNAP) {
1094 *snap_size = rbd_dev->header.image_size;
1095 } else if (rbd_dev->image_format == 1) {
1096 u32 which;
1097
1098 which = rbd_dev_snap_index(rbd_dev, snap_id);
1099 if (which == BAD_SNAP_INDEX)
1100 return -ENOENT;
1101
1102 *snap_size = rbd_dev->header.snap_sizes[which];
1103 } else {
1104 u64 size = 0;
1105 int ret;
1106
1107 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1108 if (ret)
1109 return ret;
1110
1111 *snap_size = size;
1112 }
1113 return 0;
1114 }
1115
1116 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1117 u64 *snap_features)
1118 {
1119 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1120 if (snap_id == CEPH_NOSNAP) {
1121 *snap_features = rbd_dev->header.features;
1122 } else if (rbd_dev->image_format == 1) {
1123 *snap_features = 0; /* No features for format 1 */
1124 } else {
1125 u64 features = 0;
1126 int ret;
1127
1128 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1129 if (ret)
1130 return ret;
1131
1132 *snap_features = features;
1133 }
1134 return 0;
1135 }
1136
1137 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1138 {
1139 u64 snap_id = rbd_dev->spec->snap_id;
1140 u64 size = 0;
1141 u64 features = 0;
1142 int ret;
1143
1144 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1145 if (ret)
1146 return ret;
1147 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1148 if (ret)
1149 return ret;
1150
1151 rbd_dev->mapping.size = size;
1152 rbd_dev->mapping.features = features;
1153
1154 return 0;
1155 }
1156
1157 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1158 {
1159 rbd_dev->mapping.size = 0;
1160 rbd_dev->mapping.features = 0;
1161 }
1162
1163 static void rbd_segment_name_free(const char *name)
1164 {
1165 /* The explicit cast here is needed to drop the const qualifier */
1166
1167 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1168 }
1169
1170 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1171 {
1172 char *name;
1173 u64 segment;
1174 int ret;
1175 char *name_format;
1176
1177 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1178 if (!name)
1179 return NULL;
1180 segment = offset >> rbd_dev->header.obj_order;
1181 name_format = "%s.%012llx";
1182 if (rbd_dev->image_format == 2)
1183 name_format = "%s.%016llx";
1184 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1185 rbd_dev->header.object_prefix, segment);
1186 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1187 pr_err("error formatting segment name for #%llu (%d)\n",
1188 segment, ret);
1189 rbd_segment_name_free(name);
1190 name = NULL;
1191 }
1192
1193 return name;
1194 }
1195
1196 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1197 {
1198 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1199
1200 return offset & (segment_size - 1);
1201 }
1202
1203 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1204 u64 offset, u64 length)
1205 {
1206 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1207
1208 offset &= segment_size - 1;
1209
1210 rbd_assert(length <= U64_MAX - offset);
1211 if (offset + length > segment_size)
1212 length = segment_size - offset;
1213
1214 return length;
1215 }
1216
1217 /*
1218 * returns the size of an object in the image
1219 */
1220 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1221 {
1222 return 1 << header->obj_order;
1223 }
1224
1225 /*
1226 * bio helpers
1227 */
1228
1229 static void bio_chain_put(struct bio *chain)
1230 {
1231 struct bio *tmp;
1232
1233 while (chain) {
1234 tmp = chain;
1235 chain = chain->bi_next;
1236 bio_put(tmp);
1237 }
1238 }
1239
1240 /*
1241 * zeros a bio chain, starting at specific offset
1242 */
1243 static void zero_bio_chain(struct bio *chain, int start_ofs)
1244 {
1245 struct bio_vec bv;
1246 struct bvec_iter iter;
1247 unsigned long flags;
1248 void *buf;
1249 int pos = 0;
1250
1251 while (chain) {
1252 bio_for_each_segment(bv, chain, iter) {
1253 if (pos + bv.bv_len > start_ofs) {
1254 int remainder = max(start_ofs - pos, 0);
1255 buf = bvec_kmap_irq(&bv, &flags);
1256 memset(buf + remainder, 0,
1257 bv.bv_len - remainder);
1258 flush_dcache_page(bv.bv_page);
1259 bvec_kunmap_irq(buf, &flags);
1260 }
1261 pos += bv.bv_len;
1262 }
1263
1264 chain = chain->bi_next;
1265 }
1266 }
1267
1268 /*
1269 * similar to zero_bio_chain(), zeros data defined by a page array,
1270 * starting at the given byte offset from the start of the array and
1271 * continuing up to the given end offset. The pages array is
1272 * assumed to be big enough to hold all bytes up to the end.
1273 */
1274 static void zero_pages(struct page **pages, u64 offset, u64 end)
1275 {
1276 struct page **page = &pages[offset >> PAGE_SHIFT];
1277
1278 rbd_assert(end > offset);
1279 rbd_assert(end - offset <= (u64)SIZE_MAX);
1280 while (offset < end) {
1281 size_t page_offset;
1282 size_t length;
1283 unsigned long flags;
1284 void *kaddr;
1285
1286 page_offset = offset & ~PAGE_MASK;
1287 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1288 local_irq_save(flags);
1289 kaddr = kmap_atomic(*page);
1290 memset(kaddr + page_offset, 0, length);
1291 flush_dcache_page(*page);
1292 kunmap_atomic(kaddr);
1293 local_irq_restore(flags);
1294
1295 offset += length;
1296 page++;
1297 }
1298 }
1299
1300 /*
1301 * Clone a portion of a bio, starting at the given byte offset
1302 * and continuing for the number of bytes indicated.
1303 */
1304 static struct bio *bio_clone_range(struct bio *bio_src,
1305 unsigned int offset,
1306 unsigned int len,
1307 gfp_t gfpmask)
1308 {
1309 struct bio *bio;
1310
1311 bio = bio_clone(bio_src, gfpmask);
1312 if (!bio)
1313 return NULL; /* ENOMEM */
1314
1315 bio_advance(bio, offset);
1316 bio->bi_iter.bi_size = len;
1317
1318 return bio;
1319 }
1320
1321 /*
1322 * Clone a portion of a bio chain, starting at the given byte offset
1323 * into the first bio in the source chain and continuing for the
1324 * number of bytes indicated. The result is another bio chain of
1325 * exactly the given length, or a null pointer on error.
1326 *
1327 * The bio_src and offset parameters are both in-out. On entry they
1328 * refer to the first source bio and the offset into that bio where
1329 * the start of data to be cloned is located.
1330 *
1331 * On return, bio_src is updated to refer to the bio in the source
1332 * chain that contains first un-cloned byte, and *offset will
1333 * contain the offset of that byte within that bio.
1334 */
1335 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1336 unsigned int *offset,
1337 unsigned int len,
1338 gfp_t gfpmask)
1339 {
1340 struct bio *bi = *bio_src;
1341 unsigned int off = *offset;
1342 struct bio *chain = NULL;
1343 struct bio **end;
1344
1345 /* Build up a chain of clone bios up to the limit */
1346
1347 if (!bi || off >= bi->bi_iter.bi_size || !len)
1348 return NULL; /* Nothing to clone */
1349
1350 end = &chain;
1351 while (len) {
1352 unsigned int bi_size;
1353 struct bio *bio;
1354
1355 if (!bi) {
1356 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1357 goto out_err; /* EINVAL; ran out of bio's */
1358 }
1359 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1360 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1361 if (!bio)
1362 goto out_err; /* ENOMEM */
1363
1364 *end = bio;
1365 end = &bio->bi_next;
1366
1367 off += bi_size;
1368 if (off == bi->bi_iter.bi_size) {
1369 bi = bi->bi_next;
1370 off = 0;
1371 }
1372 len -= bi_size;
1373 }
1374 *bio_src = bi;
1375 *offset = off;
1376
1377 return chain;
1378 out_err:
1379 bio_chain_put(chain);
1380
1381 return NULL;
1382 }
1383
1384 /*
1385 * The default/initial value for all object request flags is 0. For
1386 * each flag, once its value is set to 1 it is never reset to 0
1387 * again.
1388 */
1389 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1390 {
1391 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1392 struct rbd_device *rbd_dev;
1393
1394 rbd_dev = obj_request->img_request->rbd_dev;
1395 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1396 obj_request);
1397 }
1398 }
1399
1400 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1401 {
1402 smp_mb();
1403 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1404 }
1405
1406 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1407 {
1408 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1409 struct rbd_device *rbd_dev = NULL;
1410
1411 if (obj_request_img_data_test(obj_request))
1412 rbd_dev = obj_request->img_request->rbd_dev;
1413 rbd_warn(rbd_dev, "obj_request %p already marked done",
1414 obj_request);
1415 }
1416 }
1417
1418 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1419 {
1420 smp_mb();
1421 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1422 }
1423
1424 /*
1425 * This sets the KNOWN flag after (possibly) setting the EXISTS
1426 * flag. The latter is set based on the "exists" value provided.
1427 *
1428 * Note that for our purposes once an object exists it never goes
1429 * away again. It's possible that the response from two existence
1430 * checks are separated by the creation of the target object, and
1431 * the first ("doesn't exist") response arrives *after* the second
1432 * ("does exist"). In that case we ignore the second one.
1433 */
1434 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1435 bool exists)
1436 {
1437 if (exists)
1438 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1439 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1440 smp_mb();
1441 }
1442
1443 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1444 {
1445 smp_mb();
1446 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1447 }
1448
1449 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1450 {
1451 smp_mb();
1452 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1456 {
1457 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1458
1459 return obj_request->img_offset <
1460 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1461 }
1462
1463 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1464 {
1465 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1466 atomic_read(&obj_request->kref.refcount));
1467 kref_get(&obj_request->kref);
1468 }
1469
1470 static void rbd_obj_request_destroy(struct kref *kref);
1471 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1472 {
1473 rbd_assert(obj_request != NULL);
1474 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1475 atomic_read(&obj_request->kref.refcount));
1476 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1477 }
1478
1479 static void rbd_img_request_get(struct rbd_img_request *img_request)
1480 {
1481 dout("%s: img %p (was %d)\n", __func__, img_request,
1482 atomic_read(&img_request->kref.refcount));
1483 kref_get(&img_request->kref);
1484 }
1485
1486 static bool img_request_child_test(struct rbd_img_request *img_request);
1487 static void rbd_parent_request_destroy(struct kref *kref);
1488 static void rbd_img_request_destroy(struct kref *kref);
1489 static void rbd_img_request_put(struct rbd_img_request *img_request)
1490 {
1491 rbd_assert(img_request != NULL);
1492 dout("%s: img %p (was %d)\n", __func__, img_request,
1493 atomic_read(&img_request->kref.refcount));
1494 if (img_request_child_test(img_request))
1495 kref_put(&img_request->kref, rbd_parent_request_destroy);
1496 else
1497 kref_put(&img_request->kref, rbd_img_request_destroy);
1498 }
1499
1500 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1501 struct rbd_obj_request *obj_request)
1502 {
1503 rbd_assert(obj_request->img_request == NULL);
1504
1505 /* Image request now owns object's original reference */
1506 obj_request->img_request = img_request;
1507 obj_request->which = img_request->obj_request_count;
1508 rbd_assert(!obj_request_img_data_test(obj_request));
1509 obj_request_img_data_set(obj_request);
1510 rbd_assert(obj_request->which != BAD_WHICH);
1511 img_request->obj_request_count++;
1512 list_add_tail(&obj_request->links, &img_request->obj_requests);
1513 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1514 obj_request->which);
1515 }
1516
1517 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1518 struct rbd_obj_request *obj_request)
1519 {
1520 rbd_assert(obj_request->which != BAD_WHICH);
1521
1522 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1523 obj_request->which);
1524 list_del(&obj_request->links);
1525 rbd_assert(img_request->obj_request_count > 0);
1526 img_request->obj_request_count--;
1527 rbd_assert(obj_request->which == img_request->obj_request_count);
1528 obj_request->which = BAD_WHICH;
1529 rbd_assert(obj_request_img_data_test(obj_request));
1530 rbd_assert(obj_request->img_request == img_request);
1531 obj_request->img_request = NULL;
1532 obj_request->callback = NULL;
1533 rbd_obj_request_put(obj_request);
1534 }
1535
1536 static bool obj_request_type_valid(enum obj_request_type type)
1537 {
1538 switch (type) {
1539 case OBJ_REQUEST_NODATA:
1540 case OBJ_REQUEST_BIO:
1541 case OBJ_REQUEST_PAGES:
1542 return true;
1543 default:
1544 return false;
1545 }
1546 }
1547
1548 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1549 struct rbd_obj_request *obj_request)
1550 {
1551 dout("%s %p\n", __func__, obj_request);
1552 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1553 }
1554
1555 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1556 {
1557 dout("%s %p\n", __func__, obj_request);
1558 ceph_osdc_cancel_request(obj_request->osd_req);
1559 }
1560
1561 /*
1562 * Wait for an object request to complete. If interrupted, cancel the
1563 * underlying osd request.
1564 */
1565 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1566 {
1567 int ret;
1568
1569 dout("%s %p\n", __func__, obj_request);
1570
1571 ret = wait_for_completion_interruptible(&obj_request->completion);
1572 if (ret < 0) {
1573 dout("%s %p interrupted\n", __func__, obj_request);
1574 rbd_obj_request_end(obj_request);
1575 return ret;
1576 }
1577
1578 dout("%s %p done\n", __func__, obj_request);
1579 return 0;
1580 }
1581
1582 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1583 {
1584
1585 dout("%s: img %p\n", __func__, img_request);
1586
1587 /*
1588 * If no error occurred, compute the aggregate transfer
1589 * count for the image request. We could instead use
1590 * atomic64_cmpxchg() to update it as each object request
1591 * completes; not clear which way is better off hand.
1592 */
1593 if (!img_request->result) {
1594 struct rbd_obj_request *obj_request;
1595 u64 xferred = 0;
1596
1597 for_each_obj_request(img_request, obj_request)
1598 xferred += obj_request->xferred;
1599 img_request->xferred = xferred;
1600 }
1601
1602 if (img_request->callback)
1603 img_request->callback(img_request);
1604 else
1605 rbd_img_request_put(img_request);
1606 }
1607
1608 /*
1609 * The default/initial value for all image request flags is 0. Each
1610 * is conditionally set to 1 at image request initialization time
1611 * and currently never change thereafter.
1612 */
1613 static void img_request_write_set(struct rbd_img_request *img_request)
1614 {
1615 set_bit(IMG_REQ_WRITE, &img_request->flags);
1616 smp_mb();
1617 }
1618
1619 static bool img_request_write_test(struct rbd_img_request *img_request)
1620 {
1621 smp_mb();
1622 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1623 }
1624
1625 /*
1626 * Set the discard flag when the img_request is an discard request
1627 */
1628 static void img_request_discard_set(struct rbd_img_request *img_request)
1629 {
1630 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1631 smp_mb();
1632 }
1633
1634 static bool img_request_discard_test(struct rbd_img_request *img_request)
1635 {
1636 smp_mb();
1637 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1638 }
1639
1640 static void img_request_child_set(struct rbd_img_request *img_request)
1641 {
1642 set_bit(IMG_REQ_CHILD, &img_request->flags);
1643 smp_mb();
1644 }
1645
1646 static void img_request_child_clear(struct rbd_img_request *img_request)
1647 {
1648 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1649 smp_mb();
1650 }
1651
1652 static bool img_request_child_test(struct rbd_img_request *img_request)
1653 {
1654 smp_mb();
1655 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1656 }
1657
1658 static void img_request_layered_set(struct rbd_img_request *img_request)
1659 {
1660 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1661 smp_mb();
1662 }
1663
1664 static void img_request_layered_clear(struct rbd_img_request *img_request)
1665 {
1666 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1667 smp_mb();
1668 }
1669
1670 static bool img_request_layered_test(struct rbd_img_request *img_request)
1671 {
1672 smp_mb();
1673 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1674 }
1675
1676 static enum obj_operation_type
1677 rbd_img_request_op_type(struct rbd_img_request *img_request)
1678 {
1679 if (img_request_write_test(img_request))
1680 return OBJ_OP_WRITE;
1681 else if (img_request_discard_test(img_request))
1682 return OBJ_OP_DISCARD;
1683 else
1684 return OBJ_OP_READ;
1685 }
1686
1687 static void
1688 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1689 {
1690 u64 xferred = obj_request->xferred;
1691 u64 length = obj_request->length;
1692
1693 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1694 obj_request, obj_request->img_request, obj_request->result,
1695 xferred, length);
1696 /*
1697 * ENOENT means a hole in the image. We zero-fill the entire
1698 * length of the request. A short read also implies zero-fill
1699 * to the end of the request. An error requires the whole
1700 * length of the request to be reported finished with an error
1701 * to the block layer. In each case we update the xferred
1702 * count to indicate the whole request was satisfied.
1703 */
1704 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1705 if (obj_request->result == -ENOENT) {
1706 if (obj_request->type == OBJ_REQUEST_BIO)
1707 zero_bio_chain(obj_request->bio_list, 0);
1708 else
1709 zero_pages(obj_request->pages, 0, length);
1710 obj_request->result = 0;
1711 } else if (xferred < length && !obj_request->result) {
1712 if (obj_request->type == OBJ_REQUEST_BIO)
1713 zero_bio_chain(obj_request->bio_list, xferred);
1714 else
1715 zero_pages(obj_request->pages, xferred, length);
1716 }
1717 obj_request->xferred = length;
1718 obj_request_done_set(obj_request);
1719 }
1720
1721 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1722 {
1723 dout("%s: obj %p cb %p\n", __func__, obj_request,
1724 obj_request->callback);
1725 if (obj_request->callback)
1726 obj_request->callback(obj_request);
1727 else
1728 complete_all(&obj_request->completion);
1729 }
1730
1731 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1732 {
1733 dout("%s: obj %p\n", __func__, obj_request);
1734 obj_request_done_set(obj_request);
1735 }
1736
1737 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1738 {
1739 struct rbd_img_request *img_request = NULL;
1740 struct rbd_device *rbd_dev = NULL;
1741 bool layered = false;
1742
1743 if (obj_request_img_data_test(obj_request)) {
1744 img_request = obj_request->img_request;
1745 layered = img_request && img_request_layered_test(img_request);
1746 rbd_dev = img_request->rbd_dev;
1747 }
1748
1749 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1750 obj_request, img_request, obj_request->result,
1751 obj_request->xferred, obj_request->length);
1752 if (layered && obj_request->result == -ENOENT &&
1753 obj_request->img_offset < rbd_dev->parent_overlap)
1754 rbd_img_parent_read(obj_request);
1755 else if (img_request)
1756 rbd_img_obj_request_read_callback(obj_request);
1757 else
1758 obj_request_done_set(obj_request);
1759 }
1760
1761 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1762 {
1763 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1764 obj_request->result, obj_request->length);
1765 /*
1766 * There is no such thing as a successful short write. Set
1767 * it to our originally-requested length.
1768 */
1769 obj_request->xferred = obj_request->length;
1770 obj_request_done_set(obj_request);
1771 }
1772
1773 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1774 {
1775 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1776 obj_request->result, obj_request->length);
1777 /*
1778 * There is no such thing as a successful short discard. Set
1779 * it to our originally-requested length.
1780 */
1781 obj_request->xferred = obj_request->length;
1782 /* discarding a non-existent object is not a problem */
1783 if (obj_request->result == -ENOENT)
1784 obj_request->result = 0;
1785 obj_request_done_set(obj_request);
1786 }
1787
1788 /*
1789 * For a simple stat call there's nothing to do. We'll do more if
1790 * this is part of a write sequence for a layered image.
1791 */
1792 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1793 {
1794 dout("%s: obj %p\n", __func__, obj_request);
1795 obj_request_done_set(obj_request);
1796 }
1797
1798 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1799 struct ceph_msg *msg)
1800 {
1801 struct rbd_obj_request *obj_request = osd_req->r_priv;
1802 u16 opcode;
1803
1804 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1805 rbd_assert(osd_req == obj_request->osd_req);
1806 if (obj_request_img_data_test(obj_request)) {
1807 rbd_assert(obj_request->img_request);
1808 rbd_assert(obj_request->which != BAD_WHICH);
1809 } else {
1810 rbd_assert(obj_request->which == BAD_WHICH);
1811 }
1812
1813 if (osd_req->r_result < 0)
1814 obj_request->result = osd_req->r_result;
1815
1816 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1817
1818 /*
1819 * We support a 64-bit length, but ultimately it has to be
1820 * passed to blk_end_request(), which takes an unsigned int.
1821 */
1822 obj_request->xferred = osd_req->r_reply_op_len[0];
1823 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1824
1825 opcode = osd_req->r_ops[0].op;
1826 switch (opcode) {
1827 case CEPH_OSD_OP_READ:
1828 rbd_osd_read_callback(obj_request);
1829 break;
1830 case CEPH_OSD_OP_SETALLOCHINT:
1831 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1832 /* fall through */
1833 case CEPH_OSD_OP_WRITE:
1834 rbd_osd_write_callback(obj_request);
1835 break;
1836 case CEPH_OSD_OP_STAT:
1837 rbd_osd_stat_callback(obj_request);
1838 break;
1839 case CEPH_OSD_OP_DELETE:
1840 case CEPH_OSD_OP_TRUNCATE:
1841 case CEPH_OSD_OP_ZERO:
1842 rbd_osd_discard_callback(obj_request);
1843 break;
1844 case CEPH_OSD_OP_CALL:
1845 case CEPH_OSD_OP_NOTIFY_ACK:
1846 case CEPH_OSD_OP_WATCH:
1847 rbd_osd_trivial_callback(obj_request);
1848 break;
1849 default:
1850 rbd_warn(NULL, "%s: unsupported op %hu",
1851 obj_request->object_name, (unsigned short) opcode);
1852 break;
1853 }
1854
1855 if (obj_request_done_test(obj_request))
1856 rbd_obj_request_complete(obj_request);
1857 }
1858
1859 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1860 {
1861 struct rbd_img_request *img_request = obj_request->img_request;
1862 struct ceph_osd_request *osd_req = obj_request->osd_req;
1863 u64 snap_id;
1864
1865 rbd_assert(osd_req != NULL);
1866
1867 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1868 ceph_osdc_build_request(osd_req, obj_request->offset,
1869 NULL, snap_id, NULL);
1870 }
1871
1872 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1873 {
1874 struct rbd_img_request *img_request = obj_request->img_request;
1875 struct ceph_osd_request *osd_req = obj_request->osd_req;
1876 struct ceph_snap_context *snapc;
1877 struct timespec mtime = CURRENT_TIME;
1878
1879 rbd_assert(osd_req != NULL);
1880
1881 snapc = img_request ? img_request->snapc : NULL;
1882 ceph_osdc_build_request(osd_req, obj_request->offset,
1883 snapc, CEPH_NOSNAP, &mtime);
1884 }
1885
1886 /*
1887 * Create an osd request. A read request has one osd op (read).
1888 * A write request has either one (watch) or two (hint+write) osd ops.
1889 * (All rbd data writes are prefixed with an allocation hint op, but
1890 * technically osd watch is a write request, hence this distinction.)
1891 */
1892 static struct ceph_osd_request *rbd_osd_req_create(
1893 struct rbd_device *rbd_dev,
1894 enum obj_operation_type op_type,
1895 unsigned int num_ops,
1896 struct rbd_obj_request *obj_request)
1897 {
1898 struct ceph_snap_context *snapc = NULL;
1899 struct ceph_osd_client *osdc;
1900 struct ceph_osd_request *osd_req;
1901
1902 if (obj_request_img_data_test(obj_request) &&
1903 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1904 struct rbd_img_request *img_request = obj_request->img_request;
1905 if (op_type == OBJ_OP_WRITE) {
1906 rbd_assert(img_request_write_test(img_request));
1907 } else {
1908 rbd_assert(img_request_discard_test(img_request));
1909 }
1910 snapc = img_request->snapc;
1911 }
1912
1913 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1914
1915 /* Allocate and initialize the request, for the num_ops ops */
1916
1917 osdc = &rbd_dev->rbd_client->client->osdc;
1918 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1919 GFP_ATOMIC);
1920 if (!osd_req)
1921 return NULL; /* ENOMEM */
1922
1923 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1924 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1925 else
1926 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1927
1928 osd_req->r_callback = rbd_osd_req_callback;
1929 osd_req->r_priv = obj_request;
1930
1931 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1932 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1933
1934 return osd_req;
1935 }
1936
1937 /*
1938 * Create a copyup osd request based on the information in the object
1939 * request supplied. A copyup request has two or three osd ops, a
1940 * copyup method call, potentially a hint op, and a write or truncate
1941 * or zero op.
1942 */
1943 static struct ceph_osd_request *
1944 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1945 {
1946 struct rbd_img_request *img_request;
1947 struct ceph_snap_context *snapc;
1948 struct rbd_device *rbd_dev;
1949 struct ceph_osd_client *osdc;
1950 struct ceph_osd_request *osd_req;
1951 int num_osd_ops = 3;
1952
1953 rbd_assert(obj_request_img_data_test(obj_request));
1954 img_request = obj_request->img_request;
1955 rbd_assert(img_request);
1956 rbd_assert(img_request_write_test(img_request) ||
1957 img_request_discard_test(img_request));
1958
1959 if (img_request_discard_test(img_request))
1960 num_osd_ops = 2;
1961
1962 /* Allocate and initialize the request, for all the ops */
1963
1964 snapc = img_request->snapc;
1965 rbd_dev = img_request->rbd_dev;
1966 osdc = &rbd_dev->rbd_client->client->osdc;
1967 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1968 false, GFP_ATOMIC);
1969 if (!osd_req)
1970 return NULL; /* ENOMEM */
1971
1972 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1973 osd_req->r_callback = rbd_osd_req_callback;
1974 osd_req->r_priv = obj_request;
1975
1976 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1977 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1978
1979 return osd_req;
1980 }
1981
1982
1983 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1984 {
1985 ceph_osdc_put_request(osd_req);
1986 }
1987
1988 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1989
1990 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1991 u64 offset, u64 length,
1992 enum obj_request_type type)
1993 {
1994 struct rbd_obj_request *obj_request;
1995 size_t size;
1996 char *name;
1997
1998 rbd_assert(obj_request_type_valid(type));
1999
2000 size = strlen(object_name) + 1;
2001 name = kmalloc(size, GFP_KERNEL);
2002 if (!name)
2003 return NULL;
2004
2005 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2006 if (!obj_request) {
2007 kfree(name);
2008 return NULL;
2009 }
2010
2011 obj_request->object_name = memcpy(name, object_name, size);
2012 obj_request->offset = offset;
2013 obj_request->length = length;
2014 obj_request->flags = 0;
2015 obj_request->which = BAD_WHICH;
2016 obj_request->type = type;
2017 INIT_LIST_HEAD(&obj_request->links);
2018 init_completion(&obj_request->completion);
2019 kref_init(&obj_request->kref);
2020
2021 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2022 offset, length, (int)type, obj_request);
2023
2024 return obj_request;
2025 }
2026
2027 static void rbd_obj_request_destroy(struct kref *kref)
2028 {
2029 struct rbd_obj_request *obj_request;
2030
2031 obj_request = container_of(kref, struct rbd_obj_request, kref);
2032
2033 dout("%s: obj %p\n", __func__, obj_request);
2034
2035 rbd_assert(obj_request->img_request == NULL);
2036 rbd_assert(obj_request->which == BAD_WHICH);
2037
2038 if (obj_request->osd_req)
2039 rbd_osd_req_destroy(obj_request->osd_req);
2040
2041 rbd_assert(obj_request_type_valid(obj_request->type));
2042 switch (obj_request->type) {
2043 case OBJ_REQUEST_NODATA:
2044 break; /* Nothing to do */
2045 case OBJ_REQUEST_BIO:
2046 if (obj_request->bio_list)
2047 bio_chain_put(obj_request->bio_list);
2048 break;
2049 case OBJ_REQUEST_PAGES:
2050 if (obj_request->pages)
2051 ceph_release_page_vector(obj_request->pages,
2052 obj_request->page_count);
2053 break;
2054 }
2055
2056 kfree(obj_request->object_name);
2057 obj_request->object_name = NULL;
2058 kmem_cache_free(rbd_obj_request_cache, obj_request);
2059 }
2060
2061 /* It's OK to call this for a device with no parent */
2062
2063 static void rbd_spec_put(struct rbd_spec *spec);
2064 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2065 {
2066 rbd_dev_remove_parent(rbd_dev);
2067 rbd_spec_put(rbd_dev->parent_spec);
2068 rbd_dev->parent_spec = NULL;
2069 rbd_dev->parent_overlap = 0;
2070 }
2071
2072 /*
2073 * Parent image reference counting is used to determine when an
2074 * image's parent fields can be safely torn down--after there are no
2075 * more in-flight requests to the parent image. When the last
2076 * reference is dropped, cleaning them up is safe.
2077 */
2078 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2079 {
2080 int counter;
2081
2082 if (!rbd_dev->parent_spec)
2083 return;
2084
2085 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2086 if (counter > 0)
2087 return;
2088
2089 /* Last reference; clean up parent data structures */
2090
2091 if (!counter)
2092 rbd_dev_unparent(rbd_dev);
2093 else
2094 rbd_warn(rbd_dev, "parent reference underflow");
2095 }
2096
2097 /*
2098 * If an image has a non-zero parent overlap, get a reference to its
2099 * parent.
2100 *
2101 * We must get the reference before checking for the overlap to
2102 * coordinate properly with zeroing the parent overlap in
2103 * rbd_dev_v2_parent_info() when an image gets flattened. We
2104 * drop it again if there is no overlap.
2105 *
2106 * Returns true if the rbd device has a parent with a non-zero
2107 * overlap and a reference for it was successfully taken, or
2108 * false otherwise.
2109 */
2110 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2111 {
2112 int counter;
2113
2114 if (!rbd_dev->parent_spec)
2115 return false;
2116
2117 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118 if (counter > 0 && rbd_dev->parent_overlap)
2119 return true;
2120
2121 /* Image was flattened, but parent is not yet torn down */
2122
2123 if (counter < 0)
2124 rbd_warn(rbd_dev, "parent reference overflow");
2125
2126 return false;
2127 }
2128
2129 /*
2130 * Caller is responsible for filling in the list of object requests
2131 * that comprises the image request, and the Linux request pointer
2132 * (if there is one).
2133 */
2134 static struct rbd_img_request *rbd_img_request_create(
2135 struct rbd_device *rbd_dev,
2136 u64 offset, u64 length,
2137 enum obj_operation_type op_type,
2138 struct ceph_snap_context *snapc)
2139 {
2140 struct rbd_img_request *img_request;
2141
2142 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2143 if (!img_request)
2144 return NULL;
2145
2146 img_request->rq = NULL;
2147 img_request->rbd_dev = rbd_dev;
2148 img_request->offset = offset;
2149 img_request->length = length;
2150 img_request->flags = 0;
2151 if (op_type == OBJ_OP_DISCARD) {
2152 img_request_discard_set(img_request);
2153 img_request->snapc = snapc;
2154 } else if (op_type == OBJ_OP_WRITE) {
2155 img_request_write_set(img_request);
2156 img_request->snapc = snapc;
2157 } else {
2158 img_request->snap_id = rbd_dev->spec->snap_id;
2159 }
2160 if (rbd_dev_parent_get(rbd_dev))
2161 img_request_layered_set(img_request);
2162 spin_lock_init(&img_request->completion_lock);
2163 img_request->next_completion = 0;
2164 img_request->callback = NULL;
2165 img_request->result = 0;
2166 img_request->obj_request_count = 0;
2167 INIT_LIST_HEAD(&img_request->obj_requests);
2168 kref_init(&img_request->kref);
2169
2170 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2171 obj_op_name(op_type), offset, length, img_request);
2172
2173 return img_request;
2174 }
2175
2176 static void rbd_img_request_destroy(struct kref *kref)
2177 {
2178 struct rbd_img_request *img_request;
2179 struct rbd_obj_request *obj_request;
2180 struct rbd_obj_request *next_obj_request;
2181
2182 img_request = container_of(kref, struct rbd_img_request, kref);
2183
2184 dout("%s: img %p\n", __func__, img_request);
2185
2186 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2187 rbd_img_obj_request_del(img_request, obj_request);
2188 rbd_assert(img_request->obj_request_count == 0);
2189
2190 if (img_request_layered_test(img_request)) {
2191 img_request_layered_clear(img_request);
2192 rbd_dev_parent_put(img_request->rbd_dev);
2193 }
2194
2195 if (img_request_write_test(img_request) ||
2196 img_request_discard_test(img_request))
2197 ceph_put_snap_context(img_request->snapc);
2198
2199 kmem_cache_free(rbd_img_request_cache, img_request);
2200 }
2201
2202 static struct rbd_img_request *rbd_parent_request_create(
2203 struct rbd_obj_request *obj_request,
2204 u64 img_offset, u64 length)
2205 {
2206 struct rbd_img_request *parent_request;
2207 struct rbd_device *rbd_dev;
2208
2209 rbd_assert(obj_request->img_request);
2210 rbd_dev = obj_request->img_request->rbd_dev;
2211
2212 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2213 length, OBJ_OP_READ, NULL);
2214 if (!parent_request)
2215 return NULL;
2216
2217 img_request_child_set(parent_request);
2218 rbd_obj_request_get(obj_request);
2219 parent_request->obj_request = obj_request;
2220
2221 return parent_request;
2222 }
2223
2224 static void rbd_parent_request_destroy(struct kref *kref)
2225 {
2226 struct rbd_img_request *parent_request;
2227 struct rbd_obj_request *orig_request;
2228
2229 parent_request = container_of(kref, struct rbd_img_request, kref);
2230 orig_request = parent_request->obj_request;
2231
2232 parent_request->obj_request = NULL;
2233 rbd_obj_request_put(orig_request);
2234 img_request_child_clear(parent_request);
2235
2236 rbd_img_request_destroy(kref);
2237 }
2238
2239 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2240 {
2241 struct rbd_img_request *img_request;
2242 unsigned int xferred;
2243 int result;
2244 bool more;
2245
2246 rbd_assert(obj_request_img_data_test(obj_request));
2247 img_request = obj_request->img_request;
2248
2249 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2250 xferred = (unsigned int)obj_request->xferred;
2251 result = obj_request->result;
2252 if (result) {
2253 struct rbd_device *rbd_dev = img_request->rbd_dev;
2254 enum obj_operation_type op_type;
2255
2256 if (img_request_discard_test(img_request))
2257 op_type = OBJ_OP_DISCARD;
2258 else if (img_request_write_test(img_request))
2259 op_type = OBJ_OP_WRITE;
2260 else
2261 op_type = OBJ_OP_READ;
2262
2263 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2264 obj_op_name(op_type), obj_request->length,
2265 obj_request->img_offset, obj_request->offset);
2266 rbd_warn(rbd_dev, " result %d xferred %x",
2267 result, xferred);
2268 if (!img_request->result)
2269 img_request->result = result;
2270 }
2271
2272 /* Image object requests don't own their page array */
2273
2274 if (obj_request->type == OBJ_REQUEST_PAGES) {
2275 obj_request->pages = NULL;
2276 obj_request->page_count = 0;
2277 }
2278
2279 if (img_request_child_test(img_request)) {
2280 rbd_assert(img_request->obj_request != NULL);
2281 more = obj_request->which < img_request->obj_request_count - 1;
2282 } else {
2283 rbd_assert(img_request->rq != NULL);
2284 more = blk_end_request(img_request->rq, result, xferred);
2285 }
2286
2287 return more;
2288 }
2289
2290 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2291 {
2292 struct rbd_img_request *img_request;
2293 u32 which = obj_request->which;
2294 bool more = true;
2295
2296 rbd_assert(obj_request_img_data_test(obj_request));
2297 img_request = obj_request->img_request;
2298
2299 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2300 rbd_assert(img_request != NULL);
2301 rbd_assert(img_request->obj_request_count > 0);
2302 rbd_assert(which != BAD_WHICH);
2303 rbd_assert(which < img_request->obj_request_count);
2304
2305 spin_lock_irq(&img_request->completion_lock);
2306 if (which != img_request->next_completion)
2307 goto out;
2308
2309 for_each_obj_request_from(img_request, obj_request) {
2310 rbd_assert(more);
2311 rbd_assert(which < img_request->obj_request_count);
2312
2313 if (!obj_request_done_test(obj_request))
2314 break;
2315 more = rbd_img_obj_end_request(obj_request);
2316 which++;
2317 }
2318
2319 rbd_assert(more ^ (which == img_request->obj_request_count));
2320 img_request->next_completion = which;
2321 out:
2322 spin_unlock_irq(&img_request->completion_lock);
2323 rbd_img_request_put(img_request);
2324
2325 if (!more)
2326 rbd_img_request_complete(img_request);
2327 }
2328
2329 /*
2330 * Add individual osd ops to the given ceph_osd_request and prepare
2331 * them for submission. num_ops is the current number of
2332 * osd operations already to the object request.
2333 */
2334 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2335 struct ceph_osd_request *osd_request,
2336 enum obj_operation_type op_type,
2337 unsigned int num_ops)
2338 {
2339 struct rbd_img_request *img_request = obj_request->img_request;
2340 struct rbd_device *rbd_dev = img_request->rbd_dev;
2341 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2342 u64 offset = obj_request->offset;
2343 u64 length = obj_request->length;
2344 u64 img_end;
2345 u16 opcode;
2346
2347 if (op_type == OBJ_OP_DISCARD) {
2348 if (!offset && length == object_size &&
2349 (!img_request_layered_test(img_request) ||
2350 !obj_request_overlaps_parent(obj_request))) {
2351 opcode = CEPH_OSD_OP_DELETE;
2352 } else if ((offset + length == object_size)) {
2353 opcode = CEPH_OSD_OP_TRUNCATE;
2354 } else {
2355 down_read(&rbd_dev->header_rwsem);
2356 img_end = rbd_dev->header.image_size;
2357 up_read(&rbd_dev->header_rwsem);
2358
2359 if (obj_request->img_offset + length == img_end)
2360 opcode = CEPH_OSD_OP_TRUNCATE;
2361 else
2362 opcode = CEPH_OSD_OP_ZERO;
2363 }
2364 } else if (op_type == OBJ_OP_WRITE) {
2365 opcode = CEPH_OSD_OP_WRITE;
2366 osd_req_op_alloc_hint_init(osd_request, num_ops,
2367 object_size, object_size);
2368 num_ops++;
2369 } else {
2370 opcode = CEPH_OSD_OP_READ;
2371 }
2372
2373 osd_req_op_extent_init(osd_request, num_ops, opcode, offset, length,
2374 0, 0);
2375 if (obj_request->type == OBJ_REQUEST_BIO)
2376 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2377 obj_request->bio_list, length);
2378 else if (obj_request->type == OBJ_REQUEST_PAGES)
2379 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2380 obj_request->pages, length,
2381 offset & ~PAGE_MASK, false, false);
2382
2383 /* Discards are also writes */
2384 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2385 rbd_osd_req_format_write(obj_request);
2386 else
2387 rbd_osd_req_format_read(obj_request);
2388 }
2389
2390 /*
2391 * Split up an image request into one or more object requests, each
2392 * to a different object. The "type" parameter indicates whether
2393 * "data_desc" is the pointer to the head of a list of bio
2394 * structures, or the base of a page array. In either case this
2395 * function assumes data_desc describes memory sufficient to hold
2396 * all data described by the image request.
2397 */
2398 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2399 enum obj_request_type type,
2400 void *data_desc)
2401 {
2402 struct rbd_device *rbd_dev = img_request->rbd_dev;
2403 struct rbd_obj_request *obj_request = NULL;
2404 struct rbd_obj_request *next_obj_request;
2405 struct bio *bio_list = NULL;
2406 unsigned int bio_offset = 0;
2407 struct page **pages = NULL;
2408 enum obj_operation_type op_type;
2409 u64 img_offset;
2410 u64 resid;
2411
2412 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2413 (int)type, data_desc);
2414
2415 img_offset = img_request->offset;
2416 resid = img_request->length;
2417 rbd_assert(resid > 0);
2418 op_type = rbd_img_request_op_type(img_request);
2419
2420 if (type == OBJ_REQUEST_BIO) {
2421 bio_list = data_desc;
2422 rbd_assert(img_offset ==
2423 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2424 } else if (type == OBJ_REQUEST_PAGES) {
2425 pages = data_desc;
2426 }
2427
2428 while (resid) {
2429 struct ceph_osd_request *osd_req;
2430 const char *object_name;
2431 u64 offset;
2432 u64 length;
2433
2434 object_name = rbd_segment_name(rbd_dev, img_offset);
2435 if (!object_name)
2436 goto out_unwind;
2437 offset = rbd_segment_offset(rbd_dev, img_offset);
2438 length = rbd_segment_length(rbd_dev, img_offset, resid);
2439 obj_request = rbd_obj_request_create(object_name,
2440 offset, length, type);
2441 /* object request has its own copy of the object name */
2442 rbd_segment_name_free(object_name);
2443 if (!obj_request)
2444 goto out_unwind;
2445
2446 /*
2447 * set obj_request->img_request before creating the
2448 * osd_request so that it gets the right snapc
2449 */
2450 rbd_img_obj_request_add(img_request, obj_request);
2451
2452 if (type == OBJ_REQUEST_BIO) {
2453 unsigned int clone_size;
2454
2455 rbd_assert(length <= (u64)UINT_MAX);
2456 clone_size = (unsigned int)length;
2457 obj_request->bio_list =
2458 bio_chain_clone_range(&bio_list,
2459 &bio_offset,
2460 clone_size,
2461 GFP_ATOMIC);
2462 if (!obj_request->bio_list)
2463 goto out_unwind;
2464 } else if (type == OBJ_REQUEST_PAGES) {
2465 unsigned int page_count;
2466
2467 obj_request->pages = pages;
2468 page_count = (u32)calc_pages_for(offset, length);
2469 obj_request->page_count = page_count;
2470 if ((offset + length) & ~PAGE_MASK)
2471 page_count--; /* more on last page */
2472 pages += page_count;
2473 }
2474
2475 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2476 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2477 obj_request);
2478 if (!osd_req)
2479 goto out_unwind;
2480
2481 obj_request->osd_req = osd_req;
2482 obj_request->callback = rbd_img_obj_callback;
2483 obj_request->img_offset = img_offset;
2484
2485 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2486
2487 rbd_img_request_get(img_request);
2488
2489 img_offset += length;
2490 resid -= length;
2491 }
2492
2493 return 0;
2494
2495 out_unwind:
2496 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2497 rbd_img_obj_request_del(img_request, obj_request);
2498
2499 return -ENOMEM;
2500 }
2501
2502 static void
2503 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2504 {
2505 struct rbd_img_request *img_request;
2506 struct rbd_device *rbd_dev;
2507 struct page **pages;
2508 u32 page_count;
2509
2510 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2511 obj_request->type == OBJ_REQUEST_NODATA);
2512 rbd_assert(obj_request_img_data_test(obj_request));
2513 img_request = obj_request->img_request;
2514 rbd_assert(img_request);
2515
2516 rbd_dev = img_request->rbd_dev;
2517 rbd_assert(rbd_dev);
2518
2519 pages = obj_request->copyup_pages;
2520 rbd_assert(pages != NULL);
2521 obj_request->copyup_pages = NULL;
2522 page_count = obj_request->copyup_page_count;
2523 rbd_assert(page_count);
2524 obj_request->copyup_page_count = 0;
2525 ceph_release_page_vector(pages, page_count);
2526
2527 /*
2528 * We want the transfer count to reflect the size of the
2529 * original write request. There is no such thing as a
2530 * successful short write, so if the request was successful
2531 * we can just set it to the originally-requested length.
2532 */
2533 if (!obj_request->result)
2534 obj_request->xferred = obj_request->length;
2535
2536 /* Finish up with the normal image object callback */
2537
2538 rbd_img_obj_callback(obj_request);
2539 }
2540
2541 static void
2542 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2543 {
2544 struct rbd_obj_request *orig_request;
2545 struct ceph_osd_request *osd_req;
2546 struct ceph_osd_client *osdc;
2547 struct rbd_device *rbd_dev;
2548 struct page **pages;
2549 enum obj_operation_type op_type;
2550 u32 page_count;
2551 int img_result;
2552 u64 parent_length;
2553
2554 rbd_assert(img_request_child_test(img_request));
2555
2556 /* First get what we need from the image request */
2557
2558 pages = img_request->copyup_pages;
2559 rbd_assert(pages != NULL);
2560 img_request->copyup_pages = NULL;
2561 page_count = img_request->copyup_page_count;
2562 rbd_assert(page_count);
2563 img_request->copyup_page_count = 0;
2564
2565 orig_request = img_request->obj_request;
2566 rbd_assert(orig_request != NULL);
2567 rbd_assert(obj_request_type_valid(orig_request->type));
2568 img_result = img_request->result;
2569 parent_length = img_request->length;
2570 rbd_assert(parent_length == img_request->xferred);
2571 rbd_img_request_put(img_request);
2572
2573 rbd_assert(orig_request->img_request);
2574 rbd_dev = orig_request->img_request->rbd_dev;
2575 rbd_assert(rbd_dev);
2576
2577 /*
2578 * If the overlap has become 0 (most likely because the
2579 * image has been flattened) we need to free the pages
2580 * and re-submit the original write request.
2581 */
2582 if (!rbd_dev->parent_overlap) {
2583 struct ceph_osd_client *osdc;
2584
2585 ceph_release_page_vector(pages, page_count);
2586 osdc = &rbd_dev->rbd_client->client->osdc;
2587 img_result = rbd_obj_request_submit(osdc, orig_request);
2588 if (!img_result)
2589 return;
2590 }
2591
2592 if (img_result)
2593 goto out_err;
2594
2595 /*
2596 * The original osd request is of no use to use any more.
2597 * We need a new one that can hold the three ops in a copyup
2598 * request. Allocate the new copyup osd request for the
2599 * original request, and release the old one.
2600 */
2601 img_result = -ENOMEM;
2602 osd_req = rbd_osd_req_create_copyup(orig_request);
2603 if (!osd_req)
2604 goto out_err;
2605 rbd_osd_req_destroy(orig_request->osd_req);
2606 orig_request->osd_req = osd_req;
2607 orig_request->copyup_pages = pages;
2608 orig_request->copyup_page_count = page_count;
2609
2610 /* Initialize the copyup op */
2611
2612 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2613 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2614 false, false);
2615
2616 /* Add the other op(s) */
2617
2618 op_type = rbd_img_request_op_type(orig_request->img_request);
2619 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2620
2621 /* All set, send it off. */
2622
2623 orig_request->callback = rbd_img_obj_copyup_callback;
2624 osdc = &rbd_dev->rbd_client->client->osdc;
2625 img_result = rbd_obj_request_submit(osdc, orig_request);
2626 if (!img_result)
2627 return;
2628 out_err:
2629 /* Record the error code and complete the request */
2630
2631 orig_request->result = img_result;
2632 orig_request->xferred = 0;
2633 obj_request_done_set(orig_request);
2634 rbd_obj_request_complete(orig_request);
2635 }
2636
2637 /*
2638 * Read from the parent image the range of data that covers the
2639 * entire target of the given object request. This is used for
2640 * satisfying a layered image write request when the target of an
2641 * object request from the image request does not exist.
2642 *
2643 * A page array big enough to hold the returned data is allocated
2644 * and supplied to rbd_img_request_fill() as the "data descriptor."
2645 * When the read completes, this page array will be transferred to
2646 * the original object request for the copyup operation.
2647 *
2648 * If an error occurs, record it as the result of the original
2649 * object request and mark it done so it gets completed.
2650 */
2651 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2652 {
2653 struct rbd_img_request *img_request = NULL;
2654 struct rbd_img_request *parent_request = NULL;
2655 struct rbd_device *rbd_dev;
2656 u64 img_offset;
2657 u64 length;
2658 struct page **pages = NULL;
2659 u32 page_count;
2660 int result;
2661
2662 rbd_assert(obj_request_img_data_test(obj_request));
2663 rbd_assert(obj_request_type_valid(obj_request->type));
2664
2665 img_request = obj_request->img_request;
2666 rbd_assert(img_request != NULL);
2667 rbd_dev = img_request->rbd_dev;
2668 rbd_assert(rbd_dev->parent != NULL);
2669
2670 /*
2671 * Determine the byte range covered by the object in the
2672 * child image to which the original request was to be sent.
2673 */
2674 img_offset = obj_request->img_offset - obj_request->offset;
2675 length = (u64)1 << rbd_dev->header.obj_order;
2676
2677 /*
2678 * There is no defined parent data beyond the parent
2679 * overlap, so limit what we read at that boundary if
2680 * necessary.
2681 */
2682 if (img_offset + length > rbd_dev->parent_overlap) {
2683 rbd_assert(img_offset < rbd_dev->parent_overlap);
2684 length = rbd_dev->parent_overlap - img_offset;
2685 }
2686
2687 /*
2688 * Allocate a page array big enough to receive the data read
2689 * from the parent.
2690 */
2691 page_count = (u32)calc_pages_for(0, length);
2692 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2693 if (IS_ERR(pages)) {
2694 result = PTR_ERR(pages);
2695 pages = NULL;
2696 goto out_err;
2697 }
2698
2699 result = -ENOMEM;
2700 parent_request = rbd_parent_request_create(obj_request,
2701 img_offset, length);
2702 if (!parent_request)
2703 goto out_err;
2704
2705 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2706 if (result)
2707 goto out_err;
2708 parent_request->copyup_pages = pages;
2709 parent_request->copyup_page_count = page_count;
2710
2711 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2712 result = rbd_img_request_submit(parent_request);
2713 if (!result)
2714 return 0;
2715
2716 parent_request->copyup_pages = NULL;
2717 parent_request->copyup_page_count = 0;
2718 parent_request->obj_request = NULL;
2719 rbd_obj_request_put(obj_request);
2720 out_err:
2721 if (pages)
2722 ceph_release_page_vector(pages, page_count);
2723 if (parent_request)
2724 rbd_img_request_put(parent_request);
2725 obj_request->result = result;
2726 obj_request->xferred = 0;
2727 obj_request_done_set(obj_request);
2728
2729 return result;
2730 }
2731
2732 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2733 {
2734 struct rbd_obj_request *orig_request;
2735 struct rbd_device *rbd_dev;
2736 int result;
2737
2738 rbd_assert(!obj_request_img_data_test(obj_request));
2739
2740 /*
2741 * All we need from the object request is the original
2742 * request and the result of the STAT op. Grab those, then
2743 * we're done with the request.
2744 */
2745 orig_request = obj_request->obj_request;
2746 obj_request->obj_request = NULL;
2747 rbd_obj_request_put(orig_request);
2748 rbd_assert(orig_request);
2749 rbd_assert(orig_request->img_request);
2750
2751 result = obj_request->result;
2752 obj_request->result = 0;
2753
2754 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2755 obj_request, orig_request, result,
2756 obj_request->xferred, obj_request->length);
2757 rbd_obj_request_put(obj_request);
2758
2759 /*
2760 * If the overlap has become 0 (most likely because the
2761 * image has been flattened) we need to free the pages
2762 * and re-submit the original write request.
2763 */
2764 rbd_dev = orig_request->img_request->rbd_dev;
2765 if (!rbd_dev->parent_overlap) {
2766 struct ceph_osd_client *osdc;
2767
2768 osdc = &rbd_dev->rbd_client->client->osdc;
2769 result = rbd_obj_request_submit(osdc, orig_request);
2770 if (!result)
2771 return;
2772 }
2773
2774 /*
2775 * Our only purpose here is to determine whether the object
2776 * exists, and we don't want to treat the non-existence as
2777 * an error. If something else comes back, transfer the
2778 * error to the original request and complete it now.
2779 */
2780 if (!result) {
2781 obj_request_existence_set(orig_request, true);
2782 } else if (result == -ENOENT) {
2783 obj_request_existence_set(orig_request, false);
2784 } else if (result) {
2785 orig_request->result = result;
2786 goto out;
2787 }
2788
2789 /*
2790 * Resubmit the original request now that we have recorded
2791 * whether the target object exists.
2792 */
2793 orig_request->result = rbd_img_obj_request_submit(orig_request);
2794 out:
2795 if (orig_request->result)
2796 rbd_obj_request_complete(orig_request);
2797 }
2798
2799 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2800 {
2801 struct rbd_obj_request *stat_request;
2802 struct rbd_device *rbd_dev;
2803 struct ceph_osd_client *osdc;
2804 struct page **pages = NULL;
2805 u32 page_count;
2806 size_t size;
2807 int ret;
2808
2809 /*
2810 * The response data for a STAT call consists of:
2811 * le64 length;
2812 * struct {
2813 * le32 tv_sec;
2814 * le32 tv_nsec;
2815 * } mtime;
2816 */
2817 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2818 page_count = (u32)calc_pages_for(0, size);
2819 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2820 if (IS_ERR(pages))
2821 return PTR_ERR(pages);
2822
2823 ret = -ENOMEM;
2824 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2825 OBJ_REQUEST_PAGES);
2826 if (!stat_request)
2827 goto out;
2828
2829 rbd_obj_request_get(obj_request);
2830 stat_request->obj_request = obj_request;
2831 stat_request->pages = pages;
2832 stat_request->page_count = page_count;
2833
2834 rbd_assert(obj_request->img_request);
2835 rbd_dev = obj_request->img_request->rbd_dev;
2836 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2837 stat_request);
2838 if (!stat_request->osd_req)
2839 goto out;
2840 stat_request->callback = rbd_img_obj_exists_callback;
2841
2842 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2843 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2844 false, false);
2845 rbd_osd_req_format_read(stat_request);
2846
2847 osdc = &rbd_dev->rbd_client->client->osdc;
2848 ret = rbd_obj_request_submit(osdc, stat_request);
2849 out:
2850 if (ret)
2851 rbd_obj_request_put(obj_request);
2852
2853 return ret;
2854 }
2855
2856 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2857 {
2858 struct rbd_img_request *img_request;
2859 struct rbd_device *rbd_dev;
2860
2861 rbd_assert(obj_request_img_data_test(obj_request));
2862
2863 img_request = obj_request->img_request;
2864 rbd_assert(img_request);
2865 rbd_dev = img_request->rbd_dev;
2866
2867 /* Reads */
2868 if (!img_request_write_test(img_request) &&
2869 !img_request_discard_test(img_request))
2870 return true;
2871
2872 /* Non-layered writes */
2873 if (!img_request_layered_test(img_request))
2874 return true;
2875
2876 /*
2877 * Layered writes outside of the parent overlap range don't
2878 * share any data with the parent.
2879 */
2880 if (!obj_request_overlaps_parent(obj_request))
2881 return true;
2882
2883 /*
2884 * Entire-object layered writes - we will overwrite whatever
2885 * parent data there is anyway.
2886 */
2887 if (!obj_request->offset &&
2888 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2889 return true;
2890
2891 /*
2892 * If the object is known to already exist, its parent data has
2893 * already been copied.
2894 */
2895 if (obj_request_known_test(obj_request) &&
2896 obj_request_exists_test(obj_request))
2897 return true;
2898
2899 return false;
2900 }
2901
2902 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2903 {
2904 if (img_obj_request_simple(obj_request)) {
2905 struct rbd_device *rbd_dev;
2906 struct ceph_osd_client *osdc;
2907
2908 rbd_dev = obj_request->img_request->rbd_dev;
2909 osdc = &rbd_dev->rbd_client->client->osdc;
2910
2911 return rbd_obj_request_submit(osdc, obj_request);
2912 }
2913
2914 /*
2915 * It's a layered write. The target object might exist but
2916 * we may not know that yet. If we know it doesn't exist,
2917 * start by reading the data for the full target object from
2918 * the parent so we can use it for a copyup to the target.
2919 */
2920 if (obj_request_known_test(obj_request))
2921 return rbd_img_obj_parent_read_full(obj_request);
2922
2923 /* We don't know whether the target exists. Go find out. */
2924
2925 return rbd_img_obj_exists_submit(obj_request);
2926 }
2927
2928 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2929 {
2930 struct rbd_obj_request *obj_request;
2931 struct rbd_obj_request *next_obj_request;
2932
2933 dout("%s: img %p\n", __func__, img_request);
2934 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2935 int ret;
2936
2937 ret = rbd_img_obj_request_submit(obj_request);
2938 if (ret)
2939 return ret;
2940 }
2941
2942 return 0;
2943 }
2944
2945 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2946 {
2947 struct rbd_obj_request *obj_request;
2948 struct rbd_device *rbd_dev;
2949 u64 obj_end;
2950 u64 img_xferred;
2951 int img_result;
2952
2953 rbd_assert(img_request_child_test(img_request));
2954
2955 /* First get what we need from the image request and release it */
2956
2957 obj_request = img_request->obj_request;
2958 img_xferred = img_request->xferred;
2959 img_result = img_request->result;
2960 rbd_img_request_put(img_request);
2961
2962 /*
2963 * If the overlap has become 0 (most likely because the
2964 * image has been flattened) we need to re-submit the
2965 * original request.
2966 */
2967 rbd_assert(obj_request);
2968 rbd_assert(obj_request->img_request);
2969 rbd_dev = obj_request->img_request->rbd_dev;
2970 if (!rbd_dev->parent_overlap) {
2971 struct ceph_osd_client *osdc;
2972
2973 osdc = &rbd_dev->rbd_client->client->osdc;
2974 img_result = rbd_obj_request_submit(osdc, obj_request);
2975 if (!img_result)
2976 return;
2977 }
2978
2979 obj_request->result = img_result;
2980 if (obj_request->result)
2981 goto out;
2982
2983 /*
2984 * We need to zero anything beyond the parent overlap
2985 * boundary. Since rbd_img_obj_request_read_callback()
2986 * will zero anything beyond the end of a short read, an
2987 * easy way to do this is to pretend the data from the
2988 * parent came up short--ending at the overlap boundary.
2989 */
2990 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2991 obj_end = obj_request->img_offset + obj_request->length;
2992 if (obj_end > rbd_dev->parent_overlap) {
2993 u64 xferred = 0;
2994
2995 if (obj_request->img_offset < rbd_dev->parent_overlap)
2996 xferred = rbd_dev->parent_overlap -
2997 obj_request->img_offset;
2998
2999 obj_request->xferred = min(img_xferred, xferred);
3000 } else {
3001 obj_request->xferred = img_xferred;
3002 }
3003 out:
3004 rbd_img_obj_request_read_callback(obj_request);
3005 rbd_obj_request_complete(obj_request);
3006 }
3007
3008 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3009 {
3010 struct rbd_img_request *img_request;
3011 int result;
3012
3013 rbd_assert(obj_request_img_data_test(obj_request));
3014 rbd_assert(obj_request->img_request != NULL);
3015 rbd_assert(obj_request->result == (s32) -ENOENT);
3016 rbd_assert(obj_request_type_valid(obj_request->type));
3017
3018 /* rbd_read_finish(obj_request, obj_request->length); */
3019 img_request = rbd_parent_request_create(obj_request,
3020 obj_request->img_offset,
3021 obj_request->length);
3022 result = -ENOMEM;
3023 if (!img_request)
3024 goto out_err;
3025
3026 if (obj_request->type == OBJ_REQUEST_BIO)
3027 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3028 obj_request->bio_list);
3029 else
3030 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3031 obj_request->pages);
3032 if (result)
3033 goto out_err;
3034
3035 img_request->callback = rbd_img_parent_read_callback;
3036 result = rbd_img_request_submit(img_request);
3037 if (result)
3038 goto out_err;
3039
3040 return;
3041 out_err:
3042 if (img_request)
3043 rbd_img_request_put(img_request);
3044 obj_request->result = result;
3045 obj_request->xferred = 0;
3046 obj_request_done_set(obj_request);
3047 }
3048
3049 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3050 {
3051 struct rbd_obj_request *obj_request;
3052 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3053 int ret;
3054
3055 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3056 OBJ_REQUEST_NODATA);
3057 if (!obj_request)
3058 return -ENOMEM;
3059
3060 ret = -ENOMEM;
3061 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3062 obj_request);
3063 if (!obj_request->osd_req)
3064 goto out;
3065
3066 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3067 notify_id, 0, 0);
3068 rbd_osd_req_format_read(obj_request);
3069
3070 ret = rbd_obj_request_submit(osdc, obj_request);
3071 if (ret)
3072 goto out;
3073 ret = rbd_obj_request_wait(obj_request);
3074 out:
3075 rbd_obj_request_put(obj_request);
3076
3077 return ret;
3078 }
3079
3080 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3081 {
3082 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3083 int ret;
3084
3085 if (!rbd_dev)
3086 return;
3087
3088 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3089 rbd_dev->header_name, (unsigned long long)notify_id,
3090 (unsigned int)opcode);
3091
3092 /*
3093 * Until adequate refresh error handling is in place, there is
3094 * not much we can do here, except warn.
3095 *
3096 * See http://tracker.ceph.com/issues/5040
3097 */
3098 ret = rbd_dev_refresh(rbd_dev);
3099 if (ret)
3100 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3101
3102 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3103 if (ret)
3104 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3105 }
3106
3107 /*
3108 * Send a (un)watch request and wait for the ack. Return a request
3109 * with a ref held on success or error.
3110 */
3111 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3112 struct rbd_device *rbd_dev,
3113 bool watch)
3114 {
3115 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3116 struct rbd_obj_request *obj_request;
3117 int ret;
3118
3119 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3120 OBJ_REQUEST_NODATA);
3121 if (!obj_request)
3122 return ERR_PTR(-ENOMEM);
3123
3124 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3125 obj_request);
3126 if (!obj_request->osd_req) {
3127 ret = -ENOMEM;
3128 goto out;
3129 }
3130
3131 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3132 rbd_dev->watch_event->cookie, 0, watch);
3133 rbd_osd_req_format_write(obj_request);
3134
3135 if (watch)
3136 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3137
3138 ret = rbd_obj_request_submit(osdc, obj_request);
3139 if (ret)
3140 goto out;
3141
3142 ret = rbd_obj_request_wait(obj_request);
3143 if (ret)
3144 goto out;
3145
3146 ret = obj_request->result;
3147 if (ret) {
3148 if (watch)
3149 rbd_obj_request_end(obj_request);
3150 goto out;
3151 }
3152
3153 return obj_request;
3154
3155 out:
3156 rbd_obj_request_put(obj_request);
3157 return ERR_PTR(ret);
3158 }
3159
3160 /*
3161 * Initiate a watch request, synchronously.
3162 */
3163 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3164 {
3165 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3166 struct rbd_obj_request *obj_request;
3167 int ret;
3168
3169 rbd_assert(!rbd_dev->watch_event);
3170 rbd_assert(!rbd_dev->watch_request);
3171
3172 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3173 &rbd_dev->watch_event);
3174 if (ret < 0)
3175 return ret;
3176
3177 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3178 if (IS_ERR(obj_request)) {
3179 ceph_osdc_cancel_event(rbd_dev->watch_event);
3180 rbd_dev->watch_event = NULL;
3181 return PTR_ERR(obj_request);
3182 }
3183
3184 /*
3185 * A watch request is set to linger, so the underlying osd
3186 * request won't go away until we unregister it. We retain
3187 * a pointer to the object request during that time (in
3188 * rbd_dev->watch_request), so we'll keep a reference to it.
3189 * We'll drop that reference after we've unregistered it in
3190 * rbd_dev_header_unwatch_sync().
3191 */
3192 rbd_dev->watch_request = obj_request;
3193
3194 return 0;
3195 }
3196
3197 /*
3198 * Tear down a watch request, synchronously.
3199 */
3200 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3201 {
3202 struct rbd_obj_request *obj_request;
3203
3204 rbd_assert(rbd_dev->watch_event);
3205 rbd_assert(rbd_dev->watch_request);
3206
3207 rbd_obj_request_end(rbd_dev->watch_request);
3208 rbd_obj_request_put(rbd_dev->watch_request);
3209 rbd_dev->watch_request = NULL;
3210
3211 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3212 if (!IS_ERR(obj_request))
3213 rbd_obj_request_put(obj_request);
3214 else
3215 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3216 PTR_ERR(obj_request));
3217
3218 ceph_osdc_cancel_event(rbd_dev->watch_event);
3219 rbd_dev->watch_event = NULL;
3220 }
3221
3222 /*
3223 * Synchronous osd object method call. Returns the number of bytes
3224 * returned in the outbound buffer, or a negative error code.
3225 */
3226 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3227 const char *object_name,
3228 const char *class_name,
3229 const char *method_name,
3230 const void *outbound,
3231 size_t outbound_size,
3232 void *inbound,
3233 size_t inbound_size)
3234 {
3235 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3236 struct rbd_obj_request *obj_request;
3237 struct page **pages;
3238 u32 page_count;
3239 int ret;
3240
3241 /*
3242 * Method calls are ultimately read operations. The result
3243 * should placed into the inbound buffer provided. They
3244 * also supply outbound data--parameters for the object
3245 * method. Currently if this is present it will be a
3246 * snapshot id.
3247 */
3248 page_count = (u32)calc_pages_for(0, inbound_size);
3249 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3250 if (IS_ERR(pages))
3251 return PTR_ERR(pages);
3252
3253 ret = -ENOMEM;
3254 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3255 OBJ_REQUEST_PAGES);
3256 if (!obj_request)
3257 goto out;
3258
3259 obj_request->pages = pages;
3260 obj_request->page_count = page_count;
3261
3262 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3263 obj_request);
3264 if (!obj_request->osd_req)
3265 goto out;
3266
3267 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3268 class_name, method_name);
3269 if (outbound_size) {
3270 struct ceph_pagelist *pagelist;
3271
3272 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3273 if (!pagelist)
3274 goto out;
3275
3276 ceph_pagelist_init(pagelist);
3277 ceph_pagelist_append(pagelist, outbound, outbound_size);
3278 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3279 pagelist);
3280 }
3281 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3282 obj_request->pages, inbound_size,
3283 0, false, false);
3284 rbd_osd_req_format_read(obj_request);
3285
3286 ret = rbd_obj_request_submit(osdc, obj_request);
3287 if (ret)
3288 goto out;
3289 ret = rbd_obj_request_wait(obj_request);
3290 if (ret)
3291 goto out;
3292
3293 ret = obj_request->result;
3294 if (ret < 0)
3295 goto out;
3296
3297 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3298 ret = (int)obj_request->xferred;
3299 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3300 out:
3301 if (obj_request)
3302 rbd_obj_request_put(obj_request);
3303 else
3304 ceph_release_page_vector(pages, page_count);
3305
3306 return ret;
3307 }
3308
3309 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3310 {
3311 struct rbd_img_request *img_request;
3312 struct ceph_snap_context *snapc = NULL;
3313 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3314 u64 length = blk_rq_bytes(rq);
3315 enum obj_operation_type op_type;
3316 u64 mapping_size;
3317 int result;
3318
3319 if (rq->cmd_flags & REQ_DISCARD)
3320 op_type = OBJ_OP_DISCARD;
3321 else if (rq->cmd_flags & REQ_WRITE)
3322 op_type = OBJ_OP_WRITE;
3323 else
3324 op_type = OBJ_OP_READ;
3325
3326 /* Ignore/skip any zero-length requests */
3327
3328 if (!length) {
3329 dout("%s: zero-length request\n", __func__);
3330 result = 0;
3331 goto err_rq;
3332 }
3333
3334 /* Only reads are allowed to a read-only device */
3335
3336 if (op_type != OBJ_OP_READ) {
3337 if (rbd_dev->mapping.read_only) {
3338 result = -EROFS;
3339 goto err_rq;
3340 }
3341 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3342 }
3343
3344 /*
3345 * Quit early if the mapped snapshot no longer exists. It's
3346 * still possible the snapshot will have disappeared by the
3347 * time our request arrives at the osd, but there's no sense in
3348 * sending it if we already know.
3349 */
3350 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3351 dout("request for non-existent snapshot");
3352 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3353 result = -ENXIO;
3354 goto err_rq;
3355 }
3356
3357 if (offset && length > U64_MAX - offset + 1) {
3358 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3359 length);
3360 result = -EINVAL;
3361 goto err_rq; /* Shouldn't happen */
3362 }
3363
3364 down_read(&rbd_dev->header_rwsem);
3365 mapping_size = rbd_dev->mapping.size;
3366 if (op_type != OBJ_OP_READ) {
3367 snapc = rbd_dev->header.snapc;
3368 ceph_get_snap_context(snapc);
3369 }
3370 up_read(&rbd_dev->header_rwsem);
3371
3372 if (offset + length > mapping_size) {
3373 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3374 length, mapping_size);
3375 result = -EIO;
3376 goto err_rq;
3377 }
3378
3379 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3380 snapc);
3381 if (!img_request) {
3382 result = -ENOMEM;
3383 goto err_rq;
3384 }
3385 img_request->rq = rq;
3386
3387 if (op_type == OBJ_OP_DISCARD)
3388 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3389 NULL);
3390 else
3391 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3392 rq->bio);
3393 if (result)
3394 goto err_img_request;
3395
3396 result = rbd_img_request_submit(img_request);
3397 if (result)
3398 goto err_img_request;
3399
3400 return;
3401
3402 err_img_request:
3403 rbd_img_request_put(img_request);
3404 err_rq:
3405 if (result)
3406 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3407 obj_op_name(op_type), length, offset, result);
3408 if (snapc)
3409 ceph_put_snap_context(snapc);
3410 blk_end_request_all(rq, result);
3411 }
3412
3413 static void rbd_request_workfn(struct work_struct *work)
3414 {
3415 struct rbd_device *rbd_dev =
3416 container_of(work, struct rbd_device, rq_work);
3417 struct request *rq, *next;
3418 LIST_HEAD(requests);
3419
3420 spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3421 list_splice_init(&rbd_dev->rq_queue, &requests);
3422 spin_unlock_irq(&rbd_dev->lock);
3423
3424 list_for_each_entry_safe(rq, next, &requests, queuelist) {
3425 list_del_init(&rq->queuelist);
3426 rbd_handle_request(rbd_dev, rq);
3427 }
3428 }
3429
3430 /*
3431 * Called with q->queue_lock held and interrupts disabled, possibly on
3432 * the way to schedule(). Do not sleep here!
3433 */
3434 static void rbd_request_fn(struct request_queue *q)
3435 {
3436 struct rbd_device *rbd_dev = q->queuedata;
3437 struct request *rq;
3438 int queued = 0;
3439
3440 rbd_assert(rbd_dev);
3441
3442 while ((rq = blk_fetch_request(q))) {
3443 /* Ignore any non-FS requests that filter through. */
3444 if (rq->cmd_type != REQ_TYPE_FS) {
3445 dout("%s: non-fs request type %d\n", __func__,
3446 (int) rq->cmd_type);
3447 __blk_end_request_all(rq, 0);
3448 continue;
3449 }
3450
3451 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3452 queued++;
3453 }
3454
3455 if (queued)
3456 queue_work(rbd_wq, &rbd_dev->rq_work);
3457 }
3458
3459 /*
3460 * a queue callback. Makes sure that we don't create a bio that spans across
3461 * multiple osd objects. One exception would be with a single page bios,
3462 * which we handle later at bio_chain_clone_range()
3463 */
3464 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3465 struct bio_vec *bvec)
3466 {
3467 struct rbd_device *rbd_dev = q->queuedata;
3468 sector_t sector_offset;
3469 sector_t sectors_per_obj;
3470 sector_t obj_sector_offset;
3471 int ret;
3472
3473 /*
3474 * Find how far into its rbd object the partition-relative
3475 * bio start sector is to offset relative to the enclosing
3476 * device.
3477 */
3478 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3479 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3480 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3481
3482 /*
3483 * Compute the number of bytes from that offset to the end
3484 * of the object. Account for what's already used by the bio.
3485 */
3486 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3487 if (ret > bmd->bi_size)
3488 ret -= bmd->bi_size;
3489 else
3490 ret = 0;
3491
3492 /*
3493 * Don't send back more than was asked for. And if the bio
3494 * was empty, let the whole thing through because: "Note
3495 * that a block device *must* allow a single page to be
3496 * added to an empty bio."
3497 */
3498 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3499 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3500 ret = (int) bvec->bv_len;
3501
3502 return ret;
3503 }
3504
3505 static void rbd_free_disk(struct rbd_device *rbd_dev)
3506 {
3507 struct gendisk *disk = rbd_dev->disk;
3508
3509 if (!disk)
3510 return;
3511
3512 rbd_dev->disk = NULL;
3513 if (disk->flags & GENHD_FL_UP) {
3514 del_gendisk(disk);
3515 if (disk->queue)
3516 blk_cleanup_queue(disk->queue);
3517 }
3518 put_disk(disk);
3519 }
3520
3521 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3522 const char *object_name,
3523 u64 offset, u64 length, void *buf)
3524
3525 {
3526 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3527 struct rbd_obj_request *obj_request;
3528 struct page **pages = NULL;
3529 u32 page_count;
3530 size_t size;
3531 int ret;
3532
3533 page_count = (u32) calc_pages_for(offset, length);
3534 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3535 if (IS_ERR(pages))
3536 return PTR_ERR(pages);
3537
3538 ret = -ENOMEM;
3539 obj_request = rbd_obj_request_create(object_name, offset, length,
3540 OBJ_REQUEST_PAGES);
3541 if (!obj_request)
3542 goto out;
3543
3544 obj_request->pages = pages;
3545 obj_request->page_count = page_count;
3546
3547 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3548 obj_request);
3549 if (!obj_request->osd_req)
3550 goto out;
3551
3552 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3553 offset, length, 0, 0);
3554 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3555 obj_request->pages,
3556 obj_request->length,
3557 obj_request->offset & ~PAGE_MASK,
3558 false, false);
3559 rbd_osd_req_format_read(obj_request);
3560
3561 ret = rbd_obj_request_submit(osdc, obj_request);
3562 if (ret)
3563 goto out;
3564 ret = rbd_obj_request_wait(obj_request);
3565 if (ret)
3566 goto out;
3567
3568 ret = obj_request->result;
3569 if (ret < 0)
3570 goto out;
3571
3572 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3573 size = (size_t) obj_request->xferred;
3574 ceph_copy_from_page_vector(pages, buf, 0, size);
3575 rbd_assert(size <= (size_t)INT_MAX);
3576 ret = (int)size;
3577 out:
3578 if (obj_request)
3579 rbd_obj_request_put(obj_request);
3580 else
3581 ceph_release_page_vector(pages, page_count);
3582
3583 return ret;
3584 }
3585
3586 /*
3587 * Read the complete header for the given rbd device. On successful
3588 * return, the rbd_dev->header field will contain up-to-date
3589 * information about the image.
3590 */
3591 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3592 {
3593 struct rbd_image_header_ondisk *ondisk = NULL;
3594 u32 snap_count = 0;
3595 u64 names_size = 0;
3596 u32 want_count;
3597 int ret;
3598
3599 /*
3600 * The complete header will include an array of its 64-bit
3601 * snapshot ids, followed by the names of those snapshots as
3602 * a contiguous block of NUL-terminated strings. Note that
3603 * the number of snapshots could change by the time we read
3604 * it in, in which case we re-read it.
3605 */
3606 do {
3607 size_t size;
3608
3609 kfree(ondisk);
3610
3611 size = sizeof (*ondisk);
3612 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3613 size += names_size;
3614 ondisk = kmalloc(size, GFP_KERNEL);
3615 if (!ondisk)
3616 return -ENOMEM;
3617
3618 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3619 0, size, ondisk);
3620 if (ret < 0)
3621 goto out;
3622 if ((size_t)ret < size) {
3623 ret = -ENXIO;
3624 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3625 size, ret);
3626 goto out;
3627 }
3628 if (!rbd_dev_ondisk_valid(ondisk)) {
3629 ret = -ENXIO;
3630 rbd_warn(rbd_dev, "invalid header");
3631 goto out;
3632 }
3633
3634 names_size = le64_to_cpu(ondisk->snap_names_len);
3635 want_count = snap_count;
3636 snap_count = le32_to_cpu(ondisk->snap_count);
3637 } while (snap_count != want_count);
3638
3639 ret = rbd_header_from_disk(rbd_dev, ondisk);
3640 out:
3641 kfree(ondisk);
3642
3643 return ret;
3644 }
3645
3646 /*
3647 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3648 * has disappeared from the (just updated) snapshot context.
3649 */
3650 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3651 {
3652 u64 snap_id;
3653
3654 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3655 return;
3656
3657 snap_id = rbd_dev->spec->snap_id;
3658 if (snap_id == CEPH_NOSNAP)
3659 return;
3660
3661 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3662 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3663 }
3664
3665 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3666 {
3667 sector_t size;
3668 bool removing;
3669
3670 /*
3671 * Don't hold the lock while doing disk operations,
3672 * or lock ordering will conflict with the bdev mutex via:
3673 * rbd_add() -> blkdev_get() -> rbd_open()
3674 */
3675 spin_lock_irq(&rbd_dev->lock);
3676 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3677 spin_unlock_irq(&rbd_dev->lock);
3678 /*
3679 * If the device is being removed, rbd_dev->disk has
3680 * been destroyed, so don't try to update its size
3681 */
3682 if (!removing) {
3683 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3684 dout("setting size to %llu sectors", (unsigned long long)size);
3685 set_capacity(rbd_dev->disk, size);
3686 revalidate_disk(rbd_dev->disk);
3687 }
3688 }
3689
3690 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3691 {
3692 u64 mapping_size;
3693 int ret;
3694
3695 down_write(&rbd_dev->header_rwsem);
3696 mapping_size = rbd_dev->mapping.size;
3697
3698 ret = rbd_dev_header_info(rbd_dev);
3699 if (ret)
3700 return ret;
3701
3702 /*
3703 * If there is a parent, see if it has disappeared due to the
3704 * mapped image getting flattened.
3705 */
3706 if (rbd_dev->parent) {
3707 ret = rbd_dev_v2_parent_info(rbd_dev);
3708 if (ret)
3709 return ret;
3710 }
3711
3712 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3713 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3714 rbd_dev->mapping.size = rbd_dev->header.image_size;
3715 } else {
3716 /* validate mapped snapshot's EXISTS flag */
3717 rbd_exists_validate(rbd_dev);
3718 }
3719
3720 up_write(&rbd_dev->header_rwsem);
3721
3722 if (mapping_size != rbd_dev->mapping.size)
3723 rbd_dev_update_size(rbd_dev);
3724
3725 return 0;
3726 }
3727
3728 static int rbd_init_disk(struct rbd_device *rbd_dev)
3729 {
3730 struct gendisk *disk;
3731 struct request_queue *q;
3732 u64 segment_size;
3733
3734 /* create gendisk info */
3735 disk = alloc_disk(single_major ?
3736 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3737 RBD_MINORS_PER_MAJOR);
3738 if (!disk)
3739 return -ENOMEM;
3740
3741 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3742 rbd_dev->dev_id);
3743 disk->major = rbd_dev->major;
3744 disk->first_minor = rbd_dev->minor;
3745 if (single_major)
3746 disk->flags |= GENHD_FL_EXT_DEVT;
3747 disk->fops = &rbd_bd_ops;
3748 disk->private_data = rbd_dev;
3749
3750 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3751 if (!q)
3752 goto out_disk;
3753
3754 /* We use the default size, but let's be explicit about it. */
3755 blk_queue_physical_block_size(q, SECTOR_SIZE);
3756
3757 /* set io sizes to object size */
3758 segment_size = rbd_obj_bytes(&rbd_dev->header);
3759 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3760 blk_queue_max_segment_size(q, segment_size);
3761 blk_queue_io_min(q, segment_size);
3762 blk_queue_io_opt(q, segment_size);
3763
3764 /* enable the discard support */
3765 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3766 q->limits.discard_granularity = segment_size;
3767 q->limits.discard_alignment = segment_size;
3768 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3769 q->limits.discard_zeroes_data = 1;
3770
3771 blk_queue_merge_bvec(q, rbd_merge_bvec);
3772 disk->queue = q;
3773
3774 q->queuedata = rbd_dev;
3775
3776 rbd_dev->disk = disk;
3777
3778 return 0;
3779 out_disk:
3780 put_disk(disk);
3781
3782 return -ENOMEM;
3783 }
3784
3785 /*
3786 sysfs
3787 */
3788
3789 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3790 {
3791 return container_of(dev, struct rbd_device, dev);
3792 }
3793
3794 static ssize_t rbd_size_show(struct device *dev,
3795 struct device_attribute *attr, char *buf)
3796 {
3797 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3798
3799 return sprintf(buf, "%llu\n",
3800 (unsigned long long)rbd_dev->mapping.size);
3801 }
3802
3803 /*
3804 * Note this shows the features for whatever's mapped, which is not
3805 * necessarily the base image.
3806 */
3807 static ssize_t rbd_features_show(struct device *dev,
3808 struct device_attribute *attr, char *buf)
3809 {
3810 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3811
3812 return sprintf(buf, "0x%016llx\n",
3813 (unsigned long long)rbd_dev->mapping.features);
3814 }
3815
3816 static ssize_t rbd_major_show(struct device *dev,
3817 struct device_attribute *attr, char *buf)
3818 {
3819 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3820
3821 if (rbd_dev->major)
3822 return sprintf(buf, "%d\n", rbd_dev->major);
3823
3824 return sprintf(buf, "(none)\n");
3825 }
3826
3827 static ssize_t rbd_minor_show(struct device *dev,
3828 struct device_attribute *attr, char *buf)
3829 {
3830 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3831
3832 return sprintf(buf, "%d\n", rbd_dev->minor);
3833 }
3834
3835 static ssize_t rbd_client_id_show(struct device *dev,
3836 struct device_attribute *attr, char *buf)
3837 {
3838 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3839
3840 return sprintf(buf, "client%lld\n",
3841 ceph_client_id(rbd_dev->rbd_client->client));
3842 }
3843
3844 static ssize_t rbd_pool_show(struct device *dev,
3845 struct device_attribute *attr, char *buf)
3846 {
3847 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3848
3849 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3850 }
3851
3852 static ssize_t rbd_pool_id_show(struct device *dev,
3853 struct device_attribute *attr, char *buf)
3854 {
3855 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3856
3857 return sprintf(buf, "%llu\n",
3858 (unsigned long long) rbd_dev->spec->pool_id);
3859 }
3860
3861 static ssize_t rbd_name_show(struct device *dev,
3862 struct device_attribute *attr, char *buf)
3863 {
3864 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3865
3866 if (rbd_dev->spec->image_name)
3867 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3868
3869 return sprintf(buf, "(unknown)\n");
3870 }
3871
3872 static ssize_t rbd_image_id_show(struct device *dev,
3873 struct device_attribute *attr, char *buf)
3874 {
3875 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3876
3877 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3878 }
3879
3880 /*
3881 * Shows the name of the currently-mapped snapshot (or
3882 * RBD_SNAP_HEAD_NAME for the base image).
3883 */
3884 static ssize_t rbd_snap_show(struct device *dev,
3885 struct device_attribute *attr,
3886 char *buf)
3887 {
3888 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3889
3890 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3891 }
3892
3893 /*
3894 * For a v2 image, shows the chain of parent images, separated by empty
3895 * lines. For v1 images or if there is no parent, shows "(no parent
3896 * image)".
3897 */
3898 static ssize_t rbd_parent_show(struct device *dev,
3899 struct device_attribute *attr,
3900 char *buf)
3901 {
3902 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3903 ssize_t count = 0;
3904
3905 if (!rbd_dev->parent)
3906 return sprintf(buf, "(no parent image)\n");
3907
3908 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3909 struct rbd_spec *spec = rbd_dev->parent_spec;
3910
3911 count += sprintf(&buf[count], "%s"
3912 "pool_id %llu\npool_name %s\n"
3913 "image_id %s\nimage_name %s\n"
3914 "snap_id %llu\nsnap_name %s\n"
3915 "overlap %llu\n",
3916 !count ? "" : "\n", /* first? */
3917 spec->pool_id, spec->pool_name,
3918 spec->image_id, spec->image_name ?: "(unknown)",
3919 spec->snap_id, spec->snap_name,
3920 rbd_dev->parent_overlap);
3921 }
3922
3923 return count;
3924 }
3925
3926 static ssize_t rbd_image_refresh(struct device *dev,
3927 struct device_attribute *attr,
3928 const char *buf,
3929 size_t size)
3930 {
3931 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3932 int ret;
3933
3934 ret = rbd_dev_refresh(rbd_dev);
3935 if (ret)
3936 return ret;
3937
3938 return size;
3939 }
3940
3941 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3942 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3943 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3944 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3945 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3946 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3947 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3948 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3949 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3950 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3951 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3952 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3953
3954 static struct attribute *rbd_attrs[] = {
3955 &dev_attr_size.attr,
3956 &dev_attr_features.attr,
3957 &dev_attr_major.attr,
3958 &dev_attr_minor.attr,
3959 &dev_attr_client_id.attr,
3960 &dev_attr_pool.attr,
3961 &dev_attr_pool_id.attr,
3962 &dev_attr_name.attr,
3963 &dev_attr_image_id.attr,
3964 &dev_attr_current_snap.attr,
3965 &dev_attr_parent.attr,
3966 &dev_attr_refresh.attr,
3967 NULL
3968 };
3969
3970 static struct attribute_group rbd_attr_group = {
3971 .attrs = rbd_attrs,
3972 };
3973
3974 static const struct attribute_group *rbd_attr_groups[] = {
3975 &rbd_attr_group,
3976 NULL
3977 };
3978
3979 static void rbd_sysfs_dev_release(struct device *dev)
3980 {
3981 }
3982
3983 static struct device_type rbd_device_type = {
3984 .name = "rbd",
3985 .groups = rbd_attr_groups,
3986 .release = rbd_sysfs_dev_release,
3987 };
3988
3989 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3990 {
3991 kref_get(&spec->kref);
3992
3993 return spec;
3994 }
3995
3996 static void rbd_spec_free(struct kref *kref);
3997 static void rbd_spec_put(struct rbd_spec *spec)
3998 {
3999 if (spec)
4000 kref_put(&spec->kref, rbd_spec_free);
4001 }
4002
4003 static struct rbd_spec *rbd_spec_alloc(void)
4004 {
4005 struct rbd_spec *spec;
4006
4007 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4008 if (!spec)
4009 return NULL;
4010
4011 spec->pool_id = CEPH_NOPOOL;
4012 spec->snap_id = CEPH_NOSNAP;
4013 kref_init(&spec->kref);
4014
4015 return spec;
4016 }
4017
4018 static void rbd_spec_free(struct kref *kref)
4019 {
4020 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4021
4022 kfree(spec->pool_name);
4023 kfree(spec->image_id);
4024 kfree(spec->image_name);
4025 kfree(spec->snap_name);
4026 kfree(spec);
4027 }
4028
4029 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4030 struct rbd_spec *spec)
4031 {
4032 struct rbd_device *rbd_dev;
4033
4034 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4035 if (!rbd_dev)
4036 return NULL;
4037
4038 spin_lock_init(&rbd_dev->lock);
4039 INIT_LIST_HEAD(&rbd_dev->rq_queue);
4040 INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4041 rbd_dev->flags = 0;
4042 atomic_set(&rbd_dev->parent_ref, 0);
4043 INIT_LIST_HEAD(&rbd_dev->node);
4044 init_rwsem(&rbd_dev->header_rwsem);
4045
4046 rbd_dev->spec = spec;
4047 rbd_dev->rbd_client = rbdc;
4048
4049 /* Initialize the layout used for all rbd requests */
4050
4051 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4052 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4053 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4054 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4055
4056 return rbd_dev;
4057 }
4058
4059 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4060 {
4061 rbd_put_client(rbd_dev->rbd_client);
4062 rbd_spec_put(rbd_dev->spec);
4063 kfree(rbd_dev);
4064 }
4065
4066 /*
4067 * Get the size and object order for an image snapshot, or if
4068 * snap_id is CEPH_NOSNAP, gets this information for the base
4069 * image.
4070 */
4071 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4072 u8 *order, u64 *snap_size)
4073 {
4074 __le64 snapid = cpu_to_le64(snap_id);
4075 int ret;
4076 struct {
4077 u8 order;
4078 __le64 size;
4079 } __attribute__ ((packed)) size_buf = { 0 };
4080
4081 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4082 "rbd", "get_size",
4083 &snapid, sizeof (snapid),
4084 &size_buf, sizeof (size_buf));
4085 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4086 if (ret < 0)
4087 return ret;
4088 if (ret < sizeof (size_buf))
4089 return -ERANGE;
4090
4091 if (order) {
4092 *order = size_buf.order;
4093 dout(" order %u", (unsigned int)*order);
4094 }
4095 *snap_size = le64_to_cpu(size_buf.size);
4096
4097 dout(" snap_id 0x%016llx snap_size = %llu\n",
4098 (unsigned long long)snap_id,
4099 (unsigned long long)*snap_size);
4100
4101 return 0;
4102 }
4103
4104 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4105 {
4106 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4107 &rbd_dev->header.obj_order,
4108 &rbd_dev->header.image_size);
4109 }
4110
4111 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4112 {
4113 void *reply_buf;
4114 int ret;
4115 void *p;
4116
4117 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4118 if (!reply_buf)
4119 return -ENOMEM;
4120
4121 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4122 "rbd", "get_object_prefix", NULL, 0,
4123 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4124 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4125 if (ret < 0)
4126 goto out;
4127
4128 p = reply_buf;
4129 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4130 p + ret, NULL, GFP_NOIO);
4131 ret = 0;
4132
4133 if (IS_ERR(rbd_dev->header.object_prefix)) {
4134 ret = PTR_ERR(rbd_dev->header.object_prefix);
4135 rbd_dev->header.object_prefix = NULL;
4136 } else {
4137 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4138 }
4139 out:
4140 kfree(reply_buf);
4141
4142 return ret;
4143 }
4144
4145 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4146 u64 *snap_features)
4147 {
4148 __le64 snapid = cpu_to_le64(snap_id);
4149 struct {
4150 __le64 features;
4151 __le64 incompat;
4152 } __attribute__ ((packed)) features_buf = { 0 };
4153 u64 incompat;
4154 int ret;
4155
4156 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4157 "rbd", "get_features",
4158 &snapid, sizeof (snapid),
4159 &features_buf, sizeof (features_buf));
4160 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4161 if (ret < 0)
4162 return ret;
4163 if (ret < sizeof (features_buf))
4164 return -ERANGE;
4165
4166 incompat = le64_to_cpu(features_buf.incompat);
4167 if (incompat & ~RBD_FEATURES_SUPPORTED)
4168 return -ENXIO;
4169
4170 *snap_features = le64_to_cpu(features_buf.features);
4171
4172 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4173 (unsigned long long)snap_id,
4174 (unsigned long long)*snap_features,
4175 (unsigned long long)le64_to_cpu(features_buf.incompat));
4176
4177 return 0;
4178 }
4179
4180 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4181 {
4182 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4183 &rbd_dev->header.features);
4184 }
4185
4186 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4187 {
4188 struct rbd_spec *parent_spec;
4189 size_t size;
4190 void *reply_buf = NULL;
4191 __le64 snapid;
4192 void *p;
4193 void *end;
4194 u64 pool_id;
4195 char *image_id;
4196 u64 snap_id;
4197 u64 overlap;
4198 int ret;
4199
4200 parent_spec = rbd_spec_alloc();
4201 if (!parent_spec)
4202 return -ENOMEM;
4203
4204 size = sizeof (__le64) + /* pool_id */
4205 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4206 sizeof (__le64) + /* snap_id */
4207 sizeof (__le64); /* overlap */
4208 reply_buf = kmalloc(size, GFP_KERNEL);
4209 if (!reply_buf) {
4210 ret = -ENOMEM;
4211 goto out_err;
4212 }
4213
4214 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4215 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4216 "rbd", "get_parent",
4217 &snapid, sizeof (snapid),
4218 reply_buf, size);
4219 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4220 if (ret < 0)
4221 goto out_err;
4222
4223 p = reply_buf;
4224 end = reply_buf + ret;
4225 ret = -ERANGE;
4226 ceph_decode_64_safe(&p, end, pool_id, out_err);
4227 if (pool_id == CEPH_NOPOOL) {
4228 /*
4229 * Either the parent never existed, or we have
4230 * record of it but the image got flattened so it no
4231 * longer has a parent. When the parent of a
4232 * layered image disappears we immediately set the
4233 * overlap to 0. The effect of this is that all new
4234 * requests will be treated as if the image had no
4235 * parent.
4236 */
4237 if (rbd_dev->parent_overlap) {
4238 rbd_dev->parent_overlap = 0;
4239 smp_mb();
4240 rbd_dev_parent_put(rbd_dev);
4241 pr_info("%s: clone image has been flattened\n",
4242 rbd_dev->disk->disk_name);
4243 }
4244
4245 goto out; /* No parent? No problem. */
4246 }
4247
4248 /* The ceph file layout needs to fit pool id in 32 bits */
4249
4250 ret = -EIO;
4251 if (pool_id > (u64)U32_MAX) {
4252 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4253 (unsigned long long)pool_id, U32_MAX);
4254 goto out_err;
4255 }
4256
4257 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4258 if (IS_ERR(image_id)) {
4259 ret = PTR_ERR(image_id);
4260 goto out_err;
4261 }
4262 ceph_decode_64_safe(&p, end, snap_id, out_err);
4263 ceph_decode_64_safe(&p, end, overlap, out_err);
4264
4265 /*
4266 * The parent won't change (except when the clone is
4267 * flattened, already handled that). So we only need to
4268 * record the parent spec we have not already done so.
4269 */
4270 if (!rbd_dev->parent_spec) {
4271 parent_spec->pool_id = pool_id;
4272 parent_spec->image_id = image_id;
4273 parent_spec->snap_id = snap_id;
4274 rbd_dev->parent_spec = parent_spec;
4275 parent_spec = NULL; /* rbd_dev now owns this */
4276 } else {
4277 kfree(image_id);
4278 }
4279
4280 /*
4281 * We always update the parent overlap. If it's zero we
4282 * treat it specially.
4283 */
4284 rbd_dev->parent_overlap = overlap;
4285 smp_mb();
4286 if (!overlap) {
4287
4288 /* A null parent_spec indicates it's the initial probe */
4289
4290 if (parent_spec) {
4291 /*
4292 * The overlap has become zero, so the clone
4293 * must have been resized down to 0 at some
4294 * point. Treat this the same as a flatten.
4295 */
4296 rbd_dev_parent_put(rbd_dev);
4297 pr_info("%s: clone image now standalone\n",
4298 rbd_dev->disk->disk_name);
4299 } else {
4300 /*
4301 * For the initial probe, if we find the
4302 * overlap is zero we just pretend there was
4303 * no parent image.
4304 */
4305 rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4306 }
4307 }
4308 out:
4309 ret = 0;
4310 out_err:
4311 kfree(reply_buf);
4312 rbd_spec_put(parent_spec);
4313
4314 return ret;
4315 }
4316
4317 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4318 {
4319 struct {
4320 __le64 stripe_unit;
4321 __le64 stripe_count;
4322 } __attribute__ ((packed)) striping_info_buf = { 0 };
4323 size_t size = sizeof (striping_info_buf);
4324 void *p;
4325 u64 obj_size;
4326 u64 stripe_unit;
4327 u64 stripe_count;
4328 int ret;
4329
4330 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4331 "rbd", "get_stripe_unit_count", NULL, 0,
4332 (char *)&striping_info_buf, size);
4333 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4334 if (ret < 0)
4335 return ret;
4336 if (ret < size)
4337 return -ERANGE;
4338
4339 /*
4340 * We don't actually support the "fancy striping" feature
4341 * (STRIPINGV2) yet, but if the striping sizes are the
4342 * defaults the behavior is the same as before. So find
4343 * out, and only fail if the image has non-default values.
4344 */
4345 ret = -EINVAL;
4346 obj_size = (u64)1 << rbd_dev->header.obj_order;
4347 p = &striping_info_buf;
4348 stripe_unit = ceph_decode_64(&p);
4349 if (stripe_unit != obj_size) {
4350 rbd_warn(rbd_dev, "unsupported stripe unit "
4351 "(got %llu want %llu)",
4352 stripe_unit, obj_size);
4353 return -EINVAL;
4354 }
4355 stripe_count = ceph_decode_64(&p);
4356 if (stripe_count != 1) {
4357 rbd_warn(rbd_dev, "unsupported stripe count "
4358 "(got %llu want 1)", stripe_count);
4359 return -EINVAL;
4360 }
4361 rbd_dev->header.stripe_unit = stripe_unit;
4362 rbd_dev->header.stripe_count = stripe_count;
4363
4364 return 0;
4365 }
4366
4367 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4368 {
4369 size_t image_id_size;
4370 char *image_id;
4371 void *p;
4372 void *end;
4373 size_t size;
4374 void *reply_buf = NULL;
4375 size_t len = 0;
4376 char *image_name = NULL;
4377 int ret;
4378
4379 rbd_assert(!rbd_dev->spec->image_name);
4380
4381 len = strlen(rbd_dev->spec->image_id);
4382 image_id_size = sizeof (__le32) + len;
4383 image_id = kmalloc(image_id_size, GFP_KERNEL);
4384 if (!image_id)
4385 return NULL;
4386
4387 p = image_id;
4388 end = image_id + image_id_size;
4389 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4390
4391 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4392 reply_buf = kmalloc(size, GFP_KERNEL);
4393 if (!reply_buf)
4394 goto out;
4395
4396 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4397 "rbd", "dir_get_name",
4398 image_id, image_id_size,
4399 reply_buf, size);
4400 if (ret < 0)
4401 goto out;
4402 p = reply_buf;
4403 end = reply_buf + ret;
4404
4405 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4406 if (IS_ERR(image_name))
4407 image_name = NULL;
4408 else
4409 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4410 out:
4411 kfree(reply_buf);
4412 kfree(image_id);
4413
4414 return image_name;
4415 }
4416
4417 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4418 {
4419 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4420 const char *snap_name;
4421 u32 which = 0;
4422
4423 /* Skip over names until we find the one we are looking for */
4424
4425 snap_name = rbd_dev->header.snap_names;
4426 while (which < snapc->num_snaps) {
4427 if (!strcmp(name, snap_name))
4428 return snapc->snaps[which];
4429 snap_name += strlen(snap_name) + 1;
4430 which++;
4431 }
4432 return CEPH_NOSNAP;
4433 }
4434
4435 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4436 {
4437 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4438 u32 which;
4439 bool found = false;
4440 u64 snap_id;
4441
4442 for (which = 0; !found && which < snapc->num_snaps; which++) {
4443 const char *snap_name;
4444
4445 snap_id = snapc->snaps[which];
4446 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4447 if (IS_ERR(snap_name)) {
4448 /* ignore no-longer existing snapshots */
4449 if (PTR_ERR(snap_name) == -ENOENT)
4450 continue;
4451 else
4452 break;
4453 }
4454 found = !strcmp(name, snap_name);
4455 kfree(snap_name);
4456 }
4457 return found ? snap_id : CEPH_NOSNAP;
4458 }
4459
4460 /*
4461 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4462 * no snapshot by that name is found, or if an error occurs.
4463 */
4464 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4465 {
4466 if (rbd_dev->image_format == 1)
4467 return rbd_v1_snap_id_by_name(rbd_dev, name);
4468
4469 return rbd_v2_snap_id_by_name(rbd_dev, name);
4470 }
4471
4472 /*
4473 * An image being mapped will have everything but the snap id.
4474 */
4475 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4476 {
4477 struct rbd_spec *spec = rbd_dev->spec;
4478
4479 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4480 rbd_assert(spec->image_id && spec->image_name);
4481 rbd_assert(spec->snap_name);
4482
4483 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4484 u64 snap_id;
4485
4486 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4487 if (snap_id == CEPH_NOSNAP)
4488 return -ENOENT;
4489
4490 spec->snap_id = snap_id;
4491 } else {
4492 spec->snap_id = CEPH_NOSNAP;
4493 }
4494
4495 return 0;
4496 }
4497
4498 /*
4499 * A parent image will have all ids but none of the names.
4500 *
4501 * All names in an rbd spec are dynamically allocated. It's OK if we
4502 * can't figure out the name for an image id.
4503 */
4504 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4505 {
4506 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4507 struct rbd_spec *spec = rbd_dev->spec;
4508 const char *pool_name;
4509 const char *image_name;
4510 const char *snap_name;
4511 int ret;
4512
4513 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4514 rbd_assert(spec->image_id);
4515 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4516
4517 /* Get the pool name; we have to make our own copy of this */
4518
4519 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4520 if (!pool_name) {
4521 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4522 return -EIO;
4523 }
4524 pool_name = kstrdup(pool_name, GFP_KERNEL);
4525 if (!pool_name)
4526 return -ENOMEM;
4527
4528 /* Fetch the image name; tolerate failure here */
4529
4530 image_name = rbd_dev_image_name(rbd_dev);
4531 if (!image_name)
4532 rbd_warn(rbd_dev, "unable to get image name");
4533
4534 /* Fetch the snapshot name */
4535
4536 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4537 if (IS_ERR(snap_name)) {
4538 ret = PTR_ERR(snap_name);
4539 goto out_err;
4540 }
4541
4542 spec->pool_name = pool_name;
4543 spec->image_name = image_name;
4544 spec->snap_name = snap_name;
4545
4546 return 0;
4547
4548 out_err:
4549 kfree(image_name);
4550 kfree(pool_name);
4551 return ret;
4552 }
4553
4554 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4555 {
4556 size_t size;
4557 int ret;
4558 void *reply_buf;
4559 void *p;
4560 void *end;
4561 u64 seq;
4562 u32 snap_count;
4563 struct ceph_snap_context *snapc;
4564 u32 i;
4565
4566 /*
4567 * We'll need room for the seq value (maximum snapshot id),
4568 * snapshot count, and array of that many snapshot ids.
4569 * For now we have a fixed upper limit on the number we're
4570 * prepared to receive.
4571 */
4572 size = sizeof (__le64) + sizeof (__le32) +
4573 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4574 reply_buf = kzalloc(size, GFP_KERNEL);
4575 if (!reply_buf)
4576 return -ENOMEM;
4577
4578 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4579 "rbd", "get_snapcontext", NULL, 0,
4580 reply_buf, size);
4581 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4582 if (ret < 0)
4583 goto out;
4584
4585 p = reply_buf;
4586 end = reply_buf + ret;
4587 ret = -ERANGE;
4588 ceph_decode_64_safe(&p, end, seq, out);
4589 ceph_decode_32_safe(&p, end, snap_count, out);
4590
4591 /*
4592 * Make sure the reported number of snapshot ids wouldn't go
4593 * beyond the end of our buffer. But before checking that,
4594 * make sure the computed size of the snapshot context we
4595 * allocate is representable in a size_t.
4596 */
4597 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4598 / sizeof (u64)) {
4599 ret = -EINVAL;
4600 goto out;
4601 }
4602 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4603 goto out;
4604 ret = 0;
4605
4606 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4607 if (!snapc) {
4608 ret = -ENOMEM;
4609 goto out;
4610 }
4611 snapc->seq = seq;
4612 for (i = 0; i < snap_count; i++)
4613 snapc->snaps[i] = ceph_decode_64(&p);
4614
4615 ceph_put_snap_context(rbd_dev->header.snapc);
4616 rbd_dev->header.snapc = snapc;
4617
4618 dout(" snap context seq = %llu, snap_count = %u\n",
4619 (unsigned long long)seq, (unsigned int)snap_count);
4620 out:
4621 kfree(reply_buf);
4622
4623 return ret;
4624 }
4625
4626 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4627 u64 snap_id)
4628 {
4629 size_t size;
4630 void *reply_buf;
4631 __le64 snapid;
4632 int ret;
4633 void *p;
4634 void *end;
4635 char *snap_name;
4636
4637 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4638 reply_buf = kmalloc(size, GFP_KERNEL);
4639 if (!reply_buf)
4640 return ERR_PTR(-ENOMEM);
4641
4642 snapid = cpu_to_le64(snap_id);
4643 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4644 "rbd", "get_snapshot_name",
4645 &snapid, sizeof (snapid),
4646 reply_buf, size);
4647 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4648 if (ret < 0) {
4649 snap_name = ERR_PTR(ret);
4650 goto out;
4651 }
4652
4653 p = reply_buf;
4654 end = reply_buf + ret;
4655 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4656 if (IS_ERR(snap_name))
4657 goto out;
4658
4659 dout(" snap_id 0x%016llx snap_name = %s\n",
4660 (unsigned long long)snap_id, snap_name);
4661 out:
4662 kfree(reply_buf);
4663
4664 return snap_name;
4665 }
4666
4667 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4668 {
4669 bool first_time = rbd_dev->header.object_prefix == NULL;
4670 int ret;
4671
4672 ret = rbd_dev_v2_image_size(rbd_dev);
4673 if (ret)
4674 return ret;
4675
4676 if (first_time) {
4677 ret = rbd_dev_v2_header_onetime(rbd_dev);
4678 if (ret)
4679 return ret;
4680 }
4681
4682 ret = rbd_dev_v2_snap_context(rbd_dev);
4683 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4684
4685 return ret;
4686 }
4687
4688 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4689 {
4690 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4691
4692 if (rbd_dev->image_format == 1)
4693 return rbd_dev_v1_header_info(rbd_dev);
4694
4695 return rbd_dev_v2_header_info(rbd_dev);
4696 }
4697
4698 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4699 {
4700 struct device *dev;
4701 int ret;
4702
4703 dev = &rbd_dev->dev;
4704 dev->bus = &rbd_bus_type;
4705 dev->type = &rbd_device_type;
4706 dev->parent = &rbd_root_dev;
4707 dev->release = rbd_dev_device_release;
4708 dev_set_name(dev, "%d", rbd_dev->dev_id);
4709 ret = device_register(dev);
4710
4711 return ret;
4712 }
4713
4714 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4715 {
4716 device_unregister(&rbd_dev->dev);
4717 }
4718
4719 /*
4720 * Get a unique rbd identifier for the given new rbd_dev, and add
4721 * the rbd_dev to the global list.
4722 */
4723 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4724 {
4725 int new_dev_id;
4726
4727 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4728 0, minor_to_rbd_dev_id(1 << MINORBITS),
4729 GFP_KERNEL);
4730 if (new_dev_id < 0)
4731 return new_dev_id;
4732
4733 rbd_dev->dev_id = new_dev_id;
4734
4735 spin_lock(&rbd_dev_list_lock);
4736 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4737 spin_unlock(&rbd_dev_list_lock);
4738
4739 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4740
4741 return 0;
4742 }
4743
4744 /*
4745 * Remove an rbd_dev from the global list, and record that its
4746 * identifier is no longer in use.
4747 */
4748 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4749 {
4750 spin_lock(&rbd_dev_list_lock);
4751 list_del_init(&rbd_dev->node);
4752 spin_unlock(&rbd_dev_list_lock);
4753
4754 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4755
4756 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4757 }
4758
4759 /*
4760 * Skips over white space at *buf, and updates *buf to point to the
4761 * first found non-space character (if any). Returns the length of
4762 * the token (string of non-white space characters) found. Note
4763 * that *buf must be terminated with '\0'.
4764 */
4765 static inline size_t next_token(const char **buf)
4766 {
4767 /*
4768 * These are the characters that produce nonzero for
4769 * isspace() in the "C" and "POSIX" locales.
4770 */
4771 const char *spaces = " \f\n\r\t\v";
4772
4773 *buf += strspn(*buf, spaces); /* Find start of token */
4774
4775 return strcspn(*buf, spaces); /* Return token length */
4776 }
4777
4778 /*
4779 * Finds the next token in *buf, and if the provided token buffer is
4780 * big enough, copies the found token into it. The result, if
4781 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4782 * must be terminated with '\0' on entry.
4783 *
4784 * Returns the length of the token found (not including the '\0').
4785 * Return value will be 0 if no token is found, and it will be >=
4786 * token_size if the token would not fit.
4787 *
4788 * The *buf pointer will be updated to point beyond the end of the
4789 * found token. Note that this occurs even if the token buffer is
4790 * too small to hold it.
4791 */
4792 static inline size_t copy_token(const char **buf,
4793 char *token,
4794 size_t token_size)
4795 {
4796 size_t len;
4797
4798 len = next_token(buf);
4799 if (len < token_size) {
4800 memcpy(token, *buf, len);
4801 *(token + len) = '\0';
4802 }
4803 *buf += len;
4804
4805 return len;
4806 }
4807
4808 /*
4809 * Finds the next token in *buf, dynamically allocates a buffer big
4810 * enough to hold a copy of it, and copies the token into the new
4811 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4812 * that a duplicate buffer is created even for a zero-length token.
4813 *
4814 * Returns a pointer to the newly-allocated duplicate, or a null
4815 * pointer if memory for the duplicate was not available. If
4816 * the lenp argument is a non-null pointer, the length of the token
4817 * (not including the '\0') is returned in *lenp.
4818 *
4819 * If successful, the *buf pointer will be updated to point beyond
4820 * the end of the found token.
4821 *
4822 * Note: uses GFP_KERNEL for allocation.
4823 */
4824 static inline char *dup_token(const char **buf, size_t *lenp)
4825 {
4826 char *dup;
4827 size_t len;
4828
4829 len = next_token(buf);
4830 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4831 if (!dup)
4832 return NULL;
4833 *(dup + len) = '\0';
4834 *buf += len;
4835
4836 if (lenp)
4837 *lenp = len;
4838
4839 return dup;
4840 }
4841
4842 /*
4843 * Parse the options provided for an "rbd add" (i.e., rbd image
4844 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4845 * and the data written is passed here via a NUL-terminated buffer.
4846 * Returns 0 if successful or an error code otherwise.
4847 *
4848 * The information extracted from these options is recorded in
4849 * the other parameters which return dynamically-allocated
4850 * structures:
4851 * ceph_opts
4852 * The address of a pointer that will refer to a ceph options
4853 * structure. Caller must release the returned pointer using
4854 * ceph_destroy_options() when it is no longer needed.
4855 * rbd_opts
4856 * Address of an rbd options pointer. Fully initialized by
4857 * this function; caller must release with kfree().
4858 * spec
4859 * Address of an rbd image specification pointer. Fully
4860 * initialized by this function based on parsed options.
4861 * Caller must release with rbd_spec_put().
4862 *
4863 * The options passed take this form:
4864 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4865 * where:
4866 * <mon_addrs>
4867 * A comma-separated list of one or more monitor addresses.
4868 * A monitor address is an ip address, optionally followed
4869 * by a port number (separated by a colon).
4870 * I.e.: ip1[:port1][,ip2[:port2]...]
4871 * <options>
4872 * A comma-separated list of ceph and/or rbd options.
4873 * <pool_name>
4874 * The name of the rados pool containing the rbd image.
4875 * <image_name>
4876 * The name of the image in that pool to map.
4877 * <snap_id>
4878 * An optional snapshot id. If provided, the mapping will
4879 * present data from the image at the time that snapshot was
4880 * created. The image head is used if no snapshot id is
4881 * provided. Snapshot mappings are always read-only.
4882 */
4883 static int rbd_add_parse_args(const char *buf,
4884 struct ceph_options **ceph_opts,
4885 struct rbd_options **opts,
4886 struct rbd_spec **rbd_spec)
4887 {
4888 size_t len;
4889 char *options;
4890 const char *mon_addrs;
4891 char *snap_name;
4892 size_t mon_addrs_size;
4893 struct rbd_spec *spec = NULL;
4894 struct rbd_options *rbd_opts = NULL;
4895 struct ceph_options *copts;
4896 int ret;
4897
4898 /* The first four tokens are required */
4899
4900 len = next_token(&buf);
4901 if (!len) {
4902 rbd_warn(NULL, "no monitor address(es) provided");
4903 return -EINVAL;
4904 }
4905 mon_addrs = buf;
4906 mon_addrs_size = len + 1;
4907 buf += len;
4908
4909 ret = -EINVAL;
4910 options = dup_token(&buf, NULL);
4911 if (!options)
4912 return -ENOMEM;
4913 if (!*options) {
4914 rbd_warn(NULL, "no options provided");
4915 goto out_err;
4916 }
4917
4918 spec = rbd_spec_alloc();
4919 if (!spec)
4920 goto out_mem;
4921
4922 spec->pool_name = dup_token(&buf, NULL);
4923 if (!spec->pool_name)
4924 goto out_mem;
4925 if (!*spec->pool_name) {
4926 rbd_warn(NULL, "no pool name provided");
4927 goto out_err;
4928 }
4929
4930 spec->image_name = dup_token(&buf, NULL);
4931 if (!spec->image_name)
4932 goto out_mem;
4933 if (!*spec->image_name) {
4934 rbd_warn(NULL, "no image name provided");
4935 goto out_err;
4936 }
4937
4938 /*
4939 * Snapshot name is optional; default is to use "-"
4940 * (indicating the head/no snapshot).
4941 */
4942 len = next_token(&buf);
4943 if (!len) {
4944 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4945 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4946 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4947 ret = -ENAMETOOLONG;
4948 goto out_err;
4949 }
4950 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4951 if (!snap_name)
4952 goto out_mem;
4953 *(snap_name + len) = '\0';
4954 spec->snap_name = snap_name;
4955
4956 /* Initialize all rbd options to the defaults */
4957
4958 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4959 if (!rbd_opts)
4960 goto out_mem;
4961
4962 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4963
4964 copts = ceph_parse_options(options, mon_addrs,
4965 mon_addrs + mon_addrs_size - 1,
4966 parse_rbd_opts_token, rbd_opts);
4967 if (IS_ERR(copts)) {
4968 ret = PTR_ERR(copts);
4969 goto out_err;
4970 }
4971 kfree(options);
4972
4973 *ceph_opts = copts;
4974 *opts = rbd_opts;
4975 *rbd_spec = spec;
4976
4977 return 0;
4978 out_mem:
4979 ret = -ENOMEM;
4980 out_err:
4981 kfree(rbd_opts);
4982 rbd_spec_put(spec);
4983 kfree(options);
4984
4985 return ret;
4986 }
4987
4988 /*
4989 * Return pool id (>= 0) or a negative error code.
4990 */
4991 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4992 {
4993 u64 newest_epoch;
4994 unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4995 int tries = 0;
4996 int ret;
4997
4998 again:
4999 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5000 if (ret == -ENOENT && tries++ < 1) {
5001 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5002 &newest_epoch);
5003 if (ret < 0)
5004 return ret;
5005
5006 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5007 ceph_monc_request_next_osdmap(&rbdc->client->monc);
5008 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5009 newest_epoch, timeout);
5010 goto again;
5011 } else {
5012 /* the osdmap we have is new enough */
5013 return -ENOENT;
5014 }
5015 }
5016
5017 return ret;
5018 }
5019
5020 /*
5021 * An rbd format 2 image has a unique identifier, distinct from the
5022 * name given to it by the user. Internally, that identifier is
5023 * what's used to specify the names of objects related to the image.
5024 *
5025 * A special "rbd id" object is used to map an rbd image name to its
5026 * id. If that object doesn't exist, then there is no v2 rbd image
5027 * with the supplied name.
5028 *
5029 * This function will record the given rbd_dev's image_id field if
5030 * it can be determined, and in that case will return 0. If any
5031 * errors occur a negative errno will be returned and the rbd_dev's
5032 * image_id field will be unchanged (and should be NULL).
5033 */
5034 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5035 {
5036 int ret;
5037 size_t size;
5038 char *object_name;
5039 void *response;
5040 char *image_id;
5041
5042 /*
5043 * When probing a parent image, the image id is already
5044 * known (and the image name likely is not). There's no
5045 * need to fetch the image id again in this case. We
5046 * do still need to set the image format though.
5047 */
5048 if (rbd_dev->spec->image_id) {
5049 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5050
5051 return 0;
5052 }
5053
5054 /*
5055 * First, see if the format 2 image id file exists, and if
5056 * so, get the image's persistent id from it.
5057 */
5058 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5059 object_name = kmalloc(size, GFP_NOIO);
5060 if (!object_name)
5061 return -ENOMEM;
5062 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5063 dout("rbd id object name is %s\n", object_name);
5064
5065 /* Response will be an encoded string, which includes a length */
5066
5067 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5068 response = kzalloc(size, GFP_NOIO);
5069 if (!response) {
5070 ret = -ENOMEM;
5071 goto out;
5072 }
5073
5074 /* If it doesn't exist we'll assume it's a format 1 image */
5075
5076 ret = rbd_obj_method_sync(rbd_dev, object_name,
5077 "rbd", "get_id", NULL, 0,
5078 response, RBD_IMAGE_ID_LEN_MAX);
5079 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5080 if (ret == -ENOENT) {
5081 image_id = kstrdup("", GFP_KERNEL);
5082 ret = image_id ? 0 : -ENOMEM;
5083 if (!ret)
5084 rbd_dev->image_format = 1;
5085 } else if (ret >= 0) {
5086 void *p = response;
5087
5088 image_id = ceph_extract_encoded_string(&p, p + ret,
5089 NULL, GFP_NOIO);
5090 ret = PTR_ERR_OR_ZERO(image_id);
5091 if (!ret)
5092 rbd_dev->image_format = 2;
5093 }
5094
5095 if (!ret) {
5096 rbd_dev->spec->image_id = image_id;
5097 dout("image_id is %s\n", image_id);
5098 }
5099 out:
5100 kfree(response);
5101 kfree(object_name);
5102
5103 return ret;
5104 }
5105
5106 /*
5107 * Undo whatever state changes are made by v1 or v2 header info
5108 * call.
5109 */
5110 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5111 {
5112 struct rbd_image_header *header;
5113
5114 /* Drop parent reference unless it's already been done (or none) */
5115
5116 if (rbd_dev->parent_overlap)
5117 rbd_dev_parent_put(rbd_dev);
5118
5119 /* Free dynamic fields from the header, then zero it out */
5120
5121 header = &rbd_dev->header;
5122 ceph_put_snap_context(header->snapc);
5123 kfree(header->snap_sizes);
5124 kfree(header->snap_names);
5125 kfree(header->object_prefix);
5126 memset(header, 0, sizeof (*header));
5127 }
5128
5129 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5130 {
5131 int ret;
5132
5133 ret = rbd_dev_v2_object_prefix(rbd_dev);
5134 if (ret)
5135 goto out_err;
5136
5137 /*
5138 * Get the and check features for the image. Currently the
5139 * features are assumed to never change.
5140 */
5141 ret = rbd_dev_v2_features(rbd_dev);
5142 if (ret)
5143 goto out_err;
5144
5145 /* If the image supports fancy striping, get its parameters */
5146
5147 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5148 ret = rbd_dev_v2_striping_info(rbd_dev);
5149 if (ret < 0)
5150 goto out_err;
5151 }
5152 /* No support for crypto and compression type format 2 images */
5153
5154 return 0;
5155 out_err:
5156 rbd_dev->header.features = 0;
5157 kfree(rbd_dev->header.object_prefix);
5158 rbd_dev->header.object_prefix = NULL;
5159
5160 return ret;
5161 }
5162
5163 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5164 {
5165 struct rbd_device *parent = NULL;
5166 struct rbd_spec *parent_spec;
5167 struct rbd_client *rbdc;
5168 int ret;
5169
5170 if (!rbd_dev->parent_spec)
5171 return 0;
5172 /*
5173 * We need to pass a reference to the client and the parent
5174 * spec when creating the parent rbd_dev. Images related by
5175 * parent/child relationships always share both.
5176 */
5177 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5178 rbdc = __rbd_get_client(rbd_dev->rbd_client);
5179
5180 ret = -ENOMEM;
5181 parent = rbd_dev_create(rbdc, parent_spec);
5182 if (!parent)
5183 goto out_err;
5184
5185 ret = rbd_dev_image_probe(parent, false);
5186 if (ret < 0)
5187 goto out_err;
5188 rbd_dev->parent = parent;
5189 atomic_set(&rbd_dev->parent_ref, 1);
5190
5191 return 0;
5192 out_err:
5193 if (parent) {
5194 rbd_dev_unparent(rbd_dev);
5195 kfree(rbd_dev->header_name);
5196 rbd_dev_destroy(parent);
5197 } else {
5198 rbd_put_client(rbdc);
5199 rbd_spec_put(parent_spec);
5200 }
5201
5202 return ret;
5203 }
5204
5205 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5206 {
5207 int ret;
5208
5209 /* Get an id and fill in device name. */
5210
5211 ret = rbd_dev_id_get(rbd_dev);
5212 if (ret)
5213 return ret;
5214
5215 BUILD_BUG_ON(DEV_NAME_LEN
5216 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5217 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5218
5219 /* Record our major and minor device numbers. */
5220
5221 if (!single_major) {
5222 ret = register_blkdev(0, rbd_dev->name);
5223 if (ret < 0)
5224 goto err_out_id;
5225
5226 rbd_dev->major = ret;
5227 rbd_dev->minor = 0;
5228 } else {
5229 rbd_dev->major = rbd_major;
5230 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5231 }
5232
5233 /* Set up the blkdev mapping. */
5234
5235 ret = rbd_init_disk(rbd_dev);
5236 if (ret)
5237 goto err_out_blkdev;
5238
5239 ret = rbd_dev_mapping_set(rbd_dev);
5240 if (ret)
5241 goto err_out_disk;
5242
5243 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5244 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5245
5246 ret = rbd_bus_add_dev(rbd_dev);
5247 if (ret)
5248 goto err_out_mapping;
5249
5250 /* Everything's ready. Announce the disk to the world. */
5251
5252 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5253 add_disk(rbd_dev->disk);
5254
5255 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5256 (unsigned long long) rbd_dev->mapping.size);
5257
5258 return ret;
5259
5260 err_out_mapping:
5261 rbd_dev_mapping_clear(rbd_dev);
5262 err_out_disk:
5263 rbd_free_disk(rbd_dev);
5264 err_out_blkdev:
5265 if (!single_major)
5266 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5267 err_out_id:
5268 rbd_dev_id_put(rbd_dev);
5269 rbd_dev_mapping_clear(rbd_dev);
5270
5271 return ret;
5272 }
5273
5274 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5275 {
5276 struct rbd_spec *spec = rbd_dev->spec;
5277 size_t size;
5278
5279 /* Record the header object name for this rbd image. */
5280
5281 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5282
5283 if (rbd_dev->image_format == 1)
5284 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5285 else
5286 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5287
5288 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5289 if (!rbd_dev->header_name)
5290 return -ENOMEM;
5291
5292 if (rbd_dev->image_format == 1)
5293 sprintf(rbd_dev->header_name, "%s%s",
5294 spec->image_name, RBD_SUFFIX);
5295 else
5296 sprintf(rbd_dev->header_name, "%s%s",
5297 RBD_HEADER_PREFIX, spec->image_id);
5298 return 0;
5299 }
5300
5301 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5302 {
5303 rbd_dev_unprobe(rbd_dev);
5304 kfree(rbd_dev->header_name);
5305 rbd_dev->header_name = NULL;
5306 rbd_dev->image_format = 0;
5307 kfree(rbd_dev->spec->image_id);
5308 rbd_dev->spec->image_id = NULL;
5309
5310 rbd_dev_destroy(rbd_dev);
5311 }
5312
5313 /*
5314 * Probe for the existence of the header object for the given rbd
5315 * device. If this image is the one being mapped (i.e., not a
5316 * parent), initiate a watch on its header object before using that
5317 * object to get detailed information about the rbd image.
5318 */
5319 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5320 {
5321 int ret;
5322
5323 /*
5324 * Get the id from the image id object. Unless there's an
5325 * error, rbd_dev->spec->image_id will be filled in with
5326 * a dynamically-allocated string, and rbd_dev->image_format
5327 * will be set to either 1 or 2.
5328 */
5329 ret = rbd_dev_image_id(rbd_dev);
5330 if (ret)
5331 return ret;
5332
5333 ret = rbd_dev_header_name(rbd_dev);
5334 if (ret)
5335 goto err_out_format;
5336
5337 if (mapping) {
5338 ret = rbd_dev_header_watch_sync(rbd_dev);
5339 if (ret)
5340 goto out_header_name;
5341 }
5342
5343 ret = rbd_dev_header_info(rbd_dev);
5344 if (ret)
5345 goto err_out_watch;
5346
5347 /*
5348 * If this image is the one being mapped, we have pool name and
5349 * id, image name and id, and snap name - need to fill snap id.
5350 * Otherwise this is a parent image, identified by pool, image
5351 * and snap ids - need to fill in names for those ids.
5352 */
5353 if (mapping)
5354 ret = rbd_spec_fill_snap_id(rbd_dev);
5355 else
5356 ret = rbd_spec_fill_names(rbd_dev);
5357 if (ret)
5358 goto err_out_probe;
5359
5360 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5361 ret = rbd_dev_v2_parent_info(rbd_dev);
5362 if (ret)
5363 goto err_out_probe;
5364
5365 /*
5366 * Need to warn users if this image is the one being
5367 * mapped and has a parent.
5368 */
5369 if (mapping && rbd_dev->parent_spec)
5370 rbd_warn(rbd_dev,
5371 "WARNING: kernel layering is EXPERIMENTAL!");
5372 }
5373
5374 ret = rbd_dev_probe_parent(rbd_dev);
5375 if (ret)
5376 goto err_out_probe;
5377
5378 dout("discovered format %u image, header name is %s\n",
5379 rbd_dev->image_format, rbd_dev->header_name);
5380 return 0;
5381
5382 err_out_probe:
5383 rbd_dev_unprobe(rbd_dev);
5384 err_out_watch:
5385 if (mapping)
5386 rbd_dev_header_unwatch_sync(rbd_dev);
5387 out_header_name:
5388 kfree(rbd_dev->header_name);
5389 rbd_dev->header_name = NULL;
5390 err_out_format:
5391 rbd_dev->image_format = 0;
5392 kfree(rbd_dev->spec->image_id);
5393 rbd_dev->spec->image_id = NULL;
5394 return ret;
5395 }
5396
5397 static ssize_t do_rbd_add(struct bus_type *bus,
5398 const char *buf,
5399 size_t count)
5400 {
5401 struct rbd_device *rbd_dev = NULL;
5402 struct ceph_options *ceph_opts = NULL;
5403 struct rbd_options *rbd_opts = NULL;
5404 struct rbd_spec *spec = NULL;
5405 struct rbd_client *rbdc;
5406 bool read_only;
5407 int rc = -ENOMEM;
5408
5409 if (!try_module_get(THIS_MODULE))
5410 return -ENODEV;
5411
5412 /* parse add command */
5413 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5414 if (rc < 0)
5415 goto err_out_module;
5416 read_only = rbd_opts->read_only;
5417 kfree(rbd_opts);
5418 rbd_opts = NULL; /* done with this */
5419
5420 rbdc = rbd_get_client(ceph_opts);
5421 if (IS_ERR(rbdc)) {
5422 rc = PTR_ERR(rbdc);
5423 goto err_out_args;
5424 }
5425
5426 /* pick the pool */
5427 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5428 if (rc < 0)
5429 goto err_out_client;
5430 spec->pool_id = (u64)rc;
5431
5432 /* The ceph file layout needs to fit pool id in 32 bits */
5433
5434 if (spec->pool_id > (u64)U32_MAX) {
5435 rbd_warn(NULL, "pool id too large (%llu > %u)",
5436 (unsigned long long)spec->pool_id, U32_MAX);
5437 rc = -EIO;
5438 goto err_out_client;
5439 }
5440
5441 rbd_dev = rbd_dev_create(rbdc, spec);
5442 if (!rbd_dev)
5443 goto err_out_client;
5444 rbdc = NULL; /* rbd_dev now owns this */
5445 spec = NULL; /* rbd_dev now owns this */
5446
5447 rc = rbd_dev_image_probe(rbd_dev, true);
5448 if (rc < 0)
5449 goto err_out_rbd_dev;
5450
5451 /* If we are mapping a snapshot it must be marked read-only */
5452
5453 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5454 read_only = true;
5455 rbd_dev->mapping.read_only = read_only;
5456
5457 rc = rbd_dev_device_setup(rbd_dev);
5458 if (rc) {
5459 /*
5460 * rbd_dev_header_unwatch_sync() can't be moved into
5461 * rbd_dev_image_release() without refactoring, see
5462 * commit 1f3ef78861ac.
5463 */
5464 rbd_dev_header_unwatch_sync(rbd_dev);
5465 rbd_dev_image_release(rbd_dev);
5466 goto err_out_module;
5467 }
5468
5469 return count;
5470
5471 err_out_rbd_dev:
5472 rbd_dev_destroy(rbd_dev);
5473 err_out_client:
5474 rbd_put_client(rbdc);
5475 err_out_args:
5476 rbd_spec_put(spec);
5477 err_out_module:
5478 module_put(THIS_MODULE);
5479
5480 dout("Error adding device %s\n", buf);
5481
5482 return (ssize_t)rc;
5483 }
5484
5485 static ssize_t rbd_add(struct bus_type *bus,
5486 const char *buf,
5487 size_t count)
5488 {
5489 if (single_major)
5490 return -EINVAL;
5491
5492 return do_rbd_add(bus, buf, count);
5493 }
5494
5495 static ssize_t rbd_add_single_major(struct bus_type *bus,
5496 const char *buf,
5497 size_t count)
5498 {
5499 return do_rbd_add(bus, buf, count);
5500 }
5501
5502 static void rbd_dev_device_release(struct device *dev)
5503 {
5504 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5505
5506 rbd_free_disk(rbd_dev);
5507 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5508 rbd_dev_mapping_clear(rbd_dev);
5509 if (!single_major)
5510 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5511 rbd_dev_id_put(rbd_dev);
5512 rbd_dev_mapping_clear(rbd_dev);
5513 }
5514
5515 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5516 {
5517 while (rbd_dev->parent) {
5518 struct rbd_device *first = rbd_dev;
5519 struct rbd_device *second = first->parent;
5520 struct rbd_device *third;
5521
5522 /*
5523 * Follow to the parent with no grandparent and
5524 * remove it.
5525 */
5526 while (second && (third = second->parent)) {
5527 first = second;
5528 second = third;
5529 }
5530 rbd_assert(second);
5531 rbd_dev_image_release(second);
5532 first->parent = NULL;
5533 first->parent_overlap = 0;
5534
5535 rbd_assert(first->parent_spec);
5536 rbd_spec_put(first->parent_spec);
5537 first->parent_spec = NULL;
5538 }
5539 }
5540
5541 static ssize_t do_rbd_remove(struct bus_type *bus,
5542 const char *buf,
5543 size_t count)
5544 {
5545 struct rbd_device *rbd_dev = NULL;
5546 struct list_head *tmp;
5547 int dev_id;
5548 unsigned long ul;
5549 bool already = false;
5550 int ret;
5551
5552 ret = kstrtoul(buf, 10, &ul);
5553 if (ret)
5554 return ret;
5555
5556 /* convert to int; abort if we lost anything in the conversion */
5557 dev_id = (int)ul;
5558 if (dev_id != ul)
5559 return -EINVAL;
5560
5561 ret = -ENOENT;
5562 spin_lock(&rbd_dev_list_lock);
5563 list_for_each(tmp, &rbd_dev_list) {
5564 rbd_dev = list_entry(tmp, struct rbd_device, node);
5565 if (rbd_dev->dev_id == dev_id) {
5566 ret = 0;
5567 break;
5568 }
5569 }
5570 if (!ret) {
5571 spin_lock_irq(&rbd_dev->lock);
5572 if (rbd_dev->open_count)
5573 ret = -EBUSY;
5574 else
5575 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5576 &rbd_dev->flags);
5577 spin_unlock_irq(&rbd_dev->lock);
5578 }
5579 spin_unlock(&rbd_dev_list_lock);
5580 if (ret < 0 || already)
5581 return ret;
5582
5583 rbd_dev_header_unwatch_sync(rbd_dev);
5584 /*
5585 * flush remaining watch callbacks - these must be complete
5586 * before the osd_client is shutdown
5587 */
5588 dout("%s: flushing notifies", __func__);
5589 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5590
5591 /*
5592 * Don't free anything from rbd_dev->disk until after all
5593 * notifies are completely processed. Otherwise
5594 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5595 * in a potential use after free of rbd_dev->disk or rbd_dev.
5596 */
5597 rbd_bus_del_dev(rbd_dev);
5598 rbd_dev_image_release(rbd_dev);
5599 module_put(THIS_MODULE);
5600
5601 return count;
5602 }
5603
5604 static ssize_t rbd_remove(struct bus_type *bus,
5605 const char *buf,
5606 size_t count)
5607 {
5608 if (single_major)
5609 return -EINVAL;
5610
5611 return do_rbd_remove(bus, buf, count);
5612 }
5613
5614 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5615 const char *buf,
5616 size_t count)
5617 {
5618 return do_rbd_remove(bus, buf, count);
5619 }
5620
5621 /*
5622 * create control files in sysfs
5623 * /sys/bus/rbd/...
5624 */
5625 static int rbd_sysfs_init(void)
5626 {
5627 int ret;
5628
5629 ret = device_register(&rbd_root_dev);
5630 if (ret < 0)
5631 return ret;
5632
5633 ret = bus_register(&rbd_bus_type);
5634 if (ret < 0)
5635 device_unregister(&rbd_root_dev);
5636
5637 return ret;
5638 }
5639
5640 static void rbd_sysfs_cleanup(void)
5641 {
5642 bus_unregister(&rbd_bus_type);
5643 device_unregister(&rbd_root_dev);
5644 }
5645
5646 static int rbd_slab_init(void)
5647 {
5648 rbd_assert(!rbd_img_request_cache);
5649 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5650 sizeof (struct rbd_img_request),
5651 __alignof__(struct rbd_img_request),
5652 0, NULL);
5653 if (!rbd_img_request_cache)
5654 return -ENOMEM;
5655
5656 rbd_assert(!rbd_obj_request_cache);
5657 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5658 sizeof (struct rbd_obj_request),
5659 __alignof__(struct rbd_obj_request),
5660 0, NULL);
5661 if (!rbd_obj_request_cache)
5662 goto out_err;
5663
5664 rbd_assert(!rbd_segment_name_cache);
5665 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5666 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5667 if (rbd_segment_name_cache)
5668 return 0;
5669 out_err:
5670 if (rbd_obj_request_cache) {
5671 kmem_cache_destroy(rbd_obj_request_cache);
5672 rbd_obj_request_cache = NULL;
5673 }
5674
5675 kmem_cache_destroy(rbd_img_request_cache);
5676 rbd_img_request_cache = NULL;
5677
5678 return -ENOMEM;
5679 }
5680
5681 static void rbd_slab_exit(void)
5682 {
5683 rbd_assert(rbd_segment_name_cache);
5684 kmem_cache_destroy(rbd_segment_name_cache);
5685 rbd_segment_name_cache = NULL;
5686
5687 rbd_assert(rbd_obj_request_cache);
5688 kmem_cache_destroy(rbd_obj_request_cache);
5689 rbd_obj_request_cache = NULL;
5690
5691 rbd_assert(rbd_img_request_cache);
5692 kmem_cache_destroy(rbd_img_request_cache);
5693 rbd_img_request_cache = NULL;
5694 }
5695
5696 static int __init rbd_init(void)
5697 {
5698 int rc;
5699
5700 if (!libceph_compatible(NULL)) {
5701 rbd_warn(NULL, "libceph incompatibility (quitting)");
5702 return -EINVAL;
5703 }
5704
5705 rc = rbd_slab_init();
5706 if (rc)
5707 return rc;
5708
5709 /*
5710 * The number of active work items is limited by the number of
5711 * rbd devices, so leave @max_active at default.
5712 */
5713 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5714 if (!rbd_wq) {
5715 rc = -ENOMEM;
5716 goto err_out_slab;
5717 }
5718
5719 if (single_major) {
5720 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5721 if (rbd_major < 0) {
5722 rc = rbd_major;
5723 goto err_out_wq;
5724 }
5725 }
5726
5727 rc = rbd_sysfs_init();
5728 if (rc)
5729 goto err_out_blkdev;
5730
5731 if (single_major)
5732 pr_info("loaded (major %d)\n", rbd_major);
5733 else
5734 pr_info("loaded\n");
5735
5736 return 0;
5737
5738 err_out_blkdev:
5739 if (single_major)
5740 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5741 err_out_wq:
5742 destroy_workqueue(rbd_wq);
5743 err_out_slab:
5744 rbd_slab_exit();
5745 return rc;
5746 }
5747
5748 static void __exit rbd_exit(void)
5749 {
5750 ida_destroy(&rbd_dev_id_ida);
5751 rbd_sysfs_cleanup();
5752 if (single_major)
5753 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5754 destroy_workqueue(rbd_wq);
5755 rbd_slab_exit();
5756 }
5757
5758 module_init(rbd_init);
5759 module_exit(rbd_exit);
5760
5761 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5762 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5763 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5764 /* following authorship retained from original osdblk.c */
5765 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5766
5767 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5768 MODULE_LICENSE("GPL");
This page took 0.228688 seconds and 5 git commands to generate.