2846536d446ecfb76b0daf97649d3a53bfbf0cfa
[deliverable/linux.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 /* It might be useful to have this defined elsewhere too */
56
57 #define U64_MAX ((u64) (~0ULL))
58
59 #define RBD_DRV_NAME "rbd"
60 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
61
62 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
63
64 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
65 #define RBD_MAX_SNAP_NAME_LEN \
66 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
67
68 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
69 #define RBD_MAX_OPT_LEN 1024
70
71 #define RBD_SNAP_HEAD_NAME "-"
72
73 /* This allows a single page to hold an image name sent by OSD */
74 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
75 #define RBD_IMAGE_ID_LEN_MAX 64
76
77 #define RBD_OBJ_PREFIX_LEN_MAX 64
78
79 /* Feature bits */
80
81 #define RBD_FEATURE_LAYERING 1
82
83 /* Features supported by this (client software) implementation. */
84
85 #define RBD_FEATURES_ALL (0)
86
87 /*
88 * An RBD device name will be "rbd#", where the "rbd" comes from
89 * RBD_DRV_NAME above, and # is a unique integer identifier.
90 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
91 * enough to hold all possible device names.
92 */
93 #define DEV_NAME_LEN 32
94 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
95
96 #define RBD_READ_ONLY_DEFAULT false
97
98 /*
99 * block device image metadata (in-memory version)
100 */
101 struct rbd_image_header {
102 /* These four fields never change for a given rbd image */
103 char *object_prefix;
104 u64 features;
105 __u8 obj_order;
106 __u8 crypt_type;
107 __u8 comp_type;
108
109 /* The remaining fields need to be updated occasionally */
110 u64 image_size;
111 struct ceph_snap_context *snapc;
112 char *snap_names;
113 u64 *snap_sizes;
114
115 u64 obj_version;
116 };
117
118 /*
119 * An rbd image specification.
120 *
121 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
122 * identify an image. Each rbd_dev structure includes a pointer to
123 * an rbd_spec structure that encapsulates this identity.
124 *
125 * Each of the id's in an rbd_spec has an associated name. For a
126 * user-mapped image, the names are supplied and the id's associated
127 * with them are looked up. For a layered image, a parent image is
128 * defined by the tuple, and the names are looked up.
129 *
130 * An rbd_dev structure contains a parent_spec pointer which is
131 * non-null if the image it represents is a child in a layered
132 * image. This pointer will refer to the rbd_spec structure used
133 * by the parent rbd_dev for its own identity (i.e., the structure
134 * is shared between the parent and child).
135 *
136 * Since these structures are populated once, during the discovery
137 * phase of image construction, they are effectively immutable so
138 * we make no effort to synchronize access to them.
139 *
140 * Note that code herein does not assume the image name is known (it
141 * could be a null pointer).
142 */
143 struct rbd_spec {
144 u64 pool_id;
145 char *pool_name;
146
147 char *image_id;
148 char *image_name;
149
150 u64 snap_id;
151 char *snap_name;
152
153 struct kref kref;
154 };
155
156 struct rbd_options {
157 bool read_only;
158 };
159
160 /*
161 * an instance of the client. multiple devices may share an rbd client.
162 */
163 struct rbd_client {
164 struct ceph_client *client;
165 struct kref kref;
166 struct list_head node;
167 };
168
169 /*
170 * a request completion status
171 */
172 struct rbd_req_status {
173 int done;
174 s32 rc;
175 u64 bytes;
176 };
177
178 /*
179 * a collection of requests
180 */
181 struct rbd_req_coll {
182 int total;
183 int num_done;
184 struct kref kref;
185 struct rbd_req_status status[0];
186 };
187
188 /*
189 * a single io request
190 */
191 struct rbd_request {
192 struct request *rq; /* blk layer request */
193 struct bio *bio; /* cloned bio */
194 struct page **pages; /* list of used pages */
195 u64 len;
196 int coll_index;
197 struct rbd_req_coll *coll;
198 };
199
200 struct rbd_snap {
201 struct device dev;
202 const char *name;
203 u64 size;
204 struct list_head node;
205 u64 id;
206 u64 features;
207 };
208
209 struct rbd_mapping {
210 u64 size;
211 u64 features;
212 bool read_only;
213 };
214
215 /*
216 * a single device
217 */
218 struct rbd_device {
219 int dev_id; /* blkdev unique id */
220
221 int major; /* blkdev assigned major */
222 struct gendisk *disk; /* blkdev's gendisk and rq */
223
224 u32 image_format; /* Either 1 or 2 */
225 struct rbd_client *rbd_client;
226
227 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
228
229 spinlock_t lock; /* queue lock */
230
231 struct rbd_image_header header;
232 atomic_t exists;
233 struct rbd_spec *spec;
234
235 char *header_name;
236
237 struct ceph_osd_event *watch_event;
238 struct ceph_osd_request *watch_request;
239
240 struct rbd_spec *parent_spec;
241 u64 parent_overlap;
242
243 /* protects updating the header */
244 struct rw_semaphore header_rwsem;
245
246 struct rbd_mapping mapping;
247
248 struct list_head node;
249
250 /* list of snapshots */
251 struct list_head snaps;
252
253 /* sysfs related */
254 struct device dev;
255 unsigned long open_count;
256 };
257
258 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
259
260 static LIST_HEAD(rbd_dev_list); /* devices */
261 static DEFINE_SPINLOCK(rbd_dev_list_lock);
262
263 static LIST_HEAD(rbd_client_list); /* clients */
264 static DEFINE_SPINLOCK(rbd_client_list_lock);
265
266 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
267 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
268
269 static void rbd_dev_release(struct device *dev);
270 static void rbd_remove_snap_dev(struct rbd_snap *snap);
271
272 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
273 size_t count);
274 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
275 size_t count);
276
277 static struct bus_attribute rbd_bus_attrs[] = {
278 __ATTR(add, S_IWUSR, NULL, rbd_add),
279 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
280 __ATTR_NULL
281 };
282
283 static struct bus_type rbd_bus_type = {
284 .name = "rbd",
285 .bus_attrs = rbd_bus_attrs,
286 };
287
288 static void rbd_root_dev_release(struct device *dev)
289 {
290 }
291
292 static struct device rbd_root_dev = {
293 .init_name = "rbd",
294 .release = rbd_root_dev_release,
295 };
296
297 static __printf(2, 3)
298 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
299 {
300 struct va_format vaf;
301 va_list args;
302
303 va_start(args, fmt);
304 vaf.fmt = fmt;
305 vaf.va = &args;
306
307 if (!rbd_dev)
308 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
309 else if (rbd_dev->disk)
310 printk(KERN_WARNING "%s: %s: %pV\n",
311 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
312 else if (rbd_dev->spec && rbd_dev->spec->image_name)
313 printk(KERN_WARNING "%s: image %s: %pV\n",
314 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
315 else if (rbd_dev->spec && rbd_dev->spec->image_id)
316 printk(KERN_WARNING "%s: id %s: %pV\n",
317 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
318 else /* punt */
319 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
320 RBD_DRV_NAME, rbd_dev, &vaf);
321 va_end(args);
322 }
323
324 #ifdef RBD_DEBUG
325 #define rbd_assert(expr) \
326 if (unlikely(!(expr))) { \
327 printk(KERN_ERR "\nAssertion failure in %s() " \
328 "at line %d:\n\n" \
329 "\trbd_assert(%s);\n\n", \
330 __func__, __LINE__, #expr); \
331 BUG(); \
332 }
333 #else /* !RBD_DEBUG */
334 # define rbd_assert(expr) ((void) 0)
335 #endif /* !RBD_DEBUG */
336
337 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
338 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
339
340 static int rbd_open(struct block_device *bdev, fmode_t mode)
341 {
342 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
343
344 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
345 return -EROFS;
346
347 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
348 (void) get_device(&rbd_dev->dev);
349 set_device_ro(bdev, rbd_dev->mapping.read_only);
350 rbd_dev->open_count++;
351 mutex_unlock(&ctl_mutex);
352
353 return 0;
354 }
355
356 static int rbd_release(struct gendisk *disk, fmode_t mode)
357 {
358 struct rbd_device *rbd_dev = disk->private_data;
359
360 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
361 rbd_assert(rbd_dev->open_count > 0);
362 rbd_dev->open_count--;
363 put_device(&rbd_dev->dev);
364 mutex_unlock(&ctl_mutex);
365
366 return 0;
367 }
368
369 static const struct block_device_operations rbd_bd_ops = {
370 .owner = THIS_MODULE,
371 .open = rbd_open,
372 .release = rbd_release,
373 };
374
375 /*
376 * Initialize an rbd client instance.
377 * We own *ceph_opts.
378 */
379 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
380 {
381 struct rbd_client *rbdc;
382 int ret = -ENOMEM;
383
384 dout("rbd_client_create\n");
385 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
386 if (!rbdc)
387 goto out_opt;
388
389 kref_init(&rbdc->kref);
390 INIT_LIST_HEAD(&rbdc->node);
391
392 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
393
394 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
395 if (IS_ERR(rbdc->client))
396 goto out_mutex;
397 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
398
399 ret = ceph_open_session(rbdc->client);
400 if (ret < 0)
401 goto out_err;
402
403 spin_lock(&rbd_client_list_lock);
404 list_add_tail(&rbdc->node, &rbd_client_list);
405 spin_unlock(&rbd_client_list_lock);
406
407 mutex_unlock(&ctl_mutex);
408
409 dout("rbd_client_create created %p\n", rbdc);
410 return rbdc;
411
412 out_err:
413 ceph_destroy_client(rbdc->client);
414 out_mutex:
415 mutex_unlock(&ctl_mutex);
416 kfree(rbdc);
417 out_opt:
418 if (ceph_opts)
419 ceph_destroy_options(ceph_opts);
420 return ERR_PTR(ret);
421 }
422
423 /*
424 * Find a ceph client with specific addr and configuration. If
425 * found, bump its reference count.
426 */
427 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
428 {
429 struct rbd_client *client_node;
430 bool found = false;
431
432 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
433 return NULL;
434
435 spin_lock(&rbd_client_list_lock);
436 list_for_each_entry(client_node, &rbd_client_list, node) {
437 if (!ceph_compare_options(ceph_opts, client_node->client)) {
438 kref_get(&client_node->kref);
439 found = true;
440 break;
441 }
442 }
443 spin_unlock(&rbd_client_list_lock);
444
445 return found ? client_node : NULL;
446 }
447
448 /*
449 * mount options
450 */
451 enum {
452 Opt_last_int,
453 /* int args above */
454 Opt_last_string,
455 /* string args above */
456 Opt_read_only,
457 Opt_read_write,
458 /* Boolean args above */
459 Opt_last_bool,
460 };
461
462 static match_table_t rbd_opts_tokens = {
463 /* int args above */
464 /* string args above */
465 {Opt_read_only, "read_only"},
466 {Opt_read_only, "ro"}, /* Alternate spelling */
467 {Opt_read_write, "read_write"},
468 {Opt_read_write, "rw"}, /* Alternate spelling */
469 /* Boolean args above */
470 {-1, NULL}
471 };
472
473 static int parse_rbd_opts_token(char *c, void *private)
474 {
475 struct rbd_options *rbd_opts = private;
476 substring_t argstr[MAX_OPT_ARGS];
477 int token, intval, ret;
478
479 token = match_token(c, rbd_opts_tokens, argstr);
480 if (token < 0)
481 return -EINVAL;
482
483 if (token < Opt_last_int) {
484 ret = match_int(&argstr[0], &intval);
485 if (ret < 0) {
486 pr_err("bad mount option arg (not int) "
487 "at '%s'\n", c);
488 return ret;
489 }
490 dout("got int token %d val %d\n", token, intval);
491 } else if (token > Opt_last_int && token < Opt_last_string) {
492 dout("got string token %d val %s\n", token,
493 argstr[0].from);
494 } else if (token > Opt_last_string && token < Opt_last_bool) {
495 dout("got Boolean token %d\n", token);
496 } else {
497 dout("got token %d\n", token);
498 }
499
500 switch (token) {
501 case Opt_read_only:
502 rbd_opts->read_only = true;
503 break;
504 case Opt_read_write:
505 rbd_opts->read_only = false;
506 break;
507 default:
508 rbd_assert(false);
509 break;
510 }
511 return 0;
512 }
513
514 /*
515 * Get a ceph client with specific addr and configuration, if one does
516 * not exist create it.
517 */
518 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
519 {
520 struct rbd_client *rbdc;
521
522 rbdc = rbd_client_find(ceph_opts);
523 if (rbdc) /* using an existing client */
524 ceph_destroy_options(ceph_opts);
525 else
526 rbdc = rbd_client_create(ceph_opts);
527
528 return rbdc;
529 }
530
531 /*
532 * Destroy ceph client
533 *
534 * Caller must hold rbd_client_list_lock.
535 */
536 static void rbd_client_release(struct kref *kref)
537 {
538 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
539
540 dout("rbd_release_client %p\n", rbdc);
541 spin_lock(&rbd_client_list_lock);
542 list_del(&rbdc->node);
543 spin_unlock(&rbd_client_list_lock);
544
545 ceph_destroy_client(rbdc->client);
546 kfree(rbdc);
547 }
548
549 /*
550 * Drop reference to ceph client node. If it's not referenced anymore, release
551 * it.
552 */
553 static void rbd_put_client(struct rbd_client *rbdc)
554 {
555 if (rbdc)
556 kref_put(&rbdc->kref, rbd_client_release);
557 }
558
559 /*
560 * Destroy requests collection
561 */
562 static void rbd_coll_release(struct kref *kref)
563 {
564 struct rbd_req_coll *coll =
565 container_of(kref, struct rbd_req_coll, kref);
566
567 dout("rbd_coll_release %p\n", coll);
568 kfree(coll);
569 }
570
571 static bool rbd_image_format_valid(u32 image_format)
572 {
573 return image_format == 1 || image_format == 2;
574 }
575
576 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
577 {
578 size_t size;
579 u32 snap_count;
580
581 /* The header has to start with the magic rbd header text */
582 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
583 return false;
584
585 /* The bio layer requires at least sector-sized I/O */
586
587 if (ondisk->options.order < SECTOR_SHIFT)
588 return false;
589
590 /* If we use u64 in a few spots we may be able to loosen this */
591
592 if (ondisk->options.order > 8 * sizeof (int) - 1)
593 return false;
594
595 /*
596 * The size of a snapshot header has to fit in a size_t, and
597 * that limits the number of snapshots.
598 */
599 snap_count = le32_to_cpu(ondisk->snap_count);
600 size = SIZE_MAX - sizeof (struct ceph_snap_context);
601 if (snap_count > size / sizeof (__le64))
602 return false;
603
604 /*
605 * Not only that, but the size of the entire the snapshot
606 * header must also be representable in a size_t.
607 */
608 size -= snap_count * sizeof (__le64);
609 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
610 return false;
611
612 return true;
613 }
614
615 /*
616 * Create a new header structure, translate header format from the on-disk
617 * header.
618 */
619 static int rbd_header_from_disk(struct rbd_image_header *header,
620 struct rbd_image_header_ondisk *ondisk)
621 {
622 u32 snap_count;
623 size_t len;
624 size_t size;
625 u32 i;
626
627 memset(header, 0, sizeof (*header));
628
629 snap_count = le32_to_cpu(ondisk->snap_count);
630
631 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
632 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
633 if (!header->object_prefix)
634 return -ENOMEM;
635 memcpy(header->object_prefix, ondisk->object_prefix, len);
636 header->object_prefix[len] = '\0';
637
638 if (snap_count) {
639 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
640
641 /* Save a copy of the snapshot names */
642
643 if (snap_names_len > (u64) SIZE_MAX)
644 return -EIO;
645 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
646 if (!header->snap_names)
647 goto out_err;
648 /*
649 * Note that rbd_dev_v1_header_read() guarantees
650 * the ondisk buffer we're working with has
651 * snap_names_len bytes beyond the end of the
652 * snapshot id array, this memcpy() is safe.
653 */
654 memcpy(header->snap_names, &ondisk->snaps[snap_count],
655 snap_names_len);
656
657 /* Record each snapshot's size */
658
659 size = snap_count * sizeof (*header->snap_sizes);
660 header->snap_sizes = kmalloc(size, GFP_KERNEL);
661 if (!header->snap_sizes)
662 goto out_err;
663 for (i = 0; i < snap_count; i++)
664 header->snap_sizes[i] =
665 le64_to_cpu(ondisk->snaps[i].image_size);
666 } else {
667 WARN_ON(ondisk->snap_names_len);
668 header->snap_names = NULL;
669 header->snap_sizes = NULL;
670 }
671
672 header->features = 0; /* No features support in v1 images */
673 header->obj_order = ondisk->options.order;
674 header->crypt_type = ondisk->options.crypt_type;
675 header->comp_type = ondisk->options.comp_type;
676
677 /* Allocate and fill in the snapshot context */
678
679 header->image_size = le64_to_cpu(ondisk->image_size);
680 size = sizeof (struct ceph_snap_context);
681 size += snap_count * sizeof (header->snapc->snaps[0]);
682 header->snapc = kzalloc(size, GFP_KERNEL);
683 if (!header->snapc)
684 goto out_err;
685
686 atomic_set(&header->snapc->nref, 1);
687 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
688 header->snapc->num_snaps = snap_count;
689 for (i = 0; i < snap_count; i++)
690 header->snapc->snaps[i] =
691 le64_to_cpu(ondisk->snaps[i].id);
692
693 return 0;
694
695 out_err:
696 kfree(header->snap_sizes);
697 header->snap_sizes = NULL;
698 kfree(header->snap_names);
699 header->snap_names = NULL;
700 kfree(header->object_prefix);
701 header->object_prefix = NULL;
702
703 return -ENOMEM;
704 }
705
706 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
707 {
708 struct rbd_snap *snap;
709
710 if (snap_id == CEPH_NOSNAP)
711 return RBD_SNAP_HEAD_NAME;
712
713 list_for_each_entry(snap, &rbd_dev->snaps, node)
714 if (snap_id == snap->id)
715 return snap->name;
716
717 return NULL;
718 }
719
720 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
721 {
722
723 struct rbd_snap *snap;
724
725 list_for_each_entry(snap, &rbd_dev->snaps, node) {
726 if (!strcmp(snap_name, snap->name)) {
727 rbd_dev->spec->snap_id = snap->id;
728 rbd_dev->mapping.size = snap->size;
729 rbd_dev->mapping.features = snap->features;
730
731 return 0;
732 }
733 }
734
735 return -ENOENT;
736 }
737
738 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
739 {
740 int ret;
741
742 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
743 sizeof (RBD_SNAP_HEAD_NAME))) {
744 rbd_dev->spec->snap_id = CEPH_NOSNAP;
745 rbd_dev->mapping.size = rbd_dev->header.image_size;
746 rbd_dev->mapping.features = rbd_dev->header.features;
747 ret = 0;
748 } else {
749 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
750 if (ret < 0)
751 goto done;
752 rbd_dev->mapping.read_only = true;
753 }
754 atomic_set(&rbd_dev->exists, 1);
755 done:
756 return ret;
757 }
758
759 static void rbd_header_free(struct rbd_image_header *header)
760 {
761 kfree(header->object_prefix);
762 header->object_prefix = NULL;
763 kfree(header->snap_sizes);
764 header->snap_sizes = NULL;
765 kfree(header->snap_names);
766 header->snap_names = NULL;
767 ceph_put_snap_context(header->snapc);
768 header->snapc = NULL;
769 }
770
771 static char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
772 {
773 char *name;
774 u64 segment;
775 int ret;
776
777 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
778 if (!name)
779 return NULL;
780 segment = offset >> rbd_dev->header.obj_order;
781 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
782 rbd_dev->header.object_prefix, segment);
783 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
784 pr_err("error formatting segment name for #%llu (%d)\n",
785 segment, ret);
786 kfree(name);
787 name = NULL;
788 }
789
790 return name;
791 }
792
793 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
794 {
795 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
796
797 return offset & (segment_size - 1);
798 }
799
800 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
801 u64 offset, u64 length)
802 {
803 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
804
805 offset &= segment_size - 1;
806
807 rbd_assert(length <= U64_MAX - offset);
808 if (offset + length > segment_size)
809 length = segment_size - offset;
810
811 return length;
812 }
813
814 static int rbd_get_num_segments(struct rbd_image_header *header,
815 u64 ofs, u64 len)
816 {
817 u64 start_seg;
818 u64 end_seg;
819
820 if (!len)
821 return 0;
822 if (len - 1 > U64_MAX - ofs)
823 return -ERANGE;
824
825 start_seg = ofs >> header->obj_order;
826 end_seg = (ofs + len - 1) >> header->obj_order;
827
828 return end_seg - start_seg + 1;
829 }
830
831 /*
832 * returns the size of an object in the image
833 */
834 static u64 rbd_obj_bytes(struct rbd_image_header *header)
835 {
836 return 1 << header->obj_order;
837 }
838
839 /*
840 * bio helpers
841 */
842
843 static void bio_chain_put(struct bio *chain)
844 {
845 struct bio *tmp;
846
847 while (chain) {
848 tmp = chain;
849 chain = chain->bi_next;
850 bio_put(tmp);
851 }
852 }
853
854 /*
855 * zeros a bio chain, starting at specific offset
856 */
857 static void zero_bio_chain(struct bio *chain, int start_ofs)
858 {
859 struct bio_vec *bv;
860 unsigned long flags;
861 void *buf;
862 int i;
863 int pos = 0;
864
865 while (chain) {
866 bio_for_each_segment(bv, chain, i) {
867 if (pos + bv->bv_len > start_ofs) {
868 int remainder = max(start_ofs - pos, 0);
869 buf = bvec_kmap_irq(bv, &flags);
870 memset(buf + remainder, 0,
871 bv->bv_len - remainder);
872 bvec_kunmap_irq(buf, &flags);
873 }
874 pos += bv->bv_len;
875 }
876
877 chain = chain->bi_next;
878 }
879 }
880
881 /*
882 * Clone a portion of a bio, starting at the given byte offset
883 * and continuing for the number of bytes indicated.
884 */
885 static struct bio *bio_clone_range(struct bio *bio_src,
886 unsigned int offset,
887 unsigned int len,
888 gfp_t gfpmask)
889 {
890 struct bio_vec *bv;
891 unsigned int resid;
892 unsigned short idx;
893 unsigned int voff;
894 unsigned short end_idx;
895 unsigned short vcnt;
896 struct bio *bio;
897
898 /* Handle the easy case for the caller */
899
900 if (!offset && len == bio_src->bi_size)
901 return bio_clone(bio_src, gfpmask);
902
903 if (WARN_ON_ONCE(!len))
904 return NULL;
905 if (WARN_ON_ONCE(len > bio_src->bi_size))
906 return NULL;
907 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
908 return NULL;
909
910 /* Find first affected segment... */
911
912 resid = offset;
913 __bio_for_each_segment(bv, bio_src, idx, 0) {
914 if (resid < bv->bv_len)
915 break;
916 resid -= bv->bv_len;
917 }
918 voff = resid;
919
920 /* ...and the last affected segment */
921
922 resid += len;
923 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
924 if (resid <= bv->bv_len)
925 break;
926 resid -= bv->bv_len;
927 }
928 vcnt = end_idx - idx + 1;
929
930 /* Build the clone */
931
932 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
933 if (!bio)
934 return NULL; /* ENOMEM */
935
936 bio->bi_bdev = bio_src->bi_bdev;
937 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
938 bio->bi_rw = bio_src->bi_rw;
939 bio->bi_flags |= 1 << BIO_CLONED;
940
941 /*
942 * Copy over our part of the bio_vec, then update the first
943 * and last (or only) entries.
944 */
945 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
946 vcnt * sizeof (struct bio_vec));
947 bio->bi_io_vec[0].bv_offset += voff;
948 if (vcnt > 1) {
949 bio->bi_io_vec[0].bv_len -= voff;
950 bio->bi_io_vec[vcnt - 1].bv_len = resid;
951 } else {
952 bio->bi_io_vec[0].bv_len = len;
953 }
954
955 bio->bi_vcnt = vcnt;
956 bio->bi_size = len;
957 bio->bi_idx = 0;
958
959 return bio;
960 }
961
962 /*
963 * Clone a portion of a bio chain, starting at the given byte offset
964 * into the first bio in the source chain and continuing for the
965 * number of bytes indicated. The result is another bio chain of
966 * exactly the given length, or a null pointer on error.
967 *
968 * The bio_src and offset parameters are both in-out. On entry they
969 * refer to the first source bio and the offset into that bio where
970 * the start of data to be cloned is located.
971 *
972 * On return, bio_src is updated to refer to the bio in the source
973 * chain that contains first un-cloned byte, and *offset will
974 * contain the offset of that byte within that bio.
975 */
976 static struct bio *bio_chain_clone_range(struct bio **bio_src,
977 unsigned int *offset,
978 unsigned int len,
979 gfp_t gfpmask)
980 {
981 struct bio *bi = *bio_src;
982 unsigned int off = *offset;
983 struct bio *chain = NULL;
984 struct bio **end;
985
986 /* Build up a chain of clone bios up to the limit */
987
988 if (!bi || off >= bi->bi_size || !len)
989 return NULL; /* Nothing to clone */
990
991 end = &chain;
992 while (len) {
993 unsigned int bi_size;
994 struct bio *bio;
995
996 if (!bi) {
997 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
998 goto out_err; /* EINVAL; ran out of bio's */
999 }
1000 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1001 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1002 if (!bio)
1003 goto out_err; /* ENOMEM */
1004
1005 *end = bio;
1006 end = &bio->bi_next;
1007
1008 off += bi_size;
1009 if (off == bi->bi_size) {
1010 bi = bi->bi_next;
1011 off = 0;
1012 }
1013 len -= bi_size;
1014 }
1015 *bio_src = bi;
1016 *offset = off;
1017
1018 return chain;
1019 out_err:
1020 bio_chain_put(chain);
1021
1022 return NULL;
1023 }
1024
1025 /*
1026 * helpers for osd request op vectors.
1027 */
1028 static struct ceph_osd_req_op *rbd_create_rw_ops(int num_ops,
1029 int opcode, u32 payload_len)
1030 {
1031 struct ceph_osd_req_op *ops;
1032
1033 ops = kzalloc(sizeof (*ops) * (num_ops + 1), GFP_NOIO);
1034 if (!ops)
1035 return NULL;
1036
1037 ops[0].op = opcode;
1038
1039 /*
1040 * op extent offset and length will be set later on
1041 * in calc_raw_layout()
1042 */
1043 ops[0].payload_len = payload_len;
1044
1045 return ops;
1046 }
1047
1048 static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
1049 {
1050 kfree(ops);
1051 }
1052
1053 static void rbd_coll_end_req_index(struct request *rq,
1054 struct rbd_req_coll *coll,
1055 int index,
1056 s32 ret, u64 len)
1057 {
1058 struct request_queue *q;
1059 int min, max, i;
1060
1061 dout("rbd_coll_end_req_index %p index %d ret %d len %llu\n",
1062 coll, index, (int)ret, (unsigned long long)len);
1063
1064 if (!rq)
1065 return;
1066
1067 if (!coll) {
1068 blk_end_request(rq, ret, len);
1069 return;
1070 }
1071
1072 q = rq->q;
1073
1074 spin_lock_irq(q->queue_lock);
1075 coll->status[index].done = 1;
1076 coll->status[index].rc = ret;
1077 coll->status[index].bytes = len;
1078 max = min = coll->num_done;
1079 while (max < coll->total && coll->status[max].done)
1080 max++;
1081
1082 for (i = min; i<max; i++) {
1083 __blk_end_request(rq, (int)coll->status[i].rc,
1084 coll->status[i].bytes);
1085 coll->num_done++;
1086 kref_put(&coll->kref, rbd_coll_release);
1087 }
1088 spin_unlock_irq(q->queue_lock);
1089 }
1090
1091 static void rbd_coll_end_req(struct rbd_request *rbd_req,
1092 s32 ret, u64 len)
1093 {
1094 rbd_coll_end_req_index(rbd_req->rq,
1095 rbd_req->coll, rbd_req->coll_index,
1096 ret, len);
1097 }
1098
1099 /*
1100 * Send ceph osd request
1101 */
1102 static int rbd_do_request(struct request *rq,
1103 struct rbd_device *rbd_dev,
1104 struct ceph_snap_context *snapc,
1105 u64 snapid,
1106 const char *object_name, u64 ofs, u64 len,
1107 struct bio *bio,
1108 struct page **pages,
1109 int num_pages,
1110 int flags,
1111 struct ceph_osd_req_op *ops,
1112 struct rbd_req_coll *coll,
1113 int coll_index,
1114 void (*rbd_cb)(struct ceph_osd_request *,
1115 struct ceph_msg *),
1116 struct ceph_osd_request **linger_req,
1117 u64 *ver)
1118 {
1119 struct ceph_osd_request *osd_req;
1120 struct ceph_file_layout *layout;
1121 int ret;
1122 u64 bno;
1123 struct timespec mtime = CURRENT_TIME;
1124 struct rbd_request *rbd_req;
1125 struct ceph_osd_request_head *reqhead;
1126 struct ceph_osd_client *osdc;
1127
1128 rbd_req = kzalloc(sizeof(*rbd_req), GFP_NOIO);
1129 if (!rbd_req)
1130 return -ENOMEM;
1131
1132 if (coll) {
1133 rbd_req->coll = coll;
1134 rbd_req->coll_index = coll_index;
1135 }
1136
1137 dout("rbd_do_request object_name=%s ofs=%llu len=%llu coll=%p[%d]\n",
1138 object_name, (unsigned long long) ofs,
1139 (unsigned long long) len, coll, coll_index);
1140
1141 osdc = &rbd_dev->rbd_client->client->osdc;
1142 osd_req = ceph_osdc_alloc_request(osdc, flags, snapc, ops,
1143 false, GFP_NOIO, pages, bio);
1144 if (!osd_req) {
1145 ret = -ENOMEM;
1146 goto done_pages;
1147 }
1148
1149 osd_req->r_callback = rbd_cb;
1150
1151 rbd_req->rq = rq;
1152 rbd_req->bio = bio;
1153 rbd_req->pages = pages;
1154 rbd_req->len = len;
1155
1156 osd_req->r_priv = rbd_req;
1157
1158 reqhead = osd_req->r_request->front.iov_base;
1159 reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
1160
1161 strncpy(osd_req->r_oid, object_name, sizeof(osd_req->r_oid));
1162 osd_req->r_oid_len = strlen(osd_req->r_oid);
1163
1164 layout = &osd_req->r_file_layout;
1165 memset(layout, 0, sizeof(*layout));
1166 layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
1167 layout->fl_stripe_count = cpu_to_le32(1);
1168 layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
1169 layout->fl_pg_pool = cpu_to_le32((int) rbd_dev->spec->pool_id);
1170 ret = ceph_calc_raw_layout(osdc, layout, snapid, ofs, &len, &bno,
1171 osd_req, ops);
1172 rbd_assert(ret == 0);
1173
1174 ceph_osdc_build_request(osd_req, ofs, &len,
1175 ops,
1176 snapc,
1177 &mtime,
1178 osd_req->r_oid, osd_req->r_oid_len);
1179
1180 if (linger_req) {
1181 ceph_osdc_set_request_linger(osdc, osd_req);
1182 *linger_req = osd_req;
1183 }
1184
1185 ret = ceph_osdc_start_request(osdc, osd_req, false);
1186 if (ret < 0)
1187 goto done_err;
1188
1189 if (!rbd_cb) {
1190 u64 version;
1191
1192 ret = ceph_osdc_wait_request(osdc, osd_req);
1193 version = le64_to_cpu(osd_req->r_reassert_version.version);
1194 if (ver)
1195 *ver = version;
1196 dout("reassert_ver=%llu\n", (unsigned long long) version);
1197 ceph_osdc_put_request(osd_req);
1198 }
1199 return ret;
1200
1201 done_err:
1202 bio_chain_put(rbd_req->bio);
1203 ceph_osdc_put_request(osd_req);
1204 done_pages:
1205 kfree(rbd_req);
1206 return ret;
1207 }
1208
1209 /*
1210 * Ceph osd op callback
1211 */
1212 static void rbd_req_cb(struct ceph_osd_request *osd_req, struct ceph_msg *msg)
1213 {
1214 struct rbd_request *rbd_req = osd_req->r_priv;
1215 struct ceph_osd_reply_head *replyhead;
1216 struct ceph_osd_op *op;
1217 s32 rc;
1218 u64 bytes;
1219 int read_op;
1220
1221 /* parse reply */
1222 replyhead = msg->front.iov_base;
1223 WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
1224 op = (void *)(replyhead + 1);
1225 rc = (s32)le32_to_cpu(replyhead->result);
1226 bytes = le64_to_cpu(op->extent.length);
1227 read_op = (le16_to_cpu(op->op) == CEPH_OSD_OP_READ);
1228
1229 dout("rbd_req_cb bytes=%llu readop=%d rc=%d\n",
1230 (unsigned long long) bytes, read_op, (int) rc);
1231
1232 if (rc == (s32)-ENOENT && read_op) {
1233 zero_bio_chain(rbd_req->bio, 0);
1234 rc = 0;
1235 } else if (rc == 0 && read_op && bytes < rbd_req->len) {
1236 zero_bio_chain(rbd_req->bio, bytes);
1237 bytes = rbd_req->len;
1238 }
1239
1240 rbd_coll_end_req(rbd_req, rc, bytes);
1241
1242 if (rbd_req->bio)
1243 bio_chain_put(rbd_req->bio);
1244
1245 ceph_osdc_put_request(osd_req);
1246 kfree(rbd_req);
1247 }
1248
1249 static void rbd_simple_req_cb(struct ceph_osd_request *osd_req,
1250 struct ceph_msg *msg)
1251 {
1252 ceph_osdc_put_request(osd_req);
1253 }
1254
1255 /*
1256 * Do a synchronous ceph osd operation
1257 */
1258 static int rbd_req_sync_op(struct rbd_device *rbd_dev,
1259 struct ceph_snap_context *snapc,
1260 u64 snapid,
1261 int flags,
1262 struct ceph_osd_req_op *ops,
1263 const char *object_name,
1264 u64 ofs, u64 inbound_size,
1265 char *inbound,
1266 struct ceph_osd_request **linger_req,
1267 u64 *ver)
1268 {
1269 int ret;
1270 struct page **pages;
1271 int num_pages;
1272
1273 rbd_assert(ops != NULL);
1274
1275 num_pages = calc_pages_for(ofs, inbound_size);
1276 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1277 if (IS_ERR(pages))
1278 return PTR_ERR(pages);
1279
1280 ret = rbd_do_request(NULL, rbd_dev, snapc, snapid,
1281 object_name, ofs, inbound_size, NULL,
1282 pages, num_pages,
1283 flags,
1284 ops,
1285 NULL, 0,
1286 NULL,
1287 linger_req, ver);
1288 if (ret < 0)
1289 goto done;
1290
1291 if ((flags & CEPH_OSD_FLAG_READ) && inbound)
1292 ret = ceph_copy_from_page_vector(pages, inbound, ofs, ret);
1293
1294 done:
1295 ceph_release_page_vector(pages, num_pages);
1296 return ret;
1297 }
1298
1299 /*
1300 * Do an asynchronous ceph osd operation
1301 */
1302 static int rbd_do_op(struct request *rq,
1303 struct rbd_device *rbd_dev,
1304 struct ceph_snap_context *snapc,
1305 u64 ofs, u64 len,
1306 struct bio *bio,
1307 struct rbd_req_coll *coll,
1308 int coll_index)
1309 {
1310 char *seg_name;
1311 u64 seg_ofs;
1312 u64 seg_len;
1313 int ret;
1314 struct ceph_osd_req_op *ops;
1315 u32 payload_len;
1316 int opcode;
1317 int flags;
1318 u64 snapid;
1319
1320 seg_name = rbd_segment_name(rbd_dev, ofs);
1321 if (!seg_name)
1322 return -ENOMEM;
1323 seg_len = rbd_segment_length(rbd_dev, ofs, len);
1324 seg_ofs = rbd_segment_offset(rbd_dev, ofs);
1325
1326 if (rq_data_dir(rq) == WRITE) {
1327 opcode = CEPH_OSD_OP_WRITE;
1328 flags = CEPH_OSD_FLAG_WRITE|CEPH_OSD_FLAG_ONDISK;
1329 snapid = CEPH_NOSNAP;
1330 payload_len = seg_len;
1331 } else {
1332 opcode = CEPH_OSD_OP_READ;
1333 flags = CEPH_OSD_FLAG_READ;
1334 snapc = NULL;
1335 snapid = rbd_dev->spec->snap_id;
1336 payload_len = 0;
1337 }
1338
1339 ret = -ENOMEM;
1340 ops = rbd_create_rw_ops(1, opcode, payload_len);
1341 if (!ops)
1342 goto done;
1343
1344 /* we've taken care of segment sizes earlier when we
1345 cloned the bios. We should never have a segment
1346 truncated at this point */
1347 rbd_assert(seg_len == len);
1348
1349 ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1350 seg_name, seg_ofs, seg_len,
1351 bio,
1352 NULL, 0,
1353 flags,
1354 ops,
1355 coll, coll_index,
1356 rbd_req_cb, 0, NULL);
1357 if (ret < 0)
1358 rbd_coll_end_req_index(rq, coll, coll_index,
1359 (s32)ret, seg_len);
1360 rbd_destroy_ops(ops);
1361 done:
1362 kfree(seg_name);
1363 return ret;
1364 }
1365
1366 /*
1367 * Request sync osd read
1368 */
1369 static int rbd_req_sync_read(struct rbd_device *rbd_dev,
1370 u64 snapid,
1371 const char *object_name,
1372 u64 ofs, u64 len,
1373 char *buf,
1374 u64 *ver)
1375 {
1376 struct ceph_osd_req_op *ops;
1377 int ret;
1378
1379 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_READ, 0);
1380 if (!ops)
1381 return -ENOMEM;
1382
1383 ret = rbd_req_sync_op(rbd_dev, NULL,
1384 snapid,
1385 CEPH_OSD_FLAG_READ,
1386 ops, object_name, ofs, len, buf, NULL, ver);
1387 rbd_destroy_ops(ops);
1388
1389 return ret;
1390 }
1391
1392 /*
1393 * Request sync osd watch
1394 */
1395 static int rbd_req_sync_notify_ack(struct rbd_device *rbd_dev,
1396 u64 ver,
1397 u64 notify_id)
1398 {
1399 struct ceph_osd_req_op *ops;
1400 int ret;
1401
1402 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1403 if (!ops)
1404 return -ENOMEM;
1405
1406 ops[0].watch.ver = cpu_to_le64(ver);
1407 ops[0].watch.cookie = notify_id;
1408 ops[0].watch.flag = 0;
1409
1410 ret = rbd_do_request(NULL, rbd_dev, NULL, CEPH_NOSNAP,
1411 rbd_dev->header_name, 0, 0, NULL,
1412 NULL, 0,
1413 CEPH_OSD_FLAG_READ,
1414 ops,
1415 NULL, 0,
1416 rbd_simple_req_cb, 0, NULL);
1417
1418 rbd_destroy_ops(ops);
1419 return ret;
1420 }
1421
1422 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1423 {
1424 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1425 u64 hver;
1426 int rc;
1427
1428 if (!rbd_dev)
1429 return;
1430
1431 dout("rbd_watch_cb %s notify_id=%llu opcode=%u\n",
1432 rbd_dev->header_name, (unsigned long long) notify_id,
1433 (unsigned int) opcode);
1434 rc = rbd_dev_refresh(rbd_dev, &hver);
1435 if (rc)
1436 rbd_warn(rbd_dev, "got notification but failed to "
1437 " update snaps: %d\n", rc);
1438
1439 rbd_req_sync_notify_ack(rbd_dev, hver, notify_id);
1440 }
1441
1442 /*
1443 * Request sync osd watch
1444 */
1445 static int rbd_req_sync_watch(struct rbd_device *rbd_dev)
1446 {
1447 struct ceph_osd_req_op *ops;
1448 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1449 int ret;
1450
1451 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_WATCH, 0);
1452 if (!ops)
1453 return -ENOMEM;
1454
1455 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1456 (void *)rbd_dev, &rbd_dev->watch_event);
1457 if (ret < 0)
1458 goto fail;
1459
1460 ops[0].watch.ver = cpu_to_le64(rbd_dev->header.obj_version);
1461 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1462 ops[0].watch.flag = 1;
1463
1464 ret = rbd_req_sync_op(rbd_dev, NULL,
1465 CEPH_NOSNAP,
1466 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1467 ops,
1468 rbd_dev->header_name,
1469 0, 0, NULL,
1470 &rbd_dev->watch_request, NULL);
1471
1472 if (ret < 0)
1473 goto fail_event;
1474
1475 rbd_destroy_ops(ops);
1476 return 0;
1477
1478 fail_event:
1479 ceph_osdc_cancel_event(rbd_dev->watch_event);
1480 rbd_dev->watch_event = NULL;
1481 fail:
1482 rbd_destroy_ops(ops);
1483 return ret;
1484 }
1485
1486 /*
1487 * Request sync osd unwatch
1488 */
1489 static int rbd_req_sync_unwatch(struct rbd_device *rbd_dev)
1490 {
1491 struct ceph_osd_req_op *ops;
1492 int ret;
1493
1494 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_WATCH, 0);
1495 if (!ops)
1496 return -ENOMEM;
1497
1498 ops[0].watch.ver = 0;
1499 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1500 ops[0].watch.flag = 0;
1501
1502 ret = rbd_req_sync_op(rbd_dev, NULL,
1503 CEPH_NOSNAP,
1504 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1505 ops,
1506 rbd_dev->header_name,
1507 0, 0, NULL, NULL, NULL);
1508
1509
1510 rbd_destroy_ops(ops);
1511 ceph_osdc_cancel_event(rbd_dev->watch_event);
1512 rbd_dev->watch_event = NULL;
1513 return ret;
1514 }
1515
1516 /*
1517 * Synchronous osd object method call
1518 */
1519 static int rbd_req_sync_exec(struct rbd_device *rbd_dev,
1520 const char *object_name,
1521 const char *class_name,
1522 const char *method_name,
1523 const char *outbound,
1524 size_t outbound_size,
1525 char *inbound,
1526 size_t inbound_size,
1527 int flags,
1528 u64 *ver)
1529 {
1530 struct ceph_osd_req_op *ops;
1531 int class_name_len = strlen(class_name);
1532 int method_name_len = strlen(method_name);
1533 int payload_size;
1534 int ret;
1535
1536 /*
1537 * Any input parameters required by the method we're calling
1538 * will be sent along with the class and method names as
1539 * part of the message payload. That data and its size are
1540 * supplied via the indata and indata_len fields (named from
1541 * the perspective of the server side) in the OSD request
1542 * operation.
1543 */
1544 payload_size = class_name_len + method_name_len + outbound_size;
1545 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_CALL, payload_size);
1546 if (!ops)
1547 return -ENOMEM;
1548
1549 ops[0].cls.class_name = class_name;
1550 ops[0].cls.class_len = (__u8) class_name_len;
1551 ops[0].cls.method_name = method_name;
1552 ops[0].cls.method_len = (__u8) method_name_len;
1553 ops[0].cls.argc = 0;
1554 ops[0].cls.indata = outbound;
1555 ops[0].cls.indata_len = outbound_size;
1556
1557 ret = rbd_req_sync_op(rbd_dev, NULL,
1558 CEPH_NOSNAP,
1559 flags, ops,
1560 object_name, 0, inbound_size, inbound,
1561 NULL, ver);
1562
1563 rbd_destroy_ops(ops);
1564
1565 dout("cls_exec returned %d\n", ret);
1566 return ret;
1567 }
1568
1569 static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1570 {
1571 struct rbd_req_coll *coll =
1572 kzalloc(sizeof(struct rbd_req_coll) +
1573 sizeof(struct rbd_req_status) * num_reqs,
1574 GFP_ATOMIC);
1575
1576 if (!coll)
1577 return NULL;
1578 coll->total = num_reqs;
1579 kref_init(&coll->kref);
1580 return coll;
1581 }
1582
1583 static int rbd_dev_do_request(struct request *rq,
1584 struct rbd_device *rbd_dev,
1585 struct ceph_snap_context *snapc,
1586 u64 ofs, unsigned int size,
1587 struct bio *bio_chain)
1588 {
1589 int num_segs;
1590 struct rbd_req_coll *coll;
1591 unsigned int bio_offset;
1592 int cur_seg = 0;
1593
1594 dout("%s 0x%x bytes at 0x%llx\n",
1595 rq_data_dir(rq) == WRITE ? "write" : "read",
1596 size, (unsigned long long) blk_rq_pos(rq) * SECTOR_SIZE);
1597
1598 num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1599 if (num_segs <= 0)
1600 return num_segs;
1601
1602 coll = rbd_alloc_coll(num_segs);
1603 if (!coll)
1604 return -ENOMEM;
1605
1606 bio_offset = 0;
1607 do {
1608 u64 limit = rbd_segment_length(rbd_dev, ofs, size);
1609 unsigned int clone_size;
1610 struct bio *bio_clone;
1611
1612 BUG_ON(limit > (u64)UINT_MAX);
1613 clone_size = (unsigned int)limit;
1614 dout("bio_chain->bi_vcnt=%hu\n", bio_chain->bi_vcnt);
1615
1616 kref_get(&coll->kref);
1617
1618 /* Pass a cloned bio chain via an osd request */
1619
1620 bio_clone = bio_chain_clone_range(&bio_chain,
1621 &bio_offset, clone_size,
1622 GFP_ATOMIC);
1623 if (bio_clone)
1624 (void)rbd_do_op(rq, rbd_dev, snapc,
1625 ofs, clone_size,
1626 bio_clone, coll, cur_seg);
1627 else
1628 rbd_coll_end_req_index(rq, coll, cur_seg,
1629 (s32)-ENOMEM,
1630 clone_size);
1631 size -= clone_size;
1632 ofs += clone_size;
1633
1634 cur_seg++;
1635 } while (size > 0);
1636 kref_put(&coll->kref, rbd_coll_release);
1637
1638 return 0;
1639 }
1640
1641 /*
1642 * block device queue callback
1643 */
1644 static void rbd_rq_fn(struct request_queue *q)
1645 {
1646 struct rbd_device *rbd_dev = q->queuedata;
1647 bool read_only = rbd_dev->mapping.read_only;
1648 struct request *rq;
1649
1650 while ((rq = blk_fetch_request(q))) {
1651 struct ceph_snap_context *snapc = NULL;
1652 unsigned int size = 0;
1653 int result;
1654
1655 dout("fetched request\n");
1656
1657 /* Filter out block requests we don't understand */
1658
1659 if ((rq->cmd_type != REQ_TYPE_FS)) {
1660 __blk_end_request_all(rq, 0);
1661 continue;
1662 }
1663 spin_unlock_irq(q->queue_lock);
1664
1665 /* Stop writes to a read-only device */
1666
1667 result = -EROFS;
1668 if (read_only && rq_data_dir(rq) == WRITE)
1669 goto out_end_request;
1670
1671 /* Grab a reference to the snapshot context */
1672
1673 down_read(&rbd_dev->header_rwsem);
1674 if (atomic_read(&rbd_dev->exists)) {
1675 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1676 rbd_assert(snapc != NULL);
1677 }
1678 up_read(&rbd_dev->header_rwsem);
1679
1680 if (!snapc) {
1681 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
1682 dout("request for non-existent snapshot");
1683 result = -ENXIO;
1684 goto out_end_request;
1685 }
1686
1687 size = blk_rq_bytes(rq);
1688 result = rbd_dev_do_request(rq, rbd_dev, snapc,
1689 blk_rq_pos(rq) * SECTOR_SIZE,
1690 size, rq->bio);
1691 out_end_request:
1692 ceph_put_snap_context(snapc);
1693 spin_lock_irq(q->queue_lock);
1694 if (!size || result < 0)
1695 __blk_end_request_all(rq, result);
1696 }
1697 }
1698
1699 /*
1700 * a queue callback. Makes sure that we don't create a bio that spans across
1701 * multiple osd objects. One exception would be with a single page bios,
1702 * which we handle later at bio_chain_clone_range()
1703 */
1704 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1705 struct bio_vec *bvec)
1706 {
1707 struct rbd_device *rbd_dev = q->queuedata;
1708 sector_t sector_offset;
1709 sector_t sectors_per_obj;
1710 sector_t obj_sector_offset;
1711 int ret;
1712
1713 /*
1714 * Find how far into its rbd object the partition-relative
1715 * bio start sector is to offset relative to the enclosing
1716 * device.
1717 */
1718 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
1719 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1720 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
1721
1722 /*
1723 * Compute the number of bytes from that offset to the end
1724 * of the object. Account for what's already used by the bio.
1725 */
1726 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
1727 if (ret > bmd->bi_size)
1728 ret -= bmd->bi_size;
1729 else
1730 ret = 0;
1731
1732 /*
1733 * Don't send back more than was asked for. And if the bio
1734 * was empty, let the whole thing through because: "Note
1735 * that a block device *must* allow a single page to be
1736 * added to an empty bio."
1737 */
1738 rbd_assert(bvec->bv_len <= PAGE_SIZE);
1739 if (ret > (int) bvec->bv_len || !bmd->bi_size)
1740 ret = (int) bvec->bv_len;
1741
1742 return ret;
1743 }
1744
1745 static void rbd_free_disk(struct rbd_device *rbd_dev)
1746 {
1747 struct gendisk *disk = rbd_dev->disk;
1748
1749 if (!disk)
1750 return;
1751
1752 if (disk->flags & GENHD_FL_UP)
1753 del_gendisk(disk);
1754 if (disk->queue)
1755 blk_cleanup_queue(disk->queue);
1756 put_disk(disk);
1757 }
1758
1759 /*
1760 * Read the complete header for the given rbd device.
1761 *
1762 * Returns a pointer to a dynamically-allocated buffer containing
1763 * the complete and validated header. Caller can pass the address
1764 * of a variable that will be filled in with the version of the
1765 * header object at the time it was read.
1766 *
1767 * Returns a pointer-coded errno if a failure occurs.
1768 */
1769 static struct rbd_image_header_ondisk *
1770 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
1771 {
1772 struct rbd_image_header_ondisk *ondisk = NULL;
1773 u32 snap_count = 0;
1774 u64 names_size = 0;
1775 u32 want_count;
1776 int ret;
1777
1778 /*
1779 * The complete header will include an array of its 64-bit
1780 * snapshot ids, followed by the names of those snapshots as
1781 * a contiguous block of NUL-terminated strings. Note that
1782 * the number of snapshots could change by the time we read
1783 * it in, in which case we re-read it.
1784 */
1785 do {
1786 size_t size;
1787
1788 kfree(ondisk);
1789
1790 size = sizeof (*ondisk);
1791 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
1792 size += names_size;
1793 ondisk = kmalloc(size, GFP_KERNEL);
1794 if (!ondisk)
1795 return ERR_PTR(-ENOMEM);
1796
1797 ret = rbd_req_sync_read(rbd_dev, CEPH_NOSNAP,
1798 rbd_dev->header_name,
1799 0, size,
1800 (char *) ondisk, version);
1801
1802 if (ret < 0)
1803 goto out_err;
1804 if (WARN_ON((size_t) ret < size)) {
1805 ret = -ENXIO;
1806 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
1807 size, ret);
1808 goto out_err;
1809 }
1810 if (!rbd_dev_ondisk_valid(ondisk)) {
1811 ret = -ENXIO;
1812 rbd_warn(rbd_dev, "invalid header");
1813 goto out_err;
1814 }
1815
1816 names_size = le64_to_cpu(ondisk->snap_names_len);
1817 want_count = snap_count;
1818 snap_count = le32_to_cpu(ondisk->snap_count);
1819 } while (snap_count != want_count);
1820
1821 return ondisk;
1822
1823 out_err:
1824 kfree(ondisk);
1825
1826 return ERR_PTR(ret);
1827 }
1828
1829 /*
1830 * reload the ondisk the header
1831 */
1832 static int rbd_read_header(struct rbd_device *rbd_dev,
1833 struct rbd_image_header *header)
1834 {
1835 struct rbd_image_header_ondisk *ondisk;
1836 u64 ver = 0;
1837 int ret;
1838
1839 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
1840 if (IS_ERR(ondisk))
1841 return PTR_ERR(ondisk);
1842 ret = rbd_header_from_disk(header, ondisk);
1843 if (ret >= 0)
1844 header->obj_version = ver;
1845 kfree(ondisk);
1846
1847 return ret;
1848 }
1849
1850 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1851 {
1852 struct rbd_snap *snap;
1853 struct rbd_snap *next;
1854
1855 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
1856 rbd_remove_snap_dev(snap);
1857 }
1858
1859 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
1860 {
1861 sector_t size;
1862
1863 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
1864 return;
1865
1866 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
1867 dout("setting size to %llu sectors", (unsigned long long) size);
1868 rbd_dev->mapping.size = (u64) size;
1869 set_capacity(rbd_dev->disk, size);
1870 }
1871
1872 /*
1873 * only read the first part of the ondisk header, without the snaps info
1874 */
1875 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
1876 {
1877 int ret;
1878 struct rbd_image_header h;
1879
1880 ret = rbd_read_header(rbd_dev, &h);
1881 if (ret < 0)
1882 return ret;
1883
1884 down_write(&rbd_dev->header_rwsem);
1885
1886 /* Update image size, and check for resize of mapped image */
1887 rbd_dev->header.image_size = h.image_size;
1888 rbd_update_mapping_size(rbd_dev);
1889
1890 /* rbd_dev->header.object_prefix shouldn't change */
1891 kfree(rbd_dev->header.snap_sizes);
1892 kfree(rbd_dev->header.snap_names);
1893 /* osd requests may still refer to snapc */
1894 ceph_put_snap_context(rbd_dev->header.snapc);
1895
1896 if (hver)
1897 *hver = h.obj_version;
1898 rbd_dev->header.obj_version = h.obj_version;
1899 rbd_dev->header.image_size = h.image_size;
1900 rbd_dev->header.snapc = h.snapc;
1901 rbd_dev->header.snap_names = h.snap_names;
1902 rbd_dev->header.snap_sizes = h.snap_sizes;
1903 /* Free the extra copy of the object prefix */
1904 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
1905 kfree(h.object_prefix);
1906
1907 ret = rbd_dev_snaps_update(rbd_dev);
1908 if (!ret)
1909 ret = rbd_dev_snaps_register(rbd_dev);
1910
1911 up_write(&rbd_dev->header_rwsem);
1912
1913 return ret;
1914 }
1915
1916 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
1917 {
1918 int ret;
1919
1920 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1921 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1922 if (rbd_dev->image_format == 1)
1923 ret = rbd_dev_v1_refresh(rbd_dev, hver);
1924 else
1925 ret = rbd_dev_v2_refresh(rbd_dev, hver);
1926 mutex_unlock(&ctl_mutex);
1927
1928 return ret;
1929 }
1930
1931 static int rbd_init_disk(struct rbd_device *rbd_dev)
1932 {
1933 struct gendisk *disk;
1934 struct request_queue *q;
1935 u64 segment_size;
1936
1937 /* create gendisk info */
1938 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
1939 if (!disk)
1940 return -ENOMEM;
1941
1942 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
1943 rbd_dev->dev_id);
1944 disk->major = rbd_dev->major;
1945 disk->first_minor = 0;
1946 disk->fops = &rbd_bd_ops;
1947 disk->private_data = rbd_dev;
1948
1949 /* init rq */
1950 q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1951 if (!q)
1952 goto out_disk;
1953
1954 /* We use the default size, but let's be explicit about it. */
1955 blk_queue_physical_block_size(q, SECTOR_SIZE);
1956
1957 /* set io sizes to object size */
1958 segment_size = rbd_obj_bytes(&rbd_dev->header);
1959 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
1960 blk_queue_max_segment_size(q, segment_size);
1961 blk_queue_io_min(q, segment_size);
1962 blk_queue_io_opt(q, segment_size);
1963
1964 blk_queue_merge_bvec(q, rbd_merge_bvec);
1965 disk->queue = q;
1966
1967 q->queuedata = rbd_dev;
1968
1969 rbd_dev->disk = disk;
1970
1971 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
1972
1973 return 0;
1974 out_disk:
1975 put_disk(disk);
1976
1977 return -ENOMEM;
1978 }
1979
1980 /*
1981 sysfs
1982 */
1983
1984 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
1985 {
1986 return container_of(dev, struct rbd_device, dev);
1987 }
1988
1989 static ssize_t rbd_size_show(struct device *dev,
1990 struct device_attribute *attr, char *buf)
1991 {
1992 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1993 sector_t size;
1994
1995 down_read(&rbd_dev->header_rwsem);
1996 size = get_capacity(rbd_dev->disk);
1997 up_read(&rbd_dev->header_rwsem);
1998
1999 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2000 }
2001
2002 /*
2003 * Note this shows the features for whatever's mapped, which is not
2004 * necessarily the base image.
2005 */
2006 static ssize_t rbd_features_show(struct device *dev,
2007 struct device_attribute *attr, char *buf)
2008 {
2009 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2010
2011 return sprintf(buf, "0x%016llx\n",
2012 (unsigned long long) rbd_dev->mapping.features);
2013 }
2014
2015 static ssize_t rbd_major_show(struct device *dev,
2016 struct device_attribute *attr, char *buf)
2017 {
2018 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2019
2020 return sprintf(buf, "%d\n", rbd_dev->major);
2021 }
2022
2023 static ssize_t rbd_client_id_show(struct device *dev,
2024 struct device_attribute *attr, char *buf)
2025 {
2026 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2027
2028 return sprintf(buf, "client%lld\n",
2029 ceph_client_id(rbd_dev->rbd_client->client));
2030 }
2031
2032 static ssize_t rbd_pool_show(struct device *dev,
2033 struct device_attribute *attr, char *buf)
2034 {
2035 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2036
2037 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2038 }
2039
2040 static ssize_t rbd_pool_id_show(struct device *dev,
2041 struct device_attribute *attr, char *buf)
2042 {
2043 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2044
2045 return sprintf(buf, "%llu\n",
2046 (unsigned long long) rbd_dev->spec->pool_id);
2047 }
2048
2049 static ssize_t rbd_name_show(struct device *dev,
2050 struct device_attribute *attr, char *buf)
2051 {
2052 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2053
2054 if (rbd_dev->spec->image_name)
2055 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2056
2057 return sprintf(buf, "(unknown)\n");
2058 }
2059
2060 static ssize_t rbd_image_id_show(struct device *dev,
2061 struct device_attribute *attr, char *buf)
2062 {
2063 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2064
2065 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2066 }
2067
2068 /*
2069 * Shows the name of the currently-mapped snapshot (or
2070 * RBD_SNAP_HEAD_NAME for the base image).
2071 */
2072 static ssize_t rbd_snap_show(struct device *dev,
2073 struct device_attribute *attr,
2074 char *buf)
2075 {
2076 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2077
2078 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2079 }
2080
2081 /*
2082 * For an rbd v2 image, shows the pool id, image id, and snapshot id
2083 * for the parent image. If there is no parent, simply shows
2084 * "(no parent image)".
2085 */
2086 static ssize_t rbd_parent_show(struct device *dev,
2087 struct device_attribute *attr,
2088 char *buf)
2089 {
2090 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2091 struct rbd_spec *spec = rbd_dev->parent_spec;
2092 int count;
2093 char *bufp = buf;
2094
2095 if (!spec)
2096 return sprintf(buf, "(no parent image)\n");
2097
2098 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2099 (unsigned long long) spec->pool_id, spec->pool_name);
2100 if (count < 0)
2101 return count;
2102 bufp += count;
2103
2104 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2105 spec->image_name ? spec->image_name : "(unknown)");
2106 if (count < 0)
2107 return count;
2108 bufp += count;
2109
2110 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2111 (unsigned long long) spec->snap_id, spec->snap_name);
2112 if (count < 0)
2113 return count;
2114 bufp += count;
2115
2116 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2117 if (count < 0)
2118 return count;
2119 bufp += count;
2120
2121 return (ssize_t) (bufp - buf);
2122 }
2123
2124 static ssize_t rbd_image_refresh(struct device *dev,
2125 struct device_attribute *attr,
2126 const char *buf,
2127 size_t size)
2128 {
2129 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2130 int ret;
2131
2132 ret = rbd_dev_refresh(rbd_dev, NULL);
2133
2134 return ret < 0 ? ret : size;
2135 }
2136
2137 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2138 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2139 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2140 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2141 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2142 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2143 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2144 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2145 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2146 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2147 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2148
2149 static struct attribute *rbd_attrs[] = {
2150 &dev_attr_size.attr,
2151 &dev_attr_features.attr,
2152 &dev_attr_major.attr,
2153 &dev_attr_client_id.attr,
2154 &dev_attr_pool.attr,
2155 &dev_attr_pool_id.attr,
2156 &dev_attr_name.attr,
2157 &dev_attr_image_id.attr,
2158 &dev_attr_current_snap.attr,
2159 &dev_attr_parent.attr,
2160 &dev_attr_refresh.attr,
2161 NULL
2162 };
2163
2164 static struct attribute_group rbd_attr_group = {
2165 .attrs = rbd_attrs,
2166 };
2167
2168 static const struct attribute_group *rbd_attr_groups[] = {
2169 &rbd_attr_group,
2170 NULL
2171 };
2172
2173 static void rbd_sysfs_dev_release(struct device *dev)
2174 {
2175 }
2176
2177 static struct device_type rbd_device_type = {
2178 .name = "rbd",
2179 .groups = rbd_attr_groups,
2180 .release = rbd_sysfs_dev_release,
2181 };
2182
2183
2184 /*
2185 sysfs - snapshots
2186 */
2187
2188 static ssize_t rbd_snap_size_show(struct device *dev,
2189 struct device_attribute *attr,
2190 char *buf)
2191 {
2192 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2193
2194 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2195 }
2196
2197 static ssize_t rbd_snap_id_show(struct device *dev,
2198 struct device_attribute *attr,
2199 char *buf)
2200 {
2201 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2202
2203 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2204 }
2205
2206 static ssize_t rbd_snap_features_show(struct device *dev,
2207 struct device_attribute *attr,
2208 char *buf)
2209 {
2210 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2211
2212 return sprintf(buf, "0x%016llx\n",
2213 (unsigned long long) snap->features);
2214 }
2215
2216 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2217 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2218 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2219
2220 static struct attribute *rbd_snap_attrs[] = {
2221 &dev_attr_snap_size.attr,
2222 &dev_attr_snap_id.attr,
2223 &dev_attr_snap_features.attr,
2224 NULL,
2225 };
2226
2227 static struct attribute_group rbd_snap_attr_group = {
2228 .attrs = rbd_snap_attrs,
2229 };
2230
2231 static void rbd_snap_dev_release(struct device *dev)
2232 {
2233 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2234 kfree(snap->name);
2235 kfree(snap);
2236 }
2237
2238 static const struct attribute_group *rbd_snap_attr_groups[] = {
2239 &rbd_snap_attr_group,
2240 NULL
2241 };
2242
2243 static struct device_type rbd_snap_device_type = {
2244 .groups = rbd_snap_attr_groups,
2245 .release = rbd_snap_dev_release,
2246 };
2247
2248 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2249 {
2250 kref_get(&spec->kref);
2251
2252 return spec;
2253 }
2254
2255 static void rbd_spec_free(struct kref *kref);
2256 static void rbd_spec_put(struct rbd_spec *spec)
2257 {
2258 if (spec)
2259 kref_put(&spec->kref, rbd_spec_free);
2260 }
2261
2262 static struct rbd_spec *rbd_spec_alloc(void)
2263 {
2264 struct rbd_spec *spec;
2265
2266 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2267 if (!spec)
2268 return NULL;
2269 kref_init(&spec->kref);
2270
2271 rbd_spec_put(rbd_spec_get(spec)); /* TEMPORARY */
2272
2273 return spec;
2274 }
2275
2276 static void rbd_spec_free(struct kref *kref)
2277 {
2278 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2279
2280 kfree(spec->pool_name);
2281 kfree(spec->image_id);
2282 kfree(spec->image_name);
2283 kfree(spec->snap_name);
2284 kfree(spec);
2285 }
2286
2287 struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2288 struct rbd_spec *spec)
2289 {
2290 struct rbd_device *rbd_dev;
2291
2292 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2293 if (!rbd_dev)
2294 return NULL;
2295
2296 spin_lock_init(&rbd_dev->lock);
2297 atomic_set(&rbd_dev->exists, 0);
2298 INIT_LIST_HEAD(&rbd_dev->node);
2299 INIT_LIST_HEAD(&rbd_dev->snaps);
2300 init_rwsem(&rbd_dev->header_rwsem);
2301
2302 rbd_dev->spec = spec;
2303 rbd_dev->rbd_client = rbdc;
2304
2305 return rbd_dev;
2306 }
2307
2308 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2309 {
2310 rbd_spec_put(rbd_dev->parent_spec);
2311 kfree(rbd_dev->header_name);
2312 rbd_put_client(rbd_dev->rbd_client);
2313 rbd_spec_put(rbd_dev->spec);
2314 kfree(rbd_dev);
2315 }
2316
2317 static bool rbd_snap_registered(struct rbd_snap *snap)
2318 {
2319 bool ret = snap->dev.type == &rbd_snap_device_type;
2320 bool reg = device_is_registered(&snap->dev);
2321
2322 rbd_assert(!ret ^ reg);
2323
2324 return ret;
2325 }
2326
2327 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2328 {
2329 list_del(&snap->node);
2330 if (device_is_registered(&snap->dev))
2331 device_unregister(&snap->dev);
2332 }
2333
2334 static int rbd_register_snap_dev(struct rbd_snap *snap,
2335 struct device *parent)
2336 {
2337 struct device *dev = &snap->dev;
2338 int ret;
2339
2340 dev->type = &rbd_snap_device_type;
2341 dev->parent = parent;
2342 dev->release = rbd_snap_dev_release;
2343 dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2344 dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2345
2346 ret = device_register(dev);
2347
2348 return ret;
2349 }
2350
2351 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2352 const char *snap_name,
2353 u64 snap_id, u64 snap_size,
2354 u64 snap_features)
2355 {
2356 struct rbd_snap *snap;
2357 int ret;
2358
2359 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2360 if (!snap)
2361 return ERR_PTR(-ENOMEM);
2362
2363 ret = -ENOMEM;
2364 snap->name = kstrdup(snap_name, GFP_KERNEL);
2365 if (!snap->name)
2366 goto err;
2367
2368 snap->id = snap_id;
2369 snap->size = snap_size;
2370 snap->features = snap_features;
2371
2372 return snap;
2373
2374 err:
2375 kfree(snap->name);
2376 kfree(snap);
2377
2378 return ERR_PTR(ret);
2379 }
2380
2381 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2382 u64 *snap_size, u64 *snap_features)
2383 {
2384 char *snap_name;
2385
2386 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2387
2388 *snap_size = rbd_dev->header.snap_sizes[which];
2389 *snap_features = 0; /* No features for v1 */
2390
2391 /* Skip over names until we find the one we are looking for */
2392
2393 snap_name = rbd_dev->header.snap_names;
2394 while (which--)
2395 snap_name += strlen(snap_name) + 1;
2396
2397 return snap_name;
2398 }
2399
2400 /*
2401 * Get the size and object order for an image snapshot, or if
2402 * snap_id is CEPH_NOSNAP, gets this information for the base
2403 * image.
2404 */
2405 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2406 u8 *order, u64 *snap_size)
2407 {
2408 __le64 snapid = cpu_to_le64(snap_id);
2409 int ret;
2410 struct {
2411 u8 order;
2412 __le64 size;
2413 } __attribute__ ((packed)) size_buf = { 0 };
2414
2415 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2416 "rbd", "get_size",
2417 (char *) &snapid, sizeof (snapid),
2418 (char *) &size_buf, sizeof (size_buf),
2419 CEPH_OSD_FLAG_READ, NULL);
2420 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2421 if (ret < 0)
2422 return ret;
2423
2424 *order = size_buf.order;
2425 *snap_size = le64_to_cpu(size_buf.size);
2426
2427 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
2428 (unsigned long long) snap_id, (unsigned int) *order,
2429 (unsigned long long) *snap_size);
2430
2431 return 0;
2432 }
2433
2434 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2435 {
2436 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2437 &rbd_dev->header.obj_order,
2438 &rbd_dev->header.image_size);
2439 }
2440
2441 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2442 {
2443 void *reply_buf;
2444 int ret;
2445 void *p;
2446
2447 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2448 if (!reply_buf)
2449 return -ENOMEM;
2450
2451 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2452 "rbd", "get_object_prefix",
2453 NULL, 0,
2454 reply_buf, RBD_OBJ_PREFIX_LEN_MAX,
2455 CEPH_OSD_FLAG_READ, NULL);
2456 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2457 if (ret < 0)
2458 goto out;
2459 ret = 0; /* rbd_req_sync_exec() can return positive */
2460
2461 p = reply_buf;
2462 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2463 p + RBD_OBJ_PREFIX_LEN_MAX,
2464 NULL, GFP_NOIO);
2465
2466 if (IS_ERR(rbd_dev->header.object_prefix)) {
2467 ret = PTR_ERR(rbd_dev->header.object_prefix);
2468 rbd_dev->header.object_prefix = NULL;
2469 } else {
2470 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
2471 }
2472
2473 out:
2474 kfree(reply_buf);
2475
2476 return ret;
2477 }
2478
2479 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2480 u64 *snap_features)
2481 {
2482 __le64 snapid = cpu_to_le64(snap_id);
2483 struct {
2484 __le64 features;
2485 __le64 incompat;
2486 } features_buf = { 0 };
2487 u64 incompat;
2488 int ret;
2489
2490 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2491 "rbd", "get_features",
2492 (char *) &snapid, sizeof (snapid),
2493 (char *) &features_buf, sizeof (features_buf),
2494 CEPH_OSD_FLAG_READ, NULL);
2495 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2496 if (ret < 0)
2497 return ret;
2498
2499 incompat = le64_to_cpu(features_buf.incompat);
2500 if (incompat & ~RBD_FEATURES_ALL)
2501 return -ENXIO;
2502
2503 *snap_features = le64_to_cpu(features_buf.features);
2504
2505 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2506 (unsigned long long) snap_id,
2507 (unsigned long long) *snap_features,
2508 (unsigned long long) le64_to_cpu(features_buf.incompat));
2509
2510 return 0;
2511 }
2512
2513 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2514 {
2515 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2516 &rbd_dev->header.features);
2517 }
2518
2519 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2520 {
2521 struct rbd_spec *parent_spec;
2522 size_t size;
2523 void *reply_buf = NULL;
2524 __le64 snapid;
2525 void *p;
2526 void *end;
2527 char *image_id;
2528 u64 overlap;
2529 int ret;
2530
2531 parent_spec = rbd_spec_alloc();
2532 if (!parent_spec)
2533 return -ENOMEM;
2534
2535 size = sizeof (__le64) + /* pool_id */
2536 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
2537 sizeof (__le64) + /* snap_id */
2538 sizeof (__le64); /* overlap */
2539 reply_buf = kmalloc(size, GFP_KERNEL);
2540 if (!reply_buf) {
2541 ret = -ENOMEM;
2542 goto out_err;
2543 }
2544
2545 snapid = cpu_to_le64(CEPH_NOSNAP);
2546 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2547 "rbd", "get_parent",
2548 (char *) &snapid, sizeof (snapid),
2549 (char *) reply_buf, size,
2550 CEPH_OSD_FLAG_READ, NULL);
2551 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2552 if (ret < 0)
2553 goto out_err;
2554
2555 ret = -ERANGE;
2556 p = reply_buf;
2557 end = (char *) reply_buf + size;
2558 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2559 if (parent_spec->pool_id == CEPH_NOPOOL)
2560 goto out; /* No parent? No problem. */
2561
2562 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2563 if (IS_ERR(image_id)) {
2564 ret = PTR_ERR(image_id);
2565 goto out_err;
2566 }
2567 parent_spec->image_id = image_id;
2568 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2569 ceph_decode_64_safe(&p, end, overlap, out_err);
2570
2571 rbd_dev->parent_overlap = overlap;
2572 rbd_dev->parent_spec = parent_spec;
2573 parent_spec = NULL; /* rbd_dev now owns this */
2574 out:
2575 ret = 0;
2576 out_err:
2577 kfree(reply_buf);
2578 rbd_spec_put(parent_spec);
2579
2580 return ret;
2581 }
2582
2583 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
2584 {
2585 size_t image_id_size;
2586 char *image_id;
2587 void *p;
2588 void *end;
2589 size_t size;
2590 void *reply_buf = NULL;
2591 size_t len = 0;
2592 char *image_name = NULL;
2593 int ret;
2594
2595 rbd_assert(!rbd_dev->spec->image_name);
2596
2597 len = strlen(rbd_dev->spec->image_id);
2598 image_id_size = sizeof (__le32) + len;
2599 image_id = kmalloc(image_id_size, GFP_KERNEL);
2600 if (!image_id)
2601 return NULL;
2602
2603 p = image_id;
2604 end = (char *) image_id + image_id_size;
2605 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
2606
2607 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
2608 reply_buf = kmalloc(size, GFP_KERNEL);
2609 if (!reply_buf)
2610 goto out;
2611
2612 ret = rbd_req_sync_exec(rbd_dev, RBD_DIRECTORY,
2613 "rbd", "dir_get_name",
2614 image_id, image_id_size,
2615 (char *) reply_buf, size,
2616 CEPH_OSD_FLAG_READ, NULL);
2617 if (ret < 0)
2618 goto out;
2619 p = reply_buf;
2620 end = (char *) reply_buf + size;
2621 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
2622 if (IS_ERR(image_name))
2623 image_name = NULL;
2624 else
2625 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
2626 out:
2627 kfree(reply_buf);
2628 kfree(image_id);
2629
2630 return image_name;
2631 }
2632
2633 /*
2634 * When a parent image gets probed, we only have the pool, image,
2635 * and snapshot ids but not the names of any of them. This call
2636 * is made later to fill in those names. It has to be done after
2637 * rbd_dev_snaps_update() has completed because some of the
2638 * information (in particular, snapshot name) is not available
2639 * until then.
2640 */
2641 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
2642 {
2643 struct ceph_osd_client *osdc;
2644 const char *name;
2645 void *reply_buf = NULL;
2646 int ret;
2647
2648 if (rbd_dev->spec->pool_name)
2649 return 0; /* Already have the names */
2650
2651 /* Look up the pool name */
2652
2653 osdc = &rbd_dev->rbd_client->client->osdc;
2654 name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
2655 if (!name) {
2656 rbd_warn(rbd_dev, "there is no pool with id %llu",
2657 rbd_dev->spec->pool_id); /* Really a BUG() */
2658 return -EIO;
2659 }
2660
2661 rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
2662 if (!rbd_dev->spec->pool_name)
2663 return -ENOMEM;
2664
2665 /* Fetch the image name; tolerate failure here */
2666
2667 name = rbd_dev_image_name(rbd_dev);
2668 if (name)
2669 rbd_dev->spec->image_name = (char *) name;
2670 else
2671 rbd_warn(rbd_dev, "unable to get image name");
2672
2673 /* Look up the snapshot name. */
2674
2675 name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
2676 if (!name) {
2677 rbd_warn(rbd_dev, "no snapshot with id %llu",
2678 rbd_dev->spec->snap_id); /* Really a BUG() */
2679 ret = -EIO;
2680 goto out_err;
2681 }
2682 rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
2683 if(!rbd_dev->spec->snap_name)
2684 goto out_err;
2685
2686 return 0;
2687 out_err:
2688 kfree(reply_buf);
2689 kfree(rbd_dev->spec->pool_name);
2690 rbd_dev->spec->pool_name = NULL;
2691
2692 return ret;
2693 }
2694
2695 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
2696 {
2697 size_t size;
2698 int ret;
2699 void *reply_buf;
2700 void *p;
2701 void *end;
2702 u64 seq;
2703 u32 snap_count;
2704 struct ceph_snap_context *snapc;
2705 u32 i;
2706
2707 /*
2708 * We'll need room for the seq value (maximum snapshot id),
2709 * snapshot count, and array of that many snapshot ids.
2710 * For now we have a fixed upper limit on the number we're
2711 * prepared to receive.
2712 */
2713 size = sizeof (__le64) + sizeof (__le32) +
2714 RBD_MAX_SNAP_COUNT * sizeof (__le64);
2715 reply_buf = kzalloc(size, GFP_KERNEL);
2716 if (!reply_buf)
2717 return -ENOMEM;
2718
2719 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2720 "rbd", "get_snapcontext",
2721 NULL, 0,
2722 reply_buf, size,
2723 CEPH_OSD_FLAG_READ, ver);
2724 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2725 if (ret < 0)
2726 goto out;
2727
2728 ret = -ERANGE;
2729 p = reply_buf;
2730 end = (char *) reply_buf + size;
2731 ceph_decode_64_safe(&p, end, seq, out);
2732 ceph_decode_32_safe(&p, end, snap_count, out);
2733
2734 /*
2735 * Make sure the reported number of snapshot ids wouldn't go
2736 * beyond the end of our buffer. But before checking that,
2737 * make sure the computed size of the snapshot context we
2738 * allocate is representable in a size_t.
2739 */
2740 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
2741 / sizeof (u64)) {
2742 ret = -EINVAL;
2743 goto out;
2744 }
2745 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
2746 goto out;
2747
2748 size = sizeof (struct ceph_snap_context) +
2749 snap_count * sizeof (snapc->snaps[0]);
2750 snapc = kmalloc(size, GFP_KERNEL);
2751 if (!snapc) {
2752 ret = -ENOMEM;
2753 goto out;
2754 }
2755
2756 atomic_set(&snapc->nref, 1);
2757 snapc->seq = seq;
2758 snapc->num_snaps = snap_count;
2759 for (i = 0; i < snap_count; i++)
2760 snapc->snaps[i] = ceph_decode_64(&p);
2761
2762 rbd_dev->header.snapc = snapc;
2763
2764 dout(" snap context seq = %llu, snap_count = %u\n",
2765 (unsigned long long) seq, (unsigned int) snap_count);
2766
2767 out:
2768 kfree(reply_buf);
2769
2770 return 0;
2771 }
2772
2773 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
2774 {
2775 size_t size;
2776 void *reply_buf;
2777 __le64 snap_id;
2778 int ret;
2779 void *p;
2780 void *end;
2781 char *snap_name;
2782
2783 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
2784 reply_buf = kmalloc(size, GFP_KERNEL);
2785 if (!reply_buf)
2786 return ERR_PTR(-ENOMEM);
2787
2788 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
2789 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2790 "rbd", "get_snapshot_name",
2791 (char *) &snap_id, sizeof (snap_id),
2792 reply_buf, size,
2793 CEPH_OSD_FLAG_READ, NULL);
2794 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2795 if (ret < 0)
2796 goto out;
2797
2798 p = reply_buf;
2799 end = (char *) reply_buf + size;
2800 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2801 if (IS_ERR(snap_name)) {
2802 ret = PTR_ERR(snap_name);
2803 goto out;
2804 } else {
2805 dout(" snap_id 0x%016llx snap_name = %s\n",
2806 (unsigned long long) le64_to_cpu(snap_id), snap_name);
2807 }
2808 kfree(reply_buf);
2809
2810 return snap_name;
2811 out:
2812 kfree(reply_buf);
2813
2814 return ERR_PTR(ret);
2815 }
2816
2817 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
2818 u64 *snap_size, u64 *snap_features)
2819 {
2820 __le64 snap_id;
2821 u8 order;
2822 int ret;
2823
2824 snap_id = rbd_dev->header.snapc->snaps[which];
2825 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
2826 if (ret)
2827 return ERR_PTR(ret);
2828 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
2829 if (ret)
2830 return ERR_PTR(ret);
2831
2832 return rbd_dev_v2_snap_name(rbd_dev, which);
2833 }
2834
2835 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
2836 u64 *snap_size, u64 *snap_features)
2837 {
2838 if (rbd_dev->image_format == 1)
2839 return rbd_dev_v1_snap_info(rbd_dev, which,
2840 snap_size, snap_features);
2841 if (rbd_dev->image_format == 2)
2842 return rbd_dev_v2_snap_info(rbd_dev, which,
2843 snap_size, snap_features);
2844 return ERR_PTR(-EINVAL);
2845 }
2846
2847 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
2848 {
2849 int ret;
2850 __u8 obj_order;
2851
2852 down_write(&rbd_dev->header_rwsem);
2853
2854 /* Grab old order first, to see if it changes */
2855
2856 obj_order = rbd_dev->header.obj_order,
2857 ret = rbd_dev_v2_image_size(rbd_dev);
2858 if (ret)
2859 goto out;
2860 if (rbd_dev->header.obj_order != obj_order) {
2861 ret = -EIO;
2862 goto out;
2863 }
2864 rbd_update_mapping_size(rbd_dev);
2865
2866 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
2867 dout("rbd_dev_v2_snap_context returned %d\n", ret);
2868 if (ret)
2869 goto out;
2870 ret = rbd_dev_snaps_update(rbd_dev);
2871 dout("rbd_dev_snaps_update returned %d\n", ret);
2872 if (ret)
2873 goto out;
2874 ret = rbd_dev_snaps_register(rbd_dev);
2875 dout("rbd_dev_snaps_register returned %d\n", ret);
2876 out:
2877 up_write(&rbd_dev->header_rwsem);
2878
2879 return ret;
2880 }
2881
2882 /*
2883 * Scan the rbd device's current snapshot list and compare it to the
2884 * newly-received snapshot context. Remove any existing snapshots
2885 * not present in the new snapshot context. Add a new snapshot for
2886 * any snaphots in the snapshot context not in the current list.
2887 * And verify there are no changes to snapshots we already know
2888 * about.
2889 *
2890 * Assumes the snapshots in the snapshot context are sorted by
2891 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
2892 * are also maintained in that order.)
2893 */
2894 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
2895 {
2896 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
2897 const u32 snap_count = snapc->num_snaps;
2898 struct list_head *head = &rbd_dev->snaps;
2899 struct list_head *links = head->next;
2900 u32 index = 0;
2901
2902 dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
2903 while (index < snap_count || links != head) {
2904 u64 snap_id;
2905 struct rbd_snap *snap;
2906 char *snap_name;
2907 u64 snap_size = 0;
2908 u64 snap_features = 0;
2909
2910 snap_id = index < snap_count ? snapc->snaps[index]
2911 : CEPH_NOSNAP;
2912 snap = links != head ? list_entry(links, struct rbd_snap, node)
2913 : NULL;
2914 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
2915
2916 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
2917 struct list_head *next = links->next;
2918
2919 /* Existing snapshot not in the new snap context */
2920
2921 if (rbd_dev->spec->snap_id == snap->id)
2922 atomic_set(&rbd_dev->exists, 0);
2923 rbd_remove_snap_dev(snap);
2924 dout("%ssnap id %llu has been removed\n",
2925 rbd_dev->spec->snap_id == snap->id ?
2926 "mapped " : "",
2927 (unsigned long long) snap->id);
2928
2929 /* Done with this list entry; advance */
2930
2931 links = next;
2932 continue;
2933 }
2934
2935 snap_name = rbd_dev_snap_info(rbd_dev, index,
2936 &snap_size, &snap_features);
2937 if (IS_ERR(snap_name))
2938 return PTR_ERR(snap_name);
2939
2940 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
2941 (unsigned long long) snap_id);
2942 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
2943 struct rbd_snap *new_snap;
2944
2945 /* We haven't seen this snapshot before */
2946
2947 new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
2948 snap_id, snap_size, snap_features);
2949 if (IS_ERR(new_snap)) {
2950 int err = PTR_ERR(new_snap);
2951
2952 dout(" failed to add dev, error %d\n", err);
2953
2954 return err;
2955 }
2956
2957 /* New goes before existing, or at end of list */
2958
2959 dout(" added dev%s\n", snap ? "" : " at end\n");
2960 if (snap)
2961 list_add_tail(&new_snap->node, &snap->node);
2962 else
2963 list_add_tail(&new_snap->node, head);
2964 } else {
2965 /* Already have this one */
2966
2967 dout(" already present\n");
2968
2969 rbd_assert(snap->size == snap_size);
2970 rbd_assert(!strcmp(snap->name, snap_name));
2971 rbd_assert(snap->features == snap_features);
2972
2973 /* Done with this list entry; advance */
2974
2975 links = links->next;
2976 }
2977
2978 /* Advance to the next entry in the snapshot context */
2979
2980 index++;
2981 }
2982 dout("%s: done\n", __func__);
2983
2984 return 0;
2985 }
2986
2987 /*
2988 * Scan the list of snapshots and register the devices for any that
2989 * have not already been registered.
2990 */
2991 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
2992 {
2993 struct rbd_snap *snap;
2994 int ret = 0;
2995
2996 dout("%s called\n", __func__);
2997 if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
2998 return -EIO;
2999
3000 list_for_each_entry(snap, &rbd_dev->snaps, node) {
3001 if (!rbd_snap_registered(snap)) {
3002 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3003 if (ret < 0)
3004 break;
3005 }
3006 }
3007 dout("%s: returning %d\n", __func__, ret);
3008
3009 return ret;
3010 }
3011
3012 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3013 {
3014 struct device *dev;
3015 int ret;
3016
3017 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3018
3019 dev = &rbd_dev->dev;
3020 dev->bus = &rbd_bus_type;
3021 dev->type = &rbd_device_type;
3022 dev->parent = &rbd_root_dev;
3023 dev->release = rbd_dev_release;
3024 dev_set_name(dev, "%d", rbd_dev->dev_id);
3025 ret = device_register(dev);
3026
3027 mutex_unlock(&ctl_mutex);
3028
3029 return ret;
3030 }
3031
3032 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3033 {
3034 device_unregister(&rbd_dev->dev);
3035 }
3036
3037 static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
3038 {
3039 int ret, rc;
3040
3041 do {
3042 ret = rbd_req_sync_watch(rbd_dev);
3043 if (ret == -ERANGE) {
3044 rc = rbd_dev_refresh(rbd_dev, NULL);
3045 if (rc < 0)
3046 return rc;
3047 }
3048 } while (ret == -ERANGE);
3049
3050 return ret;
3051 }
3052
3053 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3054
3055 /*
3056 * Get a unique rbd identifier for the given new rbd_dev, and add
3057 * the rbd_dev to the global list. The minimum rbd id is 1.
3058 */
3059 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3060 {
3061 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3062
3063 spin_lock(&rbd_dev_list_lock);
3064 list_add_tail(&rbd_dev->node, &rbd_dev_list);
3065 spin_unlock(&rbd_dev_list_lock);
3066 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3067 (unsigned long long) rbd_dev->dev_id);
3068 }
3069
3070 /*
3071 * Remove an rbd_dev from the global list, and record that its
3072 * identifier is no longer in use.
3073 */
3074 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3075 {
3076 struct list_head *tmp;
3077 int rbd_id = rbd_dev->dev_id;
3078 int max_id;
3079
3080 rbd_assert(rbd_id > 0);
3081
3082 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3083 (unsigned long long) rbd_dev->dev_id);
3084 spin_lock(&rbd_dev_list_lock);
3085 list_del_init(&rbd_dev->node);
3086
3087 /*
3088 * If the id being "put" is not the current maximum, there
3089 * is nothing special we need to do.
3090 */
3091 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3092 spin_unlock(&rbd_dev_list_lock);
3093 return;
3094 }
3095
3096 /*
3097 * We need to update the current maximum id. Search the
3098 * list to find out what it is. We're more likely to find
3099 * the maximum at the end, so search the list backward.
3100 */
3101 max_id = 0;
3102 list_for_each_prev(tmp, &rbd_dev_list) {
3103 struct rbd_device *rbd_dev;
3104
3105 rbd_dev = list_entry(tmp, struct rbd_device, node);
3106 if (rbd_dev->dev_id > max_id)
3107 max_id = rbd_dev->dev_id;
3108 }
3109 spin_unlock(&rbd_dev_list_lock);
3110
3111 /*
3112 * The max id could have been updated by rbd_dev_id_get(), in
3113 * which case it now accurately reflects the new maximum.
3114 * Be careful not to overwrite the maximum value in that
3115 * case.
3116 */
3117 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3118 dout(" max dev id has been reset\n");
3119 }
3120
3121 /*
3122 * Skips over white space at *buf, and updates *buf to point to the
3123 * first found non-space character (if any). Returns the length of
3124 * the token (string of non-white space characters) found. Note
3125 * that *buf must be terminated with '\0'.
3126 */
3127 static inline size_t next_token(const char **buf)
3128 {
3129 /*
3130 * These are the characters that produce nonzero for
3131 * isspace() in the "C" and "POSIX" locales.
3132 */
3133 const char *spaces = " \f\n\r\t\v";
3134
3135 *buf += strspn(*buf, spaces); /* Find start of token */
3136
3137 return strcspn(*buf, spaces); /* Return token length */
3138 }
3139
3140 /*
3141 * Finds the next token in *buf, and if the provided token buffer is
3142 * big enough, copies the found token into it. The result, if
3143 * copied, is guaranteed to be terminated with '\0'. Note that *buf
3144 * must be terminated with '\0' on entry.
3145 *
3146 * Returns the length of the token found (not including the '\0').
3147 * Return value will be 0 if no token is found, and it will be >=
3148 * token_size if the token would not fit.
3149 *
3150 * The *buf pointer will be updated to point beyond the end of the
3151 * found token. Note that this occurs even if the token buffer is
3152 * too small to hold it.
3153 */
3154 static inline size_t copy_token(const char **buf,
3155 char *token,
3156 size_t token_size)
3157 {
3158 size_t len;
3159
3160 len = next_token(buf);
3161 if (len < token_size) {
3162 memcpy(token, *buf, len);
3163 *(token + len) = '\0';
3164 }
3165 *buf += len;
3166
3167 return len;
3168 }
3169
3170 /*
3171 * Finds the next token in *buf, dynamically allocates a buffer big
3172 * enough to hold a copy of it, and copies the token into the new
3173 * buffer. The copy is guaranteed to be terminated with '\0'. Note
3174 * that a duplicate buffer is created even for a zero-length token.
3175 *
3176 * Returns a pointer to the newly-allocated duplicate, or a null
3177 * pointer if memory for the duplicate was not available. If
3178 * the lenp argument is a non-null pointer, the length of the token
3179 * (not including the '\0') is returned in *lenp.
3180 *
3181 * If successful, the *buf pointer will be updated to point beyond
3182 * the end of the found token.
3183 *
3184 * Note: uses GFP_KERNEL for allocation.
3185 */
3186 static inline char *dup_token(const char **buf, size_t *lenp)
3187 {
3188 char *dup;
3189 size_t len;
3190
3191 len = next_token(buf);
3192 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3193 if (!dup)
3194 return NULL;
3195 *(dup + len) = '\0';
3196 *buf += len;
3197
3198 if (lenp)
3199 *lenp = len;
3200
3201 return dup;
3202 }
3203
3204 /*
3205 * Parse the options provided for an "rbd add" (i.e., rbd image
3206 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
3207 * and the data written is passed here via a NUL-terminated buffer.
3208 * Returns 0 if successful or an error code otherwise.
3209 *
3210 * The information extracted from these options is recorded in
3211 * the other parameters which return dynamically-allocated
3212 * structures:
3213 * ceph_opts
3214 * The address of a pointer that will refer to a ceph options
3215 * structure. Caller must release the returned pointer using
3216 * ceph_destroy_options() when it is no longer needed.
3217 * rbd_opts
3218 * Address of an rbd options pointer. Fully initialized by
3219 * this function; caller must release with kfree().
3220 * spec
3221 * Address of an rbd image specification pointer. Fully
3222 * initialized by this function based on parsed options.
3223 * Caller must release with rbd_spec_put().
3224 *
3225 * The options passed take this form:
3226 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3227 * where:
3228 * <mon_addrs>
3229 * A comma-separated list of one or more monitor addresses.
3230 * A monitor address is an ip address, optionally followed
3231 * by a port number (separated by a colon).
3232 * I.e.: ip1[:port1][,ip2[:port2]...]
3233 * <options>
3234 * A comma-separated list of ceph and/or rbd options.
3235 * <pool_name>
3236 * The name of the rados pool containing the rbd image.
3237 * <image_name>
3238 * The name of the image in that pool to map.
3239 * <snap_id>
3240 * An optional snapshot id. If provided, the mapping will
3241 * present data from the image at the time that snapshot was
3242 * created. The image head is used if no snapshot id is
3243 * provided. Snapshot mappings are always read-only.
3244 */
3245 static int rbd_add_parse_args(const char *buf,
3246 struct ceph_options **ceph_opts,
3247 struct rbd_options **opts,
3248 struct rbd_spec **rbd_spec)
3249 {
3250 size_t len;
3251 char *options;
3252 const char *mon_addrs;
3253 size_t mon_addrs_size;
3254 struct rbd_spec *spec = NULL;
3255 struct rbd_options *rbd_opts = NULL;
3256 struct ceph_options *copts;
3257 int ret;
3258
3259 /* The first four tokens are required */
3260
3261 len = next_token(&buf);
3262 if (!len) {
3263 rbd_warn(NULL, "no monitor address(es) provided");
3264 return -EINVAL;
3265 }
3266 mon_addrs = buf;
3267 mon_addrs_size = len + 1;
3268 buf += len;
3269
3270 ret = -EINVAL;
3271 options = dup_token(&buf, NULL);
3272 if (!options)
3273 return -ENOMEM;
3274 if (!*options) {
3275 rbd_warn(NULL, "no options provided");
3276 goto out_err;
3277 }
3278
3279 spec = rbd_spec_alloc();
3280 if (!spec)
3281 goto out_mem;
3282
3283 spec->pool_name = dup_token(&buf, NULL);
3284 if (!spec->pool_name)
3285 goto out_mem;
3286 if (!*spec->pool_name) {
3287 rbd_warn(NULL, "no pool name provided");
3288 goto out_err;
3289 }
3290
3291 spec->image_name = dup_token(&buf, NULL);
3292 if (!spec->image_name)
3293 goto out_mem;
3294 if (!*spec->image_name) {
3295 rbd_warn(NULL, "no image name provided");
3296 goto out_err;
3297 }
3298
3299 /*
3300 * Snapshot name is optional; default is to use "-"
3301 * (indicating the head/no snapshot).
3302 */
3303 len = next_token(&buf);
3304 if (!len) {
3305 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3306 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3307 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3308 ret = -ENAMETOOLONG;
3309 goto out_err;
3310 }
3311 spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3312 if (!spec->snap_name)
3313 goto out_mem;
3314 *(spec->snap_name + len) = '\0';
3315
3316 /* Initialize all rbd options to the defaults */
3317
3318 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3319 if (!rbd_opts)
3320 goto out_mem;
3321
3322 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3323
3324 copts = ceph_parse_options(options, mon_addrs,
3325 mon_addrs + mon_addrs_size - 1,
3326 parse_rbd_opts_token, rbd_opts);
3327 if (IS_ERR(copts)) {
3328 ret = PTR_ERR(copts);
3329 goto out_err;
3330 }
3331 kfree(options);
3332
3333 *ceph_opts = copts;
3334 *opts = rbd_opts;
3335 *rbd_spec = spec;
3336
3337 return 0;
3338 out_mem:
3339 ret = -ENOMEM;
3340 out_err:
3341 kfree(rbd_opts);
3342 rbd_spec_put(spec);
3343 kfree(options);
3344
3345 return ret;
3346 }
3347
3348 /*
3349 * An rbd format 2 image has a unique identifier, distinct from the
3350 * name given to it by the user. Internally, that identifier is
3351 * what's used to specify the names of objects related to the image.
3352 *
3353 * A special "rbd id" object is used to map an rbd image name to its
3354 * id. If that object doesn't exist, then there is no v2 rbd image
3355 * with the supplied name.
3356 *
3357 * This function will record the given rbd_dev's image_id field if
3358 * it can be determined, and in that case will return 0. If any
3359 * errors occur a negative errno will be returned and the rbd_dev's
3360 * image_id field will be unchanged (and should be NULL).
3361 */
3362 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3363 {
3364 int ret;
3365 size_t size;
3366 char *object_name;
3367 void *response;
3368 void *p;
3369
3370 /*
3371 * When probing a parent image, the image id is already
3372 * known (and the image name likely is not). There's no
3373 * need to fetch the image id again in this case.
3374 */
3375 if (rbd_dev->spec->image_id)
3376 return 0;
3377
3378 /*
3379 * First, see if the format 2 image id file exists, and if
3380 * so, get the image's persistent id from it.
3381 */
3382 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3383 object_name = kmalloc(size, GFP_NOIO);
3384 if (!object_name)
3385 return -ENOMEM;
3386 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3387 dout("rbd id object name is %s\n", object_name);
3388
3389 /* Response will be an encoded string, which includes a length */
3390
3391 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3392 response = kzalloc(size, GFP_NOIO);
3393 if (!response) {
3394 ret = -ENOMEM;
3395 goto out;
3396 }
3397
3398 ret = rbd_req_sync_exec(rbd_dev, object_name,
3399 "rbd", "get_id",
3400 NULL, 0,
3401 response, RBD_IMAGE_ID_LEN_MAX,
3402 CEPH_OSD_FLAG_READ, NULL);
3403 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
3404 if (ret < 0)
3405 goto out;
3406 ret = 0; /* rbd_req_sync_exec() can return positive */
3407
3408 p = response;
3409 rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3410 p + RBD_IMAGE_ID_LEN_MAX,
3411 NULL, GFP_NOIO);
3412 if (IS_ERR(rbd_dev->spec->image_id)) {
3413 ret = PTR_ERR(rbd_dev->spec->image_id);
3414 rbd_dev->spec->image_id = NULL;
3415 } else {
3416 dout("image_id is %s\n", rbd_dev->spec->image_id);
3417 }
3418 out:
3419 kfree(response);
3420 kfree(object_name);
3421
3422 return ret;
3423 }
3424
3425 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3426 {
3427 int ret;
3428 size_t size;
3429
3430 /* Version 1 images have no id; empty string is used */
3431
3432 rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3433 if (!rbd_dev->spec->image_id)
3434 return -ENOMEM;
3435
3436 /* Record the header object name for this rbd image. */
3437
3438 size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3439 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3440 if (!rbd_dev->header_name) {
3441 ret = -ENOMEM;
3442 goto out_err;
3443 }
3444 sprintf(rbd_dev->header_name, "%s%s",
3445 rbd_dev->spec->image_name, RBD_SUFFIX);
3446
3447 /* Populate rbd image metadata */
3448
3449 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3450 if (ret < 0)
3451 goto out_err;
3452
3453 /* Version 1 images have no parent (no layering) */
3454
3455 rbd_dev->parent_spec = NULL;
3456 rbd_dev->parent_overlap = 0;
3457
3458 rbd_dev->image_format = 1;
3459
3460 dout("discovered version 1 image, header name is %s\n",
3461 rbd_dev->header_name);
3462
3463 return 0;
3464
3465 out_err:
3466 kfree(rbd_dev->header_name);
3467 rbd_dev->header_name = NULL;
3468 kfree(rbd_dev->spec->image_id);
3469 rbd_dev->spec->image_id = NULL;
3470
3471 return ret;
3472 }
3473
3474 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3475 {
3476 size_t size;
3477 int ret;
3478 u64 ver = 0;
3479
3480 /*
3481 * Image id was filled in by the caller. Record the header
3482 * object name for this rbd image.
3483 */
3484 size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3485 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3486 if (!rbd_dev->header_name)
3487 return -ENOMEM;
3488 sprintf(rbd_dev->header_name, "%s%s",
3489 RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3490
3491 /* Get the size and object order for the image */
3492
3493 ret = rbd_dev_v2_image_size(rbd_dev);
3494 if (ret < 0)
3495 goto out_err;
3496
3497 /* Get the object prefix (a.k.a. block_name) for the image */
3498
3499 ret = rbd_dev_v2_object_prefix(rbd_dev);
3500 if (ret < 0)
3501 goto out_err;
3502
3503 /* Get the and check features for the image */
3504
3505 ret = rbd_dev_v2_features(rbd_dev);
3506 if (ret < 0)
3507 goto out_err;
3508
3509 /* If the image supports layering, get the parent info */
3510
3511 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3512 ret = rbd_dev_v2_parent_info(rbd_dev);
3513 if (ret < 0)
3514 goto out_err;
3515 }
3516
3517 /* crypto and compression type aren't (yet) supported for v2 images */
3518
3519 rbd_dev->header.crypt_type = 0;
3520 rbd_dev->header.comp_type = 0;
3521
3522 /* Get the snapshot context, plus the header version */
3523
3524 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3525 if (ret)
3526 goto out_err;
3527 rbd_dev->header.obj_version = ver;
3528
3529 rbd_dev->image_format = 2;
3530
3531 dout("discovered version 2 image, header name is %s\n",
3532 rbd_dev->header_name);
3533
3534 return 0;
3535 out_err:
3536 rbd_dev->parent_overlap = 0;
3537 rbd_spec_put(rbd_dev->parent_spec);
3538 rbd_dev->parent_spec = NULL;
3539 kfree(rbd_dev->header_name);
3540 rbd_dev->header_name = NULL;
3541 kfree(rbd_dev->header.object_prefix);
3542 rbd_dev->header.object_prefix = NULL;
3543
3544 return ret;
3545 }
3546
3547 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3548 {
3549 int ret;
3550
3551 /* no need to lock here, as rbd_dev is not registered yet */
3552 ret = rbd_dev_snaps_update(rbd_dev);
3553 if (ret)
3554 return ret;
3555
3556 ret = rbd_dev_probe_update_spec(rbd_dev);
3557 if (ret)
3558 goto err_out_snaps;
3559
3560 ret = rbd_dev_set_mapping(rbd_dev);
3561 if (ret)
3562 goto err_out_snaps;
3563
3564 /* generate unique id: find highest unique id, add one */
3565 rbd_dev_id_get(rbd_dev);
3566
3567 /* Fill in the device name, now that we have its id. */
3568 BUILD_BUG_ON(DEV_NAME_LEN
3569 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3570 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3571
3572 /* Get our block major device number. */
3573
3574 ret = register_blkdev(0, rbd_dev->name);
3575 if (ret < 0)
3576 goto err_out_id;
3577 rbd_dev->major = ret;
3578
3579 /* Set up the blkdev mapping. */
3580
3581 ret = rbd_init_disk(rbd_dev);
3582 if (ret)
3583 goto err_out_blkdev;
3584
3585 ret = rbd_bus_add_dev(rbd_dev);
3586 if (ret)
3587 goto err_out_disk;
3588
3589 /*
3590 * At this point cleanup in the event of an error is the job
3591 * of the sysfs code (initiated by rbd_bus_del_dev()).
3592 */
3593 down_write(&rbd_dev->header_rwsem);
3594 ret = rbd_dev_snaps_register(rbd_dev);
3595 up_write(&rbd_dev->header_rwsem);
3596 if (ret)
3597 goto err_out_bus;
3598
3599 ret = rbd_init_watch_dev(rbd_dev);
3600 if (ret)
3601 goto err_out_bus;
3602
3603 /* Everything's ready. Announce the disk to the world. */
3604
3605 add_disk(rbd_dev->disk);
3606
3607 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3608 (unsigned long long) rbd_dev->mapping.size);
3609
3610 return ret;
3611 err_out_bus:
3612 /* this will also clean up rest of rbd_dev stuff */
3613
3614 rbd_bus_del_dev(rbd_dev);
3615
3616 return ret;
3617 err_out_disk:
3618 rbd_free_disk(rbd_dev);
3619 err_out_blkdev:
3620 unregister_blkdev(rbd_dev->major, rbd_dev->name);
3621 err_out_id:
3622 rbd_dev_id_put(rbd_dev);
3623 err_out_snaps:
3624 rbd_remove_all_snaps(rbd_dev);
3625
3626 return ret;
3627 }
3628
3629 /*
3630 * Probe for the existence of the header object for the given rbd
3631 * device. For format 2 images this includes determining the image
3632 * id.
3633 */
3634 static int rbd_dev_probe(struct rbd_device *rbd_dev)
3635 {
3636 int ret;
3637
3638 /*
3639 * Get the id from the image id object. If it's not a
3640 * format 2 image, we'll get ENOENT back, and we'll assume
3641 * it's a format 1 image.
3642 */
3643 ret = rbd_dev_image_id(rbd_dev);
3644 if (ret)
3645 ret = rbd_dev_v1_probe(rbd_dev);
3646 else
3647 ret = rbd_dev_v2_probe(rbd_dev);
3648 if (ret) {
3649 dout("probe failed, returning %d\n", ret);
3650
3651 return ret;
3652 }
3653
3654 ret = rbd_dev_probe_finish(rbd_dev);
3655 if (ret)
3656 rbd_header_free(&rbd_dev->header);
3657
3658 return ret;
3659 }
3660
3661 static ssize_t rbd_add(struct bus_type *bus,
3662 const char *buf,
3663 size_t count)
3664 {
3665 struct rbd_device *rbd_dev = NULL;
3666 struct ceph_options *ceph_opts = NULL;
3667 struct rbd_options *rbd_opts = NULL;
3668 struct rbd_spec *spec = NULL;
3669 struct rbd_client *rbdc;
3670 struct ceph_osd_client *osdc;
3671 int rc = -ENOMEM;
3672
3673 if (!try_module_get(THIS_MODULE))
3674 return -ENODEV;
3675
3676 /* parse add command */
3677 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
3678 if (rc < 0)
3679 goto err_out_module;
3680
3681 rbdc = rbd_get_client(ceph_opts);
3682 if (IS_ERR(rbdc)) {
3683 rc = PTR_ERR(rbdc);
3684 goto err_out_args;
3685 }
3686 ceph_opts = NULL; /* rbd_dev client now owns this */
3687
3688 /* pick the pool */
3689 osdc = &rbdc->client->osdc;
3690 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
3691 if (rc < 0)
3692 goto err_out_client;
3693 spec->pool_id = (u64) rc;
3694
3695 rbd_dev = rbd_dev_create(rbdc, spec);
3696 if (!rbd_dev)
3697 goto err_out_client;
3698 rbdc = NULL; /* rbd_dev now owns this */
3699 spec = NULL; /* rbd_dev now owns this */
3700
3701 rbd_dev->mapping.read_only = rbd_opts->read_only;
3702 kfree(rbd_opts);
3703 rbd_opts = NULL; /* done with this */
3704
3705 rc = rbd_dev_probe(rbd_dev);
3706 if (rc < 0)
3707 goto err_out_rbd_dev;
3708
3709 return count;
3710 err_out_rbd_dev:
3711 rbd_dev_destroy(rbd_dev);
3712 err_out_client:
3713 rbd_put_client(rbdc);
3714 err_out_args:
3715 if (ceph_opts)
3716 ceph_destroy_options(ceph_opts);
3717 kfree(rbd_opts);
3718 rbd_spec_put(spec);
3719 err_out_module:
3720 module_put(THIS_MODULE);
3721
3722 dout("Error adding device %s\n", buf);
3723
3724 return (ssize_t) rc;
3725 }
3726
3727 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
3728 {
3729 struct list_head *tmp;
3730 struct rbd_device *rbd_dev;
3731
3732 spin_lock(&rbd_dev_list_lock);
3733 list_for_each(tmp, &rbd_dev_list) {
3734 rbd_dev = list_entry(tmp, struct rbd_device, node);
3735 if (rbd_dev->dev_id == dev_id) {
3736 spin_unlock(&rbd_dev_list_lock);
3737 return rbd_dev;
3738 }
3739 }
3740 spin_unlock(&rbd_dev_list_lock);
3741 return NULL;
3742 }
3743
3744 static void rbd_dev_release(struct device *dev)
3745 {
3746 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3747
3748 if (rbd_dev->watch_request) {
3749 struct ceph_client *client = rbd_dev->rbd_client->client;
3750
3751 ceph_osdc_unregister_linger_request(&client->osdc,
3752 rbd_dev->watch_request);
3753 }
3754 if (rbd_dev->watch_event)
3755 rbd_req_sync_unwatch(rbd_dev);
3756
3757
3758 /* clean up and free blkdev */
3759 rbd_free_disk(rbd_dev);
3760 unregister_blkdev(rbd_dev->major, rbd_dev->name);
3761
3762 /* release allocated disk header fields */
3763 rbd_header_free(&rbd_dev->header);
3764
3765 /* done with the id, and with the rbd_dev */
3766 rbd_dev_id_put(rbd_dev);
3767 rbd_assert(rbd_dev->rbd_client != NULL);
3768 rbd_dev_destroy(rbd_dev);
3769
3770 /* release module ref */
3771 module_put(THIS_MODULE);
3772 }
3773
3774 static ssize_t rbd_remove(struct bus_type *bus,
3775 const char *buf,
3776 size_t count)
3777 {
3778 struct rbd_device *rbd_dev = NULL;
3779 int target_id, rc;
3780 unsigned long ul;
3781 int ret = count;
3782
3783 rc = strict_strtoul(buf, 10, &ul);
3784 if (rc)
3785 return rc;
3786
3787 /* convert to int; abort if we lost anything in the conversion */
3788 target_id = (int) ul;
3789 if (target_id != ul)
3790 return -EINVAL;
3791
3792 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3793
3794 rbd_dev = __rbd_get_dev(target_id);
3795 if (!rbd_dev) {
3796 ret = -ENOENT;
3797 goto done;
3798 }
3799
3800 if (rbd_dev->open_count) {
3801 ret = -EBUSY;
3802 goto done;
3803 }
3804
3805 rbd_remove_all_snaps(rbd_dev);
3806 rbd_bus_del_dev(rbd_dev);
3807
3808 done:
3809 mutex_unlock(&ctl_mutex);
3810
3811 return ret;
3812 }
3813
3814 /*
3815 * create control files in sysfs
3816 * /sys/bus/rbd/...
3817 */
3818 static int rbd_sysfs_init(void)
3819 {
3820 int ret;
3821
3822 ret = device_register(&rbd_root_dev);
3823 if (ret < 0)
3824 return ret;
3825
3826 ret = bus_register(&rbd_bus_type);
3827 if (ret < 0)
3828 device_unregister(&rbd_root_dev);
3829
3830 return ret;
3831 }
3832
3833 static void rbd_sysfs_cleanup(void)
3834 {
3835 bus_unregister(&rbd_bus_type);
3836 device_unregister(&rbd_root_dev);
3837 }
3838
3839 int __init rbd_init(void)
3840 {
3841 int rc;
3842
3843 rc = rbd_sysfs_init();
3844 if (rc)
3845 return rc;
3846 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
3847 return 0;
3848 }
3849
3850 void __exit rbd_exit(void)
3851 {
3852 rbd_sysfs_cleanup();
3853 }
3854
3855 module_init(rbd_init);
3856 module_exit(rbd_exit);
3857
3858 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
3859 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
3860 MODULE_DESCRIPTION("rados block device");
3861
3862 /* following authorship retained from original osdblk.c */
3863 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
3864
3865 MODULE_LICENSE("GPL");
This page took 0.223186 seconds and 4 git commands to generate.