rbd: set snapc->seq only when refreshing header
[deliverable/linux.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 /*
45 * The basic unit of block I/O is a sector. It is interpreted in a
46 * number of contexts in Linux (blk, bio, genhd), but the default is
47 * universally 512 bytes. These symbols are just slightly more
48 * meaningful than the bare numbers they represent.
49 */
50 #define SECTOR_SHIFT 9
51 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
52
53 #define RBD_DRV_NAME "rbd"
54 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
55
56 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
57
58 #define RBD_MAX_SNAP_NAME_LEN 32
59 #define RBD_MAX_OPT_LEN 1024
60
61 #define RBD_SNAP_HEAD_NAME "-"
62
63 /*
64 * An RBD device name will be "rbd#", where the "rbd" comes from
65 * RBD_DRV_NAME above, and # is a unique integer identifier.
66 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
67 * enough to hold all possible device names.
68 */
69 #define DEV_NAME_LEN 32
70 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
71
72 #define RBD_NOTIFY_TIMEOUT_DEFAULT 10
73
74 /*
75 * block device image metadata (in-memory version)
76 */
77 struct rbd_image_header {
78 u64 image_size;
79 char *object_prefix;
80 __u8 obj_order;
81 __u8 crypt_type;
82 __u8 comp_type;
83 struct ceph_snap_context *snapc;
84 size_t snap_names_len;
85 u64 snap_seq;
86 u32 total_snaps;
87
88 char *snap_names;
89 u64 *snap_sizes;
90
91 u64 obj_version;
92 };
93
94 struct rbd_options {
95 int notify_timeout;
96 };
97
98 /*
99 * an instance of the client. multiple devices may share an rbd client.
100 */
101 struct rbd_client {
102 struct ceph_client *client;
103 struct rbd_options *rbd_opts;
104 struct kref kref;
105 struct list_head node;
106 };
107
108 /*
109 * a request completion status
110 */
111 struct rbd_req_status {
112 int done;
113 int rc;
114 u64 bytes;
115 };
116
117 /*
118 * a collection of requests
119 */
120 struct rbd_req_coll {
121 int total;
122 int num_done;
123 struct kref kref;
124 struct rbd_req_status status[0];
125 };
126
127 /*
128 * a single io request
129 */
130 struct rbd_request {
131 struct request *rq; /* blk layer request */
132 struct bio *bio; /* cloned bio */
133 struct page **pages; /* list of used pages */
134 u64 len;
135 int coll_index;
136 struct rbd_req_coll *coll;
137 };
138
139 struct rbd_snap {
140 struct device dev;
141 const char *name;
142 u64 size;
143 struct list_head node;
144 u64 id;
145 };
146
147 /*
148 * a single device
149 */
150 struct rbd_device {
151 int id; /* blkdev unique id */
152
153 int major; /* blkdev assigned major */
154 struct gendisk *disk; /* blkdev's gendisk and rq */
155 struct request_queue *q;
156
157 struct rbd_client *rbd_client;
158
159 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
160
161 spinlock_t lock; /* queue lock */
162
163 struct rbd_image_header header;
164 char *image_name;
165 size_t image_name_len;
166 char *header_name;
167 char *pool_name;
168 int pool_id;
169
170 struct ceph_osd_event *watch_event;
171 struct ceph_osd_request *watch_request;
172
173 /* protects updating the header */
174 struct rw_semaphore header_rwsem;
175 /* name of the snapshot this device reads from */
176 char *snap_name;
177 /* id of the snapshot this device reads from */
178 u64 snap_id; /* current snapshot id */
179 /* whether the snap_id this device reads from still exists */
180 bool snap_exists;
181 int read_only;
182
183 struct list_head node;
184
185 /* list of snapshots */
186 struct list_head snaps;
187
188 /* sysfs related */
189 struct device dev;
190 };
191
192 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
193
194 static LIST_HEAD(rbd_dev_list); /* devices */
195 static DEFINE_SPINLOCK(rbd_dev_list_lock);
196
197 static LIST_HEAD(rbd_client_list); /* clients */
198 static DEFINE_SPINLOCK(rbd_client_list_lock);
199
200 static int __rbd_init_snaps_header(struct rbd_device *rbd_dev);
201 static void rbd_dev_release(struct device *dev);
202 static ssize_t rbd_snap_add(struct device *dev,
203 struct device_attribute *attr,
204 const char *buf,
205 size_t count);
206 static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
207 struct rbd_snap *snap);
208
209 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
210 size_t count);
211 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
212 size_t count);
213
214 static struct bus_attribute rbd_bus_attrs[] = {
215 __ATTR(add, S_IWUSR, NULL, rbd_add),
216 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
217 __ATTR_NULL
218 };
219
220 static struct bus_type rbd_bus_type = {
221 .name = "rbd",
222 .bus_attrs = rbd_bus_attrs,
223 };
224
225 static void rbd_root_dev_release(struct device *dev)
226 {
227 }
228
229 static struct device rbd_root_dev = {
230 .init_name = "rbd",
231 .release = rbd_root_dev_release,
232 };
233
234
235 static struct device *rbd_get_dev(struct rbd_device *rbd_dev)
236 {
237 return get_device(&rbd_dev->dev);
238 }
239
240 static void rbd_put_dev(struct rbd_device *rbd_dev)
241 {
242 put_device(&rbd_dev->dev);
243 }
244
245 static int __rbd_refresh_header(struct rbd_device *rbd_dev);
246
247 static int rbd_open(struct block_device *bdev, fmode_t mode)
248 {
249 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
250
251 rbd_get_dev(rbd_dev);
252
253 set_device_ro(bdev, rbd_dev->read_only);
254
255 if ((mode & FMODE_WRITE) && rbd_dev->read_only)
256 return -EROFS;
257
258 return 0;
259 }
260
261 static int rbd_release(struct gendisk *disk, fmode_t mode)
262 {
263 struct rbd_device *rbd_dev = disk->private_data;
264
265 rbd_put_dev(rbd_dev);
266
267 return 0;
268 }
269
270 static const struct block_device_operations rbd_bd_ops = {
271 .owner = THIS_MODULE,
272 .open = rbd_open,
273 .release = rbd_release,
274 };
275
276 /*
277 * Initialize an rbd client instance.
278 * We own *ceph_opts.
279 */
280 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts,
281 struct rbd_options *rbd_opts)
282 {
283 struct rbd_client *rbdc;
284 int ret = -ENOMEM;
285
286 dout("rbd_client_create\n");
287 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
288 if (!rbdc)
289 goto out_opt;
290
291 kref_init(&rbdc->kref);
292 INIT_LIST_HEAD(&rbdc->node);
293
294 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
295
296 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
297 if (IS_ERR(rbdc->client))
298 goto out_mutex;
299 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
300
301 ret = ceph_open_session(rbdc->client);
302 if (ret < 0)
303 goto out_err;
304
305 rbdc->rbd_opts = rbd_opts;
306
307 spin_lock(&rbd_client_list_lock);
308 list_add_tail(&rbdc->node, &rbd_client_list);
309 spin_unlock(&rbd_client_list_lock);
310
311 mutex_unlock(&ctl_mutex);
312
313 dout("rbd_client_create created %p\n", rbdc);
314 return rbdc;
315
316 out_err:
317 ceph_destroy_client(rbdc->client);
318 out_mutex:
319 mutex_unlock(&ctl_mutex);
320 kfree(rbdc);
321 out_opt:
322 if (ceph_opts)
323 ceph_destroy_options(ceph_opts);
324 return ERR_PTR(ret);
325 }
326
327 /*
328 * Find a ceph client with specific addr and configuration.
329 */
330 static struct rbd_client *__rbd_client_find(struct ceph_options *ceph_opts)
331 {
332 struct rbd_client *client_node;
333
334 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
335 return NULL;
336
337 list_for_each_entry(client_node, &rbd_client_list, node)
338 if (!ceph_compare_options(ceph_opts, client_node->client))
339 return client_node;
340 return NULL;
341 }
342
343 /*
344 * mount options
345 */
346 enum {
347 Opt_notify_timeout,
348 Opt_last_int,
349 /* int args above */
350 Opt_last_string,
351 /* string args above */
352 };
353
354 static match_table_t rbd_opts_tokens = {
355 {Opt_notify_timeout, "notify_timeout=%d"},
356 /* int args above */
357 /* string args above */
358 {-1, NULL}
359 };
360
361 static int parse_rbd_opts_token(char *c, void *private)
362 {
363 struct rbd_options *rbd_opts = private;
364 substring_t argstr[MAX_OPT_ARGS];
365 int token, intval, ret;
366
367 token = match_token(c, rbd_opts_tokens, argstr);
368 if (token < 0)
369 return -EINVAL;
370
371 if (token < Opt_last_int) {
372 ret = match_int(&argstr[0], &intval);
373 if (ret < 0) {
374 pr_err("bad mount option arg (not int) "
375 "at '%s'\n", c);
376 return ret;
377 }
378 dout("got int token %d val %d\n", token, intval);
379 } else if (token > Opt_last_int && token < Opt_last_string) {
380 dout("got string token %d val %s\n", token,
381 argstr[0].from);
382 } else {
383 dout("got token %d\n", token);
384 }
385
386 switch (token) {
387 case Opt_notify_timeout:
388 rbd_opts->notify_timeout = intval;
389 break;
390 default:
391 BUG_ON(token);
392 }
393 return 0;
394 }
395
396 /*
397 * Get a ceph client with specific addr and configuration, if one does
398 * not exist create it.
399 */
400 static struct rbd_client *rbd_get_client(const char *mon_addr,
401 size_t mon_addr_len,
402 char *options)
403 {
404 struct rbd_client *rbdc;
405 struct ceph_options *ceph_opts;
406 struct rbd_options *rbd_opts;
407
408 rbd_opts = kzalloc(sizeof(*rbd_opts), GFP_KERNEL);
409 if (!rbd_opts)
410 return ERR_PTR(-ENOMEM);
411
412 rbd_opts->notify_timeout = RBD_NOTIFY_TIMEOUT_DEFAULT;
413
414 ceph_opts = ceph_parse_options(options, mon_addr,
415 mon_addr + mon_addr_len,
416 parse_rbd_opts_token, rbd_opts);
417 if (IS_ERR(ceph_opts)) {
418 kfree(rbd_opts);
419 return ERR_CAST(ceph_opts);
420 }
421
422 spin_lock(&rbd_client_list_lock);
423 rbdc = __rbd_client_find(ceph_opts);
424 if (rbdc) {
425 /* using an existing client */
426 kref_get(&rbdc->kref);
427 spin_unlock(&rbd_client_list_lock);
428
429 ceph_destroy_options(ceph_opts);
430 kfree(rbd_opts);
431
432 return rbdc;
433 }
434 spin_unlock(&rbd_client_list_lock);
435
436 rbdc = rbd_client_create(ceph_opts, rbd_opts);
437
438 if (IS_ERR(rbdc))
439 kfree(rbd_opts);
440
441 return rbdc;
442 }
443
444 /*
445 * Destroy ceph client
446 *
447 * Caller must hold rbd_client_list_lock.
448 */
449 static void rbd_client_release(struct kref *kref)
450 {
451 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
452
453 dout("rbd_release_client %p\n", rbdc);
454 spin_lock(&rbd_client_list_lock);
455 list_del(&rbdc->node);
456 spin_unlock(&rbd_client_list_lock);
457
458 ceph_destroy_client(rbdc->client);
459 kfree(rbdc->rbd_opts);
460 kfree(rbdc);
461 }
462
463 /*
464 * Drop reference to ceph client node. If it's not referenced anymore, release
465 * it.
466 */
467 static void rbd_put_client(struct rbd_device *rbd_dev)
468 {
469 kref_put(&rbd_dev->rbd_client->kref, rbd_client_release);
470 rbd_dev->rbd_client = NULL;
471 }
472
473 /*
474 * Destroy requests collection
475 */
476 static void rbd_coll_release(struct kref *kref)
477 {
478 struct rbd_req_coll *coll =
479 container_of(kref, struct rbd_req_coll, kref);
480
481 dout("rbd_coll_release %p\n", coll);
482 kfree(coll);
483 }
484
485 /*
486 * Create a new header structure, translate header format from the on-disk
487 * header.
488 */
489 static int rbd_header_from_disk(struct rbd_image_header *header,
490 struct rbd_image_header_ondisk *ondisk,
491 u32 allocated_snaps,
492 gfp_t gfp_flags)
493 {
494 u32 i, snap_count;
495
496 if (memcmp(ondisk, RBD_HEADER_TEXT, sizeof(RBD_HEADER_TEXT)))
497 return -ENXIO;
498
499 snap_count = le32_to_cpu(ondisk->snap_count);
500 if (snap_count > (UINT_MAX - sizeof(struct ceph_snap_context))
501 / sizeof (*ondisk))
502 return -EINVAL;
503 header->snapc = kmalloc(sizeof(struct ceph_snap_context) +
504 snap_count * sizeof(u64),
505 gfp_flags);
506 if (!header->snapc)
507 return -ENOMEM;
508
509 header->snap_names_len = le64_to_cpu(ondisk->snap_names_len);
510 if (snap_count) {
511 header->snap_names = kmalloc(header->snap_names_len,
512 gfp_flags);
513 if (!header->snap_names)
514 goto err_snapc;
515 header->snap_sizes = kmalloc(snap_count * sizeof(u64),
516 gfp_flags);
517 if (!header->snap_sizes)
518 goto err_names;
519 } else {
520 header->snap_names = NULL;
521 header->snap_sizes = NULL;
522 }
523
524 header->object_prefix = kmalloc(sizeof (ondisk->block_name) + 1,
525 gfp_flags);
526 if (!header->object_prefix)
527 goto err_sizes;
528
529 memcpy(header->object_prefix, ondisk->block_name,
530 sizeof(ondisk->block_name));
531 header->object_prefix[sizeof (ondisk->block_name)] = '\0';
532
533 header->image_size = le64_to_cpu(ondisk->image_size);
534 header->obj_order = ondisk->options.order;
535 header->crypt_type = ondisk->options.crypt_type;
536 header->comp_type = ondisk->options.comp_type;
537
538 atomic_set(&header->snapc->nref, 1);
539 header->snap_seq = le64_to_cpu(ondisk->snap_seq);
540 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
541 header->snapc->num_snaps = snap_count;
542 header->total_snaps = snap_count;
543
544 if (snap_count && allocated_snaps == snap_count) {
545 for (i = 0; i < snap_count; i++) {
546 header->snapc->snaps[i] =
547 le64_to_cpu(ondisk->snaps[i].id);
548 header->snap_sizes[i] =
549 le64_to_cpu(ondisk->snaps[i].image_size);
550 }
551
552 /* copy snapshot names */
553 memcpy(header->snap_names, &ondisk->snaps[i],
554 header->snap_names_len);
555 }
556
557 return 0;
558
559 err_sizes:
560 kfree(header->snap_sizes);
561 err_names:
562 kfree(header->snap_names);
563 err_snapc:
564 kfree(header->snapc);
565 return -ENOMEM;
566 }
567
568 static int snap_by_name(struct rbd_image_header *header, const char *snap_name,
569 u64 *seq, u64 *size)
570 {
571 int i;
572 char *p = header->snap_names;
573
574 for (i = 0; i < header->total_snaps; i++) {
575 if (!strcmp(snap_name, p)) {
576
577 /* Found it. Pass back its id and/or size */
578
579 if (seq)
580 *seq = header->snapc->snaps[i];
581 if (size)
582 *size = header->snap_sizes[i];
583 return i;
584 }
585 p += strlen(p) + 1; /* Skip ahead to the next name */
586 }
587 return -ENOENT;
588 }
589
590 static int rbd_header_set_snap(struct rbd_device *rbd_dev, u64 *size)
591 {
592 int ret;
593
594 down_write(&rbd_dev->header_rwsem);
595
596 if (!memcmp(rbd_dev->snap_name, RBD_SNAP_HEAD_NAME,
597 sizeof (RBD_SNAP_HEAD_NAME))) {
598 rbd_dev->snap_id = CEPH_NOSNAP;
599 rbd_dev->snap_exists = false;
600 rbd_dev->read_only = 0;
601 if (size)
602 *size = rbd_dev->header.image_size;
603 } else {
604 u64 snap_id = 0;
605
606 ret = snap_by_name(&rbd_dev->header, rbd_dev->snap_name,
607 &snap_id, size);
608 if (ret < 0)
609 goto done;
610 rbd_dev->snap_id = snap_id;
611 rbd_dev->snap_exists = true;
612 rbd_dev->read_only = 1;
613 }
614
615 ret = 0;
616 done:
617 up_write(&rbd_dev->header_rwsem);
618 return ret;
619 }
620
621 static void rbd_header_free(struct rbd_image_header *header)
622 {
623 kfree(header->object_prefix);
624 kfree(header->snap_sizes);
625 kfree(header->snap_names);
626 ceph_put_snap_context(header->snapc);
627 }
628
629 /*
630 * get the actual striped segment name, offset and length
631 */
632 static u64 rbd_get_segment(struct rbd_image_header *header,
633 const char *object_prefix,
634 u64 ofs, u64 len,
635 char *seg_name, u64 *segofs)
636 {
637 u64 seg = ofs >> header->obj_order;
638
639 if (seg_name)
640 snprintf(seg_name, RBD_MAX_SEG_NAME_LEN,
641 "%s.%012llx", object_prefix, seg);
642
643 ofs = ofs & ((1 << header->obj_order) - 1);
644 len = min_t(u64, len, (1 << header->obj_order) - ofs);
645
646 if (segofs)
647 *segofs = ofs;
648
649 return len;
650 }
651
652 static int rbd_get_num_segments(struct rbd_image_header *header,
653 u64 ofs, u64 len)
654 {
655 u64 start_seg = ofs >> header->obj_order;
656 u64 end_seg = (ofs + len - 1) >> header->obj_order;
657 return end_seg - start_seg + 1;
658 }
659
660 /*
661 * returns the size of an object in the image
662 */
663 static u64 rbd_obj_bytes(struct rbd_image_header *header)
664 {
665 return 1 << header->obj_order;
666 }
667
668 /*
669 * bio helpers
670 */
671
672 static void bio_chain_put(struct bio *chain)
673 {
674 struct bio *tmp;
675
676 while (chain) {
677 tmp = chain;
678 chain = chain->bi_next;
679 bio_put(tmp);
680 }
681 }
682
683 /*
684 * zeros a bio chain, starting at specific offset
685 */
686 static void zero_bio_chain(struct bio *chain, int start_ofs)
687 {
688 struct bio_vec *bv;
689 unsigned long flags;
690 void *buf;
691 int i;
692 int pos = 0;
693
694 while (chain) {
695 bio_for_each_segment(bv, chain, i) {
696 if (pos + bv->bv_len > start_ofs) {
697 int remainder = max(start_ofs - pos, 0);
698 buf = bvec_kmap_irq(bv, &flags);
699 memset(buf + remainder, 0,
700 bv->bv_len - remainder);
701 bvec_kunmap_irq(buf, &flags);
702 }
703 pos += bv->bv_len;
704 }
705
706 chain = chain->bi_next;
707 }
708 }
709
710 /*
711 * bio_chain_clone - clone a chain of bios up to a certain length.
712 * might return a bio_pair that will need to be released.
713 */
714 static struct bio *bio_chain_clone(struct bio **old, struct bio **next,
715 struct bio_pair **bp,
716 int len, gfp_t gfpmask)
717 {
718 struct bio *tmp, *old_chain = *old, *new_chain = NULL, *tail = NULL;
719 int total = 0;
720
721 if (*bp) {
722 bio_pair_release(*bp);
723 *bp = NULL;
724 }
725
726 while (old_chain && (total < len)) {
727 tmp = bio_kmalloc(gfpmask, old_chain->bi_max_vecs);
728 if (!tmp)
729 goto err_out;
730
731 if (total + old_chain->bi_size > len) {
732 struct bio_pair *bp;
733
734 /*
735 * this split can only happen with a single paged bio,
736 * split_bio will BUG_ON if this is not the case
737 */
738 dout("bio_chain_clone split! total=%d remaining=%d"
739 "bi_size=%d\n",
740 (int)total, (int)len-total,
741 (int)old_chain->bi_size);
742
743 /* split the bio. We'll release it either in the next
744 call, or it will have to be released outside */
745 bp = bio_split(old_chain, (len - total) / SECTOR_SIZE);
746 if (!bp)
747 goto err_out;
748
749 __bio_clone(tmp, &bp->bio1);
750
751 *next = &bp->bio2;
752 } else {
753 __bio_clone(tmp, old_chain);
754 *next = old_chain->bi_next;
755 }
756
757 tmp->bi_bdev = NULL;
758 gfpmask &= ~__GFP_WAIT;
759 tmp->bi_next = NULL;
760
761 if (!new_chain) {
762 new_chain = tail = tmp;
763 } else {
764 tail->bi_next = tmp;
765 tail = tmp;
766 }
767 old_chain = old_chain->bi_next;
768
769 total += tmp->bi_size;
770 }
771
772 BUG_ON(total < len);
773
774 if (tail)
775 tail->bi_next = NULL;
776
777 *old = old_chain;
778
779 return new_chain;
780
781 err_out:
782 dout("bio_chain_clone with err\n");
783 bio_chain_put(new_chain);
784 return NULL;
785 }
786
787 /*
788 * helpers for osd request op vectors.
789 */
790 static int rbd_create_rw_ops(struct ceph_osd_req_op **ops,
791 int num_ops,
792 int opcode,
793 u32 payload_len)
794 {
795 *ops = kzalloc(sizeof(struct ceph_osd_req_op) * (num_ops + 1),
796 GFP_NOIO);
797 if (!*ops)
798 return -ENOMEM;
799 (*ops)[0].op = opcode;
800 /*
801 * op extent offset and length will be set later on
802 * in calc_raw_layout()
803 */
804 (*ops)[0].payload_len = payload_len;
805 return 0;
806 }
807
808 static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
809 {
810 kfree(ops);
811 }
812
813 static void rbd_coll_end_req_index(struct request *rq,
814 struct rbd_req_coll *coll,
815 int index,
816 int ret, u64 len)
817 {
818 struct request_queue *q;
819 int min, max, i;
820
821 dout("rbd_coll_end_req_index %p index %d ret %d len %lld\n",
822 coll, index, ret, len);
823
824 if (!rq)
825 return;
826
827 if (!coll) {
828 blk_end_request(rq, ret, len);
829 return;
830 }
831
832 q = rq->q;
833
834 spin_lock_irq(q->queue_lock);
835 coll->status[index].done = 1;
836 coll->status[index].rc = ret;
837 coll->status[index].bytes = len;
838 max = min = coll->num_done;
839 while (max < coll->total && coll->status[max].done)
840 max++;
841
842 for (i = min; i<max; i++) {
843 __blk_end_request(rq, coll->status[i].rc,
844 coll->status[i].bytes);
845 coll->num_done++;
846 kref_put(&coll->kref, rbd_coll_release);
847 }
848 spin_unlock_irq(q->queue_lock);
849 }
850
851 static void rbd_coll_end_req(struct rbd_request *req,
852 int ret, u64 len)
853 {
854 rbd_coll_end_req_index(req->rq, req->coll, req->coll_index, ret, len);
855 }
856
857 /*
858 * Send ceph osd request
859 */
860 static int rbd_do_request(struct request *rq,
861 struct rbd_device *rbd_dev,
862 struct ceph_snap_context *snapc,
863 u64 snapid,
864 const char *object_name, u64 ofs, u64 len,
865 struct bio *bio,
866 struct page **pages,
867 int num_pages,
868 int flags,
869 struct ceph_osd_req_op *ops,
870 struct rbd_req_coll *coll,
871 int coll_index,
872 void (*rbd_cb)(struct ceph_osd_request *req,
873 struct ceph_msg *msg),
874 struct ceph_osd_request **linger_req,
875 u64 *ver)
876 {
877 struct ceph_osd_request *req;
878 struct ceph_file_layout *layout;
879 int ret;
880 u64 bno;
881 struct timespec mtime = CURRENT_TIME;
882 struct rbd_request *req_data;
883 struct ceph_osd_request_head *reqhead;
884 struct ceph_osd_client *osdc;
885
886 req_data = kzalloc(sizeof(*req_data), GFP_NOIO);
887 if (!req_data) {
888 if (coll)
889 rbd_coll_end_req_index(rq, coll, coll_index,
890 -ENOMEM, len);
891 return -ENOMEM;
892 }
893
894 if (coll) {
895 req_data->coll = coll;
896 req_data->coll_index = coll_index;
897 }
898
899 dout("rbd_do_request object_name=%s ofs=%lld len=%lld\n",
900 object_name, len, ofs);
901
902 osdc = &rbd_dev->rbd_client->client->osdc;
903 req = ceph_osdc_alloc_request(osdc, flags, snapc, ops,
904 false, GFP_NOIO, pages, bio);
905 if (!req) {
906 ret = -ENOMEM;
907 goto done_pages;
908 }
909
910 req->r_callback = rbd_cb;
911
912 req_data->rq = rq;
913 req_data->bio = bio;
914 req_data->pages = pages;
915 req_data->len = len;
916
917 req->r_priv = req_data;
918
919 reqhead = req->r_request->front.iov_base;
920 reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
921
922 strncpy(req->r_oid, object_name, sizeof(req->r_oid));
923 req->r_oid_len = strlen(req->r_oid);
924
925 layout = &req->r_file_layout;
926 memset(layout, 0, sizeof(*layout));
927 layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
928 layout->fl_stripe_count = cpu_to_le32(1);
929 layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
930 layout->fl_pg_pool = cpu_to_le32(rbd_dev->pool_id);
931 ceph_calc_raw_layout(osdc, layout, snapid, ofs, &len, &bno,
932 req, ops);
933
934 ceph_osdc_build_request(req, ofs, &len,
935 ops,
936 snapc,
937 &mtime,
938 req->r_oid, req->r_oid_len);
939
940 if (linger_req) {
941 ceph_osdc_set_request_linger(osdc, req);
942 *linger_req = req;
943 }
944
945 ret = ceph_osdc_start_request(osdc, req, false);
946 if (ret < 0)
947 goto done_err;
948
949 if (!rbd_cb) {
950 ret = ceph_osdc_wait_request(osdc, req);
951 if (ver)
952 *ver = le64_to_cpu(req->r_reassert_version.version);
953 dout("reassert_ver=%lld\n",
954 le64_to_cpu(req->r_reassert_version.version));
955 ceph_osdc_put_request(req);
956 }
957 return ret;
958
959 done_err:
960 bio_chain_put(req_data->bio);
961 ceph_osdc_put_request(req);
962 done_pages:
963 rbd_coll_end_req(req_data, ret, len);
964 kfree(req_data);
965 return ret;
966 }
967
968 /*
969 * Ceph osd op callback
970 */
971 static void rbd_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
972 {
973 struct rbd_request *req_data = req->r_priv;
974 struct ceph_osd_reply_head *replyhead;
975 struct ceph_osd_op *op;
976 __s32 rc;
977 u64 bytes;
978 int read_op;
979
980 /* parse reply */
981 replyhead = msg->front.iov_base;
982 WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
983 op = (void *)(replyhead + 1);
984 rc = le32_to_cpu(replyhead->result);
985 bytes = le64_to_cpu(op->extent.length);
986 read_op = (le16_to_cpu(op->op) == CEPH_OSD_OP_READ);
987
988 dout("rbd_req_cb bytes=%lld readop=%d rc=%d\n", bytes, read_op, rc);
989
990 if (rc == -ENOENT && read_op) {
991 zero_bio_chain(req_data->bio, 0);
992 rc = 0;
993 } else if (rc == 0 && read_op && bytes < req_data->len) {
994 zero_bio_chain(req_data->bio, bytes);
995 bytes = req_data->len;
996 }
997
998 rbd_coll_end_req(req_data, rc, bytes);
999
1000 if (req_data->bio)
1001 bio_chain_put(req_data->bio);
1002
1003 ceph_osdc_put_request(req);
1004 kfree(req_data);
1005 }
1006
1007 static void rbd_simple_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
1008 {
1009 ceph_osdc_put_request(req);
1010 }
1011
1012 /*
1013 * Do a synchronous ceph osd operation
1014 */
1015 static int rbd_req_sync_op(struct rbd_device *rbd_dev,
1016 struct ceph_snap_context *snapc,
1017 u64 snapid,
1018 int opcode,
1019 int flags,
1020 struct ceph_osd_req_op *orig_ops,
1021 const char *object_name,
1022 u64 ofs, u64 len,
1023 char *buf,
1024 struct ceph_osd_request **linger_req,
1025 u64 *ver)
1026 {
1027 int ret;
1028 struct page **pages;
1029 int num_pages;
1030 struct ceph_osd_req_op *ops = orig_ops;
1031 u32 payload_len;
1032
1033 num_pages = calc_pages_for(ofs , len);
1034 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1035 if (IS_ERR(pages))
1036 return PTR_ERR(pages);
1037
1038 if (!orig_ops) {
1039 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? len : 0);
1040 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1041 if (ret < 0)
1042 goto done;
1043
1044 if ((flags & CEPH_OSD_FLAG_WRITE) && buf) {
1045 ret = ceph_copy_to_page_vector(pages, buf, ofs, len);
1046 if (ret < 0)
1047 goto done_ops;
1048 }
1049 }
1050
1051 ret = rbd_do_request(NULL, rbd_dev, snapc, snapid,
1052 object_name, ofs, len, NULL,
1053 pages, num_pages,
1054 flags,
1055 ops,
1056 NULL, 0,
1057 NULL,
1058 linger_req, ver);
1059 if (ret < 0)
1060 goto done_ops;
1061
1062 if ((flags & CEPH_OSD_FLAG_READ) && buf)
1063 ret = ceph_copy_from_page_vector(pages, buf, ofs, ret);
1064
1065 done_ops:
1066 if (!orig_ops)
1067 rbd_destroy_ops(ops);
1068 done:
1069 ceph_release_page_vector(pages, num_pages);
1070 return ret;
1071 }
1072
1073 /*
1074 * Do an asynchronous ceph osd operation
1075 */
1076 static int rbd_do_op(struct request *rq,
1077 struct rbd_device *rbd_dev,
1078 struct ceph_snap_context *snapc,
1079 u64 snapid,
1080 int opcode, int flags,
1081 u64 ofs, u64 len,
1082 struct bio *bio,
1083 struct rbd_req_coll *coll,
1084 int coll_index)
1085 {
1086 char *seg_name;
1087 u64 seg_ofs;
1088 u64 seg_len;
1089 int ret;
1090 struct ceph_osd_req_op *ops;
1091 u32 payload_len;
1092
1093 seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
1094 if (!seg_name)
1095 return -ENOMEM;
1096
1097 seg_len = rbd_get_segment(&rbd_dev->header,
1098 rbd_dev->header.object_prefix,
1099 ofs, len,
1100 seg_name, &seg_ofs);
1101
1102 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? seg_len : 0);
1103
1104 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1105 if (ret < 0)
1106 goto done;
1107
1108 /* we've taken care of segment sizes earlier when we
1109 cloned the bios. We should never have a segment
1110 truncated at this point */
1111 BUG_ON(seg_len < len);
1112
1113 ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1114 seg_name, seg_ofs, seg_len,
1115 bio,
1116 NULL, 0,
1117 flags,
1118 ops,
1119 coll, coll_index,
1120 rbd_req_cb, 0, NULL);
1121
1122 rbd_destroy_ops(ops);
1123 done:
1124 kfree(seg_name);
1125 return ret;
1126 }
1127
1128 /*
1129 * Request async osd write
1130 */
1131 static int rbd_req_write(struct request *rq,
1132 struct rbd_device *rbd_dev,
1133 struct ceph_snap_context *snapc,
1134 u64 ofs, u64 len,
1135 struct bio *bio,
1136 struct rbd_req_coll *coll,
1137 int coll_index)
1138 {
1139 return rbd_do_op(rq, rbd_dev, snapc, CEPH_NOSNAP,
1140 CEPH_OSD_OP_WRITE,
1141 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1142 ofs, len, bio, coll, coll_index);
1143 }
1144
1145 /*
1146 * Request async osd read
1147 */
1148 static int rbd_req_read(struct request *rq,
1149 struct rbd_device *rbd_dev,
1150 u64 snapid,
1151 u64 ofs, u64 len,
1152 struct bio *bio,
1153 struct rbd_req_coll *coll,
1154 int coll_index)
1155 {
1156 return rbd_do_op(rq, rbd_dev, NULL,
1157 snapid,
1158 CEPH_OSD_OP_READ,
1159 CEPH_OSD_FLAG_READ,
1160 ofs, len, bio, coll, coll_index);
1161 }
1162
1163 /*
1164 * Request sync osd read
1165 */
1166 static int rbd_req_sync_read(struct rbd_device *rbd_dev,
1167 struct ceph_snap_context *snapc,
1168 u64 snapid,
1169 const char *object_name,
1170 u64 ofs, u64 len,
1171 char *buf,
1172 u64 *ver)
1173 {
1174 return rbd_req_sync_op(rbd_dev, NULL,
1175 snapid,
1176 CEPH_OSD_OP_READ,
1177 CEPH_OSD_FLAG_READ,
1178 NULL,
1179 object_name, ofs, len, buf, NULL, ver);
1180 }
1181
1182 /*
1183 * Request sync osd watch
1184 */
1185 static int rbd_req_sync_notify_ack(struct rbd_device *rbd_dev,
1186 u64 ver,
1187 u64 notify_id,
1188 const char *object_name)
1189 {
1190 struct ceph_osd_req_op *ops;
1191 int ret;
1192
1193 ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1194 if (ret < 0)
1195 return ret;
1196
1197 ops[0].watch.ver = cpu_to_le64(ver);
1198 ops[0].watch.cookie = notify_id;
1199 ops[0].watch.flag = 0;
1200
1201 ret = rbd_do_request(NULL, rbd_dev, NULL, CEPH_NOSNAP,
1202 object_name, 0, 0, NULL,
1203 NULL, 0,
1204 CEPH_OSD_FLAG_READ,
1205 ops,
1206 NULL, 0,
1207 rbd_simple_req_cb, 0, NULL);
1208
1209 rbd_destroy_ops(ops);
1210 return ret;
1211 }
1212
1213 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1214 {
1215 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1216 u64 hver;
1217 int rc;
1218
1219 if (!rbd_dev)
1220 return;
1221
1222 dout("rbd_watch_cb %s notify_id=%lld opcode=%d\n",
1223 rbd_dev->header_name, notify_id, (int) opcode);
1224 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1225 rc = __rbd_refresh_header(rbd_dev);
1226 hver = rbd_dev->header.obj_version;
1227 mutex_unlock(&ctl_mutex);
1228 if (rc)
1229 pr_warning(RBD_DRV_NAME "%d got notification but failed to "
1230 " update snaps: %d\n", rbd_dev->major, rc);
1231
1232 rbd_req_sync_notify_ack(rbd_dev, hver, notify_id, rbd_dev->header_name);
1233 }
1234
1235 /*
1236 * Request sync osd watch
1237 */
1238 static int rbd_req_sync_watch(struct rbd_device *rbd_dev,
1239 const char *object_name,
1240 u64 ver)
1241 {
1242 struct ceph_osd_req_op *ops;
1243 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1244
1245 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1246 if (ret < 0)
1247 return ret;
1248
1249 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1250 (void *)rbd_dev, &rbd_dev->watch_event);
1251 if (ret < 0)
1252 goto fail;
1253
1254 ops[0].watch.ver = cpu_to_le64(ver);
1255 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1256 ops[0].watch.flag = 1;
1257
1258 ret = rbd_req_sync_op(rbd_dev, NULL,
1259 CEPH_NOSNAP,
1260 0,
1261 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1262 ops,
1263 object_name, 0, 0, NULL,
1264 &rbd_dev->watch_request, NULL);
1265
1266 if (ret < 0)
1267 goto fail_event;
1268
1269 rbd_destroy_ops(ops);
1270 return 0;
1271
1272 fail_event:
1273 ceph_osdc_cancel_event(rbd_dev->watch_event);
1274 rbd_dev->watch_event = NULL;
1275 fail:
1276 rbd_destroy_ops(ops);
1277 return ret;
1278 }
1279
1280 /*
1281 * Request sync osd unwatch
1282 */
1283 static int rbd_req_sync_unwatch(struct rbd_device *rbd_dev,
1284 const char *object_name)
1285 {
1286 struct ceph_osd_req_op *ops;
1287
1288 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1289 if (ret < 0)
1290 return ret;
1291
1292 ops[0].watch.ver = 0;
1293 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1294 ops[0].watch.flag = 0;
1295
1296 ret = rbd_req_sync_op(rbd_dev, NULL,
1297 CEPH_NOSNAP,
1298 0,
1299 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1300 ops,
1301 object_name, 0, 0, NULL, NULL, NULL);
1302
1303 rbd_destroy_ops(ops);
1304 ceph_osdc_cancel_event(rbd_dev->watch_event);
1305 rbd_dev->watch_event = NULL;
1306 return ret;
1307 }
1308
1309 struct rbd_notify_info {
1310 struct rbd_device *rbd_dev;
1311 };
1312
1313 static void rbd_notify_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1314 {
1315 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1316 if (!rbd_dev)
1317 return;
1318
1319 dout("rbd_notify_cb %s notify_id=%lld opcode=%d\n",
1320 rbd_dev->header_name,
1321 notify_id, (int)opcode);
1322 }
1323
1324 /*
1325 * Request sync osd notify
1326 */
1327 static int rbd_req_sync_notify(struct rbd_device *rbd_dev,
1328 const char *object_name)
1329 {
1330 struct ceph_osd_req_op *ops;
1331 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1332 struct ceph_osd_event *event;
1333 struct rbd_notify_info info;
1334 int payload_len = sizeof(u32) + sizeof(u32);
1335 int ret;
1336
1337 ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY, payload_len);
1338 if (ret < 0)
1339 return ret;
1340
1341 info.rbd_dev = rbd_dev;
1342
1343 ret = ceph_osdc_create_event(osdc, rbd_notify_cb, 1,
1344 (void *)&info, &event);
1345 if (ret < 0)
1346 goto fail;
1347
1348 ops[0].watch.ver = 1;
1349 ops[0].watch.flag = 1;
1350 ops[0].watch.cookie = event->cookie;
1351 ops[0].watch.prot_ver = RADOS_NOTIFY_VER;
1352 ops[0].watch.timeout = 12;
1353
1354 ret = rbd_req_sync_op(rbd_dev, NULL,
1355 CEPH_NOSNAP,
1356 0,
1357 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1358 ops,
1359 object_name, 0, 0, NULL, NULL, NULL);
1360 if (ret < 0)
1361 goto fail_event;
1362
1363 ret = ceph_osdc_wait_event(event, CEPH_OSD_TIMEOUT_DEFAULT);
1364 dout("ceph_osdc_wait_event returned %d\n", ret);
1365 rbd_destroy_ops(ops);
1366 return 0;
1367
1368 fail_event:
1369 ceph_osdc_cancel_event(event);
1370 fail:
1371 rbd_destroy_ops(ops);
1372 return ret;
1373 }
1374
1375 /*
1376 * Request sync osd read
1377 */
1378 static int rbd_req_sync_exec(struct rbd_device *rbd_dev,
1379 const char *object_name,
1380 const char *class_name,
1381 const char *method_name,
1382 const char *data,
1383 int len,
1384 u64 *ver)
1385 {
1386 struct ceph_osd_req_op *ops;
1387 int class_name_len = strlen(class_name);
1388 int method_name_len = strlen(method_name);
1389 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_CALL,
1390 class_name_len + method_name_len + len);
1391 if (ret < 0)
1392 return ret;
1393
1394 ops[0].cls.class_name = class_name;
1395 ops[0].cls.class_len = (__u8) class_name_len;
1396 ops[0].cls.method_name = method_name;
1397 ops[0].cls.method_len = (__u8) method_name_len;
1398 ops[0].cls.argc = 0;
1399 ops[0].cls.indata = data;
1400 ops[0].cls.indata_len = len;
1401
1402 ret = rbd_req_sync_op(rbd_dev, NULL,
1403 CEPH_NOSNAP,
1404 0,
1405 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1406 ops,
1407 object_name, 0, 0, NULL, NULL, ver);
1408
1409 rbd_destroy_ops(ops);
1410
1411 dout("cls_exec returned %d\n", ret);
1412 return ret;
1413 }
1414
1415 static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1416 {
1417 struct rbd_req_coll *coll =
1418 kzalloc(sizeof(struct rbd_req_coll) +
1419 sizeof(struct rbd_req_status) * num_reqs,
1420 GFP_ATOMIC);
1421
1422 if (!coll)
1423 return NULL;
1424 coll->total = num_reqs;
1425 kref_init(&coll->kref);
1426 return coll;
1427 }
1428
1429 /*
1430 * block device queue callback
1431 */
1432 static void rbd_rq_fn(struct request_queue *q)
1433 {
1434 struct rbd_device *rbd_dev = q->queuedata;
1435 struct request *rq;
1436 struct bio_pair *bp = NULL;
1437
1438 while ((rq = blk_fetch_request(q))) {
1439 struct bio *bio;
1440 struct bio *rq_bio, *next_bio = NULL;
1441 bool do_write;
1442 int size, op_size = 0;
1443 u64 ofs;
1444 int num_segs, cur_seg = 0;
1445 struct rbd_req_coll *coll;
1446 struct ceph_snap_context *snapc;
1447
1448 /* peek at request from block layer */
1449 if (!rq)
1450 break;
1451
1452 dout("fetched request\n");
1453
1454 /* filter out block requests we don't understand */
1455 if ((rq->cmd_type != REQ_TYPE_FS)) {
1456 __blk_end_request_all(rq, 0);
1457 continue;
1458 }
1459
1460 /* deduce our operation (read, write) */
1461 do_write = (rq_data_dir(rq) == WRITE);
1462
1463 size = blk_rq_bytes(rq);
1464 ofs = blk_rq_pos(rq) * SECTOR_SIZE;
1465 rq_bio = rq->bio;
1466 if (do_write && rbd_dev->read_only) {
1467 __blk_end_request_all(rq, -EROFS);
1468 continue;
1469 }
1470
1471 spin_unlock_irq(q->queue_lock);
1472
1473 down_read(&rbd_dev->header_rwsem);
1474
1475 if (rbd_dev->snap_id != CEPH_NOSNAP && !rbd_dev->snap_exists) {
1476 up_read(&rbd_dev->header_rwsem);
1477 dout("request for non-existent snapshot");
1478 spin_lock_irq(q->queue_lock);
1479 __blk_end_request_all(rq, -ENXIO);
1480 continue;
1481 }
1482
1483 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1484
1485 up_read(&rbd_dev->header_rwsem);
1486
1487 dout("%s 0x%x bytes at 0x%llx\n",
1488 do_write ? "write" : "read",
1489 size, blk_rq_pos(rq) * SECTOR_SIZE);
1490
1491 num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1492 coll = rbd_alloc_coll(num_segs);
1493 if (!coll) {
1494 spin_lock_irq(q->queue_lock);
1495 __blk_end_request_all(rq, -ENOMEM);
1496 ceph_put_snap_context(snapc);
1497 continue;
1498 }
1499
1500 do {
1501 /* a bio clone to be passed down to OSD req */
1502 dout("rq->bio->bi_vcnt=%d\n", rq->bio->bi_vcnt);
1503 op_size = rbd_get_segment(&rbd_dev->header,
1504 rbd_dev->header.object_prefix,
1505 ofs, size,
1506 NULL, NULL);
1507 kref_get(&coll->kref);
1508 bio = bio_chain_clone(&rq_bio, &next_bio, &bp,
1509 op_size, GFP_ATOMIC);
1510 if (!bio) {
1511 rbd_coll_end_req_index(rq, coll, cur_seg,
1512 -ENOMEM, op_size);
1513 goto next_seg;
1514 }
1515
1516
1517 /* init OSD command: write or read */
1518 if (do_write)
1519 rbd_req_write(rq, rbd_dev,
1520 snapc,
1521 ofs,
1522 op_size, bio,
1523 coll, cur_seg);
1524 else
1525 rbd_req_read(rq, rbd_dev,
1526 rbd_dev->snap_id,
1527 ofs,
1528 op_size, bio,
1529 coll, cur_seg);
1530
1531 next_seg:
1532 size -= op_size;
1533 ofs += op_size;
1534
1535 cur_seg++;
1536 rq_bio = next_bio;
1537 } while (size > 0);
1538 kref_put(&coll->kref, rbd_coll_release);
1539
1540 if (bp)
1541 bio_pair_release(bp);
1542 spin_lock_irq(q->queue_lock);
1543
1544 ceph_put_snap_context(snapc);
1545 }
1546 }
1547
1548 /*
1549 * a queue callback. Makes sure that we don't create a bio that spans across
1550 * multiple osd objects. One exception would be with a single page bios,
1551 * which we handle later at bio_chain_clone
1552 */
1553 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1554 struct bio_vec *bvec)
1555 {
1556 struct rbd_device *rbd_dev = q->queuedata;
1557 unsigned int chunk_sectors;
1558 sector_t sector;
1559 unsigned int bio_sectors;
1560 int max;
1561
1562 chunk_sectors = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1563 sector = bmd->bi_sector + get_start_sect(bmd->bi_bdev);
1564 bio_sectors = bmd->bi_size >> SECTOR_SHIFT;
1565
1566 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
1567 + bio_sectors)) << SECTOR_SHIFT;
1568 if (max < 0)
1569 max = 0; /* bio_add cannot handle a negative return */
1570 if (max <= bvec->bv_len && bio_sectors == 0)
1571 return bvec->bv_len;
1572 return max;
1573 }
1574
1575 static void rbd_free_disk(struct rbd_device *rbd_dev)
1576 {
1577 struct gendisk *disk = rbd_dev->disk;
1578
1579 if (!disk)
1580 return;
1581
1582 rbd_header_free(&rbd_dev->header);
1583
1584 if (disk->flags & GENHD_FL_UP)
1585 del_gendisk(disk);
1586 if (disk->queue)
1587 blk_cleanup_queue(disk->queue);
1588 put_disk(disk);
1589 }
1590
1591 /*
1592 * reload the ondisk the header
1593 */
1594 static int rbd_read_header(struct rbd_device *rbd_dev,
1595 struct rbd_image_header *header)
1596 {
1597 ssize_t rc;
1598 struct rbd_image_header_ondisk *dh;
1599 u32 snap_count = 0;
1600 u64 ver;
1601 size_t len;
1602
1603 /*
1604 * First reads the fixed-size header to determine the number
1605 * of snapshots, then re-reads it, along with all snapshot
1606 * records as well as their stored names.
1607 */
1608 len = sizeof (*dh);
1609 while (1) {
1610 dh = kmalloc(len, GFP_KERNEL);
1611 if (!dh)
1612 return -ENOMEM;
1613
1614 rc = rbd_req_sync_read(rbd_dev,
1615 NULL, CEPH_NOSNAP,
1616 rbd_dev->header_name,
1617 0, len,
1618 (char *)dh, &ver);
1619 if (rc < 0)
1620 goto out_dh;
1621
1622 rc = rbd_header_from_disk(header, dh, snap_count, GFP_KERNEL);
1623 if (rc < 0) {
1624 if (rc == -ENXIO)
1625 pr_warning("unrecognized header format"
1626 " for image %s\n",
1627 rbd_dev->image_name);
1628 goto out_dh;
1629 }
1630
1631 if (snap_count == header->total_snaps)
1632 break;
1633
1634 snap_count = header->total_snaps;
1635 len = sizeof (*dh) +
1636 snap_count * sizeof(struct rbd_image_snap_ondisk) +
1637 header->snap_names_len;
1638
1639 rbd_header_free(header);
1640 kfree(dh);
1641 }
1642 header->obj_version = ver;
1643
1644 out_dh:
1645 kfree(dh);
1646 return rc;
1647 }
1648
1649 /*
1650 * create a snapshot
1651 */
1652 static int rbd_header_add_snap(struct rbd_device *rbd_dev,
1653 const char *snap_name,
1654 gfp_t gfp_flags)
1655 {
1656 int name_len = strlen(snap_name);
1657 u64 new_snapid;
1658 int ret;
1659 void *data, *p, *e;
1660 u64 ver;
1661 struct ceph_mon_client *monc;
1662
1663 /* we should create a snapshot only if we're pointing at the head */
1664 if (rbd_dev->snap_id != CEPH_NOSNAP)
1665 return -EINVAL;
1666
1667 monc = &rbd_dev->rbd_client->client->monc;
1668 ret = ceph_monc_create_snapid(monc, rbd_dev->pool_id, &new_snapid);
1669 dout("created snapid=%lld\n", new_snapid);
1670 if (ret < 0)
1671 return ret;
1672
1673 data = kmalloc(name_len + 16, gfp_flags);
1674 if (!data)
1675 return -ENOMEM;
1676
1677 p = data;
1678 e = data + name_len + 16;
1679
1680 ceph_encode_string_safe(&p, e, snap_name, name_len, bad);
1681 ceph_encode_64_safe(&p, e, new_snapid, bad);
1682
1683 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
1684 "rbd", "snap_add",
1685 data, p - data, &ver);
1686
1687 kfree(data);
1688
1689 return ret < 0 ? ret : 0;
1690 bad:
1691 return -ERANGE;
1692 }
1693
1694 static void __rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1695 {
1696 struct rbd_snap *snap;
1697
1698 while (!list_empty(&rbd_dev->snaps)) {
1699 snap = list_first_entry(&rbd_dev->snaps, struct rbd_snap, node);
1700 __rbd_remove_snap_dev(rbd_dev, snap);
1701 }
1702 }
1703
1704 /*
1705 * only read the first part of the ondisk header, without the snaps info
1706 */
1707 static int __rbd_refresh_header(struct rbd_device *rbd_dev)
1708 {
1709 int ret;
1710 struct rbd_image_header h;
1711
1712 ret = rbd_read_header(rbd_dev, &h);
1713 if (ret < 0)
1714 return ret;
1715
1716 down_write(&rbd_dev->header_rwsem);
1717
1718 /* resized? */
1719 if (rbd_dev->snap_id == CEPH_NOSNAP) {
1720 sector_t size = (sector_t) h.image_size / SECTOR_SIZE;
1721
1722 dout("setting size to %llu sectors", (unsigned long long) size);
1723 set_capacity(rbd_dev->disk, size);
1724 }
1725
1726 /* rbd_dev->header.object_prefix shouldn't change */
1727 kfree(rbd_dev->header.snap_sizes);
1728 kfree(rbd_dev->header.snap_names);
1729 /* osd requests may still refer to snapc */
1730 ceph_put_snap_context(rbd_dev->header.snapc);
1731
1732 rbd_dev->header.obj_version = h.obj_version;
1733 rbd_dev->header.image_size = h.image_size;
1734 rbd_dev->header.total_snaps = h.total_snaps;
1735 rbd_dev->header.snapc = h.snapc;
1736 rbd_dev->header.snap_names = h.snap_names;
1737 rbd_dev->header.snap_names_len = h.snap_names_len;
1738 rbd_dev->header.snap_sizes = h.snap_sizes;
1739 /* Free the extra copy of the object prefix */
1740 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
1741 kfree(h.object_prefix);
1742
1743 ret = __rbd_init_snaps_header(rbd_dev);
1744
1745 up_write(&rbd_dev->header_rwsem);
1746
1747 return ret;
1748 }
1749
1750 static int rbd_init_disk(struct rbd_device *rbd_dev)
1751 {
1752 struct gendisk *disk;
1753 struct request_queue *q;
1754 int rc;
1755 u64 segment_size;
1756 u64 total_size = 0;
1757
1758 /* contact OSD, request size info about the object being mapped */
1759 rc = rbd_read_header(rbd_dev, &rbd_dev->header);
1760 if (rc)
1761 return rc;
1762
1763 /* no need to lock here, as rbd_dev is not registered yet */
1764 rc = __rbd_init_snaps_header(rbd_dev);
1765 if (rc)
1766 return rc;
1767
1768 rc = rbd_header_set_snap(rbd_dev, &total_size);
1769 if (rc)
1770 return rc;
1771
1772 /* create gendisk info */
1773 rc = -ENOMEM;
1774 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
1775 if (!disk)
1776 goto out;
1777
1778 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
1779 rbd_dev->id);
1780 disk->major = rbd_dev->major;
1781 disk->first_minor = 0;
1782 disk->fops = &rbd_bd_ops;
1783 disk->private_data = rbd_dev;
1784
1785 /* init rq */
1786 rc = -ENOMEM;
1787 q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1788 if (!q)
1789 goto out_disk;
1790
1791 /* We use the default size, but let's be explicit about it. */
1792 blk_queue_physical_block_size(q, SECTOR_SIZE);
1793
1794 /* set io sizes to object size */
1795 segment_size = rbd_obj_bytes(&rbd_dev->header);
1796 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
1797 blk_queue_max_segment_size(q, segment_size);
1798 blk_queue_io_min(q, segment_size);
1799 blk_queue_io_opt(q, segment_size);
1800
1801 blk_queue_merge_bvec(q, rbd_merge_bvec);
1802 disk->queue = q;
1803
1804 q->queuedata = rbd_dev;
1805
1806 rbd_dev->disk = disk;
1807 rbd_dev->q = q;
1808
1809 /* finally, announce the disk to the world */
1810 set_capacity(disk, total_size / SECTOR_SIZE);
1811 add_disk(disk);
1812
1813 pr_info("%s: added with size 0x%llx\n",
1814 disk->disk_name, (unsigned long long)total_size);
1815 return 0;
1816
1817 out_disk:
1818 put_disk(disk);
1819 out:
1820 return rc;
1821 }
1822
1823 /*
1824 sysfs
1825 */
1826
1827 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
1828 {
1829 return container_of(dev, struct rbd_device, dev);
1830 }
1831
1832 static ssize_t rbd_size_show(struct device *dev,
1833 struct device_attribute *attr, char *buf)
1834 {
1835 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1836 sector_t size;
1837
1838 down_read(&rbd_dev->header_rwsem);
1839 size = get_capacity(rbd_dev->disk);
1840 up_read(&rbd_dev->header_rwsem);
1841
1842 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
1843 }
1844
1845 static ssize_t rbd_major_show(struct device *dev,
1846 struct device_attribute *attr, char *buf)
1847 {
1848 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1849
1850 return sprintf(buf, "%d\n", rbd_dev->major);
1851 }
1852
1853 static ssize_t rbd_client_id_show(struct device *dev,
1854 struct device_attribute *attr, char *buf)
1855 {
1856 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1857
1858 return sprintf(buf, "client%lld\n",
1859 ceph_client_id(rbd_dev->rbd_client->client));
1860 }
1861
1862 static ssize_t rbd_pool_show(struct device *dev,
1863 struct device_attribute *attr, char *buf)
1864 {
1865 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1866
1867 return sprintf(buf, "%s\n", rbd_dev->pool_name);
1868 }
1869
1870 static ssize_t rbd_pool_id_show(struct device *dev,
1871 struct device_attribute *attr, char *buf)
1872 {
1873 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1874
1875 return sprintf(buf, "%d\n", rbd_dev->pool_id);
1876 }
1877
1878 static ssize_t rbd_name_show(struct device *dev,
1879 struct device_attribute *attr, char *buf)
1880 {
1881 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1882
1883 return sprintf(buf, "%s\n", rbd_dev->image_name);
1884 }
1885
1886 static ssize_t rbd_snap_show(struct device *dev,
1887 struct device_attribute *attr,
1888 char *buf)
1889 {
1890 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1891
1892 return sprintf(buf, "%s\n", rbd_dev->snap_name);
1893 }
1894
1895 static ssize_t rbd_image_refresh(struct device *dev,
1896 struct device_attribute *attr,
1897 const char *buf,
1898 size_t size)
1899 {
1900 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1901 int rc;
1902 int ret = size;
1903
1904 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1905
1906 rc = __rbd_refresh_header(rbd_dev);
1907 if (rc < 0)
1908 ret = rc;
1909
1910 mutex_unlock(&ctl_mutex);
1911 return ret;
1912 }
1913
1914 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
1915 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
1916 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
1917 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
1918 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
1919 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
1920 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
1921 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
1922 static DEVICE_ATTR(create_snap, S_IWUSR, NULL, rbd_snap_add);
1923
1924 static struct attribute *rbd_attrs[] = {
1925 &dev_attr_size.attr,
1926 &dev_attr_major.attr,
1927 &dev_attr_client_id.attr,
1928 &dev_attr_pool.attr,
1929 &dev_attr_pool_id.attr,
1930 &dev_attr_name.attr,
1931 &dev_attr_current_snap.attr,
1932 &dev_attr_refresh.attr,
1933 &dev_attr_create_snap.attr,
1934 NULL
1935 };
1936
1937 static struct attribute_group rbd_attr_group = {
1938 .attrs = rbd_attrs,
1939 };
1940
1941 static const struct attribute_group *rbd_attr_groups[] = {
1942 &rbd_attr_group,
1943 NULL
1944 };
1945
1946 static void rbd_sysfs_dev_release(struct device *dev)
1947 {
1948 }
1949
1950 static struct device_type rbd_device_type = {
1951 .name = "rbd",
1952 .groups = rbd_attr_groups,
1953 .release = rbd_sysfs_dev_release,
1954 };
1955
1956
1957 /*
1958 sysfs - snapshots
1959 */
1960
1961 static ssize_t rbd_snap_size_show(struct device *dev,
1962 struct device_attribute *attr,
1963 char *buf)
1964 {
1965 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1966
1967 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
1968 }
1969
1970 static ssize_t rbd_snap_id_show(struct device *dev,
1971 struct device_attribute *attr,
1972 char *buf)
1973 {
1974 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1975
1976 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
1977 }
1978
1979 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
1980 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
1981
1982 static struct attribute *rbd_snap_attrs[] = {
1983 &dev_attr_snap_size.attr,
1984 &dev_attr_snap_id.attr,
1985 NULL,
1986 };
1987
1988 static struct attribute_group rbd_snap_attr_group = {
1989 .attrs = rbd_snap_attrs,
1990 };
1991
1992 static void rbd_snap_dev_release(struct device *dev)
1993 {
1994 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1995 kfree(snap->name);
1996 kfree(snap);
1997 }
1998
1999 static const struct attribute_group *rbd_snap_attr_groups[] = {
2000 &rbd_snap_attr_group,
2001 NULL
2002 };
2003
2004 static struct device_type rbd_snap_device_type = {
2005 .groups = rbd_snap_attr_groups,
2006 .release = rbd_snap_dev_release,
2007 };
2008
2009 static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
2010 struct rbd_snap *snap)
2011 {
2012 list_del(&snap->node);
2013 device_unregister(&snap->dev);
2014 }
2015
2016 static int rbd_register_snap_dev(struct rbd_device *rbd_dev,
2017 struct rbd_snap *snap,
2018 struct device *parent)
2019 {
2020 struct device *dev = &snap->dev;
2021 int ret;
2022
2023 dev->type = &rbd_snap_device_type;
2024 dev->parent = parent;
2025 dev->release = rbd_snap_dev_release;
2026 dev_set_name(dev, "snap_%s", snap->name);
2027 ret = device_register(dev);
2028
2029 return ret;
2030 }
2031
2032 static int __rbd_add_snap_dev(struct rbd_device *rbd_dev,
2033 int i, const char *name,
2034 struct rbd_snap **snapp)
2035 {
2036 int ret;
2037 struct rbd_snap *snap = kzalloc(sizeof(*snap), GFP_KERNEL);
2038 if (!snap)
2039 return -ENOMEM;
2040 snap->name = kstrdup(name, GFP_KERNEL);
2041 snap->size = rbd_dev->header.snap_sizes[i];
2042 snap->id = rbd_dev->header.snapc->snaps[i];
2043 if (device_is_registered(&rbd_dev->dev)) {
2044 ret = rbd_register_snap_dev(rbd_dev, snap,
2045 &rbd_dev->dev);
2046 if (ret < 0)
2047 goto err;
2048 }
2049 *snapp = snap;
2050 return 0;
2051 err:
2052 kfree(snap->name);
2053 kfree(snap);
2054 return ret;
2055 }
2056
2057 /*
2058 * search for the previous snap in a null delimited string list
2059 */
2060 const char *rbd_prev_snap_name(const char *name, const char *start)
2061 {
2062 if (name < start + 2)
2063 return NULL;
2064
2065 name -= 2;
2066 while (*name) {
2067 if (name == start)
2068 return start;
2069 name--;
2070 }
2071 return name + 1;
2072 }
2073
2074 /*
2075 * compare the old list of snapshots that we have to what's in the header
2076 * and update it accordingly. Note that the header holds the snapshots
2077 * in a reverse order (from newest to oldest) and we need to go from
2078 * older to new so that we don't get a duplicate snap name when
2079 * doing the process (e.g., removed snapshot and recreated a new
2080 * one with the same name.
2081 */
2082 static int __rbd_init_snaps_header(struct rbd_device *rbd_dev)
2083 {
2084 const char *name, *first_name;
2085 int i = rbd_dev->header.total_snaps;
2086 struct rbd_snap *snap, *old_snap = NULL;
2087 int ret;
2088 struct list_head *p, *n;
2089
2090 first_name = rbd_dev->header.snap_names;
2091 name = first_name + rbd_dev->header.snap_names_len;
2092
2093 list_for_each_prev_safe(p, n, &rbd_dev->snaps) {
2094 u64 cur_id;
2095
2096 old_snap = list_entry(p, struct rbd_snap, node);
2097
2098 if (i)
2099 cur_id = rbd_dev->header.snapc->snaps[i - 1];
2100
2101 if (!i || old_snap->id < cur_id) {
2102 /*
2103 * old_snap->id was skipped, thus was
2104 * removed. If this rbd_dev is mapped to
2105 * the removed snapshot, record that it no
2106 * longer exists, to prevent further I/O.
2107 */
2108 if (rbd_dev->snap_id == old_snap->id)
2109 rbd_dev->snap_exists = false;
2110 __rbd_remove_snap_dev(rbd_dev, old_snap);
2111 continue;
2112 }
2113 if (old_snap->id == cur_id) {
2114 /* we have this snapshot already */
2115 i--;
2116 name = rbd_prev_snap_name(name, first_name);
2117 continue;
2118 }
2119 for (; i > 0;
2120 i--, name = rbd_prev_snap_name(name, first_name)) {
2121 if (!name) {
2122 WARN_ON(1);
2123 return -EINVAL;
2124 }
2125 cur_id = rbd_dev->header.snapc->snaps[i];
2126 /* snapshot removal? handle it above */
2127 if (cur_id >= old_snap->id)
2128 break;
2129 /* a new snapshot */
2130 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2131 if (ret < 0)
2132 return ret;
2133
2134 /* note that we add it backward so using n and not p */
2135 list_add(&snap->node, n);
2136 p = &snap->node;
2137 }
2138 }
2139 /* we're done going over the old snap list, just add what's left */
2140 for (; i > 0; i--) {
2141 name = rbd_prev_snap_name(name, first_name);
2142 if (!name) {
2143 WARN_ON(1);
2144 return -EINVAL;
2145 }
2146 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2147 if (ret < 0)
2148 return ret;
2149 list_add(&snap->node, &rbd_dev->snaps);
2150 }
2151
2152 return 0;
2153 }
2154
2155 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
2156 {
2157 int ret;
2158 struct device *dev;
2159 struct rbd_snap *snap;
2160
2161 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2162 dev = &rbd_dev->dev;
2163
2164 dev->bus = &rbd_bus_type;
2165 dev->type = &rbd_device_type;
2166 dev->parent = &rbd_root_dev;
2167 dev->release = rbd_dev_release;
2168 dev_set_name(dev, "%d", rbd_dev->id);
2169 ret = device_register(dev);
2170 if (ret < 0)
2171 goto out;
2172
2173 list_for_each_entry(snap, &rbd_dev->snaps, node) {
2174 ret = rbd_register_snap_dev(rbd_dev, snap,
2175 &rbd_dev->dev);
2176 if (ret < 0)
2177 break;
2178 }
2179 out:
2180 mutex_unlock(&ctl_mutex);
2181 return ret;
2182 }
2183
2184 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
2185 {
2186 device_unregister(&rbd_dev->dev);
2187 }
2188
2189 static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
2190 {
2191 int ret, rc;
2192
2193 do {
2194 ret = rbd_req_sync_watch(rbd_dev, rbd_dev->header_name,
2195 rbd_dev->header.obj_version);
2196 if (ret == -ERANGE) {
2197 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2198 rc = __rbd_refresh_header(rbd_dev);
2199 mutex_unlock(&ctl_mutex);
2200 if (rc < 0)
2201 return rc;
2202 }
2203 } while (ret == -ERANGE);
2204
2205 return ret;
2206 }
2207
2208 static atomic64_t rbd_id_max = ATOMIC64_INIT(0);
2209
2210 /*
2211 * Get a unique rbd identifier for the given new rbd_dev, and add
2212 * the rbd_dev to the global list. The minimum rbd id is 1.
2213 */
2214 static void rbd_id_get(struct rbd_device *rbd_dev)
2215 {
2216 rbd_dev->id = atomic64_inc_return(&rbd_id_max);
2217
2218 spin_lock(&rbd_dev_list_lock);
2219 list_add_tail(&rbd_dev->node, &rbd_dev_list);
2220 spin_unlock(&rbd_dev_list_lock);
2221 }
2222
2223 /*
2224 * Remove an rbd_dev from the global list, and record that its
2225 * identifier is no longer in use.
2226 */
2227 static void rbd_id_put(struct rbd_device *rbd_dev)
2228 {
2229 struct list_head *tmp;
2230 int rbd_id = rbd_dev->id;
2231 int max_id;
2232
2233 BUG_ON(rbd_id < 1);
2234
2235 spin_lock(&rbd_dev_list_lock);
2236 list_del_init(&rbd_dev->node);
2237
2238 /*
2239 * If the id being "put" is not the current maximum, there
2240 * is nothing special we need to do.
2241 */
2242 if (rbd_id != atomic64_read(&rbd_id_max)) {
2243 spin_unlock(&rbd_dev_list_lock);
2244 return;
2245 }
2246
2247 /*
2248 * We need to update the current maximum id. Search the
2249 * list to find out what it is. We're more likely to find
2250 * the maximum at the end, so search the list backward.
2251 */
2252 max_id = 0;
2253 list_for_each_prev(tmp, &rbd_dev_list) {
2254 struct rbd_device *rbd_dev;
2255
2256 rbd_dev = list_entry(tmp, struct rbd_device, node);
2257 if (rbd_id > max_id)
2258 max_id = rbd_id;
2259 }
2260 spin_unlock(&rbd_dev_list_lock);
2261
2262 /*
2263 * The max id could have been updated by rbd_id_get(), in
2264 * which case it now accurately reflects the new maximum.
2265 * Be careful not to overwrite the maximum value in that
2266 * case.
2267 */
2268 atomic64_cmpxchg(&rbd_id_max, rbd_id, max_id);
2269 }
2270
2271 /*
2272 * Skips over white space at *buf, and updates *buf to point to the
2273 * first found non-space character (if any). Returns the length of
2274 * the token (string of non-white space characters) found. Note
2275 * that *buf must be terminated with '\0'.
2276 */
2277 static inline size_t next_token(const char **buf)
2278 {
2279 /*
2280 * These are the characters that produce nonzero for
2281 * isspace() in the "C" and "POSIX" locales.
2282 */
2283 const char *spaces = " \f\n\r\t\v";
2284
2285 *buf += strspn(*buf, spaces); /* Find start of token */
2286
2287 return strcspn(*buf, spaces); /* Return token length */
2288 }
2289
2290 /*
2291 * Finds the next token in *buf, and if the provided token buffer is
2292 * big enough, copies the found token into it. The result, if
2293 * copied, is guaranteed to be terminated with '\0'. Note that *buf
2294 * must be terminated with '\0' on entry.
2295 *
2296 * Returns the length of the token found (not including the '\0').
2297 * Return value will be 0 if no token is found, and it will be >=
2298 * token_size if the token would not fit.
2299 *
2300 * The *buf pointer will be updated to point beyond the end of the
2301 * found token. Note that this occurs even if the token buffer is
2302 * too small to hold it.
2303 */
2304 static inline size_t copy_token(const char **buf,
2305 char *token,
2306 size_t token_size)
2307 {
2308 size_t len;
2309
2310 len = next_token(buf);
2311 if (len < token_size) {
2312 memcpy(token, *buf, len);
2313 *(token + len) = '\0';
2314 }
2315 *buf += len;
2316
2317 return len;
2318 }
2319
2320 /*
2321 * Finds the next token in *buf, dynamically allocates a buffer big
2322 * enough to hold a copy of it, and copies the token into the new
2323 * buffer. The copy is guaranteed to be terminated with '\0'. Note
2324 * that a duplicate buffer is created even for a zero-length token.
2325 *
2326 * Returns a pointer to the newly-allocated duplicate, or a null
2327 * pointer if memory for the duplicate was not available. If
2328 * the lenp argument is a non-null pointer, the length of the token
2329 * (not including the '\0') is returned in *lenp.
2330 *
2331 * If successful, the *buf pointer will be updated to point beyond
2332 * the end of the found token.
2333 *
2334 * Note: uses GFP_KERNEL for allocation.
2335 */
2336 static inline char *dup_token(const char **buf, size_t *lenp)
2337 {
2338 char *dup;
2339 size_t len;
2340
2341 len = next_token(buf);
2342 dup = kmalloc(len + 1, GFP_KERNEL);
2343 if (!dup)
2344 return NULL;
2345
2346 memcpy(dup, *buf, len);
2347 *(dup + len) = '\0';
2348 *buf += len;
2349
2350 if (lenp)
2351 *lenp = len;
2352
2353 return dup;
2354 }
2355
2356 /*
2357 * This fills in the pool_name, image_name, image_name_len, snap_name,
2358 * rbd_dev, rbd_md_name, and name fields of the given rbd_dev, based
2359 * on the list of monitor addresses and other options provided via
2360 * /sys/bus/rbd/add.
2361 *
2362 * Note: rbd_dev is assumed to have been initially zero-filled.
2363 */
2364 static int rbd_add_parse_args(struct rbd_device *rbd_dev,
2365 const char *buf,
2366 const char **mon_addrs,
2367 size_t *mon_addrs_size,
2368 char *options,
2369 size_t options_size)
2370 {
2371 size_t len;
2372 int ret;
2373
2374 /* The first four tokens are required */
2375
2376 len = next_token(&buf);
2377 if (!len)
2378 return -EINVAL;
2379 *mon_addrs_size = len + 1;
2380 *mon_addrs = buf;
2381
2382 buf += len;
2383
2384 len = copy_token(&buf, options, options_size);
2385 if (!len || len >= options_size)
2386 return -EINVAL;
2387
2388 ret = -ENOMEM;
2389 rbd_dev->pool_name = dup_token(&buf, NULL);
2390 if (!rbd_dev->pool_name)
2391 goto out_err;
2392
2393 rbd_dev->image_name = dup_token(&buf, &rbd_dev->image_name_len);
2394 if (!rbd_dev->image_name)
2395 goto out_err;
2396
2397 /* Create the name of the header object */
2398
2399 rbd_dev->header_name = kmalloc(rbd_dev->image_name_len
2400 + sizeof (RBD_SUFFIX),
2401 GFP_KERNEL);
2402 if (!rbd_dev->header_name)
2403 goto out_err;
2404 sprintf(rbd_dev->header_name, "%s%s", rbd_dev->image_name, RBD_SUFFIX);
2405
2406 /*
2407 * The snapshot name is optional. If none is is supplied,
2408 * we use the default value.
2409 */
2410 rbd_dev->snap_name = dup_token(&buf, &len);
2411 if (!rbd_dev->snap_name)
2412 goto out_err;
2413 if (!len) {
2414 /* Replace the empty name with the default */
2415 kfree(rbd_dev->snap_name);
2416 rbd_dev->snap_name
2417 = kmalloc(sizeof (RBD_SNAP_HEAD_NAME), GFP_KERNEL);
2418 if (!rbd_dev->snap_name)
2419 goto out_err;
2420
2421 memcpy(rbd_dev->snap_name, RBD_SNAP_HEAD_NAME,
2422 sizeof (RBD_SNAP_HEAD_NAME));
2423 }
2424
2425 return 0;
2426
2427 out_err:
2428 kfree(rbd_dev->header_name);
2429 kfree(rbd_dev->image_name);
2430 kfree(rbd_dev->pool_name);
2431 rbd_dev->pool_name = NULL;
2432
2433 return ret;
2434 }
2435
2436 static ssize_t rbd_add(struct bus_type *bus,
2437 const char *buf,
2438 size_t count)
2439 {
2440 char *options;
2441 struct rbd_device *rbd_dev = NULL;
2442 const char *mon_addrs = NULL;
2443 size_t mon_addrs_size = 0;
2444 struct ceph_osd_client *osdc;
2445 int rc = -ENOMEM;
2446
2447 if (!try_module_get(THIS_MODULE))
2448 return -ENODEV;
2449
2450 options = kmalloc(count, GFP_KERNEL);
2451 if (!options)
2452 goto err_nomem;
2453 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
2454 if (!rbd_dev)
2455 goto err_nomem;
2456
2457 /* static rbd_device initialization */
2458 spin_lock_init(&rbd_dev->lock);
2459 INIT_LIST_HEAD(&rbd_dev->node);
2460 INIT_LIST_HEAD(&rbd_dev->snaps);
2461 init_rwsem(&rbd_dev->header_rwsem);
2462
2463 init_rwsem(&rbd_dev->header_rwsem);
2464
2465 /* generate unique id: find highest unique id, add one */
2466 rbd_id_get(rbd_dev);
2467
2468 /* Fill in the device name, now that we have its id. */
2469 BUILD_BUG_ON(DEV_NAME_LEN
2470 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
2471 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->id);
2472
2473 /* parse add command */
2474 rc = rbd_add_parse_args(rbd_dev, buf, &mon_addrs, &mon_addrs_size,
2475 options, count);
2476 if (rc)
2477 goto err_put_id;
2478
2479 rbd_dev->rbd_client = rbd_get_client(mon_addrs, mon_addrs_size - 1,
2480 options);
2481 if (IS_ERR(rbd_dev->rbd_client)) {
2482 rc = PTR_ERR(rbd_dev->rbd_client);
2483 goto err_put_id;
2484 }
2485
2486 /* pick the pool */
2487 osdc = &rbd_dev->rbd_client->client->osdc;
2488 rc = ceph_pg_poolid_by_name(osdc->osdmap, rbd_dev->pool_name);
2489 if (rc < 0)
2490 goto err_out_client;
2491 rbd_dev->pool_id = rc;
2492
2493 /* register our block device */
2494 rc = register_blkdev(0, rbd_dev->name);
2495 if (rc < 0)
2496 goto err_out_client;
2497 rbd_dev->major = rc;
2498
2499 rc = rbd_bus_add_dev(rbd_dev);
2500 if (rc)
2501 goto err_out_blkdev;
2502
2503 /*
2504 * At this point cleanup in the event of an error is the job
2505 * of the sysfs code (initiated by rbd_bus_del_dev()).
2506 *
2507 * Set up and announce blkdev mapping.
2508 */
2509 rc = rbd_init_disk(rbd_dev);
2510 if (rc)
2511 goto err_out_bus;
2512
2513 rc = rbd_init_watch_dev(rbd_dev);
2514 if (rc)
2515 goto err_out_bus;
2516
2517 return count;
2518
2519 err_out_bus:
2520 /* this will also clean up rest of rbd_dev stuff */
2521
2522 rbd_bus_del_dev(rbd_dev);
2523 kfree(options);
2524 return rc;
2525
2526 err_out_blkdev:
2527 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2528 err_out_client:
2529 rbd_put_client(rbd_dev);
2530 err_put_id:
2531 if (rbd_dev->pool_name) {
2532 kfree(rbd_dev->snap_name);
2533 kfree(rbd_dev->header_name);
2534 kfree(rbd_dev->image_name);
2535 kfree(rbd_dev->pool_name);
2536 }
2537 rbd_id_put(rbd_dev);
2538 err_nomem:
2539 kfree(rbd_dev);
2540 kfree(options);
2541
2542 dout("Error adding device %s\n", buf);
2543 module_put(THIS_MODULE);
2544
2545 return (ssize_t) rc;
2546 }
2547
2548 static struct rbd_device *__rbd_get_dev(unsigned long id)
2549 {
2550 struct list_head *tmp;
2551 struct rbd_device *rbd_dev;
2552
2553 spin_lock(&rbd_dev_list_lock);
2554 list_for_each(tmp, &rbd_dev_list) {
2555 rbd_dev = list_entry(tmp, struct rbd_device, node);
2556 if (rbd_dev->id == id) {
2557 spin_unlock(&rbd_dev_list_lock);
2558 return rbd_dev;
2559 }
2560 }
2561 spin_unlock(&rbd_dev_list_lock);
2562 return NULL;
2563 }
2564
2565 static void rbd_dev_release(struct device *dev)
2566 {
2567 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2568
2569 if (rbd_dev->watch_request) {
2570 struct ceph_client *client = rbd_dev->rbd_client->client;
2571
2572 ceph_osdc_unregister_linger_request(&client->osdc,
2573 rbd_dev->watch_request);
2574 }
2575 if (rbd_dev->watch_event)
2576 rbd_req_sync_unwatch(rbd_dev, rbd_dev->header_name);
2577
2578 rbd_put_client(rbd_dev);
2579
2580 /* clean up and free blkdev */
2581 rbd_free_disk(rbd_dev);
2582 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2583
2584 /* done with the id, and with the rbd_dev */
2585 kfree(rbd_dev->snap_name);
2586 kfree(rbd_dev->header_name);
2587 kfree(rbd_dev->pool_name);
2588 kfree(rbd_dev->image_name);
2589 rbd_id_put(rbd_dev);
2590 kfree(rbd_dev);
2591
2592 /* release module ref */
2593 module_put(THIS_MODULE);
2594 }
2595
2596 static ssize_t rbd_remove(struct bus_type *bus,
2597 const char *buf,
2598 size_t count)
2599 {
2600 struct rbd_device *rbd_dev = NULL;
2601 int target_id, rc;
2602 unsigned long ul;
2603 int ret = count;
2604
2605 rc = strict_strtoul(buf, 10, &ul);
2606 if (rc)
2607 return rc;
2608
2609 /* convert to int; abort if we lost anything in the conversion */
2610 target_id = (int) ul;
2611 if (target_id != ul)
2612 return -EINVAL;
2613
2614 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2615
2616 rbd_dev = __rbd_get_dev(target_id);
2617 if (!rbd_dev) {
2618 ret = -ENOENT;
2619 goto done;
2620 }
2621
2622 __rbd_remove_all_snaps(rbd_dev);
2623 rbd_bus_del_dev(rbd_dev);
2624
2625 done:
2626 mutex_unlock(&ctl_mutex);
2627 return ret;
2628 }
2629
2630 static ssize_t rbd_snap_add(struct device *dev,
2631 struct device_attribute *attr,
2632 const char *buf,
2633 size_t count)
2634 {
2635 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2636 int ret;
2637 char *name = kmalloc(count + 1, GFP_KERNEL);
2638 if (!name)
2639 return -ENOMEM;
2640
2641 snprintf(name, count, "%s", buf);
2642
2643 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2644
2645 ret = rbd_header_add_snap(rbd_dev,
2646 name, GFP_KERNEL);
2647 if (ret < 0)
2648 goto err_unlock;
2649
2650 ret = __rbd_refresh_header(rbd_dev);
2651 if (ret < 0)
2652 goto err_unlock;
2653
2654 /* shouldn't hold ctl_mutex when notifying.. notify might
2655 trigger a watch callback that would need to get that mutex */
2656 mutex_unlock(&ctl_mutex);
2657
2658 /* make a best effort, don't error if failed */
2659 rbd_req_sync_notify(rbd_dev, rbd_dev->header_name);
2660
2661 ret = count;
2662 kfree(name);
2663 return ret;
2664
2665 err_unlock:
2666 mutex_unlock(&ctl_mutex);
2667 kfree(name);
2668 return ret;
2669 }
2670
2671 /*
2672 * create control files in sysfs
2673 * /sys/bus/rbd/...
2674 */
2675 static int rbd_sysfs_init(void)
2676 {
2677 int ret;
2678
2679 ret = device_register(&rbd_root_dev);
2680 if (ret < 0)
2681 return ret;
2682
2683 ret = bus_register(&rbd_bus_type);
2684 if (ret < 0)
2685 device_unregister(&rbd_root_dev);
2686
2687 return ret;
2688 }
2689
2690 static void rbd_sysfs_cleanup(void)
2691 {
2692 bus_unregister(&rbd_bus_type);
2693 device_unregister(&rbd_root_dev);
2694 }
2695
2696 int __init rbd_init(void)
2697 {
2698 int rc;
2699
2700 rc = rbd_sysfs_init();
2701 if (rc)
2702 return rc;
2703 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
2704 return 0;
2705 }
2706
2707 void __exit rbd_exit(void)
2708 {
2709 rbd_sysfs_cleanup();
2710 }
2711
2712 module_init(rbd_init);
2713 module_exit(rbd_exit);
2714
2715 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
2716 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
2717 MODULE_DESCRIPTION("rados block device");
2718
2719 /* following authorship retained from original osdblk.c */
2720 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
2721
2722 MODULE_LICENSE("GPL");
This page took 0.087475 seconds and 5 git commands to generate.