Merge tag 'perf-urgent-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402
403 static struct attribute *rbd_bus_attrs[] = {
404 &bus_attr_add.attr,
405 &bus_attr_remove.attr,
406 NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409
410 static struct bus_type rbd_bus_type = {
411 .name = "rbd",
412 .bus_groups = rbd_bus_groups,
413 };
414
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418
419 static struct device rbd_root_dev = {
420 .init_name = "rbd",
421 .release = rbd_root_dev_release,
422 };
423
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427 struct va_format vaf;
428 va_list args;
429
430 va_start(args, fmt);
431 vaf.fmt = fmt;
432 vaf.va = &args;
433
434 if (!rbd_dev)
435 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436 else if (rbd_dev->disk)
437 printk(KERN_WARNING "%s: %s: %pV\n",
438 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439 else if (rbd_dev->spec && rbd_dev->spec->image_name)
440 printk(KERN_WARNING "%s: image %s: %pV\n",
441 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442 else if (rbd_dev->spec && rbd_dev->spec->image_id)
443 printk(KERN_WARNING "%s: id %s: %pV\n",
444 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445 else /* punt */
446 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447 RBD_DRV_NAME, rbd_dev, &vaf);
448 va_end(args);
449 }
450
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr) \
453 if (unlikely(!(expr))) { \
454 printk(KERN_ERR "\nAssertion failure in %s() " \
455 "at line %d:\n\n" \
456 "\trbd_assert(%s);\n\n", \
457 __func__, __LINE__, #expr); \
458 BUG(); \
459 }
460 #else /* !RBD_DEBUG */
461 # define rbd_assert(expr) ((void) 0)
462 #endif /* !RBD_DEBUG */
463
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472 u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474 u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476 u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482 bool removing = false;
483
484 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485 return -EROFS;
486
487 spin_lock_irq(&rbd_dev->lock);
488 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489 removing = true;
490 else
491 rbd_dev->open_count++;
492 spin_unlock_irq(&rbd_dev->lock);
493 if (removing)
494 return -ENOENT;
495
496 (void) get_device(&rbd_dev->dev);
497 set_device_ro(bdev, rbd_dev->mapping.read_only);
498
499 return 0;
500 }
501
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504 struct rbd_device *rbd_dev = disk->private_data;
505 unsigned long open_count_before;
506
507 spin_lock_irq(&rbd_dev->lock);
508 open_count_before = rbd_dev->open_count--;
509 spin_unlock_irq(&rbd_dev->lock);
510 rbd_assert(open_count_before > 0);
511
512 put_device(&rbd_dev->dev);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts. Caller holds client_mutex.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539 if (IS_ERR(rbdc->client))
540 goto out_rbdc;
541 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542
543 ret = ceph_open_session(rbdc->client);
544 if (ret < 0)
545 goto out_client;
546
547 spin_lock(&rbd_client_list_lock);
548 list_add_tail(&rbdc->node, &rbd_client_list);
549 spin_unlock(&rbd_client_list_lock);
550
551 dout("%s: rbdc %p\n", __func__, rbdc);
552
553 return rbdc;
554 out_client:
555 ceph_destroy_client(rbdc->client);
556 out_rbdc:
557 kfree(rbdc);
558 out_opt:
559 if (ceph_opts)
560 ceph_destroy_options(ceph_opts);
561 dout("%s: error %d\n", __func__, ret);
562
563 return ERR_PTR(ret);
564 }
565
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568 kref_get(&rbdc->kref);
569
570 return rbdc;
571 }
572
573 /*
574 * Find a ceph client with specific addr and configuration. If
575 * found, bump its reference count.
576 */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579 struct rbd_client *client_node;
580 bool found = false;
581
582 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583 return NULL;
584
585 spin_lock(&rbd_client_list_lock);
586 list_for_each_entry(client_node, &rbd_client_list, node) {
587 if (!ceph_compare_options(ceph_opts, client_node->client)) {
588 __rbd_get_client(client_node);
589
590 found = true;
591 break;
592 }
593 }
594 spin_unlock(&rbd_client_list_lock);
595
596 return found ? client_node : NULL;
597 }
598
599 /*
600 * mount options
601 */
602 enum {
603 Opt_last_int,
604 /* int args above */
605 Opt_last_string,
606 /* string args above */
607 Opt_read_only,
608 Opt_read_write,
609 /* Boolean args above */
610 Opt_last_bool,
611 };
612
613 static match_table_t rbd_opts_tokens = {
614 /* int args above */
615 /* string args above */
616 {Opt_read_only, "read_only"},
617 {Opt_read_only, "ro"}, /* Alternate spelling */
618 {Opt_read_write, "read_write"},
619 {Opt_read_write, "rw"}, /* Alternate spelling */
620 /* Boolean args above */
621 {-1, NULL}
622 };
623
624 struct rbd_options {
625 bool read_only;
626 };
627
628 #define RBD_READ_ONLY_DEFAULT false
629
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632 struct rbd_options *rbd_opts = private;
633 substring_t argstr[MAX_OPT_ARGS];
634 int token, intval, ret;
635
636 token = match_token(c, rbd_opts_tokens, argstr);
637 if (token < 0)
638 return -EINVAL;
639
640 if (token < Opt_last_int) {
641 ret = match_int(&argstr[0], &intval);
642 if (ret < 0) {
643 pr_err("bad mount option arg (not int) "
644 "at '%s'\n", c);
645 return ret;
646 }
647 dout("got int token %d val %d\n", token, intval);
648 } else if (token > Opt_last_int && token < Opt_last_string) {
649 dout("got string token %d val %s\n", token,
650 argstr[0].from);
651 } else if (token > Opt_last_string && token < Opt_last_bool) {
652 dout("got Boolean token %d\n", token);
653 } else {
654 dout("got token %d\n", token);
655 }
656
657 switch (token) {
658 case Opt_read_only:
659 rbd_opts->read_only = true;
660 break;
661 case Opt_read_write:
662 rbd_opts->read_only = false;
663 break;
664 default:
665 rbd_assert(false);
666 break;
667 }
668 return 0;
669 }
670
671 /*
672 * Get a ceph client with specific addr and configuration, if one does
673 * not exist create it. Either way, ceph_opts is consumed by this
674 * function.
675 */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678 struct rbd_client *rbdc;
679
680 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681 rbdc = rbd_client_find(ceph_opts);
682 if (rbdc) /* using an existing client */
683 ceph_destroy_options(ceph_opts);
684 else
685 rbdc = rbd_client_create(ceph_opts);
686 mutex_unlock(&client_mutex);
687
688 return rbdc;
689 }
690
691 /*
692 * Destroy ceph client
693 *
694 * Caller must hold rbd_client_list_lock.
695 */
696 static void rbd_client_release(struct kref *kref)
697 {
698 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699
700 dout("%s: rbdc %p\n", __func__, rbdc);
701 spin_lock(&rbd_client_list_lock);
702 list_del(&rbdc->node);
703 spin_unlock(&rbd_client_list_lock);
704
705 ceph_destroy_client(rbdc->client);
706 kfree(rbdc);
707 }
708
709 /*
710 * Drop reference to ceph client node. If it's not referenced anymore, release
711 * it.
712 */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715 if (rbdc)
716 kref_put(&rbdc->kref, rbd_client_release);
717 }
718
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721 return image_format == 1 || image_format == 2;
722 }
723
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726 size_t size;
727 u32 snap_count;
728
729 /* The header has to start with the magic rbd header text */
730 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731 return false;
732
733 /* The bio layer requires at least sector-sized I/O */
734
735 if (ondisk->options.order < SECTOR_SHIFT)
736 return false;
737
738 /* If we use u64 in a few spots we may be able to loosen this */
739
740 if (ondisk->options.order > 8 * sizeof (int) - 1)
741 return false;
742
743 /*
744 * The size of a snapshot header has to fit in a size_t, and
745 * that limits the number of snapshots.
746 */
747 snap_count = le32_to_cpu(ondisk->snap_count);
748 size = SIZE_MAX - sizeof (struct ceph_snap_context);
749 if (snap_count > size / sizeof (__le64))
750 return false;
751
752 /*
753 * Not only that, but the size of the entire the snapshot
754 * header must also be representable in a size_t.
755 */
756 size -= snap_count * sizeof (__le64);
757 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758 return false;
759
760 return true;
761 }
762
763 /*
764 * Fill an rbd image header with information from the given format 1
765 * on-disk header.
766 */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768 struct rbd_image_header_ondisk *ondisk)
769 {
770 struct rbd_image_header *header = &rbd_dev->header;
771 bool first_time = header->object_prefix == NULL;
772 struct ceph_snap_context *snapc;
773 char *object_prefix = NULL;
774 char *snap_names = NULL;
775 u64 *snap_sizes = NULL;
776 u32 snap_count;
777 size_t size;
778 int ret = -ENOMEM;
779 u32 i;
780
781 /* Allocate this now to avoid having to handle failure below */
782
783 if (first_time) {
784 size_t len;
785
786 len = strnlen(ondisk->object_prefix,
787 sizeof (ondisk->object_prefix));
788 object_prefix = kmalloc(len + 1, GFP_KERNEL);
789 if (!object_prefix)
790 return -ENOMEM;
791 memcpy(object_prefix, ondisk->object_prefix, len);
792 object_prefix[len] = '\0';
793 }
794
795 /* Allocate the snapshot context and fill it in */
796
797 snap_count = le32_to_cpu(ondisk->snap_count);
798 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799 if (!snapc)
800 goto out_err;
801 snapc->seq = le64_to_cpu(ondisk->snap_seq);
802 if (snap_count) {
803 struct rbd_image_snap_ondisk *snaps;
804 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805
806 /* We'll keep a copy of the snapshot names... */
807
808 if (snap_names_len > (u64)SIZE_MAX)
809 goto out_2big;
810 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811 if (!snap_names)
812 goto out_err;
813
814 /* ...as well as the array of their sizes. */
815
816 size = snap_count * sizeof (*header->snap_sizes);
817 snap_sizes = kmalloc(size, GFP_KERNEL);
818 if (!snap_sizes)
819 goto out_err;
820
821 /*
822 * Copy the names, and fill in each snapshot's id
823 * and size.
824 *
825 * Note that rbd_dev_v1_header_info() guarantees the
826 * ondisk buffer we're working with has
827 * snap_names_len bytes beyond the end of the
828 * snapshot id array, this memcpy() is safe.
829 */
830 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831 snaps = ondisk->snaps;
832 for (i = 0; i < snap_count; i++) {
833 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835 }
836 }
837
838 /* We won't fail any more, fill in the header */
839
840 if (first_time) {
841 header->object_prefix = object_prefix;
842 header->obj_order = ondisk->options.order;
843 header->crypt_type = ondisk->options.crypt_type;
844 header->comp_type = ondisk->options.comp_type;
845 /* The rest aren't used for format 1 images */
846 header->stripe_unit = 0;
847 header->stripe_count = 0;
848 header->features = 0;
849 } else {
850 ceph_put_snap_context(header->snapc);
851 kfree(header->snap_names);
852 kfree(header->snap_sizes);
853 }
854
855 /* The remaining fields always get updated (when we refresh) */
856
857 header->image_size = le64_to_cpu(ondisk->image_size);
858 header->snapc = snapc;
859 header->snap_names = snap_names;
860 header->snap_sizes = snap_sizes;
861
862 /* Make sure mapping size is consistent with header info */
863
864 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865 if (rbd_dev->mapping.size != header->image_size)
866 rbd_dev->mapping.size = header->image_size;
867
868 return 0;
869 out_2big:
870 ret = -EIO;
871 out_err:
872 kfree(snap_sizes);
873 kfree(snap_names);
874 ceph_put_snap_context(snapc);
875 kfree(object_prefix);
876
877 return ret;
878 }
879
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882 const char *snap_name;
883
884 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885
886 /* Skip over names until we find the one we are looking for */
887
888 snap_name = rbd_dev->header.snap_names;
889 while (which--)
890 snap_name += strlen(snap_name) + 1;
891
892 return kstrdup(snap_name, GFP_KERNEL);
893 }
894
895 /*
896 * Snapshot id comparison function for use with qsort()/bsearch().
897 * Note that result is for snapshots in *descending* order.
898 */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901 u64 snap_id1 = *(u64 *)s1;
902 u64 snap_id2 = *(u64 *)s2;
903
904 if (snap_id1 < snap_id2)
905 return 1;
906 return snap_id1 == snap_id2 ? 0 : -1;
907 }
908
909 /*
910 * Search a snapshot context to see if the given snapshot id is
911 * present.
912 *
913 * Returns the position of the snapshot id in the array if it's found,
914 * or BAD_SNAP_INDEX otherwise.
915 *
916 * Note: The snapshot array is in kept sorted (by the osd) in
917 * reverse order, highest snapshot id first.
918 */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922 u64 *found;
923
924 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925 sizeof (snap_id), snapid_compare_reverse);
926
927 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931 u64 snap_id)
932 {
933 u32 which;
934
935 which = rbd_dev_snap_index(rbd_dev, snap_id);
936 if (which == BAD_SNAP_INDEX)
937 return NULL;
938
939 return _rbd_dev_v1_snap_name(rbd_dev, which);
940 }
941
942 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
943 {
944 if (snap_id == CEPH_NOSNAP)
945 return RBD_SNAP_HEAD_NAME;
946
947 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
948 if (rbd_dev->image_format == 1)
949 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
950
951 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
952 }
953
954 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
955 u64 *snap_size)
956 {
957 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
958 if (snap_id == CEPH_NOSNAP) {
959 *snap_size = rbd_dev->header.image_size;
960 } else if (rbd_dev->image_format == 1) {
961 u32 which;
962
963 which = rbd_dev_snap_index(rbd_dev, snap_id);
964 if (which == BAD_SNAP_INDEX)
965 return -ENOENT;
966
967 *snap_size = rbd_dev->header.snap_sizes[which];
968 } else {
969 u64 size = 0;
970 int ret;
971
972 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
973 if (ret)
974 return ret;
975
976 *snap_size = size;
977 }
978 return 0;
979 }
980
981 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
982 u64 *snap_features)
983 {
984 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
985 if (snap_id == CEPH_NOSNAP) {
986 *snap_features = rbd_dev->header.features;
987 } else if (rbd_dev->image_format == 1) {
988 *snap_features = 0; /* No features for format 1 */
989 } else {
990 u64 features = 0;
991 int ret;
992
993 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
994 if (ret)
995 return ret;
996
997 *snap_features = features;
998 }
999 return 0;
1000 }
1001
1002 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1003 {
1004 u64 snap_id = rbd_dev->spec->snap_id;
1005 u64 size = 0;
1006 u64 features = 0;
1007 int ret;
1008
1009 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1010 if (ret)
1011 return ret;
1012 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1013 if (ret)
1014 return ret;
1015
1016 rbd_dev->mapping.size = size;
1017 rbd_dev->mapping.features = features;
1018
1019 return 0;
1020 }
1021
1022 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1023 {
1024 rbd_dev->mapping.size = 0;
1025 rbd_dev->mapping.features = 0;
1026 }
1027
1028 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1029 {
1030 char *name;
1031 u64 segment;
1032 int ret;
1033 char *name_format;
1034
1035 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1036 if (!name)
1037 return NULL;
1038 segment = offset >> rbd_dev->header.obj_order;
1039 name_format = "%s.%012llx";
1040 if (rbd_dev->image_format == 2)
1041 name_format = "%s.%016llx";
1042 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1043 rbd_dev->header.object_prefix, segment);
1044 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1045 pr_err("error formatting segment name for #%llu (%d)\n",
1046 segment, ret);
1047 kfree(name);
1048 name = NULL;
1049 }
1050
1051 return name;
1052 }
1053
1054 static void rbd_segment_name_free(const char *name)
1055 {
1056 /* The explicit cast here is needed to drop the const qualifier */
1057
1058 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1059 }
1060
1061 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1062 {
1063 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1064
1065 return offset & (segment_size - 1);
1066 }
1067
1068 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1069 u64 offset, u64 length)
1070 {
1071 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073 offset &= segment_size - 1;
1074
1075 rbd_assert(length <= U64_MAX - offset);
1076 if (offset + length > segment_size)
1077 length = segment_size - offset;
1078
1079 return length;
1080 }
1081
1082 /*
1083 * returns the size of an object in the image
1084 */
1085 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1086 {
1087 return 1 << header->obj_order;
1088 }
1089
1090 /*
1091 * bio helpers
1092 */
1093
1094 static void bio_chain_put(struct bio *chain)
1095 {
1096 struct bio *tmp;
1097
1098 while (chain) {
1099 tmp = chain;
1100 chain = chain->bi_next;
1101 bio_put(tmp);
1102 }
1103 }
1104
1105 /*
1106 * zeros a bio chain, starting at specific offset
1107 */
1108 static void zero_bio_chain(struct bio *chain, int start_ofs)
1109 {
1110 struct bio_vec *bv;
1111 unsigned long flags;
1112 void *buf;
1113 int i;
1114 int pos = 0;
1115
1116 while (chain) {
1117 bio_for_each_segment(bv, chain, i) {
1118 if (pos + bv->bv_len > start_ofs) {
1119 int remainder = max(start_ofs - pos, 0);
1120 buf = bvec_kmap_irq(bv, &flags);
1121 memset(buf + remainder, 0,
1122 bv->bv_len - remainder);
1123 flush_dcache_page(bv->bv_page);
1124 bvec_kunmap_irq(buf, &flags);
1125 }
1126 pos += bv->bv_len;
1127 }
1128
1129 chain = chain->bi_next;
1130 }
1131 }
1132
1133 /*
1134 * similar to zero_bio_chain(), zeros data defined by a page array,
1135 * starting at the given byte offset from the start of the array and
1136 * continuing up to the given end offset. The pages array is
1137 * assumed to be big enough to hold all bytes up to the end.
1138 */
1139 static void zero_pages(struct page **pages, u64 offset, u64 end)
1140 {
1141 struct page **page = &pages[offset >> PAGE_SHIFT];
1142
1143 rbd_assert(end > offset);
1144 rbd_assert(end - offset <= (u64)SIZE_MAX);
1145 while (offset < end) {
1146 size_t page_offset;
1147 size_t length;
1148 unsigned long flags;
1149 void *kaddr;
1150
1151 page_offset = offset & ~PAGE_MASK;
1152 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1153 local_irq_save(flags);
1154 kaddr = kmap_atomic(*page);
1155 memset(kaddr + page_offset, 0, length);
1156 flush_dcache_page(*page);
1157 kunmap_atomic(kaddr);
1158 local_irq_restore(flags);
1159
1160 offset += length;
1161 page++;
1162 }
1163 }
1164
1165 /*
1166 * Clone a portion of a bio, starting at the given byte offset
1167 * and continuing for the number of bytes indicated.
1168 */
1169 static struct bio *bio_clone_range(struct bio *bio_src,
1170 unsigned int offset,
1171 unsigned int len,
1172 gfp_t gfpmask)
1173 {
1174 struct bio_vec *bv;
1175 unsigned int resid;
1176 unsigned short idx;
1177 unsigned int voff;
1178 unsigned short end_idx;
1179 unsigned short vcnt;
1180 struct bio *bio;
1181
1182 /* Handle the easy case for the caller */
1183
1184 if (!offset && len == bio_src->bi_size)
1185 return bio_clone(bio_src, gfpmask);
1186
1187 if (WARN_ON_ONCE(!len))
1188 return NULL;
1189 if (WARN_ON_ONCE(len > bio_src->bi_size))
1190 return NULL;
1191 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1192 return NULL;
1193
1194 /* Find first affected segment... */
1195
1196 resid = offset;
1197 bio_for_each_segment(bv, bio_src, idx) {
1198 if (resid < bv->bv_len)
1199 break;
1200 resid -= bv->bv_len;
1201 }
1202 voff = resid;
1203
1204 /* ...and the last affected segment */
1205
1206 resid += len;
1207 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1208 if (resid <= bv->bv_len)
1209 break;
1210 resid -= bv->bv_len;
1211 }
1212 vcnt = end_idx - idx + 1;
1213
1214 /* Build the clone */
1215
1216 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1217 if (!bio)
1218 return NULL; /* ENOMEM */
1219
1220 bio->bi_bdev = bio_src->bi_bdev;
1221 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1222 bio->bi_rw = bio_src->bi_rw;
1223 bio->bi_flags |= 1 << BIO_CLONED;
1224
1225 /*
1226 * Copy over our part of the bio_vec, then update the first
1227 * and last (or only) entries.
1228 */
1229 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1230 vcnt * sizeof (struct bio_vec));
1231 bio->bi_io_vec[0].bv_offset += voff;
1232 if (vcnt > 1) {
1233 bio->bi_io_vec[0].bv_len -= voff;
1234 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1235 } else {
1236 bio->bi_io_vec[0].bv_len = len;
1237 }
1238
1239 bio->bi_vcnt = vcnt;
1240 bio->bi_size = len;
1241 bio->bi_idx = 0;
1242
1243 return bio;
1244 }
1245
1246 /*
1247 * Clone a portion of a bio chain, starting at the given byte offset
1248 * into the first bio in the source chain and continuing for the
1249 * number of bytes indicated. The result is another bio chain of
1250 * exactly the given length, or a null pointer on error.
1251 *
1252 * The bio_src and offset parameters are both in-out. On entry they
1253 * refer to the first source bio and the offset into that bio where
1254 * the start of data to be cloned is located.
1255 *
1256 * On return, bio_src is updated to refer to the bio in the source
1257 * chain that contains first un-cloned byte, and *offset will
1258 * contain the offset of that byte within that bio.
1259 */
1260 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1261 unsigned int *offset,
1262 unsigned int len,
1263 gfp_t gfpmask)
1264 {
1265 struct bio *bi = *bio_src;
1266 unsigned int off = *offset;
1267 struct bio *chain = NULL;
1268 struct bio **end;
1269
1270 /* Build up a chain of clone bios up to the limit */
1271
1272 if (!bi || off >= bi->bi_size || !len)
1273 return NULL; /* Nothing to clone */
1274
1275 end = &chain;
1276 while (len) {
1277 unsigned int bi_size;
1278 struct bio *bio;
1279
1280 if (!bi) {
1281 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1282 goto out_err; /* EINVAL; ran out of bio's */
1283 }
1284 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1285 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1286 if (!bio)
1287 goto out_err; /* ENOMEM */
1288
1289 *end = bio;
1290 end = &bio->bi_next;
1291
1292 off += bi_size;
1293 if (off == bi->bi_size) {
1294 bi = bi->bi_next;
1295 off = 0;
1296 }
1297 len -= bi_size;
1298 }
1299 *bio_src = bi;
1300 *offset = off;
1301
1302 return chain;
1303 out_err:
1304 bio_chain_put(chain);
1305
1306 return NULL;
1307 }
1308
1309 /*
1310 * The default/initial value for all object request flags is 0. For
1311 * each flag, once its value is set to 1 it is never reset to 0
1312 * again.
1313 */
1314 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1315 {
1316 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1317 struct rbd_device *rbd_dev;
1318
1319 rbd_dev = obj_request->img_request->rbd_dev;
1320 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1321 obj_request);
1322 }
1323 }
1324
1325 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1326 {
1327 smp_mb();
1328 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1329 }
1330
1331 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1332 {
1333 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1334 struct rbd_device *rbd_dev = NULL;
1335
1336 if (obj_request_img_data_test(obj_request))
1337 rbd_dev = obj_request->img_request->rbd_dev;
1338 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1339 obj_request);
1340 }
1341 }
1342
1343 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1344 {
1345 smp_mb();
1346 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1347 }
1348
1349 /*
1350 * This sets the KNOWN flag after (possibly) setting the EXISTS
1351 * flag. The latter is set based on the "exists" value provided.
1352 *
1353 * Note that for our purposes once an object exists it never goes
1354 * away again. It's possible that the response from two existence
1355 * checks are separated by the creation of the target object, and
1356 * the first ("doesn't exist") response arrives *after* the second
1357 * ("does exist"). In that case we ignore the second one.
1358 */
1359 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1360 bool exists)
1361 {
1362 if (exists)
1363 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1364 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1365 smp_mb();
1366 }
1367
1368 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1369 {
1370 smp_mb();
1371 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1372 }
1373
1374 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1375 {
1376 smp_mb();
1377 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1378 }
1379
1380 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1381 {
1382 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1383 atomic_read(&obj_request->kref.refcount));
1384 kref_get(&obj_request->kref);
1385 }
1386
1387 static void rbd_obj_request_destroy(struct kref *kref);
1388 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1389 {
1390 rbd_assert(obj_request != NULL);
1391 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1392 atomic_read(&obj_request->kref.refcount));
1393 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1394 }
1395
1396 static bool img_request_child_test(struct rbd_img_request *img_request);
1397 static void rbd_parent_request_destroy(struct kref *kref);
1398 static void rbd_img_request_destroy(struct kref *kref);
1399 static void rbd_img_request_put(struct rbd_img_request *img_request)
1400 {
1401 rbd_assert(img_request != NULL);
1402 dout("%s: img %p (was %d)\n", __func__, img_request,
1403 atomic_read(&img_request->kref.refcount));
1404 if (img_request_child_test(img_request))
1405 kref_put(&img_request->kref, rbd_parent_request_destroy);
1406 else
1407 kref_put(&img_request->kref, rbd_img_request_destroy);
1408 }
1409
1410 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1411 struct rbd_obj_request *obj_request)
1412 {
1413 rbd_assert(obj_request->img_request == NULL);
1414
1415 /* Image request now owns object's original reference */
1416 obj_request->img_request = img_request;
1417 obj_request->which = img_request->obj_request_count;
1418 rbd_assert(!obj_request_img_data_test(obj_request));
1419 obj_request_img_data_set(obj_request);
1420 rbd_assert(obj_request->which != BAD_WHICH);
1421 img_request->obj_request_count++;
1422 list_add_tail(&obj_request->links, &img_request->obj_requests);
1423 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1424 obj_request->which);
1425 }
1426
1427 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1428 struct rbd_obj_request *obj_request)
1429 {
1430 rbd_assert(obj_request->which != BAD_WHICH);
1431
1432 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1433 obj_request->which);
1434 list_del(&obj_request->links);
1435 rbd_assert(img_request->obj_request_count > 0);
1436 img_request->obj_request_count--;
1437 rbd_assert(obj_request->which == img_request->obj_request_count);
1438 obj_request->which = BAD_WHICH;
1439 rbd_assert(obj_request_img_data_test(obj_request));
1440 rbd_assert(obj_request->img_request == img_request);
1441 obj_request->img_request = NULL;
1442 obj_request->callback = NULL;
1443 rbd_obj_request_put(obj_request);
1444 }
1445
1446 static bool obj_request_type_valid(enum obj_request_type type)
1447 {
1448 switch (type) {
1449 case OBJ_REQUEST_NODATA:
1450 case OBJ_REQUEST_BIO:
1451 case OBJ_REQUEST_PAGES:
1452 return true;
1453 default:
1454 return false;
1455 }
1456 }
1457
1458 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1459 struct rbd_obj_request *obj_request)
1460 {
1461 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1462
1463 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1464 }
1465
1466 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1467 {
1468
1469 dout("%s: img %p\n", __func__, img_request);
1470
1471 /*
1472 * If no error occurred, compute the aggregate transfer
1473 * count for the image request. We could instead use
1474 * atomic64_cmpxchg() to update it as each object request
1475 * completes; not clear which way is better off hand.
1476 */
1477 if (!img_request->result) {
1478 struct rbd_obj_request *obj_request;
1479 u64 xferred = 0;
1480
1481 for_each_obj_request(img_request, obj_request)
1482 xferred += obj_request->xferred;
1483 img_request->xferred = xferred;
1484 }
1485
1486 if (img_request->callback)
1487 img_request->callback(img_request);
1488 else
1489 rbd_img_request_put(img_request);
1490 }
1491
1492 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1493
1494 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1495 {
1496 dout("%s: obj %p\n", __func__, obj_request);
1497
1498 return wait_for_completion_interruptible(&obj_request->completion);
1499 }
1500
1501 /*
1502 * The default/initial value for all image request flags is 0. Each
1503 * is conditionally set to 1 at image request initialization time
1504 * and currently never change thereafter.
1505 */
1506 static void img_request_write_set(struct rbd_img_request *img_request)
1507 {
1508 set_bit(IMG_REQ_WRITE, &img_request->flags);
1509 smp_mb();
1510 }
1511
1512 static bool img_request_write_test(struct rbd_img_request *img_request)
1513 {
1514 smp_mb();
1515 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1516 }
1517
1518 static void img_request_child_set(struct rbd_img_request *img_request)
1519 {
1520 set_bit(IMG_REQ_CHILD, &img_request->flags);
1521 smp_mb();
1522 }
1523
1524 static void img_request_child_clear(struct rbd_img_request *img_request)
1525 {
1526 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1527 smp_mb();
1528 }
1529
1530 static bool img_request_child_test(struct rbd_img_request *img_request)
1531 {
1532 smp_mb();
1533 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1534 }
1535
1536 static void img_request_layered_set(struct rbd_img_request *img_request)
1537 {
1538 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1539 smp_mb();
1540 }
1541
1542 static void img_request_layered_clear(struct rbd_img_request *img_request)
1543 {
1544 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1545 smp_mb();
1546 }
1547
1548 static bool img_request_layered_test(struct rbd_img_request *img_request)
1549 {
1550 smp_mb();
1551 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1552 }
1553
1554 static void
1555 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1556 {
1557 u64 xferred = obj_request->xferred;
1558 u64 length = obj_request->length;
1559
1560 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1561 obj_request, obj_request->img_request, obj_request->result,
1562 xferred, length);
1563 /*
1564 * ENOENT means a hole in the image. We zero-fill the entire
1565 * length of the request. A short read also implies zero-fill
1566 * to the end of the request. An error requires the whole
1567 * length of the request to be reported finished with an error
1568 * to the block layer. In each case we update the xferred
1569 * count to indicate the whole request was satisfied.
1570 */
1571 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1572 if (obj_request->result == -ENOENT) {
1573 if (obj_request->type == OBJ_REQUEST_BIO)
1574 zero_bio_chain(obj_request->bio_list, 0);
1575 else
1576 zero_pages(obj_request->pages, 0, length);
1577 obj_request->result = 0;
1578 } else if (xferred < length && !obj_request->result) {
1579 if (obj_request->type == OBJ_REQUEST_BIO)
1580 zero_bio_chain(obj_request->bio_list, xferred);
1581 else
1582 zero_pages(obj_request->pages, xferred, length);
1583 }
1584 obj_request->xferred = length;
1585 obj_request_done_set(obj_request);
1586 }
1587
1588 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1589 {
1590 dout("%s: obj %p cb %p\n", __func__, obj_request,
1591 obj_request->callback);
1592 if (obj_request->callback)
1593 obj_request->callback(obj_request);
1594 else
1595 complete_all(&obj_request->completion);
1596 }
1597
1598 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1599 {
1600 dout("%s: obj %p\n", __func__, obj_request);
1601 obj_request_done_set(obj_request);
1602 }
1603
1604 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1605 {
1606 struct rbd_img_request *img_request = NULL;
1607 struct rbd_device *rbd_dev = NULL;
1608 bool layered = false;
1609
1610 if (obj_request_img_data_test(obj_request)) {
1611 img_request = obj_request->img_request;
1612 layered = img_request && img_request_layered_test(img_request);
1613 rbd_dev = img_request->rbd_dev;
1614 }
1615
1616 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1617 obj_request, img_request, obj_request->result,
1618 obj_request->xferred, obj_request->length);
1619 if (layered && obj_request->result == -ENOENT &&
1620 obj_request->img_offset < rbd_dev->parent_overlap)
1621 rbd_img_parent_read(obj_request);
1622 else if (img_request)
1623 rbd_img_obj_request_read_callback(obj_request);
1624 else
1625 obj_request_done_set(obj_request);
1626 }
1627
1628 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1629 {
1630 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1631 obj_request->result, obj_request->length);
1632 /*
1633 * There is no such thing as a successful short write. Set
1634 * it to our originally-requested length.
1635 */
1636 obj_request->xferred = obj_request->length;
1637 obj_request_done_set(obj_request);
1638 }
1639
1640 /*
1641 * For a simple stat call there's nothing to do. We'll do more if
1642 * this is part of a write sequence for a layered image.
1643 */
1644 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1645 {
1646 dout("%s: obj %p\n", __func__, obj_request);
1647 obj_request_done_set(obj_request);
1648 }
1649
1650 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1651 struct ceph_msg *msg)
1652 {
1653 struct rbd_obj_request *obj_request = osd_req->r_priv;
1654 u16 opcode;
1655
1656 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1657 rbd_assert(osd_req == obj_request->osd_req);
1658 if (obj_request_img_data_test(obj_request)) {
1659 rbd_assert(obj_request->img_request);
1660 rbd_assert(obj_request->which != BAD_WHICH);
1661 } else {
1662 rbd_assert(obj_request->which == BAD_WHICH);
1663 }
1664
1665 if (osd_req->r_result < 0)
1666 obj_request->result = osd_req->r_result;
1667
1668 BUG_ON(osd_req->r_num_ops > 2);
1669
1670 /*
1671 * We support a 64-bit length, but ultimately it has to be
1672 * passed to blk_end_request(), which takes an unsigned int.
1673 */
1674 obj_request->xferred = osd_req->r_reply_op_len[0];
1675 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1676 opcode = osd_req->r_ops[0].op;
1677 switch (opcode) {
1678 case CEPH_OSD_OP_READ:
1679 rbd_osd_read_callback(obj_request);
1680 break;
1681 case CEPH_OSD_OP_WRITE:
1682 rbd_osd_write_callback(obj_request);
1683 break;
1684 case CEPH_OSD_OP_STAT:
1685 rbd_osd_stat_callback(obj_request);
1686 break;
1687 case CEPH_OSD_OP_CALL:
1688 case CEPH_OSD_OP_NOTIFY_ACK:
1689 case CEPH_OSD_OP_WATCH:
1690 rbd_osd_trivial_callback(obj_request);
1691 break;
1692 default:
1693 rbd_warn(NULL, "%s: unsupported op %hu\n",
1694 obj_request->object_name, (unsigned short) opcode);
1695 break;
1696 }
1697
1698 if (obj_request_done_test(obj_request))
1699 rbd_obj_request_complete(obj_request);
1700 }
1701
1702 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1703 {
1704 struct rbd_img_request *img_request = obj_request->img_request;
1705 struct ceph_osd_request *osd_req = obj_request->osd_req;
1706 u64 snap_id;
1707
1708 rbd_assert(osd_req != NULL);
1709
1710 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1711 ceph_osdc_build_request(osd_req, obj_request->offset,
1712 NULL, snap_id, NULL);
1713 }
1714
1715 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1716 {
1717 struct rbd_img_request *img_request = obj_request->img_request;
1718 struct ceph_osd_request *osd_req = obj_request->osd_req;
1719 struct ceph_snap_context *snapc;
1720 struct timespec mtime = CURRENT_TIME;
1721
1722 rbd_assert(osd_req != NULL);
1723
1724 snapc = img_request ? img_request->snapc : NULL;
1725 ceph_osdc_build_request(osd_req, obj_request->offset,
1726 snapc, CEPH_NOSNAP, &mtime);
1727 }
1728
1729 static struct ceph_osd_request *rbd_osd_req_create(
1730 struct rbd_device *rbd_dev,
1731 bool write_request,
1732 struct rbd_obj_request *obj_request)
1733 {
1734 struct ceph_snap_context *snapc = NULL;
1735 struct ceph_osd_client *osdc;
1736 struct ceph_osd_request *osd_req;
1737
1738 if (obj_request_img_data_test(obj_request)) {
1739 struct rbd_img_request *img_request = obj_request->img_request;
1740
1741 rbd_assert(write_request ==
1742 img_request_write_test(img_request));
1743 if (write_request)
1744 snapc = img_request->snapc;
1745 }
1746
1747 /* Allocate and initialize the request, for the single op */
1748
1749 osdc = &rbd_dev->rbd_client->client->osdc;
1750 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1751 if (!osd_req)
1752 return NULL; /* ENOMEM */
1753
1754 if (write_request)
1755 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1756 else
1757 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1758
1759 osd_req->r_callback = rbd_osd_req_callback;
1760 osd_req->r_priv = obj_request;
1761
1762 osd_req->r_oid_len = strlen(obj_request->object_name);
1763 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1764 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1765
1766 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1767
1768 return osd_req;
1769 }
1770
1771 /*
1772 * Create a copyup osd request based on the information in the
1773 * object request supplied. A copyup request has two osd ops,
1774 * a copyup method call, and a "normal" write request.
1775 */
1776 static struct ceph_osd_request *
1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778 {
1779 struct rbd_img_request *img_request;
1780 struct ceph_snap_context *snapc;
1781 struct rbd_device *rbd_dev;
1782 struct ceph_osd_client *osdc;
1783 struct ceph_osd_request *osd_req;
1784
1785 rbd_assert(obj_request_img_data_test(obj_request));
1786 img_request = obj_request->img_request;
1787 rbd_assert(img_request);
1788 rbd_assert(img_request_write_test(img_request));
1789
1790 /* Allocate and initialize the request, for the two ops */
1791
1792 snapc = img_request->snapc;
1793 rbd_dev = img_request->rbd_dev;
1794 osdc = &rbd_dev->rbd_client->client->osdc;
1795 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1796 if (!osd_req)
1797 return NULL; /* ENOMEM */
1798
1799 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800 osd_req->r_callback = rbd_osd_req_callback;
1801 osd_req->r_priv = obj_request;
1802
1803 osd_req->r_oid_len = strlen(obj_request->object_name);
1804 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1805 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1806
1807 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1808
1809 return osd_req;
1810 }
1811
1812
1813 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1814 {
1815 ceph_osdc_put_request(osd_req);
1816 }
1817
1818 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1819
1820 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1821 u64 offset, u64 length,
1822 enum obj_request_type type)
1823 {
1824 struct rbd_obj_request *obj_request;
1825 size_t size;
1826 char *name;
1827
1828 rbd_assert(obj_request_type_valid(type));
1829
1830 size = strlen(object_name) + 1;
1831 name = kmalloc(size, GFP_KERNEL);
1832 if (!name)
1833 return NULL;
1834
1835 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1836 if (!obj_request) {
1837 kfree(name);
1838 return NULL;
1839 }
1840
1841 obj_request->object_name = memcpy(name, object_name, size);
1842 obj_request->offset = offset;
1843 obj_request->length = length;
1844 obj_request->flags = 0;
1845 obj_request->which = BAD_WHICH;
1846 obj_request->type = type;
1847 INIT_LIST_HEAD(&obj_request->links);
1848 init_completion(&obj_request->completion);
1849 kref_init(&obj_request->kref);
1850
1851 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1852 offset, length, (int)type, obj_request);
1853
1854 return obj_request;
1855 }
1856
1857 static void rbd_obj_request_destroy(struct kref *kref)
1858 {
1859 struct rbd_obj_request *obj_request;
1860
1861 obj_request = container_of(kref, struct rbd_obj_request, kref);
1862
1863 dout("%s: obj %p\n", __func__, obj_request);
1864
1865 rbd_assert(obj_request->img_request == NULL);
1866 rbd_assert(obj_request->which == BAD_WHICH);
1867
1868 if (obj_request->osd_req)
1869 rbd_osd_req_destroy(obj_request->osd_req);
1870
1871 rbd_assert(obj_request_type_valid(obj_request->type));
1872 switch (obj_request->type) {
1873 case OBJ_REQUEST_NODATA:
1874 break; /* Nothing to do */
1875 case OBJ_REQUEST_BIO:
1876 if (obj_request->bio_list)
1877 bio_chain_put(obj_request->bio_list);
1878 break;
1879 case OBJ_REQUEST_PAGES:
1880 if (obj_request->pages)
1881 ceph_release_page_vector(obj_request->pages,
1882 obj_request->page_count);
1883 break;
1884 }
1885
1886 kfree(obj_request->object_name);
1887 obj_request->object_name = NULL;
1888 kmem_cache_free(rbd_obj_request_cache, obj_request);
1889 }
1890
1891 /* It's OK to call this for a device with no parent */
1892
1893 static void rbd_spec_put(struct rbd_spec *spec);
1894 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1895 {
1896 rbd_dev_remove_parent(rbd_dev);
1897 rbd_spec_put(rbd_dev->parent_spec);
1898 rbd_dev->parent_spec = NULL;
1899 rbd_dev->parent_overlap = 0;
1900 }
1901
1902 /*
1903 * Parent image reference counting is used to determine when an
1904 * image's parent fields can be safely torn down--after there are no
1905 * more in-flight requests to the parent image. When the last
1906 * reference is dropped, cleaning them up is safe.
1907 */
1908 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1909 {
1910 int counter;
1911
1912 if (!rbd_dev->parent_spec)
1913 return;
1914
1915 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1916 if (counter > 0)
1917 return;
1918
1919 /* Last reference; clean up parent data structures */
1920
1921 if (!counter)
1922 rbd_dev_unparent(rbd_dev);
1923 else
1924 rbd_warn(rbd_dev, "parent reference underflow\n");
1925 }
1926
1927 /*
1928 * If an image has a non-zero parent overlap, get a reference to its
1929 * parent.
1930 *
1931 * We must get the reference before checking for the overlap to
1932 * coordinate properly with zeroing the parent overlap in
1933 * rbd_dev_v2_parent_info() when an image gets flattened. We
1934 * drop it again if there is no overlap.
1935 *
1936 * Returns true if the rbd device has a parent with a non-zero
1937 * overlap and a reference for it was successfully taken, or
1938 * false otherwise.
1939 */
1940 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1941 {
1942 int counter;
1943
1944 if (!rbd_dev->parent_spec)
1945 return false;
1946
1947 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1948 if (counter > 0 && rbd_dev->parent_overlap)
1949 return true;
1950
1951 /* Image was flattened, but parent is not yet torn down */
1952
1953 if (counter < 0)
1954 rbd_warn(rbd_dev, "parent reference overflow\n");
1955
1956 return false;
1957 }
1958
1959 /*
1960 * Caller is responsible for filling in the list of object requests
1961 * that comprises the image request, and the Linux request pointer
1962 * (if there is one).
1963 */
1964 static struct rbd_img_request *rbd_img_request_create(
1965 struct rbd_device *rbd_dev,
1966 u64 offset, u64 length,
1967 bool write_request)
1968 {
1969 struct rbd_img_request *img_request;
1970
1971 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1972 if (!img_request)
1973 return NULL;
1974
1975 if (write_request) {
1976 down_read(&rbd_dev->header_rwsem);
1977 ceph_get_snap_context(rbd_dev->header.snapc);
1978 up_read(&rbd_dev->header_rwsem);
1979 }
1980
1981 img_request->rq = NULL;
1982 img_request->rbd_dev = rbd_dev;
1983 img_request->offset = offset;
1984 img_request->length = length;
1985 img_request->flags = 0;
1986 if (write_request) {
1987 img_request_write_set(img_request);
1988 img_request->snapc = rbd_dev->header.snapc;
1989 } else {
1990 img_request->snap_id = rbd_dev->spec->snap_id;
1991 }
1992 if (rbd_dev_parent_get(rbd_dev))
1993 img_request_layered_set(img_request);
1994 spin_lock_init(&img_request->completion_lock);
1995 img_request->next_completion = 0;
1996 img_request->callback = NULL;
1997 img_request->result = 0;
1998 img_request->obj_request_count = 0;
1999 INIT_LIST_HEAD(&img_request->obj_requests);
2000 kref_init(&img_request->kref);
2001
2002 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2003 write_request ? "write" : "read", offset, length,
2004 img_request);
2005
2006 return img_request;
2007 }
2008
2009 static void rbd_img_request_destroy(struct kref *kref)
2010 {
2011 struct rbd_img_request *img_request;
2012 struct rbd_obj_request *obj_request;
2013 struct rbd_obj_request *next_obj_request;
2014
2015 img_request = container_of(kref, struct rbd_img_request, kref);
2016
2017 dout("%s: img %p\n", __func__, img_request);
2018
2019 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2020 rbd_img_obj_request_del(img_request, obj_request);
2021 rbd_assert(img_request->obj_request_count == 0);
2022
2023 if (img_request_layered_test(img_request)) {
2024 img_request_layered_clear(img_request);
2025 rbd_dev_parent_put(img_request->rbd_dev);
2026 }
2027
2028 if (img_request_write_test(img_request))
2029 ceph_put_snap_context(img_request->snapc);
2030
2031 kmem_cache_free(rbd_img_request_cache, img_request);
2032 }
2033
2034 static struct rbd_img_request *rbd_parent_request_create(
2035 struct rbd_obj_request *obj_request,
2036 u64 img_offset, u64 length)
2037 {
2038 struct rbd_img_request *parent_request;
2039 struct rbd_device *rbd_dev;
2040
2041 rbd_assert(obj_request->img_request);
2042 rbd_dev = obj_request->img_request->rbd_dev;
2043
2044 parent_request = rbd_img_request_create(rbd_dev->parent,
2045 img_offset, length, false);
2046 if (!parent_request)
2047 return NULL;
2048
2049 img_request_child_set(parent_request);
2050 rbd_obj_request_get(obj_request);
2051 parent_request->obj_request = obj_request;
2052
2053 return parent_request;
2054 }
2055
2056 static void rbd_parent_request_destroy(struct kref *kref)
2057 {
2058 struct rbd_img_request *parent_request;
2059 struct rbd_obj_request *orig_request;
2060
2061 parent_request = container_of(kref, struct rbd_img_request, kref);
2062 orig_request = parent_request->obj_request;
2063
2064 parent_request->obj_request = NULL;
2065 rbd_obj_request_put(orig_request);
2066 img_request_child_clear(parent_request);
2067
2068 rbd_img_request_destroy(kref);
2069 }
2070
2071 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2072 {
2073 struct rbd_img_request *img_request;
2074 unsigned int xferred;
2075 int result;
2076 bool more;
2077
2078 rbd_assert(obj_request_img_data_test(obj_request));
2079 img_request = obj_request->img_request;
2080
2081 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2082 xferred = (unsigned int)obj_request->xferred;
2083 result = obj_request->result;
2084 if (result) {
2085 struct rbd_device *rbd_dev = img_request->rbd_dev;
2086
2087 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2088 img_request_write_test(img_request) ? "write" : "read",
2089 obj_request->length, obj_request->img_offset,
2090 obj_request->offset);
2091 rbd_warn(rbd_dev, " result %d xferred %x\n",
2092 result, xferred);
2093 if (!img_request->result)
2094 img_request->result = result;
2095 }
2096
2097 /* Image object requests don't own their page array */
2098
2099 if (obj_request->type == OBJ_REQUEST_PAGES) {
2100 obj_request->pages = NULL;
2101 obj_request->page_count = 0;
2102 }
2103
2104 if (img_request_child_test(img_request)) {
2105 rbd_assert(img_request->obj_request != NULL);
2106 more = obj_request->which < img_request->obj_request_count - 1;
2107 } else {
2108 rbd_assert(img_request->rq != NULL);
2109 more = blk_end_request(img_request->rq, result, xferred);
2110 }
2111
2112 return more;
2113 }
2114
2115 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2116 {
2117 struct rbd_img_request *img_request;
2118 u32 which = obj_request->which;
2119 bool more = true;
2120
2121 rbd_assert(obj_request_img_data_test(obj_request));
2122 img_request = obj_request->img_request;
2123
2124 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2125 rbd_assert(img_request != NULL);
2126 rbd_assert(img_request->obj_request_count > 0);
2127 rbd_assert(which != BAD_WHICH);
2128 rbd_assert(which < img_request->obj_request_count);
2129 rbd_assert(which >= img_request->next_completion);
2130
2131 spin_lock_irq(&img_request->completion_lock);
2132 if (which != img_request->next_completion)
2133 goto out;
2134
2135 for_each_obj_request_from(img_request, obj_request) {
2136 rbd_assert(more);
2137 rbd_assert(which < img_request->obj_request_count);
2138
2139 if (!obj_request_done_test(obj_request))
2140 break;
2141 more = rbd_img_obj_end_request(obj_request);
2142 which++;
2143 }
2144
2145 rbd_assert(more ^ (which == img_request->obj_request_count));
2146 img_request->next_completion = which;
2147 out:
2148 spin_unlock_irq(&img_request->completion_lock);
2149
2150 if (!more)
2151 rbd_img_request_complete(img_request);
2152 }
2153
2154 /*
2155 * Split up an image request into one or more object requests, each
2156 * to a different object. The "type" parameter indicates whether
2157 * "data_desc" is the pointer to the head of a list of bio
2158 * structures, or the base of a page array. In either case this
2159 * function assumes data_desc describes memory sufficient to hold
2160 * all data described by the image request.
2161 */
2162 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2163 enum obj_request_type type,
2164 void *data_desc)
2165 {
2166 struct rbd_device *rbd_dev = img_request->rbd_dev;
2167 struct rbd_obj_request *obj_request = NULL;
2168 struct rbd_obj_request *next_obj_request;
2169 bool write_request = img_request_write_test(img_request);
2170 struct bio *bio_list = NULL;
2171 unsigned int bio_offset = 0;
2172 struct page **pages = NULL;
2173 u64 img_offset;
2174 u64 resid;
2175 u16 opcode;
2176
2177 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2178 (int)type, data_desc);
2179
2180 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2181 img_offset = img_request->offset;
2182 resid = img_request->length;
2183 rbd_assert(resid > 0);
2184
2185 if (type == OBJ_REQUEST_BIO) {
2186 bio_list = data_desc;
2187 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2188 } else {
2189 rbd_assert(type == OBJ_REQUEST_PAGES);
2190 pages = data_desc;
2191 }
2192
2193 while (resid) {
2194 struct ceph_osd_request *osd_req;
2195 const char *object_name;
2196 u64 offset;
2197 u64 length;
2198
2199 object_name = rbd_segment_name(rbd_dev, img_offset);
2200 if (!object_name)
2201 goto out_unwind;
2202 offset = rbd_segment_offset(rbd_dev, img_offset);
2203 length = rbd_segment_length(rbd_dev, img_offset, resid);
2204 obj_request = rbd_obj_request_create(object_name,
2205 offset, length, type);
2206 /* object request has its own copy of the object name */
2207 rbd_segment_name_free(object_name);
2208 if (!obj_request)
2209 goto out_unwind;
2210 /*
2211 * set obj_request->img_request before creating the
2212 * osd_request so that it gets the right snapc
2213 */
2214 rbd_img_obj_request_add(img_request, obj_request);
2215
2216 if (type == OBJ_REQUEST_BIO) {
2217 unsigned int clone_size;
2218
2219 rbd_assert(length <= (u64)UINT_MAX);
2220 clone_size = (unsigned int)length;
2221 obj_request->bio_list =
2222 bio_chain_clone_range(&bio_list,
2223 &bio_offset,
2224 clone_size,
2225 GFP_ATOMIC);
2226 if (!obj_request->bio_list)
2227 goto out_partial;
2228 } else {
2229 unsigned int page_count;
2230
2231 obj_request->pages = pages;
2232 page_count = (u32)calc_pages_for(offset, length);
2233 obj_request->page_count = page_count;
2234 if ((offset + length) & ~PAGE_MASK)
2235 page_count--; /* more on last page */
2236 pages += page_count;
2237 }
2238
2239 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2240 obj_request);
2241 if (!osd_req)
2242 goto out_partial;
2243 obj_request->osd_req = osd_req;
2244 obj_request->callback = rbd_img_obj_callback;
2245
2246 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2247 0, 0);
2248 if (type == OBJ_REQUEST_BIO)
2249 osd_req_op_extent_osd_data_bio(osd_req, 0,
2250 obj_request->bio_list, length);
2251 else
2252 osd_req_op_extent_osd_data_pages(osd_req, 0,
2253 obj_request->pages, length,
2254 offset & ~PAGE_MASK, false, false);
2255
2256 if (write_request)
2257 rbd_osd_req_format_write(obj_request);
2258 else
2259 rbd_osd_req_format_read(obj_request);
2260
2261 obj_request->img_offset = img_offset;
2262
2263 img_offset += length;
2264 resid -= length;
2265 }
2266
2267 return 0;
2268
2269 out_partial:
2270 rbd_obj_request_put(obj_request);
2271 out_unwind:
2272 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2273 rbd_obj_request_put(obj_request);
2274
2275 return -ENOMEM;
2276 }
2277
2278 static void
2279 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2280 {
2281 struct rbd_img_request *img_request;
2282 struct rbd_device *rbd_dev;
2283 struct page **pages;
2284 u32 page_count;
2285
2286 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2287 rbd_assert(obj_request_img_data_test(obj_request));
2288 img_request = obj_request->img_request;
2289 rbd_assert(img_request);
2290
2291 rbd_dev = img_request->rbd_dev;
2292 rbd_assert(rbd_dev);
2293
2294 pages = obj_request->copyup_pages;
2295 rbd_assert(pages != NULL);
2296 obj_request->copyup_pages = NULL;
2297 page_count = obj_request->copyup_page_count;
2298 rbd_assert(page_count);
2299 obj_request->copyup_page_count = 0;
2300 ceph_release_page_vector(pages, page_count);
2301
2302 /*
2303 * We want the transfer count to reflect the size of the
2304 * original write request. There is no such thing as a
2305 * successful short write, so if the request was successful
2306 * we can just set it to the originally-requested length.
2307 */
2308 if (!obj_request->result)
2309 obj_request->xferred = obj_request->length;
2310
2311 /* Finish up with the normal image object callback */
2312
2313 rbd_img_obj_callback(obj_request);
2314 }
2315
2316 static void
2317 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2318 {
2319 struct rbd_obj_request *orig_request;
2320 struct ceph_osd_request *osd_req;
2321 struct ceph_osd_client *osdc;
2322 struct rbd_device *rbd_dev;
2323 struct page **pages;
2324 u32 page_count;
2325 int img_result;
2326 u64 parent_length;
2327 u64 offset;
2328 u64 length;
2329
2330 rbd_assert(img_request_child_test(img_request));
2331
2332 /* First get what we need from the image request */
2333
2334 pages = img_request->copyup_pages;
2335 rbd_assert(pages != NULL);
2336 img_request->copyup_pages = NULL;
2337 page_count = img_request->copyup_page_count;
2338 rbd_assert(page_count);
2339 img_request->copyup_page_count = 0;
2340
2341 orig_request = img_request->obj_request;
2342 rbd_assert(orig_request != NULL);
2343 rbd_assert(obj_request_type_valid(orig_request->type));
2344 img_result = img_request->result;
2345 parent_length = img_request->length;
2346 rbd_assert(parent_length == img_request->xferred);
2347 rbd_img_request_put(img_request);
2348
2349 rbd_assert(orig_request->img_request);
2350 rbd_dev = orig_request->img_request->rbd_dev;
2351 rbd_assert(rbd_dev);
2352
2353 /*
2354 * If the overlap has become 0 (most likely because the
2355 * image has been flattened) we need to free the pages
2356 * and re-submit the original write request.
2357 */
2358 if (!rbd_dev->parent_overlap) {
2359 struct ceph_osd_client *osdc;
2360
2361 ceph_release_page_vector(pages, page_count);
2362 osdc = &rbd_dev->rbd_client->client->osdc;
2363 img_result = rbd_obj_request_submit(osdc, orig_request);
2364 if (!img_result)
2365 return;
2366 }
2367
2368 if (img_result)
2369 goto out_err;
2370
2371 /*
2372 * The original osd request is of no use to use any more.
2373 * We need a new one that can hold the two ops in a copyup
2374 * request. Allocate the new copyup osd request for the
2375 * original request, and release the old one.
2376 */
2377 img_result = -ENOMEM;
2378 osd_req = rbd_osd_req_create_copyup(orig_request);
2379 if (!osd_req)
2380 goto out_err;
2381 rbd_osd_req_destroy(orig_request->osd_req);
2382 orig_request->osd_req = osd_req;
2383 orig_request->copyup_pages = pages;
2384 orig_request->copyup_page_count = page_count;
2385
2386 /* Initialize the copyup op */
2387
2388 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2389 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2390 false, false);
2391
2392 /* Then the original write request op */
2393
2394 offset = orig_request->offset;
2395 length = orig_request->length;
2396 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2397 offset, length, 0, 0);
2398 if (orig_request->type == OBJ_REQUEST_BIO)
2399 osd_req_op_extent_osd_data_bio(osd_req, 1,
2400 orig_request->bio_list, length);
2401 else
2402 osd_req_op_extent_osd_data_pages(osd_req, 1,
2403 orig_request->pages, length,
2404 offset & ~PAGE_MASK, false, false);
2405
2406 rbd_osd_req_format_write(orig_request);
2407
2408 /* All set, send it off. */
2409
2410 orig_request->callback = rbd_img_obj_copyup_callback;
2411 osdc = &rbd_dev->rbd_client->client->osdc;
2412 img_result = rbd_obj_request_submit(osdc, orig_request);
2413 if (!img_result)
2414 return;
2415 out_err:
2416 /* Record the error code and complete the request */
2417
2418 orig_request->result = img_result;
2419 orig_request->xferred = 0;
2420 obj_request_done_set(orig_request);
2421 rbd_obj_request_complete(orig_request);
2422 }
2423
2424 /*
2425 * Read from the parent image the range of data that covers the
2426 * entire target of the given object request. This is used for
2427 * satisfying a layered image write request when the target of an
2428 * object request from the image request does not exist.
2429 *
2430 * A page array big enough to hold the returned data is allocated
2431 * and supplied to rbd_img_request_fill() as the "data descriptor."
2432 * When the read completes, this page array will be transferred to
2433 * the original object request for the copyup operation.
2434 *
2435 * If an error occurs, record it as the result of the original
2436 * object request and mark it done so it gets completed.
2437 */
2438 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2439 {
2440 struct rbd_img_request *img_request = NULL;
2441 struct rbd_img_request *parent_request = NULL;
2442 struct rbd_device *rbd_dev;
2443 u64 img_offset;
2444 u64 length;
2445 struct page **pages = NULL;
2446 u32 page_count;
2447 int result;
2448
2449 rbd_assert(obj_request_img_data_test(obj_request));
2450 rbd_assert(obj_request_type_valid(obj_request->type));
2451
2452 img_request = obj_request->img_request;
2453 rbd_assert(img_request != NULL);
2454 rbd_dev = img_request->rbd_dev;
2455 rbd_assert(rbd_dev->parent != NULL);
2456
2457 /*
2458 * Determine the byte range covered by the object in the
2459 * child image to which the original request was to be sent.
2460 */
2461 img_offset = obj_request->img_offset - obj_request->offset;
2462 length = (u64)1 << rbd_dev->header.obj_order;
2463
2464 /*
2465 * There is no defined parent data beyond the parent
2466 * overlap, so limit what we read at that boundary if
2467 * necessary.
2468 */
2469 if (img_offset + length > rbd_dev->parent_overlap) {
2470 rbd_assert(img_offset < rbd_dev->parent_overlap);
2471 length = rbd_dev->parent_overlap - img_offset;
2472 }
2473
2474 /*
2475 * Allocate a page array big enough to receive the data read
2476 * from the parent.
2477 */
2478 page_count = (u32)calc_pages_for(0, length);
2479 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2480 if (IS_ERR(pages)) {
2481 result = PTR_ERR(pages);
2482 pages = NULL;
2483 goto out_err;
2484 }
2485
2486 result = -ENOMEM;
2487 parent_request = rbd_parent_request_create(obj_request,
2488 img_offset, length);
2489 if (!parent_request)
2490 goto out_err;
2491
2492 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2493 if (result)
2494 goto out_err;
2495 parent_request->copyup_pages = pages;
2496 parent_request->copyup_page_count = page_count;
2497
2498 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2499 result = rbd_img_request_submit(parent_request);
2500 if (!result)
2501 return 0;
2502
2503 parent_request->copyup_pages = NULL;
2504 parent_request->copyup_page_count = 0;
2505 parent_request->obj_request = NULL;
2506 rbd_obj_request_put(obj_request);
2507 out_err:
2508 if (pages)
2509 ceph_release_page_vector(pages, page_count);
2510 if (parent_request)
2511 rbd_img_request_put(parent_request);
2512 obj_request->result = result;
2513 obj_request->xferred = 0;
2514 obj_request_done_set(obj_request);
2515
2516 return result;
2517 }
2518
2519 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2520 {
2521 struct rbd_obj_request *orig_request;
2522 struct rbd_device *rbd_dev;
2523 int result;
2524
2525 rbd_assert(!obj_request_img_data_test(obj_request));
2526
2527 /*
2528 * All we need from the object request is the original
2529 * request and the result of the STAT op. Grab those, then
2530 * we're done with the request.
2531 */
2532 orig_request = obj_request->obj_request;
2533 obj_request->obj_request = NULL;
2534 rbd_obj_request_put(orig_request);
2535 rbd_assert(orig_request);
2536 rbd_assert(orig_request->img_request);
2537
2538 result = obj_request->result;
2539 obj_request->result = 0;
2540
2541 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2542 obj_request, orig_request, result,
2543 obj_request->xferred, obj_request->length);
2544 rbd_obj_request_put(obj_request);
2545
2546 /*
2547 * If the overlap has become 0 (most likely because the
2548 * image has been flattened) we need to free the pages
2549 * and re-submit the original write request.
2550 */
2551 rbd_dev = orig_request->img_request->rbd_dev;
2552 if (!rbd_dev->parent_overlap) {
2553 struct ceph_osd_client *osdc;
2554
2555 osdc = &rbd_dev->rbd_client->client->osdc;
2556 result = rbd_obj_request_submit(osdc, orig_request);
2557 if (!result)
2558 return;
2559 }
2560
2561 /*
2562 * Our only purpose here is to determine whether the object
2563 * exists, and we don't want to treat the non-existence as
2564 * an error. If something else comes back, transfer the
2565 * error to the original request and complete it now.
2566 */
2567 if (!result) {
2568 obj_request_existence_set(orig_request, true);
2569 } else if (result == -ENOENT) {
2570 obj_request_existence_set(orig_request, false);
2571 } else if (result) {
2572 orig_request->result = result;
2573 goto out;
2574 }
2575
2576 /*
2577 * Resubmit the original request now that we have recorded
2578 * whether the target object exists.
2579 */
2580 orig_request->result = rbd_img_obj_request_submit(orig_request);
2581 out:
2582 if (orig_request->result)
2583 rbd_obj_request_complete(orig_request);
2584 }
2585
2586 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2587 {
2588 struct rbd_obj_request *stat_request;
2589 struct rbd_device *rbd_dev;
2590 struct ceph_osd_client *osdc;
2591 struct page **pages = NULL;
2592 u32 page_count;
2593 size_t size;
2594 int ret;
2595
2596 /*
2597 * The response data for a STAT call consists of:
2598 * le64 length;
2599 * struct {
2600 * le32 tv_sec;
2601 * le32 tv_nsec;
2602 * } mtime;
2603 */
2604 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2605 page_count = (u32)calc_pages_for(0, size);
2606 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2607 if (IS_ERR(pages))
2608 return PTR_ERR(pages);
2609
2610 ret = -ENOMEM;
2611 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2612 OBJ_REQUEST_PAGES);
2613 if (!stat_request)
2614 goto out;
2615
2616 rbd_obj_request_get(obj_request);
2617 stat_request->obj_request = obj_request;
2618 stat_request->pages = pages;
2619 stat_request->page_count = page_count;
2620
2621 rbd_assert(obj_request->img_request);
2622 rbd_dev = obj_request->img_request->rbd_dev;
2623 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2624 stat_request);
2625 if (!stat_request->osd_req)
2626 goto out;
2627 stat_request->callback = rbd_img_obj_exists_callback;
2628
2629 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2630 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2631 false, false);
2632 rbd_osd_req_format_read(stat_request);
2633
2634 osdc = &rbd_dev->rbd_client->client->osdc;
2635 ret = rbd_obj_request_submit(osdc, stat_request);
2636 out:
2637 if (ret)
2638 rbd_obj_request_put(obj_request);
2639
2640 return ret;
2641 }
2642
2643 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2644 {
2645 struct rbd_img_request *img_request;
2646 struct rbd_device *rbd_dev;
2647 bool known;
2648
2649 rbd_assert(obj_request_img_data_test(obj_request));
2650
2651 img_request = obj_request->img_request;
2652 rbd_assert(img_request);
2653 rbd_dev = img_request->rbd_dev;
2654
2655 /*
2656 * Only writes to layered images need special handling.
2657 * Reads and non-layered writes are simple object requests.
2658 * Layered writes that start beyond the end of the overlap
2659 * with the parent have no parent data, so they too are
2660 * simple object requests. Finally, if the target object is
2661 * known to already exist, its parent data has already been
2662 * copied, so a write to the object can also be handled as a
2663 * simple object request.
2664 */
2665 if (!img_request_write_test(img_request) ||
2666 !img_request_layered_test(img_request) ||
2667 rbd_dev->parent_overlap <= obj_request->img_offset ||
2668 ((known = obj_request_known_test(obj_request)) &&
2669 obj_request_exists_test(obj_request))) {
2670
2671 struct rbd_device *rbd_dev;
2672 struct ceph_osd_client *osdc;
2673
2674 rbd_dev = obj_request->img_request->rbd_dev;
2675 osdc = &rbd_dev->rbd_client->client->osdc;
2676
2677 return rbd_obj_request_submit(osdc, obj_request);
2678 }
2679
2680 /*
2681 * It's a layered write. The target object might exist but
2682 * we may not know that yet. If we know it doesn't exist,
2683 * start by reading the data for the full target object from
2684 * the parent so we can use it for a copyup to the target.
2685 */
2686 if (known)
2687 return rbd_img_obj_parent_read_full(obj_request);
2688
2689 /* We don't know whether the target exists. Go find out. */
2690
2691 return rbd_img_obj_exists_submit(obj_request);
2692 }
2693
2694 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2695 {
2696 struct rbd_obj_request *obj_request;
2697 struct rbd_obj_request *next_obj_request;
2698
2699 dout("%s: img %p\n", __func__, img_request);
2700 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2701 int ret;
2702
2703 ret = rbd_img_obj_request_submit(obj_request);
2704 if (ret)
2705 return ret;
2706 }
2707
2708 return 0;
2709 }
2710
2711 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2712 {
2713 struct rbd_obj_request *obj_request;
2714 struct rbd_device *rbd_dev;
2715 u64 obj_end;
2716 u64 img_xferred;
2717 int img_result;
2718
2719 rbd_assert(img_request_child_test(img_request));
2720
2721 /* First get what we need from the image request and release it */
2722
2723 obj_request = img_request->obj_request;
2724 img_xferred = img_request->xferred;
2725 img_result = img_request->result;
2726 rbd_img_request_put(img_request);
2727
2728 /*
2729 * If the overlap has become 0 (most likely because the
2730 * image has been flattened) we need to re-submit the
2731 * original request.
2732 */
2733 rbd_assert(obj_request);
2734 rbd_assert(obj_request->img_request);
2735 rbd_dev = obj_request->img_request->rbd_dev;
2736 if (!rbd_dev->parent_overlap) {
2737 struct ceph_osd_client *osdc;
2738
2739 osdc = &rbd_dev->rbd_client->client->osdc;
2740 img_result = rbd_obj_request_submit(osdc, obj_request);
2741 if (!img_result)
2742 return;
2743 }
2744
2745 obj_request->result = img_result;
2746 if (obj_request->result)
2747 goto out;
2748
2749 /*
2750 * We need to zero anything beyond the parent overlap
2751 * boundary. Since rbd_img_obj_request_read_callback()
2752 * will zero anything beyond the end of a short read, an
2753 * easy way to do this is to pretend the data from the
2754 * parent came up short--ending at the overlap boundary.
2755 */
2756 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2757 obj_end = obj_request->img_offset + obj_request->length;
2758 if (obj_end > rbd_dev->parent_overlap) {
2759 u64 xferred = 0;
2760
2761 if (obj_request->img_offset < rbd_dev->parent_overlap)
2762 xferred = rbd_dev->parent_overlap -
2763 obj_request->img_offset;
2764
2765 obj_request->xferred = min(img_xferred, xferred);
2766 } else {
2767 obj_request->xferred = img_xferred;
2768 }
2769 out:
2770 rbd_img_obj_request_read_callback(obj_request);
2771 rbd_obj_request_complete(obj_request);
2772 }
2773
2774 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2775 {
2776 struct rbd_img_request *img_request;
2777 int result;
2778
2779 rbd_assert(obj_request_img_data_test(obj_request));
2780 rbd_assert(obj_request->img_request != NULL);
2781 rbd_assert(obj_request->result == (s32) -ENOENT);
2782 rbd_assert(obj_request_type_valid(obj_request->type));
2783
2784 /* rbd_read_finish(obj_request, obj_request->length); */
2785 img_request = rbd_parent_request_create(obj_request,
2786 obj_request->img_offset,
2787 obj_request->length);
2788 result = -ENOMEM;
2789 if (!img_request)
2790 goto out_err;
2791
2792 if (obj_request->type == OBJ_REQUEST_BIO)
2793 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2794 obj_request->bio_list);
2795 else
2796 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2797 obj_request->pages);
2798 if (result)
2799 goto out_err;
2800
2801 img_request->callback = rbd_img_parent_read_callback;
2802 result = rbd_img_request_submit(img_request);
2803 if (result)
2804 goto out_err;
2805
2806 return;
2807 out_err:
2808 if (img_request)
2809 rbd_img_request_put(img_request);
2810 obj_request->result = result;
2811 obj_request->xferred = 0;
2812 obj_request_done_set(obj_request);
2813 }
2814
2815 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2816 {
2817 struct rbd_obj_request *obj_request;
2818 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2819 int ret;
2820
2821 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2822 OBJ_REQUEST_NODATA);
2823 if (!obj_request)
2824 return -ENOMEM;
2825
2826 ret = -ENOMEM;
2827 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2828 if (!obj_request->osd_req)
2829 goto out;
2830 obj_request->callback = rbd_obj_request_put;
2831
2832 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2833 notify_id, 0, 0);
2834 rbd_osd_req_format_read(obj_request);
2835
2836 ret = rbd_obj_request_submit(osdc, obj_request);
2837 out:
2838 if (ret)
2839 rbd_obj_request_put(obj_request);
2840
2841 return ret;
2842 }
2843
2844 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2845 {
2846 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2847 int ret;
2848
2849 if (!rbd_dev)
2850 return;
2851
2852 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2853 rbd_dev->header_name, (unsigned long long)notify_id,
2854 (unsigned int)opcode);
2855 ret = rbd_dev_refresh(rbd_dev);
2856 if (ret)
2857 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2858
2859 rbd_obj_notify_ack(rbd_dev, notify_id);
2860 }
2861
2862 /*
2863 * Request sync osd watch/unwatch. The value of "start" determines
2864 * whether a watch request is being initiated or torn down.
2865 */
2866 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2867 {
2868 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2869 struct rbd_obj_request *obj_request;
2870 int ret;
2871
2872 rbd_assert(start ^ !!rbd_dev->watch_event);
2873 rbd_assert(start ^ !!rbd_dev->watch_request);
2874
2875 if (start) {
2876 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2877 &rbd_dev->watch_event);
2878 if (ret < 0)
2879 return ret;
2880 rbd_assert(rbd_dev->watch_event != NULL);
2881 }
2882
2883 ret = -ENOMEM;
2884 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2885 OBJ_REQUEST_NODATA);
2886 if (!obj_request)
2887 goto out_cancel;
2888
2889 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2890 if (!obj_request->osd_req)
2891 goto out_cancel;
2892
2893 if (start)
2894 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2895 else
2896 ceph_osdc_unregister_linger_request(osdc,
2897 rbd_dev->watch_request->osd_req);
2898
2899 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2900 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2901 rbd_osd_req_format_write(obj_request);
2902
2903 ret = rbd_obj_request_submit(osdc, obj_request);
2904 if (ret)
2905 goto out_cancel;
2906 ret = rbd_obj_request_wait(obj_request);
2907 if (ret)
2908 goto out_cancel;
2909 ret = obj_request->result;
2910 if (ret)
2911 goto out_cancel;
2912
2913 /*
2914 * A watch request is set to linger, so the underlying osd
2915 * request won't go away until we unregister it. We retain
2916 * a pointer to the object request during that time (in
2917 * rbd_dev->watch_request), so we'll keep a reference to
2918 * it. We'll drop that reference (below) after we've
2919 * unregistered it.
2920 */
2921 if (start) {
2922 rbd_dev->watch_request = obj_request;
2923
2924 return 0;
2925 }
2926
2927 /* We have successfully torn down the watch request */
2928
2929 rbd_obj_request_put(rbd_dev->watch_request);
2930 rbd_dev->watch_request = NULL;
2931 out_cancel:
2932 /* Cancel the event if we're tearing down, or on error */
2933 ceph_osdc_cancel_event(rbd_dev->watch_event);
2934 rbd_dev->watch_event = NULL;
2935 if (obj_request)
2936 rbd_obj_request_put(obj_request);
2937
2938 return ret;
2939 }
2940
2941 /*
2942 * Synchronous osd object method call. Returns the number of bytes
2943 * returned in the outbound buffer, or a negative error code.
2944 */
2945 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2946 const char *object_name,
2947 const char *class_name,
2948 const char *method_name,
2949 const void *outbound,
2950 size_t outbound_size,
2951 void *inbound,
2952 size_t inbound_size)
2953 {
2954 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2955 struct rbd_obj_request *obj_request;
2956 struct page **pages;
2957 u32 page_count;
2958 int ret;
2959
2960 /*
2961 * Method calls are ultimately read operations. The result
2962 * should placed into the inbound buffer provided. They
2963 * also supply outbound data--parameters for the object
2964 * method. Currently if this is present it will be a
2965 * snapshot id.
2966 */
2967 page_count = (u32)calc_pages_for(0, inbound_size);
2968 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2969 if (IS_ERR(pages))
2970 return PTR_ERR(pages);
2971
2972 ret = -ENOMEM;
2973 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2974 OBJ_REQUEST_PAGES);
2975 if (!obj_request)
2976 goto out;
2977
2978 obj_request->pages = pages;
2979 obj_request->page_count = page_count;
2980
2981 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2982 if (!obj_request->osd_req)
2983 goto out;
2984
2985 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2986 class_name, method_name);
2987 if (outbound_size) {
2988 struct ceph_pagelist *pagelist;
2989
2990 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2991 if (!pagelist)
2992 goto out;
2993
2994 ceph_pagelist_init(pagelist);
2995 ceph_pagelist_append(pagelist, outbound, outbound_size);
2996 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2997 pagelist);
2998 }
2999 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3000 obj_request->pages, inbound_size,
3001 0, false, false);
3002 rbd_osd_req_format_read(obj_request);
3003
3004 ret = rbd_obj_request_submit(osdc, obj_request);
3005 if (ret)
3006 goto out;
3007 ret = rbd_obj_request_wait(obj_request);
3008 if (ret)
3009 goto out;
3010
3011 ret = obj_request->result;
3012 if (ret < 0)
3013 goto out;
3014
3015 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3016 ret = (int)obj_request->xferred;
3017 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3018 out:
3019 if (obj_request)
3020 rbd_obj_request_put(obj_request);
3021 else
3022 ceph_release_page_vector(pages, page_count);
3023
3024 return ret;
3025 }
3026
3027 static void rbd_request_fn(struct request_queue *q)
3028 __releases(q->queue_lock) __acquires(q->queue_lock)
3029 {
3030 struct rbd_device *rbd_dev = q->queuedata;
3031 bool read_only = rbd_dev->mapping.read_only;
3032 struct request *rq;
3033 int result;
3034
3035 while ((rq = blk_fetch_request(q))) {
3036 bool write_request = rq_data_dir(rq) == WRITE;
3037 struct rbd_img_request *img_request;
3038 u64 offset;
3039 u64 length;
3040
3041 /* Ignore any non-FS requests that filter through. */
3042
3043 if (rq->cmd_type != REQ_TYPE_FS) {
3044 dout("%s: non-fs request type %d\n", __func__,
3045 (int) rq->cmd_type);
3046 __blk_end_request_all(rq, 0);
3047 continue;
3048 }
3049
3050 /* Ignore/skip any zero-length requests */
3051
3052 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3053 length = (u64) blk_rq_bytes(rq);
3054
3055 if (!length) {
3056 dout("%s: zero-length request\n", __func__);
3057 __blk_end_request_all(rq, 0);
3058 continue;
3059 }
3060
3061 spin_unlock_irq(q->queue_lock);
3062
3063 /* Disallow writes to a read-only device */
3064
3065 if (write_request) {
3066 result = -EROFS;
3067 if (read_only)
3068 goto end_request;
3069 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3070 }
3071
3072 /*
3073 * Quit early if the mapped snapshot no longer
3074 * exists. It's still possible the snapshot will
3075 * have disappeared by the time our request arrives
3076 * at the osd, but there's no sense in sending it if
3077 * we already know.
3078 */
3079 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3080 dout("request for non-existent snapshot");
3081 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3082 result = -ENXIO;
3083 goto end_request;
3084 }
3085
3086 result = -EINVAL;
3087 if (offset && length > U64_MAX - offset + 1) {
3088 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3089 offset, length);
3090 goto end_request; /* Shouldn't happen */
3091 }
3092
3093 result = -EIO;
3094 if (offset + length > rbd_dev->mapping.size) {
3095 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3096 offset, length, rbd_dev->mapping.size);
3097 goto end_request;
3098 }
3099
3100 result = -ENOMEM;
3101 img_request = rbd_img_request_create(rbd_dev, offset, length,
3102 write_request);
3103 if (!img_request)
3104 goto end_request;
3105
3106 img_request->rq = rq;
3107
3108 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3109 rq->bio);
3110 if (!result)
3111 result = rbd_img_request_submit(img_request);
3112 if (result)
3113 rbd_img_request_put(img_request);
3114 end_request:
3115 spin_lock_irq(q->queue_lock);
3116 if (result < 0) {
3117 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3118 write_request ? "write" : "read",
3119 length, offset, result);
3120
3121 __blk_end_request_all(rq, result);
3122 }
3123 }
3124 }
3125
3126 /*
3127 * a queue callback. Makes sure that we don't create a bio that spans across
3128 * multiple osd objects. One exception would be with a single page bios,
3129 * which we handle later at bio_chain_clone_range()
3130 */
3131 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3132 struct bio_vec *bvec)
3133 {
3134 struct rbd_device *rbd_dev = q->queuedata;
3135 sector_t sector_offset;
3136 sector_t sectors_per_obj;
3137 sector_t obj_sector_offset;
3138 int ret;
3139
3140 /*
3141 * Find how far into its rbd object the partition-relative
3142 * bio start sector is to offset relative to the enclosing
3143 * device.
3144 */
3145 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3146 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3147 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3148
3149 /*
3150 * Compute the number of bytes from that offset to the end
3151 * of the object. Account for what's already used by the bio.
3152 */
3153 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3154 if (ret > bmd->bi_size)
3155 ret -= bmd->bi_size;
3156 else
3157 ret = 0;
3158
3159 /*
3160 * Don't send back more than was asked for. And if the bio
3161 * was empty, let the whole thing through because: "Note
3162 * that a block device *must* allow a single page to be
3163 * added to an empty bio."
3164 */
3165 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3166 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3167 ret = (int) bvec->bv_len;
3168
3169 return ret;
3170 }
3171
3172 static void rbd_free_disk(struct rbd_device *rbd_dev)
3173 {
3174 struct gendisk *disk = rbd_dev->disk;
3175
3176 if (!disk)
3177 return;
3178
3179 rbd_dev->disk = NULL;
3180 if (disk->flags & GENHD_FL_UP) {
3181 del_gendisk(disk);
3182 if (disk->queue)
3183 blk_cleanup_queue(disk->queue);
3184 }
3185 put_disk(disk);
3186 }
3187
3188 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3189 const char *object_name,
3190 u64 offset, u64 length, void *buf)
3191
3192 {
3193 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3194 struct rbd_obj_request *obj_request;
3195 struct page **pages = NULL;
3196 u32 page_count;
3197 size_t size;
3198 int ret;
3199
3200 page_count = (u32) calc_pages_for(offset, length);
3201 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3202 if (IS_ERR(pages))
3203 ret = PTR_ERR(pages);
3204
3205 ret = -ENOMEM;
3206 obj_request = rbd_obj_request_create(object_name, offset, length,
3207 OBJ_REQUEST_PAGES);
3208 if (!obj_request)
3209 goto out;
3210
3211 obj_request->pages = pages;
3212 obj_request->page_count = page_count;
3213
3214 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3215 if (!obj_request->osd_req)
3216 goto out;
3217
3218 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3219 offset, length, 0, 0);
3220 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3221 obj_request->pages,
3222 obj_request->length,
3223 obj_request->offset & ~PAGE_MASK,
3224 false, false);
3225 rbd_osd_req_format_read(obj_request);
3226
3227 ret = rbd_obj_request_submit(osdc, obj_request);
3228 if (ret)
3229 goto out;
3230 ret = rbd_obj_request_wait(obj_request);
3231 if (ret)
3232 goto out;
3233
3234 ret = obj_request->result;
3235 if (ret < 0)
3236 goto out;
3237
3238 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3239 size = (size_t) obj_request->xferred;
3240 ceph_copy_from_page_vector(pages, buf, 0, size);
3241 rbd_assert(size <= (size_t)INT_MAX);
3242 ret = (int)size;
3243 out:
3244 if (obj_request)
3245 rbd_obj_request_put(obj_request);
3246 else
3247 ceph_release_page_vector(pages, page_count);
3248
3249 return ret;
3250 }
3251
3252 /*
3253 * Read the complete header for the given rbd device. On successful
3254 * return, the rbd_dev->header field will contain up-to-date
3255 * information about the image.
3256 */
3257 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3258 {
3259 struct rbd_image_header_ondisk *ondisk = NULL;
3260 u32 snap_count = 0;
3261 u64 names_size = 0;
3262 u32 want_count;
3263 int ret;
3264
3265 /*
3266 * The complete header will include an array of its 64-bit
3267 * snapshot ids, followed by the names of those snapshots as
3268 * a contiguous block of NUL-terminated strings. Note that
3269 * the number of snapshots could change by the time we read
3270 * it in, in which case we re-read it.
3271 */
3272 do {
3273 size_t size;
3274
3275 kfree(ondisk);
3276
3277 size = sizeof (*ondisk);
3278 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3279 size += names_size;
3280 ondisk = kmalloc(size, GFP_KERNEL);
3281 if (!ondisk)
3282 return -ENOMEM;
3283
3284 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3285 0, size, ondisk);
3286 if (ret < 0)
3287 goto out;
3288 if ((size_t)ret < size) {
3289 ret = -ENXIO;
3290 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3291 size, ret);
3292 goto out;
3293 }
3294 if (!rbd_dev_ondisk_valid(ondisk)) {
3295 ret = -ENXIO;
3296 rbd_warn(rbd_dev, "invalid header");
3297 goto out;
3298 }
3299
3300 names_size = le64_to_cpu(ondisk->snap_names_len);
3301 want_count = snap_count;
3302 snap_count = le32_to_cpu(ondisk->snap_count);
3303 } while (snap_count != want_count);
3304
3305 ret = rbd_header_from_disk(rbd_dev, ondisk);
3306 out:
3307 kfree(ondisk);
3308
3309 return ret;
3310 }
3311
3312 /*
3313 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3314 * has disappeared from the (just updated) snapshot context.
3315 */
3316 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3317 {
3318 u64 snap_id;
3319
3320 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3321 return;
3322
3323 snap_id = rbd_dev->spec->snap_id;
3324 if (snap_id == CEPH_NOSNAP)
3325 return;
3326
3327 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3328 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3329 }
3330
3331 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3332 {
3333 u64 mapping_size;
3334 int ret;
3335
3336 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3337 down_write(&rbd_dev->header_rwsem);
3338 mapping_size = rbd_dev->mapping.size;
3339 if (rbd_dev->image_format == 1)
3340 ret = rbd_dev_v1_header_info(rbd_dev);
3341 else
3342 ret = rbd_dev_v2_header_info(rbd_dev);
3343
3344 /* If it's a mapped snapshot, validate its EXISTS flag */
3345
3346 rbd_exists_validate(rbd_dev);
3347 up_write(&rbd_dev->header_rwsem);
3348
3349 if (mapping_size != rbd_dev->mapping.size) {
3350 sector_t size;
3351
3352 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3353 dout("setting size to %llu sectors", (unsigned long long)size);
3354 set_capacity(rbd_dev->disk, size);
3355 revalidate_disk(rbd_dev->disk);
3356 }
3357
3358 return ret;
3359 }
3360
3361 static int rbd_init_disk(struct rbd_device *rbd_dev)
3362 {
3363 struct gendisk *disk;
3364 struct request_queue *q;
3365 u64 segment_size;
3366
3367 /* create gendisk info */
3368 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3369 if (!disk)
3370 return -ENOMEM;
3371
3372 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3373 rbd_dev->dev_id);
3374 disk->major = rbd_dev->major;
3375 disk->first_minor = 0;
3376 disk->fops = &rbd_bd_ops;
3377 disk->private_data = rbd_dev;
3378
3379 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3380 if (!q)
3381 goto out_disk;
3382
3383 /* We use the default size, but let's be explicit about it. */
3384 blk_queue_physical_block_size(q, SECTOR_SIZE);
3385
3386 /* set io sizes to object size */
3387 segment_size = rbd_obj_bytes(&rbd_dev->header);
3388 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3389 blk_queue_max_segment_size(q, segment_size);
3390 blk_queue_io_min(q, segment_size);
3391 blk_queue_io_opt(q, segment_size);
3392
3393 blk_queue_merge_bvec(q, rbd_merge_bvec);
3394 disk->queue = q;
3395
3396 q->queuedata = rbd_dev;
3397
3398 rbd_dev->disk = disk;
3399
3400 return 0;
3401 out_disk:
3402 put_disk(disk);
3403
3404 return -ENOMEM;
3405 }
3406
3407 /*
3408 sysfs
3409 */
3410
3411 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3412 {
3413 return container_of(dev, struct rbd_device, dev);
3414 }
3415
3416 static ssize_t rbd_size_show(struct device *dev,
3417 struct device_attribute *attr, char *buf)
3418 {
3419 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3420
3421 return sprintf(buf, "%llu\n",
3422 (unsigned long long)rbd_dev->mapping.size);
3423 }
3424
3425 /*
3426 * Note this shows the features for whatever's mapped, which is not
3427 * necessarily the base image.
3428 */
3429 static ssize_t rbd_features_show(struct device *dev,
3430 struct device_attribute *attr, char *buf)
3431 {
3432 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3433
3434 return sprintf(buf, "0x%016llx\n",
3435 (unsigned long long)rbd_dev->mapping.features);
3436 }
3437
3438 static ssize_t rbd_major_show(struct device *dev,
3439 struct device_attribute *attr, char *buf)
3440 {
3441 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3442
3443 if (rbd_dev->major)
3444 return sprintf(buf, "%d\n", rbd_dev->major);
3445
3446 return sprintf(buf, "(none)\n");
3447
3448 }
3449
3450 static ssize_t rbd_client_id_show(struct device *dev,
3451 struct device_attribute *attr, char *buf)
3452 {
3453 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3454
3455 return sprintf(buf, "client%lld\n",
3456 ceph_client_id(rbd_dev->rbd_client->client));
3457 }
3458
3459 static ssize_t rbd_pool_show(struct device *dev,
3460 struct device_attribute *attr, char *buf)
3461 {
3462 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3463
3464 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3465 }
3466
3467 static ssize_t rbd_pool_id_show(struct device *dev,
3468 struct device_attribute *attr, char *buf)
3469 {
3470 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3471
3472 return sprintf(buf, "%llu\n",
3473 (unsigned long long) rbd_dev->spec->pool_id);
3474 }
3475
3476 static ssize_t rbd_name_show(struct device *dev,
3477 struct device_attribute *attr, char *buf)
3478 {
3479 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3480
3481 if (rbd_dev->spec->image_name)
3482 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3483
3484 return sprintf(buf, "(unknown)\n");
3485 }
3486
3487 static ssize_t rbd_image_id_show(struct device *dev,
3488 struct device_attribute *attr, char *buf)
3489 {
3490 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3491
3492 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3493 }
3494
3495 /*
3496 * Shows the name of the currently-mapped snapshot (or
3497 * RBD_SNAP_HEAD_NAME for the base image).
3498 */
3499 static ssize_t rbd_snap_show(struct device *dev,
3500 struct device_attribute *attr,
3501 char *buf)
3502 {
3503 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504
3505 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3506 }
3507
3508 /*
3509 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3510 * for the parent image. If there is no parent, simply shows
3511 * "(no parent image)".
3512 */
3513 static ssize_t rbd_parent_show(struct device *dev,
3514 struct device_attribute *attr,
3515 char *buf)
3516 {
3517 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3518 struct rbd_spec *spec = rbd_dev->parent_spec;
3519 int count;
3520 char *bufp = buf;
3521
3522 if (!spec)
3523 return sprintf(buf, "(no parent image)\n");
3524
3525 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3526 (unsigned long long) spec->pool_id, spec->pool_name);
3527 if (count < 0)
3528 return count;
3529 bufp += count;
3530
3531 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3532 spec->image_name ? spec->image_name : "(unknown)");
3533 if (count < 0)
3534 return count;
3535 bufp += count;
3536
3537 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3538 (unsigned long long) spec->snap_id, spec->snap_name);
3539 if (count < 0)
3540 return count;
3541 bufp += count;
3542
3543 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3544 if (count < 0)
3545 return count;
3546 bufp += count;
3547
3548 return (ssize_t) (bufp - buf);
3549 }
3550
3551 static ssize_t rbd_image_refresh(struct device *dev,
3552 struct device_attribute *attr,
3553 const char *buf,
3554 size_t size)
3555 {
3556 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3557 int ret;
3558
3559 ret = rbd_dev_refresh(rbd_dev);
3560 if (ret)
3561 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3562
3563 return ret < 0 ? ret : size;
3564 }
3565
3566 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3567 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3568 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3569 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3570 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3571 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3572 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3573 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3574 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3575 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3576 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3577
3578 static struct attribute *rbd_attrs[] = {
3579 &dev_attr_size.attr,
3580 &dev_attr_features.attr,
3581 &dev_attr_major.attr,
3582 &dev_attr_client_id.attr,
3583 &dev_attr_pool.attr,
3584 &dev_attr_pool_id.attr,
3585 &dev_attr_name.attr,
3586 &dev_attr_image_id.attr,
3587 &dev_attr_current_snap.attr,
3588 &dev_attr_parent.attr,
3589 &dev_attr_refresh.attr,
3590 NULL
3591 };
3592
3593 static struct attribute_group rbd_attr_group = {
3594 .attrs = rbd_attrs,
3595 };
3596
3597 static const struct attribute_group *rbd_attr_groups[] = {
3598 &rbd_attr_group,
3599 NULL
3600 };
3601
3602 static void rbd_sysfs_dev_release(struct device *dev)
3603 {
3604 }
3605
3606 static struct device_type rbd_device_type = {
3607 .name = "rbd",
3608 .groups = rbd_attr_groups,
3609 .release = rbd_sysfs_dev_release,
3610 };
3611
3612 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3613 {
3614 kref_get(&spec->kref);
3615
3616 return spec;
3617 }
3618
3619 static void rbd_spec_free(struct kref *kref);
3620 static void rbd_spec_put(struct rbd_spec *spec)
3621 {
3622 if (spec)
3623 kref_put(&spec->kref, rbd_spec_free);
3624 }
3625
3626 static struct rbd_spec *rbd_spec_alloc(void)
3627 {
3628 struct rbd_spec *spec;
3629
3630 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3631 if (!spec)
3632 return NULL;
3633 kref_init(&spec->kref);
3634
3635 return spec;
3636 }
3637
3638 static void rbd_spec_free(struct kref *kref)
3639 {
3640 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3641
3642 kfree(spec->pool_name);
3643 kfree(spec->image_id);
3644 kfree(spec->image_name);
3645 kfree(spec->snap_name);
3646 kfree(spec);
3647 }
3648
3649 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3650 struct rbd_spec *spec)
3651 {
3652 struct rbd_device *rbd_dev;
3653
3654 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3655 if (!rbd_dev)
3656 return NULL;
3657
3658 spin_lock_init(&rbd_dev->lock);
3659 rbd_dev->flags = 0;
3660 atomic_set(&rbd_dev->parent_ref, 0);
3661 INIT_LIST_HEAD(&rbd_dev->node);
3662 init_rwsem(&rbd_dev->header_rwsem);
3663
3664 rbd_dev->spec = spec;
3665 rbd_dev->rbd_client = rbdc;
3666
3667 /* Initialize the layout used for all rbd requests */
3668
3669 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3670 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3671 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3672 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3673
3674 return rbd_dev;
3675 }
3676
3677 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3678 {
3679 rbd_put_client(rbd_dev->rbd_client);
3680 rbd_spec_put(rbd_dev->spec);
3681 kfree(rbd_dev);
3682 }
3683
3684 /*
3685 * Get the size and object order for an image snapshot, or if
3686 * snap_id is CEPH_NOSNAP, gets this information for the base
3687 * image.
3688 */
3689 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3690 u8 *order, u64 *snap_size)
3691 {
3692 __le64 snapid = cpu_to_le64(snap_id);
3693 int ret;
3694 struct {
3695 u8 order;
3696 __le64 size;
3697 } __attribute__ ((packed)) size_buf = { 0 };
3698
3699 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3700 "rbd", "get_size",
3701 &snapid, sizeof (snapid),
3702 &size_buf, sizeof (size_buf));
3703 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3704 if (ret < 0)
3705 return ret;
3706 if (ret < sizeof (size_buf))
3707 return -ERANGE;
3708
3709 if (order) {
3710 *order = size_buf.order;
3711 dout(" order %u", (unsigned int)*order);
3712 }
3713 *snap_size = le64_to_cpu(size_buf.size);
3714
3715 dout(" snap_id 0x%016llx snap_size = %llu\n",
3716 (unsigned long long)snap_id,
3717 (unsigned long long)*snap_size);
3718
3719 return 0;
3720 }
3721
3722 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3723 {
3724 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3725 &rbd_dev->header.obj_order,
3726 &rbd_dev->header.image_size);
3727 }
3728
3729 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3730 {
3731 void *reply_buf;
3732 int ret;
3733 void *p;
3734
3735 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3736 if (!reply_buf)
3737 return -ENOMEM;
3738
3739 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3740 "rbd", "get_object_prefix", NULL, 0,
3741 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3742 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3743 if (ret < 0)
3744 goto out;
3745
3746 p = reply_buf;
3747 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3748 p + ret, NULL, GFP_NOIO);
3749 ret = 0;
3750
3751 if (IS_ERR(rbd_dev->header.object_prefix)) {
3752 ret = PTR_ERR(rbd_dev->header.object_prefix);
3753 rbd_dev->header.object_prefix = NULL;
3754 } else {
3755 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3756 }
3757 out:
3758 kfree(reply_buf);
3759
3760 return ret;
3761 }
3762
3763 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3764 u64 *snap_features)
3765 {
3766 __le64 snapid = cpu_to_le64(snap_id);
3767 struct {
3768 __le64 features;
3769 __le64 incompat;
3770 } __attribute__ ((packed)) features_buf = { 0 };
3771 u64 incompat;
3772 int ret;
3773
3774 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3775 "rbd", "get_features",
3776 &snapid, sizeof (snapid),
3777 &features_buf, sizeof (features_buf));
3778 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3779 if (ret < 0)
3780 return ret;
3781 if (ret < sizeof (features_buf))
3782 return -ERANGE;
3783
3784 incompat = le64_to_cpu(features_buf.incompat);
3785 if (incompat & ~RBD_FEATURES_SUPPORTED)
3786 return -ENXIO;
3787
3788 *snap_features = le64_to_cpu(features_buf.features);
3789
3790 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3791 (unsigned long long)snap_id,
3792 (unsigned long long)*snap_features,
3793 (unsigned long long)le64_to_cpu(features_buf.incompat));
3794
3795 return 0;
3796 }
3797
3798 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3799 {
3800 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3801 &rbd_dev->header.features);
3802 }
3803
3804 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3805 {
3806 struct rbd_spec *parent_spec;
3807 size_t size;
3808 void *reply_buf = NULL;
3809 __le64 snapid;
3810 void *p;
3811 void *end;
3812 u64 pool_id;
3813 char *image_id;
3814 u64 snap_id;
3815 u64 overlap;
3816 int ret;
3817
3818 parent_spec = rbd_spec_alloc();
3819 if (!parent_spec)
3820 return -ENOMEM;
3821
3822 size = sizeof (__le64) + /* pool_id */
3823 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3824 sizeof (__le64) + /* snap_id */
3825 sizeof (__le64); /* overlap */
3826 reply_buf = kmalloc(size, GFP_KERNEL);
3827 if (!reply_buf) {
3828 ret = -ENOMEM;
3829 goto out_err;
3830 }
3831
3832 snapid = cpu_to_le64(CEPH_NOSNAP);
3833 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3834 "rbd", "get_parent",
3835 &snapid, sizeof (snapid),
3836 reply_buf, size);
3837 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3838 if (ret < 0)
3839 goto out_err;
3840
3841 p = reply_buf;
3842 end = reply_buf + ret;
3843 ret = -ERANGE;
3844 ceph_decode_64_safe(&p, end, pool_id, out_err);
3845 if (pool_id == CEPH_NOPOOL) {
3846 /*
3847 * Either the parent never existed, or we have
3848 * record of it but the image got flattened so it no
3849 * longer has a parent. When the parent of a
3850 * layered image disappears we immediately set the
3851 * overlap to 0. The effect of this is that all new
3852 * requests will be treated as if the image had no
3853 * parent.
3854 */
3855 if (rbd_dev->parent_overlap) {
3856 rbd_dev->parent_overlap = 0;
3857 smp_mb();
3858 rbd_dev_parent_put(rbd_dev);
3859 pr_info("%s: clone image has been flattened\n",
3860 rbd_dev->disk->disk_name);
3861 }
3862
3863 goto out; /* No parent? No problem. */
3864 }
3865
3866 /* The ceph file layout needs to fit pool id in 32 bits */
3867
3868 ret = -EIO;
3869 if (pool_id > (u64)U32_MAX) {
3870 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3871 (unsigned long long)pool_id, U32_MAX);
3872 goto out_err;
3873 }
3874
3875 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3876 if (IS_ERR(image_id)) {
3877 ret = PTR_ERR(image_id);
3878 goto out_err;
3879 }
3880 ceph_decode_64_safe(&p, end, snap_id, out_err);
3881 ceph_decode_64_safe(&p, end, overlap, out_err);
3882
3883 /*
3884 * The parent won't change (except when the clone is
3885 * flattened, already handled that). So we only need to
3886 * record the parent spec we have not already done so.
3887 */
3888 if (!rbd_dev->parent_spec) {
3889 parent_spec->pool_id = pool_id;
3890 parent_spec->image_id = image_id;
3891 parent_spec->snap_id = snap_id;
3892 rbd_dev->parent_spec = parent_spec;
3893 parent_spec = NULL; /* rbd_dev now owns this */
3894 }
3895
3896 /*
3897 * We always update the parent overlap. If it's zero we
3898 * treat it specially.
3899 */
3900 rbd_dev->parent_overlap = overlap;
3901 smp_mb();
3902 if (!overlap) {
3903
3904 /* A null parent_spec indicates it's the initial probe */
3905
3906 if (parent_spec) {
3907 /*
3908 * The overlap has become zero, so the clone
3909 * must have been resized down to 0 at some
3910 * point. Treat this the same as a flatten.
3911 */
3912 rbd_dev_parent_put(rbd_dev);
3913 pr_info("%s: clone image now standalone\n",
3914 rbd_dev->disk->disk_name);
3915 } else {
3916 /*
3917 * For the initial probe, if we find the
3918 * overlap is zero we just pretend there was
3919 * no parent image.
3920 */
3921 rbd_warn(rbd_dev, "ignoring parent of "
3922 "clone with overlap 0\n");
3923 }
3924 }
3925 out:
3926 ret = 0;
3927 out_err:
3928 kfree(reply_buf);
3929 rbd_spec_put(parent_spec);
3930
3931 return ret;
3932 }
3933
3934 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3935 {
3936 struct {
3937 __le64 stripe_unit;
3938 __le64 stripe_count;
3939 } __attribute__ ((packed)) striping_info_buf = { 0 };
3940 size_t size = sizeof (striping_info_buf);
3941 void *p;
3942 u64 obj_size;
3943 u64 stripe_unit;
3944 u64 stripe_count;
3945 int ret;
3946
3947 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3948 "rbd", "get_stripe_unit_count", NULL, 0,
3949 (char *)&striping_info_buf, size);
3950 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3951 if (ret < 0)
3952 return ret;
3953 if (ret < size)
3954 return -ERANGE;
3955
3956 /*
3957 * We don't actually support the "fancy striping" feature
3958 * (STRIPINGV2) yet, but if the striping sizes are the
3959 * defaults the behavior is the same as before. So find
3960 * out, and only fail if the image has non-default values.
3961 */
3962 ret = -EINVAL;
3963 obj_size = (u64)1 << rbd_dev->header.obj_order;
3964 p = &striping_info_buf;
3965 stripe_unit = ceph_decode_64(&p);
3966 if (stripe_unit != obj_size) {
3967 rbd_warn(rbd_dev, "unsupported stripe unit "
3968 "(got %llu want %llu)",
3969 stripe_unit, obj_size);
3970 return -EINVAL;
3971 }
3972 stripe_count = ceph_decode_64(&p);
3973 if (stripe_count != 1) {
3974 rbd_warn(rbd_dev, "unsupported stripe count "
3975 "(got %llu want 1)", stripe_count);
3976 return -EINVAL;
3977 }
3978 rbd_dev->header.stripe_unit = stripe_unit;
3979 rbd_dev->header.stripe_count = stripe_count;
3980
3981 return 0;
3982 }
3983
3984 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3985 {
3986 size_t image_id_size;
3987 char *image_id;
3988 void *p;
3989 void *end;
3990 size_t size;
3991 void *reply_buf = NULL;
3992 size_t len = 0;
3993 char *image_name = NULL;
3994 int ret;
3995
3996 rbd_assert(!rbd_dev->spec->image_name);
3997
3998 len = strlen(rbd_dev->spec->image_id);
3999 image_id_size = sizeof (__le32) + len;
4000 image_id = kmalloc(image_id_size, GFP_KERNEL);
4001 if (!image_id)
4002 return NULL;
4003
4004 p = image_id;
4005 end = image_id + image_id_size;
4006 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4007
4008 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4009 reply_buf = kmalloc(size, GFP_KERNEL);
4010 if (!reply_buf)
4011 goto out;
4012
4013 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4014 "rbd", "dir_get_name",
4015 image_id, image_id_size,
4016 reply_buf, size);
4017 if (ret < 0)
4018 goto out;
4019 p = reply_buf;
4020 end = reply_buf + ret;
4021
4022 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4023 if (IS_ERR(image_name))
4024 image_name = NULL;
4025 else
4026 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4027 out:
4028 kfree(reply_buf);
4029 kfree(image_id);
4030
4031 return image_name;
4032 }
4033
4034 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4035 {
4036 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4037 const char *snap_name;
4038 u32 which = 0;
4039
4040 /* Skip over names until we find the one we are looking for */
4041
4042 snap_name = rbd_dev->header.snap_names;
4043 while (which < snapc->num_snaps) {
4044 if (!strcmp(name, snap_name))
4045 return snapc->snaps[which];
4046 snap_name += strlen(snap_name) + 1;
4047 which++;
4048 }
4049 return CEPH_NOSNAP;
4050 }
4051
4052 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4053 {
4054 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4055 u32 which;
4056 bool found = false;
4057 u64 snap_id;
4058
4059 for (which = 0; !found && which < snapc->num_snaps; which++) {
4060 const char *snap_name;
4061
4062 snap_id = snapc->snaps[which];
4063 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4064 if (IS_ERR(snap_name))
4065 break;
4066 found = !strcmp(name, snap_name);
4067 kfree(snap_name);
4068 }
4069 return found ? snap_id : CEPH_NOSNAP;
4070 }
4071
4072 /*
4073 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4074 * no snapshot by that name is found, or if an error occurs.
4075 */
4076 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4077 {
4078 if (rbd_dev->image_format == 1)
4079 return rbd_v1_snap_id_by_name(rbd_dev, name);
4080
4081 return rbd_v2_snap_id_by_name(rbd_dev, name);
4082 }
4083
4084 /*
4085 * When an rbd image has a parent image, it is identified by the
4086 * pool, image, and snapshot ids (not names). This function fills
4087 * in the names for those ids. (It's OK if we can't figure out the
4088 * name for an image id, but the pool and snapshot ids should always
4089 * exist and have names.) All names in an rbd spec are dynamically
4090 * allocated.
4091 *
4092 * When an image being mapped (not a parent) is probed, we have the
4093 * pool name and pool id, image name and image id, and the snapshot
4094 * name. The only thing we're missing is the snapshot id.
4095 */
4096 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4097 {
4098 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4099 struct rbd_spec *spec = rbd_dev->spec;
4100 const char *pool_name;
4101 const char *image_name;
4102 const char *snap_name;
4103 int ret;
4104
4105 /*
4106 * An image being mapped will have the pool name (etc.), but
4107 * we need to look up the snapshot id.
4108 */
4109 if (spec->pool_name) {
4110 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4111 u64 snap_id;
4112
4113 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4114 if (snap_id == CEPH_NOSNAP)
4115 return -ENOENT;
4116 spec->snap_id = snap_id;
4117 } else {
4118 spec->snap_id = CEPH_NOSNAP;
4119 }
4120
4121 return 0;
4122 }
4123
4124 /* Get the pool name; we have to make our own copy of this */
4125
4126 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4127 if (!pool_name) {
4128 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4129 return -EIO;
4130 }
4131 pool_name = kstrdup(pool_name, GFP_KERNEL);
4132 if (!pool_name)
4133 return -ENOMEM;
4134
4135 /* Fetch the image name; tolerate failure here */
4136
4137 image_name = rbd_dev_image_name(rbd_dev);
4138 if (!image_name)
4139 rbd_warn(rbd_dev, "unable to get image name");
4140
4141 /* Look up the snapshot name, and make a copy */
4142
4143 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4144 if (!snap_name) {
4145 ret = -ENOMEM;
4146 goto out_err;
4147 }
4148
4149 spec->pool_name = pool_name;
4150 spec->image_name = image_name;
4151 spec->snap_name = snap_name;
4152
4153 return 0;
4154 out_err:
4155 kfree(image_name);
4156 kfree(pool_name);
4157
4158 return ret;
4159 }
4160
4161 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4162 {
4163 size_t size;
4164 int ret;
4165 void *reply_buf;
4166 void *p;
4167 void *end;
4168 u64 seq;
4169 u32 snap_count;
4170 struct ceph_snap_context *snapc;
4171 u32 i;
4172
4173 /*
4174 * We'll need room for the seq value (maximum snapshot id),
4175 * snapshot count, and array of that many snapshot ids.
4176 * For now we have a fixed upper limit on the number we're
4177 * prepared to receive.
4178 */
4179 size = sizeof (__le64) + sizeof (__le32) +
4180 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4181 reply_buf = kzalloc(size, GFP_KERNEL);
4182 if (!reply_buf)
4183 return -ENOMEM;
4184
4185 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4186 "rbd", "get_snapcontext", NULL, 0,
4187 reply_buf, size);
4188 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4189 if (ret < 0)
4190 goto out;
4191
4192 p = reply_buf;
4193 end = reply_buf + ret;
4194 ret = -ERANGE;
4195 ceph_decode_64_safe(&p, end, seq, out);
4196 ceph_decode_32_safe(&p, end, snap_count, out);
4197
4198 /*
4199 * Make sure the reported number of snapshot ids wouldn't go
4200 * beyond the end of our buffer. But before checking that,
4201 * make sure the computed size of the snapshot context we
4202 * allocate is representable in a size_t.
4203 */
4204 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4205 / sizeof (u64)) {
4206 ret = -EINVAL;
4207 goto out;
4208 }
4209 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4210 goto out;
4211 ret = 0;
4212
4213 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4214 if (!snapc) {
4215 ret = -ENOMEM;
4216 goto out;
4217 }
4218 snapc->seq = seq;
4219 for (i = 0; i < snap_count; i++)
4220 snapc->snaps[i] = ceph_decode_64(&p);
4221
4222 ceph_put_snap_context(rbd_dev->header.snapc);
4223 rbd_dev->header.snapc = snapc;
4224
4225 dout(" snap context seq = %llu, snap_count = %u\n",
4226 (unsigned long long)seq, (unsigned int)snap_count);
4227 out:
4228 kfree(reply_buf);
4229
4230 return ret;
4231 }
4232
4233 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4234 u64 snap_id)
4235 {
4236 size_t size;
4237 void *reply_buf;
4238 __le64 snapid;
4239 int ret;
4240 void *p;
4241 void *end;
4242 char *snap_name;
4243
4244 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4245 reply_buf = kmalloc(size, GFP_KERNEL);
4246 if (!reply_buf)
4247 return ERR_PTR(-ENOMEM);
4248
4249 snapid = cpu_to_le64(snap_id);
4250 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4251 "rbd", "get_snapshot_name",
4252 &snapid, sizeof (snapid),
4253 reply_buf, size);
4254 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4255 if (ret < 0) {
4256 snap_name = ERR_PTR(ret);
4257 goto out;
4258 }
4259
4260 p = reply_buf;
4261 end = reply_buf + ret;
4262 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4263 if (IS_ERR(snap_name))
4264 goto out;
4265
4266 dout(" snap_id 0x%016llx snap_name = %s\n",
4267 (unsigned long long)snap_id, snap_name);
4268 out:
4269 kfree(reply_buf);
4270
4271 return snap_name;
4272 }
4273
4274 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4275 {
4276 bool first_time = rbd_dev->header.object_prefix == NULL;
4277 int ret;
4278
4279 ret = rbd_dev_v2_image_size(rbd_dev);
4280 if (ret)
4281 return ret;
4282
4283 if (first_time) {
4284 ret = rbd_dev_v2_header_onetime(rbd_dev);
4285 if (ret)
4286 return ret;
4287 }
4288
4289 /*
4290 * If the image supports layering, get the parent info. We
4291 * need to probe the first time regardless. Thereafter we
4292 * only need to if there's a parent, to see if it has
4293 * disappeared due to the mapped image getting flattened.
4294 */
4295 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4296 (first_time || rbd_dev->parent_spec)) {
4297 bool warn;
4298
4299 ret = rbd_dev_v2_parent_info(rbd_dev);
4300 if (ret)
4301 return ret;
4302
4303 /*
4304 * Print a warning if this is the initial probe and
4305 * the image has a parent. Don't print it if the
4306 * image now being probed is itself a parent. We
4307 * can tell at this point because we won't know its
4308 * pool name yet (just its pool id).
4309 */
4310 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4311 if (first_time && warn)
4312 rbd_warn(rbd_dev, "WARNING: kernel layering "
4313 "is EXPERIMENTAL!");
4314 }
4315
4316 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4317 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4318 rbd_dev->mapping.size = rbd_dev->header.image_size;
4319
4320 ret = rbd_dev_v2_snap_context(rbd_dev);
4321 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4322
4323 return ret;
4324 }
4325
4326 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4327 {
4328 struct device *dev;
4329 int ret;
4330
4331 dev = &rbd_dev->dev;
4332 dev->bus = &rbd_bus_type;
4333 dev->type = &rbd_device_type;
4334 dev->parent = &rbd_root_dev;
4335 dev->release = rbd_dev_device_release;
4336 dev_set_name(dev, "%d", rbd_dev->dev_id);
4337 ret = device_register(dev);
4338
4339 return ret;
4340 }
4341
4342 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4343 {
4344 device_unregister(&rbd_dev->dev);
4345 }
4346
4347 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4348
4349 /*
4350 * Get a unique rbd identifier for the given new rbd_dev, and add
4351 * the rbd_dev to the global list. The minimum rbd id is 1.
4352 */
4353 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4354 {
4355 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4356
4357 spin_lock(&rbd_dev_list_lock);
4358 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4359 spin_unlock(&rbd_dev_list_lock);
4360 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4361 (unsigned long long) rbd_dev->dev_id);
4362 }
4363
4364 /*
4365 * Remove an rbd_dev from the global list, and record that its
4366 * identifier is no longer in use.
4367 */
4368 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4369 {
4370 struct list_head *tmp;
4371 int rbd_id = rbd_dev->dev_id;
4372 int max_id;
4373
4374 rbd_assert(rbd_id > 0);
4375
4376 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4377 (unsigned long long) rbd_dev->dev_id);
4378 spin_lock(&rbd_dev_list_lock);
4379 list_del_init(&rbd_dev->node);
4380
4381 /*
4382 * If the id being "put" is not the current maximum, there
4383 * is nothing special we need to do.
4384 */
4385 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4386 spin_unlock(&rbd_dev_list_lock);
4387 return;
4388 }
4389
4390 /*
4391 * We need to update the current maximum id. Search the
4392 * list to find out what it is. We're more likely to find
4393 * the maximum at the end, so search the list backward.
4394 */
4395 max_id = 0;
4396 list_for_each_prev(tmp, &rbd_dev_list) {
4397 struct rbd_device *rbd_dev;
4398
4399 rbd_dev = list_entry(tmp, struct rbd_device, node);
4400 if (rbd_dev->dev_id > max_id)
4401 max_id = rbd_dev->dev_id;
4402 }
4403 spin_unlock(&rbd_dev_list_lock);
4404
4405 /*
4406 * The max id could have been updated by rbd_dev_id_get(), in
4407 * which case it now accurately reflects the new maximum.
4408 * Be careful not to overwrite the maximum value in that
4409 * case.
4410 */
4411 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4412 dout(" max dev id has been reset\n");
4413 }
4414
4415 /*
4416 * Skips over white space at *buf, and updates *buf to point to the
4417 * first found non-space character (if any). Returns the length of
4418 * the token (string of non-white space characters) found. Note
4419 * that *buf must be terminated with '\0'.
4420 */
4421 static inline size_t next_token(const char **buf)
4422 {
4423 /*
4424 * These are the characters that produce nonzero for
4425 * isspace() in the "C" and "POSIX" locales.
4426 */
4427 const char *spaces = " \f\n\r\t\v";
4428
4429 *buf += strspn(*buf, spaces); /* Find start of token */
4430
4431 return strcspn(*buf, spaces); /* Return token length */
4432 }
4433
4434 /*
4435 * Finds the next token in *buf, and if the provided token buffer is
4436 * big enough, copies the found token into it. The result, if
4437 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4438 * must be terminated with '\0' on entry.
4439 *
4440 * Returns the length of the token found (not including the '\0').
4441 * Return value will be 0 if no token is found, and it will be >=
4442 * token_size if the token would not fit.
4443 *
4444 * The *buf pointer will be updated to point beyond the end of the
4445 * found token. Note that this occurs even if the token buffer is
4446 * too small to hold it.
4447 */
4448 static inline size_t copy_token(const char **buf,
4449 char *token,
4450 size_t token_size)
4451 {
4452 size_t len;
4453
4454 len = next_token(buf);
4455 if (len < token_size) {
4456 memcpy(token, *buf, len);
4457 *(token + len) = '\0';
4458 }
4459 *buf += len;
4460
4461 return len;
4462 }
4463
4464 /*
4465 * Finds the next token in *buf, dynamically allocates a buffer big
4466 * enough to hold a copy of it, and copies the token into the new
4467 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4468 * that a duplicate buffer is created even for a zero-length token.
4469 *
4470 * Returns a pointer to the newly-allocated duplicate, or a null
4471 * pointer if memory for the duplicate was not available. If
4472 * the lenp argument is a non-null pointer, the length of the token
4473 * (not including the '\0') is returned in *lenp.
4474 *
4475 * If successful, the *buf pointer will be updated to point beyond
4476 * the end of the found token.
4477 *
4478 * Note: uses GFP_KERNEL for allocation.
4479 */
4480 static inline char *dup_token(const char **buf, size_t *lenp)
4481 {
4482 char *dup;
4483 size_t len;
4484
4485 len = next_token(buf);
4486 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4487 if (!dup)
4488 return NULL;
4489 *(dup + len) = '\0';
4490 *buf += len;
4491
4492 if (lenp)
4493 *lenp = len;
4494
4495 return dup;
4496 }
4497
4498 /*
4499 * Parse the options provided for an "rbd add" (i.e., rbd image
4500 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4501 * and the data written is passed here via a NUL-terminated buffer.
4502 * Returns 0 if successful or an error code otherwise.
4503 *
4504 * The information extracted from these options is recorded in
4505 * the other parameters which return dynamically-allocated
4506 * structures:
4507 * ceph_opts
4508 * The address of a pointer that will refer to a ceph options
4509 * structure. Caller must release the returned pointer using
4510 * ceph_destroy_options() when it is no longer needed.
4511 * rbd_opts
4512 * Address of an rbd options pointer. Fully initialized by
4513 * this function; caller must release with kfree().
4514 * spec
4515 * Address of an rbd image specification pointer. Fully
4516 * initialized by this function based on parsed options.
4517 * Caller must release with rbd_spec_put().
4518 *
4519 * The options passed take this form:
4520 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4521 * where:
4522 * <mon_addrs>
4523 * A comma-separated list of one or more monitor addresses.
4524 * A monitor address is an ip address, optionally followed
4525 * by a port number (separated by a colon).
4526 * I.e.: ip1[:port1][,ip2[:port2]...]
4527 * <options>
4528 * A comma-separated list of ceph and/or rbd options.
4529 * <pool_name>
4530 * The name of the rados pool containing the rbd image.
4531 * <image_name>
4532 * The name of the image in that pool to map.
4533 * <snap_id>
4534 * An optional snapshot id. If provided, the mapping will
4535 * present data from the image at the time that snapshot was
4536 * created. The image head is used if no snapshot id is
4537 * provided. Snapshot mappings are always read-only.
4538 */
4539 static int rbd_add_parse_args(const char *buf,
4540 struct ceph_options **ceph_opts,
4541 struct rbd_options **opts,
4542 struct rbd_spec **rbd_spec)
4543 {
4544 size_t len;
4545 char *options;
4546 const char *mon_addrs;
4547 char *snap_name;
4548 size_t mon_addrs_size;
4549 struct rbd_spec *spec = NULL;
4550 struct rbd_options *rbd_opts = NULL;
4551 struct ceph_options *copts;
4552 int ret;
4553
4554 /* The first four tokens are required */
4555
4556 len = next_token(&buf);
4557 if (!len) {
4558 rbd_warn(NULL, "no monitor address(es) provided");
4559 return -EINVAL;
4560 }
4561 mon_addrs = buf;
4562 mon_addrs_size = len + 1;
4563 buf += len;
4564
4565 ret = -EINVAL;
4566 options = dup_token(&buf, NULL);
4567 if (!options)
4568 return -ENOMEM;
4569 if (!*options) {
4570 rbd_warn(NULL, "no options provided");
4571 goto out_err;
4572 }
4573
4574 spec = rbd_spec_alloc();
4575 if (!spec)
4576 goto out_mem;
4577
4578 spec->pool_name = dup_token(&buf, NULL);
4579 if (!spec->pool_name)
4580 goto out_mem;
4581 if (!*spec->pool_name) {
4582 rbd_warn(NULL, "no pool name provided");
4583 goto out_err;
4584 }
4585
4586 spec->image_name = dup_token(&buf, NULL);
4587 if (!spec->image_name)
4588 goto out_mem;
4589 if (!*spec->image_name) {
4590 rbd_warn(NULL, "no image name provided");
4591 goto out_err;
4592 }
4593
4594 /*
4595 * Snapshot name is optional; default is to use "-"
4596 * (indicating the head/no snapshot).
4597 */
4598 len = next_token(&buf);
4599 if (!len) {
4600 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4601 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4602 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4603 ret = -ENAMETOOLONG;
4604 goto out_err;
4605 }
4606 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4607 if (!snap_name)
4608 goto out_mem;
4609 *(snap_name + len) = '\0';
4610 spec->snap_name = snap_name;
4611
4612 /* Initialize all rbd options to the defaults */
4613
4614 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4615 if (!rbd_opts)
4616 goto out_mem;
4617
4618 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4619
4620 copts = ceph_parse_options(options, mon_addrs,
4621 mon_addrs + mon_addrs_size - 1,
4622 parse_rbd_opts_token, rbd_opts);
4623 if (IS_ERR(copts)) {
4624 ret = PTR_ERR(copts);
4625 goto out_err;
4626 }
4627 kfree(options);
4628
4629 *ceph_opts = copts;
4630 *opts = rbd_opts;
4631 *rbd_spec = spec;
4632
4633 return 0;
4634 out_mem:
4635 ret = -ENOMEM;
4636 out_err:
4637 kfree(rbd_opts);
4638 rbd_spec_put(spec);
4639 kfree(options);
4640
4641 return ret;
4642 }
4643
4644 /*
4645 * An rbd format 2 image has a unique identifier, distinct from the
4646 * name given to it by the user. Internally, that identifier is
4647 * what's used to specify the names of objects related to the image.
4648 *
4649 * A special "rbd id" object is used to map an rbd image name to its
4650 * id. If that object doesn't exist, then there is no v2 rbd image
4651 * with the supplied name.
4652 *
4653 * This function will record the given rbd_dev's image_id field if
4654 * it can be determined, and in that case will return 0. If any
4655 * errors occur a negative errno will be returned and the rbd_dev's
4656 * image_id field will be unchanged (and should be NULL).
4657 */
4658 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4659 {
4660 int ret;
4661 size_t size;
4662 char *object_name;
4663 void *response;
4664 char *image_id;
4665
4666 /*
4667 * When probing a parent image, the image id is already
4668 * known (and the image name likely is not). There's no
4669 * need to fetch the image id again in this case. We
4670 * do still need to set the image format though.
4671 */
4672 if (rbd_dev->spec->image_id) {
4673 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4674
4675 return 0;
4676 }
4677
4678 /*
4679 * First, see if the format 2 image id file exists, and if
4680 * so, get the image's persistent id from it.
4681 */
4682 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4683 object_name = kmalloc(size, GFP_NOIO);
4684 if (!object_name)
4685 return -ENOMEM;
4686 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4687 dout("rbd id object name is %s\n", object_name);
4688
4689 /* Response will be an encoded string, which includes a length */
4690
4691 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4692 response = kzalloc(size, GFP_NOIO);
4693 if (!response) {
4694 ret = -ENOMEM;
4695 goto out;
4696 }
4697
4698 /* If it doesn't exist we'll assume it's a format 1 image */
4699
4700 ret = rbd_obj_method_sync(rbd_dev, object_name,
4701 "rbd", "get_id", NULL, 0,
4702 response, RBD_IMAGE_ID_LEN_MAX);
4703 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4704 if (ret == -ENOENT) {
4705 image_id = kstrdup("", GFP_KERNEL);
4706 ret = image_id ? 0 : -ENOMEM;
4707 if (!ret)
4708 rbd_dev->image_format = 1;
4709 } else if (ret > sizeof (__le32)) {
4710 void *p = response;
4711
4712 image_id = ceph_extract_encoded_string(&p, p + ret,
4713 NULL, GFP_NOIO);
4714 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4715 if (!ret)
4716 rbd_dev->image_format = 2;
4717 } else {
4718 ret = -EINVAL;
4719 }
4720
4721 if (!ret) {
4722 rbd_dev->spec->image_id = image_id;
4723 dout("image_id is %s\n", image_id);
4724 }
4725 out:
4726 kfree(response);
4727 kfree(object_name);
4728
4729 return ret;
4730 }
4731
4732 /*
4733 * Undo whatever state changes are made by v1 or v2 header info
4734 * call.
4735 */
4736 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4737 {
4738 struct rbd_image_header *header;
4739
4740 /* Drop parent reference unless it's already been done (or none) */
4741
4742 if (rbd_dev->parent_overlap)
4743 rbd_dev_parent_put(rbd_dev);
4744
4745 /* Free dynamic fields from the header, then zero it out */
4746
4747 header = &rbd_dev->header;
4748 ceph_put_snap_context(header->snapc);
4749 kfree(header->snap_sizes);
4750 kfree(header->snap_names);
4751 kfree(header->object_prefix);
4752 memset(header, 0, sizeof (*header));
4753 }
4754
4755 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4756 {
4757 int ret;
4758
4759 ret = rbd_dev_v2_object_prefix(rbd_dev);
4760 if (ret)
4761 goto out_err;
4762
4763 /*
4764 * Get the and check features for the image. Currently the
4765 * features are assumed to never change.
4766 */
4767 ret = rbd_dev_v2_features(rbd_dev);
4768 if (ret)
4769 goto out_err;
4770
4771 /* If the image supports fancy striping, get its parameters */
4772
4773 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4774 ret = rbd_dev_v2_striping_info(rbd_dev);
4775 if (ret < 0)
4776 goto out_err;
4777 }
4778 /* No support for crypto and compression type format 2 images */
4779
4780 return 0;
4781 out_err:
4782 rbd_dev->header.features = 0;
4783 kfree(rbd_dev->header.object_prefix);
4784 rbd_dev->header.object_prefix = NULL;
4785
4786 return ret;
4787 }
4788
4789 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4790 {
4791 struct rbd_device *parent = NULL;
4792 struct rbd_spec *parent_spec;
4793 struct rbd_client *rbdc;
4794 int ret;
4795
4796 if (!rbd_dev->parent_spec)
4797 return 0;
4798 /*
4799 * We need to pass a reference to the client and the parent
4800 * spec when creating the parent rbd_dev. Images related by
4801 * parent/child relationships always share both.
4802 */
4803 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4804 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4805
4806 ret = -ENOMEM;
4807 parent = rbd_dev_create(rbdc, parent_spec);
4808 if (!parent)
4809 goto out_err;
4810
4811 ret = rbd_dev_image_probe(parent, false);
4812 if (ret < 0)
4813 goto out_err;
4814 rbd_dev->parent = parent;
4815 atomic_set(&rbd_dev->parent_ref, 1);
4816
4817 return 0;
4818 out_err:
4819 if (parent) {
4820 rbd_dev_unparent(rbd_dev);
4821 kfree(rbd_dev->header_name);
4822 rbd_dev_destroy(parent);
4823 } else {
4824 rbd_put_client(rbdc);
4825 rbd_spec_put(parent_spec);
4826 }
4827
4828 return ret;
4829 }
4830
4831 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4832 {
4833 int ret;
4834
4835 /* generate unique id: find highest unique id, add one */
4836 rbd_dev_id_get(rbd_dev);
4837
4838 /* Fill in the device name, now that we have its id. */
4839 BUILD_BUG_ON(DEV_NAME_LEN
4840 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4841 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4842
4843 /* Get our block major device number. */
4844
4845 ret = register_blkdev(0, rbd_dev->name);
4846 if (ret < 0)
4847 goto err_out_id;
4848 rbd_dev->major = ret;
4849
4850 /* Set up the blkdev mapping. */
4851
4852 ret = rbd_init_disk(rbd_dev);
4853 if (ret)
4854 goto err_out_blkdev;
4855
4856 ret = rbd_dev_mapping_set(rbd_dev);
4857 if (ret)
4858 goto err_out_disk;
4859 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4860
4861 ret = rbd_bus_add_dev(rbd_dev);
4862 if (ret)
4863 goto err_out_mapping;
4864
4865 /* Everything's ready. Announce the disk to the world. */
4866
4867 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4868 add_disk(rbd_dev->disk);
4869
4870 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4871 (unsigned long long) rbd_dev->mapping.size);
4872
4873 return ret;
4874
4875 err_out_mapping:
4876 rbd_dev_mapping_clear(rbd_dev);
4877 err_out_disk:
4878 rbd_free_disk(rbd_dev);
4879 err_out_blkdev:
4880 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4881 err_out_id:
4882 rbd_dev_id_put(rbd_dev);
4883 rbd_dev_mapping_clear(rbd_dev);
4884
4885 return ret;
4886 }
4887
4888 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4889 {
4890 struct rbd_spec *spec = rbd_dev->spec;
4891 size_t size;
4892
4893 /* Record the header object name for this rbd image. */
4894
4895 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4896
4897 if (rbd_dev->image_format == 1)
4898 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4899 else
4900 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4901
4902 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4903 if (!rbd_dev->header_name)
4904 return -ENOMEM;
4905
4906 if (rbd_dev->image_format == 1)
4907 sprintf(rbd_dev->header_name, "%s%s",
4908 spec->image_name, RBD_SUFFIX);
4909 else
4910 sprintf(rbd_dev->header_name, "%s%s",
4911 RBD_HEADER_PREFIX, spec->image_id);
4912 return 0;
4913 }
4914
4915 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4916 {
4917 rbd_dev_unprobe(rbd_dev);
4918 kfree(rbd_dev->header_name);
4919 rbd_dev->header_name = NULL;
4920 rbd_dev->image_format = 0;
4921 kfree(rbd_dev->spec->image_id);
4922 rbd_dev->spec->image_id = NULL;
4923
4924 rbd_dev_destroy(rbd_dev);
4925 }
4926
4927 /*
4928 * Probe for the existence of the header object for the given rbd
4929 * device. If this image is the one being mapped (i.e., not a
4930 * parent), initiate a watch on its header object before using that
4931 * object to get detailed information about the rbd image.
4932 */
4933 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4934 {
4935 int ret;
4936 int tmp;
4937
4938 /*
4939 * Get the id from the image id object. Unless there's an
4940 * error, rbd_dev->spec->image_id will be filled in with
4941 * a dynamically-allocated string, and rbd_dev->image_format
4942 * will be set to either 1 or 2.
4943 */
4944 ret = rbd_dev_image_id(rbd_dev);
4945 if (ret)
4946 return ret;
4947 rbd_assert(rbd_dev->spec->image_id);
4948 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4949
4950 ret = rbd_dev_header_name(rbd_dev);
4951 if (ret)
4952 goto err_out_format;
4953
4954 if (mapping) {
4955 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4956 if (ret)
4957 goto out_header_name;
4958 }
4959
4960 if (rbd_dev->image_format == 1)
4961 ret = rbd_dev_v1_header_info(rbd_dev);
4962 else
4963 ret = rbd_dev_v2_header_info(rbd_dev);
4964 if (ret)
4965 goto err_out_watch;
4966
4967 ret = rbd_dev_spec_update(rbd_dev);
4968 if (ret)
4969 goto err_out_probe;
4970
4971 ret = rbd_dev_probe_parent(rbd_dev);
4972 if (ret)
4973 goto err_out_probe;
4974
4975 dout("discovered format %u image, header name is %s\n",
4976 rbd_dev->image_format, rbd_dev->header_name);
4977
4978 return 0;
4979 err_out_probe:
4980 rbd_dev_unprobe(rbd_dev);
4981 err_out_watch:
4982 if (mapping) {
4983 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4984 if (tmp)
4985 rbd_warn(rbd_dev, "unable to tear down "
4986 "watch request (%d)\n", tmp);
4987 }
4988 out_header_name:
4989 kfree(rbd_dev->header_name);
4990 rbd_dev->header_name = NULL;
4991 err_out_format:
4992 rbd_dev->image_format = 0;
4993 kfree(rbd_dev->spec->image_id);
4994 rbd_dev->spec->image_id = NULL;
4995
4996 dout("probe failed, returning %d\n", ret);
4997
4998 return ret;
4999 }
5000
5001 static ssize_t rbd_add(struct bus_type *bus,
5002 const char *buf,
5003 size_t count)
5004 {
5005 struct rbd_device *rbd_dev = NULL;
5006 struct ceph_options *ceph_opts = NULL;
5007 struct rbd_options *rbd_opts = NULL;
5008 struct rbd_spec *spec = NULL;
5009 struct rbd_client *rbdc;
5010 struct ceph_osd_client *osdc;
5011 bool read_only;
5012 int rc = -ENOMEM;
5013
5014 if (!try_module_get(THIS_MODULE))
5015 return -ENODEV;
5016
5017 /* parse add command */
5018 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5019 if (rc < 0)
5020 goto err_out_module;
5021 read_only = rbd_opts->read_only;
5022 kfree(rbd_opts);
5023 rbd_opts = NULL; /* done with this */
5024
5025 rbdc = rbd_get_client(ceph_opts);
5026 if (IS_ERR(rbdc)) {
5027 rc = PTR_ERR(rbdc);
5028 goto err_out_args;
5029 }
5030
5031 /* pick the pool */
5032 osdc = &rbdc->client->osdc;
5033 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5034 if (rc < 0)
5035 goto err_out_client;
5036 spec->pool_id = (u64)rc;
5037
5038 /* The ceph file layout needs to fit pool id in 32 bits */
5039
5040 if (spec->pool_id > (u64)U32_MAX) {
5041 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5042 (unsigned long long)spec->pool_id, U32_MAX);
5043 rc = -EIO;
5044 goto err_out_client;
5045 }
5046
5047 rbd_dev = rbd_dev_create(rbdc, spec);
5048 if (!rbd_dev)
5049 goto err_out_client;
5050 rbdc = NULL; /* rbd_dev now owns this */
5051 spec = NULL; /* rbd_dev now owns this */
5052
5053 rc = rbd_dev_image_probe(rbd_dev, true);
5054 if (rc < 0)
5055 goto err_out_rbd_dev;
5056
5057 /* If we are mapping a snapshot it must be marked read-only */
5058
5059 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5060 read_only = true;
5061 rbd_dev->mapping.read_only = read_only;
5062
5063 rc = rbd_dev_device_setup(rbd_dev);
5064 if (rc) {
5065 rbd_dev_image_release(rbd_dev);
5066 goto err_out_module;
5067 }
5068
5069 return count;
5070
5071 err_out_rbd_dev:
5072 rbd_dev_destroy(rbd_dev);
5073 err_out_client:
5074 rbd_put_client(rbdc);
5075 err_out_args:
5076 rbd_spec_put(spec);
5077 err_out_module:
5078 module_put(THIS_MODULE);
5079
5080 dout("Error adding device %s\n", buf);
5081
5082 return (ssize_t)rc;
5083 }
5084
5085 static void rbd_dev_device_release(struct device *dev)
5086 {
5087 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5088
5089 rbd_free_disk(rbd_dev);
5090 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5091 rbd_dev_mapping_clear(rbd_dev);
5092 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5093 rbd_dev->major = 0;
5094 rbd_dev_id_put(rbd_dev);
5095 rbd_dev_mapping_clear(rbd_dev);
5096 }
5097
5098 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5099 {
5100 while (rbd_dev->parent) {
5101 struct rbd_device *first = rbd_dev;
5102 struct rbd_device *second = first->parent;
5103 struct rbd_device *third;
5104
5105 /*
5106 * Follow to the parent with no grandparent and
5107 * remove it.
5108 */
5109 while (second && (third = second->parent)) {
5110 first = second;
5111 second = third;
5112 }
5113 rbd_assert(second);
5114 rbd_dev_image_release(second);
5115 first->parent = NULL;
5116 first->parent_overlap = 0;
5117
5118 rbd_assert(first->parent_spec);
5119 rbd_spec_put(first->parent_spec);
5120 first->parent_spec = NULL;
5121 }
5122 }
5123
5124 static ssize_t rbd_remove(struct bus_type *bus,
5125 const char *buf,
5126 size_t count)
5127 {
5128 struct rbd_device *rbd_dev = NULL;
5129 struct list_head *tmp;
5130 int dev_id;
5131 unsigned long ul;
5132 bool already = false;
5133 int ret;
5134
5135 ret = kstrtoul(buf, 10, &ul);
5136 if (ret)
5137 return ret;
5138
5139 /* convert to int; abort if we lost anything in the conversion */
5140 dev_id = (int)ul;
5141 if (dev_id != ul)
5142 return -EINVAL;
5143
5144 ret = -ENOENT;
5145 spin_lock(&rbd_dev_list_lock);
5146 list_for_each(tmp, &rbd_dev_list) {
5147 rbd_dev = list_entry(tmp, struct rbd_device, node);
5148 if (rbd_dev->dev_id == dev_id) {
5149 ret = 0;
5150 break;
5151 }
5152 }
5153 if (!ret) {
5154 spin_lock_irq(&rbd_dev->lock);
5155 if (rbd_dev->open_count)
5156 ret = -EBUSY;
5157 else
5158 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5159 &rbd_dev->flags);
5160 spin_unlock_irq(&rbd_dev->lock);
5161 }
5162 spin_unlock(&rbd_dev_list_lock);
5163 if (ret < 0 || already)
5164 return ret;
5165
5166 rbd_bus_del_dev(rbd_dev);
5167 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5168 if (ret)
5169 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5170 rbd_dev_image_release(rbd_dev);
5171 module_put(THIS_MODULE);
5172
5173 return count;
5174 }
5175
5176 /*
5177 * create control files in sysfs
5178 * /sys/bus/rbd/...
5179 */
5180 static int rbd_sysfs_init(void)
5181 {
5182 int ret;
5183
5184 ret = device_register(&rbd_root_dev);
5185 if (ret < 0)
5186 return ret;
5187
5188 ret = bus_register(&rbd_bus_type);
5189 if (ret < 0)
5190 device_unregister(&rbd_root_dev);
5191
5192 return ret;
5193 }
5194
5195 static void rbd_sysfs_cleanup(void)
5196 {
5197 bus_unregister(&rbd_bus_type);
5198 device_unregister(&rbd_root_dev);
5199 }
5200
5201 static int rbd_slab_init(void)
5202 {
5203 rbd_assert(!rbd_img_request_cache);
5204 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5205 sizeof (struct rbd_img_request),
5206 __alignof__(struct rbd_img_request),
5207 0, NULL);
5208 if (!rbd_img_request_cache)
5209 return -ENOMEM;
5210
5211 rbd_assert(!rbd_obj_request_cache);
5212 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5213 sizeof (struct rbd_obj_request),
5214 __alignof__(struct rbd_obj_request),
5215 0, NULL);
5216 if (!rbd_obj_request_cache)
5217 goto out_err;
5218
5219 rbd_assert(!rbd_segment_name_cache);
5220 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5221 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5222 if (rbd_segment_name_cache)
5223 return 0;
5224 out_err:
5225 if (rbd_obj_request_cache) {
5226 kmem_cache_destroy(rbd_obj_request_cache);
5227 rbd_obj_request_cache = NULL;
5228 }
5229
5230 kmem_cache_destroy(rbd_img_request_cache);
5231 rbd_img_request_cache = NULL;
5232
5233 return -ENOMEM;
5234 }
5235
5236 static void rbd_slab_exit(void)
5237 {
5238 rbd_assert(rbd_segment_name_cache);
5239 kmem_cache_destroy(rbd_segment_name_cache);
5240 rbd_segment_name_cache = NULL;
5241
5242 rbd_assert(rbd_obj_request_cache);
5243 kmem_cache_destroy(rbd_obj_request_cache);
5244 rbd_obj_request_cache = NULL;
5245
5246 rbd_assert(rbd_img_request_cache);
5247 kmem_cache_destroy(rbd_img_request_cache);
5248 rbd_img_request_cache = NULL;
5249 }
5250
5251 static int __init rbd_init(void)
5252 {
5253 int rc;
5254
5255 if (!libceph_compatible(NULL)) {
5256 rbd_warn(NULL, "libceph incompatibility (quitting)");
5257
5258 return -EINVAL;
5259 }
5260 rc = rbd_slab_init();
5261 if (rc)
5262 return rc;
5263 rc = rbd_sysfs_init();
5264 if (rc)
5265 rbd_slab_exit();
5266 else
5267 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5268
5269 return rc;
5270 }
5271
5272 static void __exit rbd_exit(void)
5273 {
5274 rbd_sysfs_cleanup();
5275 rbd_slab_exit();
5276 }
5277
5278 module_init(rbd_init);
5279 module_exit(rbd_exit);
5280
5281 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5282 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5283 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5284 MODULE_DESCRIPTION("rados block device");
5285
5286 /* following authorship retained from original osdblk.c */
5287 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5288
5289 MODULE_LICENSE("GPL");
This page took 0.241983 seconds and 6 git commands to generate.