Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
57 */
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60
61 /*
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
66 */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 unsigned int counter;
70
71 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 if (counter <= (unsigned int)INT_MAX)
73 return (int)counter;
74
75 atomic_dec(v);
76
77 return -EINVAL;
78 }
79
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 int counter;
84
85 counter = atomic_dec_return(v);
86 if (counter >= 0)
87 return counter;
88
89 atomic_inc(v);
90
91 return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98
99 #define RBD_MAX_PARENT_CHAIN_LEN 16
100
101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN \
103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104
105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
106
107 #define RBD_SNAP_HEAD_NAME "-"
108
109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
110
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX 64
114
115 #define RBD_OBJ_PREFIX_LEN_MAX 64
116
117 /* Feature bits */
118
119 #define RBD_FEATURE_LAYERING (1<<0)
120 #define RBD_FEATURE_STRIPINGV2 (1<<1)
121 #define RBD_FEATURES_ALL \
122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123
124 /* Features supported by this (client software) implementation. */
125
126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
127
128 /*
129 * An RBD device name will be "rbd#", where the "rbd" comes from
130 * RBD_DRV_NAME above, and # is a unique integer identifier.
131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132 * enough to hold all possible device names.
133 */
134 #define DEV_NAME_LEN 32
135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
136
137 /*
138 * block device image metadata (in-memory version)
139 */
140 struct rbd_image_header {
141 /* These six fields never change for a given rbd image */
142 char *object_prefix;
143 __u8 obj_order;
144 __u8 crypt_type;
145 __u8 comp_type;
146 u64 stripe_unit;
147 u64 stripe_count;
148 u64 features; /* Might be changeable someday? */
149
150 /* The remaining fields need to be updated occasionally */
151 u64 image_size;
152 struct ceph_snap_context *snapc;
153 char *snap_names; /* format 1 only */
154 u64 *snap_sizes; /* format 1 only */
155 };
156
157 /*
158 * An rbd image specification.
159 *
160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161 * identify an image. Each rbd_dev structure includes a pointer to
162 * an rbd_spec structure that encapsulates this identity.
163 *
164 * Each of the id's in an rbd_spec has an associated name. For a
165 * user-mapped image, the names are supplied and the id's associated
166 * with them are looked up. For a layered image, a parent image is
167 * defined by the tuple, and the names are looked up.
168 *
169 * An rbd_dev structure contains a parent_spec pointer which is
170 * non-null if the image it represents is a child in a layered
171 * image. This pointer will refer to the rbd_spec structure used
172 * by the parent rbd_dev for its own identity (i.e., the structure
173 * is shared between the parent and child).
174 *
175 * Since these structures are populated once, during the discovery
176 * phase of image construction, they are effectively immutable so
177 * we make no effort to synchronize access to them.
178 *
179 * Note that code herein does not assume the image name is known (it
180 * could be a null pointer).
181 */
182 struct rbd_spec {
183 u64 pool_id;
184 const char *pool_name;
185
186 const char *image_id;
187 const char *image_name;
188
189 u64 snap_id;
190 const char *snap_name;
191
192 struct kref kref;
193 };
194
195 /*
196 * an instance of the client. multiple devices may share an rbd client.
197 */
198 struct rbd_client {
199 struct ceph_client *client;
200 struct kref kref;
201 struct list_head node;
202 };
203
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206
207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
208
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211
212 enum obj_request_type {
213 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215
216 enum obj_operation_type {
217 OBJ_OP_WRITE,
218 OBJ_OP_READ,
219 OBJ_OP_DISCARD,
220 };
221
222 enum obj_req_flags {
223 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
224 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
225 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
226 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
227 };
228
229 struct rbd_obj_request {
230 const char *object_name;
231 u64 offset; /* object start byte */
232 u64 length; /* bytes from offset */
233 unsigned long flags;
234
235 /*
236 * An object request associated with an image will have its
237 * img_data flag set; a standalone object request will not.
238 *
239 * A standalone object request will have which == BAD_WHICH
240 * and a null obj_request pointer.
241 *
242 * An object request initiated in support of a layered image
243 * object (to check for its existence before a write) will
244 * have which == BAD_WHICH and a non-null obj_request pointer.
245 *
246 * Finally, an object request for rbd image data will have
247 * which != BAD_WHICH, and will have a non-null img_request
248 * pointer. The value of which will be in the range
249 * 0..(img_request->obj_request_count-1).
250 */
251 union {
252 struct rbd_obj_request *obj_request; /* STAT op */
253 struct {
254 struct rbd_img_request *img_request;
255 u64 img_offset;
256 /* links for img_request->obj_requests list */
257 struct list_head links;
258 };
259 };
260 u32 which; /* posn image request list */
261
262 enum obj_request_type type;
263 union {
264 struct bio *bio_list;
265 struct {
266 struct page **pages;
267 u32 page_count;
268 };
269 };
270 struct page **copyup_pages;
271 u32 copyup_page_count;
272
273 struct ceph_osd_request *osd_req;
274
275 u64 xferred; /* bytes transferred */
276 int result;
277
278 rbd_obj_callback_t callback;
279 struct completion completion;
280
281 struct kref kref;
282 };
283
284 enum img_req_flags {
285 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
286 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
287 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
288 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
289 };
290
291 struct rbd_img_request {
292 struct rbd_device *rbd_dev;
293 u64 offset; /* starting image byte offset */
294 u64 length; /* byte count from offset */
295 unsigned long flags;
296 union {
297 u64 snap_id; /* for reads */
298 struct ceph_snap_context *snapc; /* for writes */
299 };
300 union {
301 struct request *rq; /* block request */
302 struct rbd_obj_request *obj_request; /* obj req initiator */
303 };
304 struct page **copyup_pages;
305 u32 copyup_page_count;
306 spinlock_t completion_lock;/* protects next_completion */
307 u32 next_completion;
308 rbd_img_callback_t callback;
309 u64 xferred;/* aggregate bytes transferred */
310 int result; /* first nonzero obj_request result */
311
312 u32 obj_request_count;
313 struct list_head obj_requests; /* rbd_obj_request structs */
314
315 struct kref kref;
316 };
317
318 #define for_each_obj_request(ireq, oreq) \
319 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324
325 struct rbd_mapping {
326 u64 size;
327 u64 features;
328 bool read_only;
329 };
330
331 /*
332 * a single device
333 */
334 struct rbd_device {
335 int dev_id; /* blkdev unique id */
336
337 int major; /* blkdev assigned major */
338 int minor;
339 struct gendisk *disk; /* blkdev's gendisk and rq */
340
341 u32 image_format; /* Either 1 or 2 */
342 struct rbd_client *rbd_client;
343
344 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345
346 spinlock_t lock; /* queue, flags, open_count */
347
348 struct rbd_image_header header;
349 unsigned long flags; /* possibly lock protected */
350 struct rbd_spec *spec;
351 struct rbd_options *opts;
352
353 char *header_name;
354
355 struct ceph_file_layout layout;
356
357 struct ceph_osd_event *watch_event;
358 struct rbd_obj_request *watch_request;
359
360 struct rbd_spec *parent_spec;
361 u64 parent_overlap;
362 atomic_t parent_ref;
363 struct rbd_device *parent;
364
365 /* Block layer tags. */
366 struct blk_mq_tag_set tag_set;
367
368 /* protects updating the header */
369 struct rw_semaphore header_rwsem;
370
371 struct rbd_mapping mapping;
372
373 struct list_head node;
374
375 /* sysfs related */
376 struct device dev;
377 unsigned long open_count; /* protected by lock */
378 };
379
380 /*
381 * Flag bits for rbd_dev->flags. If atomicity is required,
382 * rbd_dev->lock is used to protect access.
383 *
384 * Currently, only the "removing" flag (which is coupled with the
385 * "open_count" field) requires atomic access.
386 */
387 enum rbd_dev_flags {
388 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
389 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
390 };
391
392 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
393
394 static LIST_HEAD(rbd_dev_list); /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396
397 static LIST_HEAD(rbd_client_list); /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399
400 /* Slab caches for frequently-allocated structures */
401
402 static struct kmem_cache *rbd_img_request_cache;
403 static struct kmem_cache *rbd_obj_request_cache;
404 static struct kmem_cache *rbd_segment_name_cache;
405
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408
409 static struct workqueue_struct *rbd_wq;
410
411 /*
412 * Default to false for now, as single-major requires >= 0.75 version of
413 * userspace rbd utility.
414 */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448 &bus_attr_add.attr,
449 &bus_attr_remove.attr,
450 &bus_attr_add_single_major.attr,
451 &bus_attr_remove_single_major.attr,
452 NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 struct attribute *attr, int index)
457 {
458 if (!single_major &&
459 (attr == &bus_attr_add_single_major.attr ||
460 attr == &bus_attr_remove_single_major.attr))
461 return 0;
462
463 return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467 .attrs = rbd_bus_attrs,
468 .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473 .name = "rbd",
474 .bus_groups = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482 .init_name = "rbd",
483 .release = rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 struct va_format vaf;
490 va_list args;
491
492 va_start(args, fmt);
493 vaf.fmt = fmt;
494 vaf.va = &args;
495
496 if (!rbd_dev)
497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 else if (rbd_dev->disk)
499 printk(KERN_WARNING "%s: %s: %pV\n",
500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 printk(KERN_WARNING "%s: image %s: %pV\n",
503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 printk(KERN_WARNING "%s: id %s: %pV\n",
506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 else /* punt */
508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 RBD_DRV_NAME, rbd_dev, &vaf);
510 va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr) \
515 if (unlikely(!(expr))) { \
516 printk(KERN_ERR "\nAssertion failure in %s() " \
517 "at line %d:\n\n" \
518 "\trbd_assert(%s);\n\n", \
519 __func__, __LINE__, #expr); \
520 BUG(); \
521 }
522 #else /* !RBD_DEBUG */
523 # define rbd_assert(expr) ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 u64 *snap_features);
541
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545 bool removing = false;
546
547 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548 return -EROFS;
549
550 spin_lock_irq(&rbd_dev->lock);
551 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552 removing = true;
553 else
554 rbd_dev->open_count++;
555 spin_unlock_irq(&rbd_dev->lock);
556 if (removing)
557 return -ENOENT;
558
559 (void) get_device(&rbd_dev->dev);
560
561 return 0;
562 }
563
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566 struct rbd_device *rbd_dev = disk->private_data;
567 unsigned long open_count_before;
568
569 spin_lock_irq(&rbd_dev->lock);
570 open_count_before = rbd_dev->open_count--;
571 spin_unlock_irq(&rbd_dev->lock);
572 rbd_assert(open_count_before > 0);
573
574 put_device(&rbd_dev->dev);
575 }
576
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579 int ret = 0;
580 int val;
581 bool ro;
582 bool ro_changed = false;
583
584 /* get_user() may sleep, so call it before taking rbd_dev->lock */
585 if (get_user(val, (int __user *)(arg)))
586 return -EFAULT;
587
588 ro = val ? true : false;
589 /* Snapshot doesn't allow to write*/
590 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591 return -EROFS;
592
593 spin_lock_irq(&rbd_dev->lock);
594 /* prevent others open this device */
595 if (rbd_dev->open_count > 1) {
596 ret = -EBUSY;
597 goto out;
598 }
599
600 if (rbd_dev->mapping.read_only != ro) {
601 rbd_dev->mapping.read_only = ro;
602 ro_changed = true;
603 }
604
605 out:
606 spin_unlock_irq(&rbd_dev->lock);
607 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608 if (ret == 0 && ro_changed)
609 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610
611 return ret;
612 }
613
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615 unsigned int cmd, unsigned long arg)
616 {
617 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618 int ret = 0;
619
620 switch (cmd) {
621 case BLKROSET:
622 ret = rbd_ioctl_set_ro(rbd_dev, arg);
623 break;
624 default:
625 ret = -ENOTTY;
626 }
627
628 return ret;
629 }
630
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633 unsigned int cmd, unsigned long arg)
634 {
635 return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638
639 static const struct block_device_operations rbd_bd_ops = {
640 .owner = THIS_MODULE,
641 .open = rbd_open,
642 .release = rbd_release,
643 .ioctl = rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645 .compat_ioctl = rbd_compat_ioctl,
646 #endif
647 };
648
649 /*
650 * Initialize an rbd client instance. Success or not, this function
651 * consumes ceph_opts. Caller holds client_mutex.
652 */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655 struct rbd_client *rbdc;
656 int ret = -ENOMEM;
657
658 dout("%s:\n", __func__);
659 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660 if (!rbdc)
661 goto out_opt;
662
663 kref_init(&rbdc->kref);
664 INIT_LIST_HEAD(&rbdc->node);
665
666 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667 if (IS_ERR(rbdc->client))
668 goto out_rbdc;
669 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670
671 ret = ceph_open_session(rbdc->client);
672 if (ret < 0)
673 goto out_client;
674
675 spin_lock(&rbd_client_list_lock);
676 list_add_tail(&rbdc->node, &rbd_client_list);
677 spin_unlock(&rbd_client_list_lock);
678
679 dout("%s: rbdc %p\n", __func__, rbdc);
680
681 return rbdc;
682 out_client:
683 ceph_destroy_client(rbdc->client);
684 out_rbdc:
685 kfree(rbdc);
686 out_opt:
687 if (ceph_opts)
688 ceph_destroy_options(ceph_opts);
689 dout("%s: error %d\n", __func__, ret);
690
691 return ERR_PTR(ret);
692 }
693
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696 kref_get(&rbdc->kref);
697
698 return rbdc;
699 }
700
701 /*
702 * Find a ceph client with specific addr and configuration. If
703 * found, bump its reference count.
704 */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707 struct rbd_client *client_node;
708 bool found = false;
709
710 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711 return NULL;
712
713 spin_lock(&rbd_client_list_lock);
714 list_for_each_entry(client_node, &rbd_client_list, node) {
715 if (!ceph_compare_options(ceph_opts, client_node->client)) {
716 __rbd_get_client(client_node);
717
718 found = true;
719 break;
720 }
721 }
722 spin_unlock(&rbd_client_list_lock);
723
724 return found ? client_node : NULL;
725 }
726
727 /*
728 * (Per device) rbd map options
729 */
730 enum {
731 Opt_queue_depth,
732 Opt_last_int,
733 /* int args above */
734 Opt_last_string,
735 /* string args above */
736 Opt_read_only,
737 Opt_read_write,
738 Opt_err
739 };
740
741 static match_table_t rbd_opts_tokens = {
742 {Opt_queue_depth, "queue_depth=%d"},
743 /* int args above */
744 /* string args above */
745 {Opt_read_only, "read_only"},
746 {Opt_read_only, "ro"}, /* Alternate spelling */
747 {Opt_read_write, "read_write"},
748 {Opt_read_write, "rw"}, /* Alternate spelling */
749 {Opt_err, NULL}
750 };
751
752 struct rbd_options {
753 int queue_depth;
754 bool read_only;
755 };
756
757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT false
759
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762 struct rbd_options *rbd_opts = private;
763 substring_t argstr[MAX_OPT_ARGS];
764 int token, intval, ret;
765
766 token = match_token(c, rbd_opts_tokens, argstr);
767 if (token < Opt_last_int) {
768 ret = match_int(&argstr[0], &intval);
769 if (ret < 0) {
770 pr_err("bad mount option arg (not int) at '%s'\n", c);
771 return ret;
772 }
773 dout("got int token %d val %d\n", token, intval);
774 } else if (token > Opt_last_int && token < Opt_last_string) {
775 dout("got string token %d val %s\n", token, argstr[0].from);
776 } else {
777 dout("got token %d\n", token);
778 }
779
780 switch (token) {
781 case Opt_queue_depth:
782 if (intval < 1) {
783 pr_err("queue_depth out of range\n");
784 return -EINVAL;
785 }
786 rbd_opts->queue_depth = intval;
787 break;
788 case Opt_read_only:
789 rbd_opts->read_only = true;
790 break;
791 case Opt_read_write:
792 rbd_opts->read_only = false;
793 break;
794 default:
795 /* libceph prints "bad option" msg */
796 return -EINVAL;
797 }
798
799 return 0;
800 }
801
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804 switch (op_type) {
805 case OBJ_OP_READ:
806 return "read";
807 case OBJ_OP_WRITE:
808 return "write";
809 case OBJ_OP_DISCARD:
810 return "discard";
811 default:
812 return "???";
813 }
814 }
815
816 /*
817 * Get a ceph client with specific addr and configuration, if one does
818 * not exist create it. Either way, ceph_opts is consumed by this
819 * function.
820 */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823 struct rbd_client *rbdc;
824
825 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826 rbdc = rbd_client_find(ceph_opts);
827 if (rbdc) /* using an existing client */
828 ceph_destroy_options(ceph_opts);
829 else
830 rbdc = rbd_client_create(ceph_opts);
831 mutex_unlock(&client_mutex);
832
833 return rbdc;
834 }
835
836 /*
837 * Destroy ceph client
838 *
839 * Caller must hold rbd_client_list_lock.
840 */
841 static void rbd_client_release(struct kref *kref)
842 {
843 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844
845 dout("%s: rbdc %p\n", __func__, rbdc);
846 spin_lock(&rbd_client_list_lock);
847 list_del(&rbdc->node);
848 spin_unlock(&rbd_client_list_lock);
849
850 ceph_destroy_client(rbdc->client);
851 kfree(rbdc);
852 }
853
854 /*
855 * Drop reference to ceph client node. If it's not referenced anymore, release
856 * it.
857 */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860 if (rbdc)
861 kref_put(&rbdc->kref, rbd_client_release);
862 }
863
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866 return image_format == 1 || image_format == 2;
867 }
868
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871 size_t size;
872 u32 snap_count;
873
874 /* The header has to start with the magic rbd header text */
875 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876 return false;
877
878 /* The bio layer requires at least sector-sized I/O */
879
880 if (ondisk->options.order < SECTOR_SHIFT)
881 return false;
882
883 /* If we use u64 in a few spots we may be able to loosen this */
884
885 if (ondisk->options.order > 8 * sizeof (int) - 1)
886 return false;
887
888 /*
889 * The size of a snapshot header has to fit in a size_t, and
890 * that limits the number of snapshots.
891 */
892 snap_count = le32_to_cpu(ondisk->snap_count);
893 size = SIZE_MAX - sizeof (struct ceph_snap_context);
894 if (snap_count > size / sizeof (__le64))
895 return false;
896
897 /*
898 * Not only that, but the size of the entire the snapshot
899 * header must also be representable in a size_t.
900 */
901 size -= snap_count * sizeof (__le64);
902 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903 return false;
904
905 return true;
906 }
907
908 /*
909 * Fill an rbd image header with information from the given format 1
910 * on-disk header.
911 */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913 struct rbd_image_header_ondisk *ondisk)
914 {
915 struct rbd_image_header *header = &rbd_dev->header;
916 bool first_time = header->object_prefix == NULL;
917 struct ceph_snap_context *snapc;
918 char *object_prefix = NULL;
919 char *snap_names = NULL;
920 u64 *snap_sizes = NULL;
921 u32 snap_count;
922 size_t size;
923 int ret = -ENOMEM;
924 u32 i;
925
926 /* Allocate this now to avoid having to handle failure below */
927
928 if (first_time) {
929 size_t len;
930
931 len = strnlen(ondisk->object_prefix,
932 sizeof (ondisk->object_prefix));
933 object_prefix = kmalloc(len + 1, GFP_KERNEL);
934 if (!object_prefix)
935 return -ENOMEM;
936 memcpy(object_prefix, ondisk->object_prefix, len);
937 object_prefix[len] = '\0';
938 }
939
940 /* Allocate the snapshot context and fill it in */
941
942 snap_count = le32_to_cpu(ondisk->snap_count);
943 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944 if (!snapc)
945 goto out_err;
946 snapc->seq = le64_to_cpu(ondisk->snap_seq);
947 if (snap_count) {
948 struct rbd_image_snap_ondisk *snaps;
949 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950
951 /* We'll keep a copy of the snapshot names... */
952
953 if (snap_names_len > (u64)SIZE_MAX)
954 goto out_2big;
955 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956 if (!snap_names)
957 goto out_err;
958
959 /* ...as well as the array of their sizes. */
960
961 size = snap_count * sizeof (*header->snap_sizes);
962 snap_sizes = kmalloc(size, GFP_KERNEL);
963 if (!snap_sizes)
964 goto out_err;
965
966 /*
967 * Copy the names, and fill in each snapshot's id
968 * and size.
969 *
970 * Note that rbd_dev_v1_header_info() guarantees the
971 * ondisk buffer we're working with has
972 * snap_names_len bytes beyond the end of the
973 * snapshot id array, this memcpy() is safe.
974 */
975 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976 snaps = ondisk->snaps;
977 for (i = 0; i < snap_count; i++) {
978 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980 }
981 }
982
983 /* We won't fail any more, fill in the header */
984
985 if (first_time) {
986 header->object_prefix = object_prefix;
987 header->obj_order = ondisk->options.order;
988 header->crypt_type = ondisk->options.crypt_type;
989 header->comp_type = ondisk->options.comp_type;
990 /* The rest aren't used for format 1 images */
991 header->stripe_unit = 0;
992 header->stripe_count = 0;
993 header->features = 0;
994 } else {
995 ceph_put_snap_context(header->snapc);
996 kfree(header->snap_names);
997 kfree(header->snap_sizes);
998 }
999
1000 /* The remaining fields always get updated (when we refresh) */
1001
1002 header->image_size = le64_to_cpu(ondisk->image_size);
1003 header->snapc = snapc;
1004 header->snap_names = snap_names;
1005 header->snap_sizes = snap_sizes;
1006
1007 return 0;
1008 out_2big:
1009 ret = -EIO;
1010 out_err:
1011 kfree(snap_sizes);
1012 kfree(snap_names);
1013 ceph_put_snap_context(snapc);
1014 kfree(object_prefix);
1015
1016 return ret;
1017 }
1018
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021 const char *snap_name;
1022
1023 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024
1025 /* Skip over names until we find the one we are looking for */
1026
1027 snap_name = rbd_dev->header.snap_names;
1028 while (which--)
1029 snap_name += strlen(snap_name) + 1;
1030
1031 return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033
1034 /*
1035 * Snapshot id comparison function for use with qsort()/bsearch().
1036 * Note that result is for snapshots in *descending* order.
1037 */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040 u64 snap_id1 = *(u64 *)s1;
1041 u64 snap_id2 = *(u64 *)s2;
1042
1043 if (snap_id1 < snap_id2)
1044 return 1;
1045 return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047
1048 /*
1049 * Search a snapshot context to see if the given snapshot id is
1050 * present.
1051 *
1052 * Returns the position of the snapshot id in the array if it's found,
1053 * or BAD_SNAP_INDEX otherwise.
1054 *
1055 * Note: The snapshot array is in kept sorted (by the osd) in
1056 * reverse order, highest snapshot id first.
1057 */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061 u64 *found;
1062
1063 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064 sizeof (snap_id), snapid_compare_reverse);
1065
1066 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070 u64 snap_id)
1071 {
1072 u32 which;
1073 const char *snap_name;
1074
1075 which = rbd_dev_snap_index(rbd_dev, snap_id);
1076 if (which == BAD_SNAP_INDEX)
1077 return ERR_PTR(-ENOENT);
1078
1079 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085 if (snap_id == CEPH_NOSNAP)
1086 return RBD_SNAP_HEAD_NAME;
1087
1088 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089 if (rbd_dev->image_format == 1)
1090 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091
1092 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096 u64 *snap_size)
1097 {
1098 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099 if (snap_id == CEPH_NOSNAP) {
1100 *snap_size = rbd_dev->header.image_size;
1101 } else if (rbd_dev->image_format == 1) {
1102 u32 which;
1103
1104 which = rbd_dev_snap_index(rbd_dev, snap_id);
1105 if (which == BAD_SNAP_INDEX)
1106 return -ENOENT;
1107
1108 *snap_size = rbd_dev->header.snap_sizes[which];
1109 } else {
1110 u64 size = 0;
1111 int ret;
1112
1113 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114 if (ret)
1115 return ret;
1116
1117 *snap_size = size;
1118 }
1119 return 0;
1120 }
1121
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123 u64 *snap_features)
1124 {
1125 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126 if (snap_id == CEPH_NOSNAP) {
1127 *snap_features = rbd_dev->header.features;
1128 } else if (rbd_dev->image_format == 1) {
1129 *snap_features = 0; /* No features for format 1 */
1130 } else {
1131 u64 features = 0;
1132 int ret;
1133
1134 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135 if (ret)
1136 return ret;
1137
1138 *snap_features = features;
1139 }
1140 return 0;
1141 }
1142
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145 u64 snap_id = rbd_dev->spec->snap_id;
1146 u64 size = 0;
1147 u64 features = 0;
1148 int ret;
1149
1150 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151 if (ret)
1152 return ret;
1153 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154 if (ret)
1155 return ret;
1156
1157 rbd_dev->mapping.size = size;
1158 rbd_dev->mapping.features = features;
1159
1160 return 0;
1161 }
1162
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165 rbd_dev->mapping.size = 0;
1166 rbd_dev->mapping.features = 0;
1167 }
1168
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171 /* The explicit cast here is needed to drop the const qualifier */
1172
1173 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178 char *name;
1179 u64 segment;
1180 int ret;
1181 char *name_format;
1182
1183 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184 if (!name)
1185 return NULL;
1186 segment = offset >> rbd_dev->header.obj_order;
1187 name_format = "%s.%012llx";
1188 if (rbd_dev->image_format == 2)
1189 name_format = "%s.%016llx";
1190 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191 rbd_dev->header.object_prefix, segment);
1192 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193 pr_err("error formatting segment name for #%llu (%d)\n",
1194 segment, ret);
1195 rbd_segment_name_free(name);
1196 name = NULL;
1197 }
1198
1199 return name;
1200 }
1201
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206 return offset & (segment_size - 1);
1207 }
1208
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210 u64 offset, u64 length)
1211 {
1212 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213
1214 offset &= segment_size - 1;
1215
1216 rbd_assert(length <= U64_MAX - offset);
1217 if (offset + length > segment_size)
1218 length = segment_size - offset;
1219
1220 return length;
1221 }
1222
1223 /*
1224 * returns the size of an object in the image
1225 */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228 return 1 << header->obj_order;
1229 }
1230
1231 /*
1232 * bio helpers
1233 */
1234
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237 struct bio *tmp;
1238
1239 while (chain) {
1240 tmp = chain;
1241 chain = chain->bi_next;
1242 bio_put(tmp);
1243 }
1244 }
1245
1246 /*
1247 * zeros a bio chain, starting at specific offset
1248 */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251 struct bio_vec bv;
1252 struct bvec_iter iter;
1253 unsigned long flags;
1254 void *buf;
1255 int pos = 0;
1256
1257 while (chain) {
1258 bio_for_each_segment(bv, chain, iter) {
1259 if (pos + bv.bv_len > start_ofs) {
1260 int remainder = max(start_ofs - pos, 0);
1261 buf = bvec_kmap_irq(&bv, &flags);
1262 memset(buf + remainder, 0,
1263 bv.bv_len - remainder);
1264 flush_dcache_page(bv.bv_page);
1265 bvec_kunmap_irq(buf, &flags);
1266 }
1267 pos += bv.bv_len;
1268 }
1269
1270 chain = chain->bi_next;
1271 }
1272 }
1273
1274 /*
1275 * similar to zero_bio_chain(), zeros data defined by a page array,
1276 * starting at the given byte offset from the start of the array and
1277 * continuing up to the given end offset. The pages array is
1278 * assumed to be big enough to hold all bytes up to the end.
1279 */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282 struct page **page = &pages[offset >> PAGE_SHIFT];
1283
1284 rbd_assert(end > offset);
1285 rbd_assert(end - offset <= (u64)SIZE_MAX);
1286 while (offset < end) {
1287 size_t page_offset;
1288 size_t length;
1289 unsigned long flags;
1290 void *kaddr;
1291
1292 page_offset = offset & ~PAGE_MASK;
1293 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294 local_irq_save(flags);
1295 kaddr = kmap_atomic(*page);
1296 memset(kaddr + page_offset, 0, length);
1297 flush_dcache_page(*page);
1298 kunmap_atomic(kaddr);
1299 local_irq_restore(flags);
1300
1301 offset += length;
1302 page++;
1303 }
1304 }
1305
1306 /*
1307 * Clone a portion of a bio, starting at the given byte offset
1308 * and continuing for the number of bytes indicated.
1309 */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311 unsigned int offset,
1312 unsigned int len,
1313 gfp_t gfpmask)
1314 {
1315 struct bio *bio;
1316
1317 bio = bio_clone(bio_src, gfpmask);
1318 if (!bio)
1319 return NULL; /* ENOMEM */
1320
1321 bio_advance(bio, offset);
1322 bio->bi_iter.bi_size = len;
1323
1324 return bio;
1325 }
1326
1327 /*
1328 * Clone a portion of a bio chain, starting at the given byte offset
1329 * into the first bio in the source chain and continuing for the
1330 * number of bytes indicated. The result is another bio chain of
1331 * exactly the given length, or a null pointer on error.
1332 *
1333 * The bio_src and offset parameters are both in-out. On entry they
1334 * refer to the first source bio and the offset into that bio where
1335 * the start of data to be cloned is located.
1336 *
1337 * On return, bio_src is updated to refer to the bio in the source
1338 * chain that contains first un-cloned byte, and *offset will
1339 * contain the offset of that byte within that bio.
1340 */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342 unsigned int *offset,
1343 unsigned int len,
1344 gfp_t gfpmask)
1345 {
1346 struct bio *bi = *bio_src;
1347 unsigned int off = *offset;
1348 struct bio *chain = NULL;
1349 struct bio **end;
1350
1351 /* Build up a chain of clone bios up to the limit */
1352
1353 if (!bi || off >= bi->bi_iter.bi_size || !len)
1354 return NULL; /* Nothing to clone */
1355
1356 end = &chain;
1357 while (len) {
1358 unsigned int bi_size;
1359 struct bio *bio;
1360
1361 if (!bi) {
1362 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363 goto out_err; /* EINVAL; ran out of bio's */
1364 }
1365 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367 if (!bio)
1368 goto out_err; /* ENOMEM */
1369
1370 *end = bio;
1371 end = &bio->bi_next;
1372
1373 off += bi_size;
1374 if (off == bi->bi_iter.bi_size) {
1375 bi = bi->bi_next;
1376 off = 0;
1377 }
1378 len -= bi_size;
1379 }
1380 *bio_src = bi;
1381 *offset = off;
1382
1383 return chain;
1384 out_err:
1385 bio_chain_put(chain);
1386
1387 return NULL;
1388 }
1389
1390 /*
1391 * The default/initial value for all object request flags is 0. For
1392 * each flag, once its value is set to 1 it is never reset to 0
1393 * again.
1394 */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398 struct rbd_device *rbd_dev;
1399
1400 rbd_dev = obj_request->img_request->rbd_dev;
1401 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402 obj_request);
1403 }
1404 }
1405
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408 smp_mb();
1409 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415 struct rbd_device *rbd_dev = NULL;
1416
1417 if (obj_request_img_data_test(obj_request))
1418 rbd_dev = obj_request->img_request->rbd_dev;
1419 rbd_warn(rbd_dev, "obj_request %p already marked done",
1420 obj_request);
1421 }
1422 }
1423
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426 smp_mb();
1427 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429
1430 /*
1431 * This sets the KNOWN flag after (possibly) setting the EXISTS
1432 * flag. The latter is set based on the "exists" value provided.
1433 *
1434 * Note that for our purposes once an object exists it never goes
1435 * away again. It's possible that the response from two existence
1436 * checks are separated by the creation of the target object, and
1437 * the first ("doesn't exist") response arrives *after* the second
1438 * ("does exist"). In that case we ignore the second one.
1439 */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441 bool exists)
1442 {
1443 if (exists)
1444 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446 smp_mb();
1447 }
1448
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451 smp_mb();
1452 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457 smp_mb();
1458 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464
1465 return obj_request->img_offset <
1466 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472 atomic_read(&obj_request->kref.refcount));
1473 kref_get(&obj_request->kref);
1474 }
1475
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479 rbd_assert(obj_request != NULL);
1480 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481 atomic_read(&obj_request->kref.refcount));
1482 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487 dout("%s: img %p (was %d)\n", __func__, img_request,
1488 atomic_read(&img_request->kref.refcount));
1489 kref_get(&img_request->kref);
1490 }
1491
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497 rbd_assert(img_request != NULL);
1498 dout("%s: img %p (was %d)\n", __func__, img_request,
1499 atomic_read(&img_request->kref.refcount));
1500 if (img_request_child_test(img_request))
1501 kref_put(&img_request->kref, rbd_parent_request_destroy);
1502 else
1503 kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507 struct rbd_obj_request *obj_request)
1508 {
1509 rbd_assert(obj_request->img_request == NULL);
1510
1511 /* Image request now owns object's original reference */
1512 obj_request->img_request = img_request;
1513 obj_request->which = img_request->obj_request_count;
1514 rbd_assert(!obj_request_img_data_test(obj_request));
1515 obj_request_img_data_set(obj_request);
1516 rbd_assert(obj_request->which != BAD_WHICH);
1517 img_request->obj_request_count++;
1518 list_add_tail(&obj_request->links, &img_request->obj_requests);
1519 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520 obj_request->which);
1521 }
1522
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524 struct rbd_obj_request *obj_request)
1525 {
1526 rbd_assert(obj_request->which != BAD_WHICH);
1527
1528 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529 obj_request->which);
1530 list_del(&obj_request->links);
1531 rbd_assert(img_request->obj_request_count > 0);
1532 img_request->obj_request_count--;
1533 rbd_assert(obj_request->which == img_request->obj_request_count);
1534 obj_request->which = BAD_WHICH;
1535 rbd_assert(obj_request_img_data_test(obj_request));
1536 rbd_assert(obj_request->img_request == img_request);
1537 obj_request->img_request = NULL;
1538 obj_request->callback = NULL;
1539 rbd_obj_request_put(obj_request);
1540 }
1541
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544 switch (type) {
1545 case OBJ_REQUEST_NODATA:
1546 case OBJ_REQUEST_BIO:
1547 case OBJ_REQUEST_PAGES:
1548 return true;
1549 default:
1550 return false;
1551 }
1552 }
1553
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555 struct rbd_obj_request *obj_request)
1556 {
1557 dout("%s %p\n", __func__, obj_request);
1558 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563 dout("%s %p\n", __func__, obj_request);
1564 ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566
1567 /*
1568 * Wait for an object request to complete. If interrupted, cancel the
1569 * underlying osd request.
1570 *
1571 * @timeout: in jiffies, 0 means "wait forever"
1572 */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574 unsigned long timeout)
1575 {
1576 long ret;
1577
1578 dout("%s %p\n", __func__, obj_request);
1579 ret = wait_for_completion_interruptible_timeout(
1580 &obj_request->completion,
1581 ceph_timeout_jiffies(timeout));
1582 if (ret <= 0) {
1583 if (ret == 0)
1584 ret = -ETIMEDOUT;
1585 rbd_obj_request_end(obj_request);
1586 } else {
1587 ret = 0;
1588 }
1589
1590 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591 return ret;
1592 }
1593
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596 return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1600 unsigned long timeout)
1601 {
1602 return __rbd_obj_request_wait(obj_request, timeout);
1603 }
1604
1605 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1606 {
1607
1608 dout("%s: img %p\n", __func__, img_request);
1609
1610 /*
1611 * If no error occurred, compute the aggregate transfer
1612 * count for the image request. We could instead use
1613 * atomic64_cmpxchg() to update it as each object request
1614 * completes; not clear which way is better off hand.
1615 */
1616 if (!img_request->result) {
1617 struct rbd_obj_request *obj_request;
1618 u64 xferred = 0;
1619
1620 for_each_obj_request(img_request, obj_request)
1621 xferred += obj_request->xferred;
1622 img_request->xferred = xferred;
1623 }
1624
1625 if (img_request->callback)
1626 img_request->callback(img_request);
1627 else
1628 rbd_img_request_put(img_request);
1629 }
1630
1631 /*
1632 * The default/initial value for all image request flags is 0. Each
1633 * is conditionally set to 1 at image request initialization time
1634 * and currently never change thereafter.
1635 */
1636 static void img_request_write_set(struct rbd_img_request *img_request)
1637 {
1638 set_bit(IMG_REQ_WRITE, &img_request->flags);
1639 smp_mb();
1640 }
1641
1642 static bool img_request_write_test(struct rbd_img_request *img_request)
1643 {
1644 smp_mb();
1645 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1646 }
1647
1648 /*
1649 * Set the discard flag when the img_request is an discard request
1650 */
1651 static void img_request_discard_set(struct rbd_img_request *img_request)
1652 {
1653 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1654 smp_mb();
1655 }
1656
1657 static bool img_request_discard_test(struct rbd_img_request *img_request)
1658 {
1659 smp_mb();
1660 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1661 }
1662
1663 static void img_request_child_set(struct rbd_img_request *img_request)
1664 {
1665 set_bit(IMG_REQ_CHILD, &img_request->flags);
1666 smp_mb();
1667 }
1668
1669 static void img_request_child_clear(struct rbd_img_request *img_request)
1670 {
1671 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1672 smp_mb();
1673 }
1674
1675 static bool img_request_child_test(struct rbd_img_request *img_request)
1676 {
1677 smp_mb();
1678 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1679 }
1680
1681 static void img_request_layered_set(struct rbd_img_request *img_request)
1682 {
1683 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1684 smp_mb();
1685 }
1686
1687 static void img_request_layered_clear(struct rbd_img_request *img_request)
1688 {
1689 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1690 smp_mb();
1691 }
1692
1693 static bool img_request_layered_test(struct rbd_img_request *img_request)
1694 {
1695 smp_mb();
1696 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1697 }
1698
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request *img_request)
1701 {
1702 if (img_request_write_test(img_request))
1703 return OBJ_OP_WRITE;
1704 else if (img_request_discard_test(img_request))
1705 return OBJ_OP_DISCARD;
1706 else
1707 return OBJ_OP_READ;
1708 }
1709
1710 static void
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1712 {
1713 u64 xferred = obj_request->xferred;
1714 u64 length = obj_request->length;
1715
1716 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1717 obj_request, obj_request->img_request, obj_request->result,
1718 xferred, length);
1719 /*
1720 * ENOENT means a hole in the image. We zero-fill the entire
1721 * length of the request. A short read also implies zero-fill
1722 * to the end of the request. An error requires the whole
1723 * length of the request to be reported finished with an error
1724 * to the block layer. In each case we update the xferred
1725 * count to indicate the whole request was satisfied.
1726 */
1727 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1728 if (obj_request->result == -ENOENT) {
1729 if (obj_request->type == OBJ_REQUEST_BIO)
1730 zero_bio_chain(obj_request->bio_list, 0);
1731 else
1732 zero_pages(obj_request->pages, 0, length);
1733 obj_request->result = 0;
1734 } else if (xferred < length && !obj_request->result) {
1735 if (obj_request->type == OBJ_REQUEST_BIO)
1736 zero_bio_chain(obj_request->bio_list, xferred);
1737 else
1738 zero_pages(obj_request->pages, xferred, length);
1739 }
1740 obj_request->xferred = length;
1741 obj_request_done_set(obj_request);
1742 }
1743
1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1745 {
1746 dout("%s: obj %p cb %p\n", __func__, obj_request,
1747 obj_request->callback);
1748 if (obj_request->callback)
1749 obj_request->callback(obj_request);
1750 else
1751 complete_all(&obj_request->completion);
1752 }
1753
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1755 {
1756 dout("%s: obj %p\n", __func__, obj_request);
1757 obj_request_done_set(obj_request);
1758 }
1759
1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1761 {
1762 struct rbd_img_request *img_request = NULL;
1763 struct rbd_device *rbd_dev = NULL;
1764 bool layered = false;
1765
1766 if (obj_request_img_data_test(obj_request)) {
1767 img_request = obj_request->img_request;
1768 layered = img_request && img_request_layered_test(img_request);
1769 rbd_dev = img_request->rbd_dev;
1770 }
1771
1772 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1773 obj_request, img_request, obj_request->result,
1774 obj_request->xferred, obj_request->length);
1775 if (layered && obj_request->result == -ENOENT &&
1776 obj_request->img_offset < rbd_dev->parent_overlap)
1777 rbd_img_parent_read(obj_request);
1778 else if (img_request)
1779 rbd_img_obj_request_read_callback(obj_request);
1780 else
1781 obj_request_done_set(obj_request);
1782 }
1783
1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1785 {
1786 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787 obj_request->result, obj_request->length);
1788 /*
1789 * There is no such thing as a successful short write. Set
1790 * it to our originally-requested length.
1791 */
1792 obj_request->xferred = obj_request->length;
1793 obj_request_done_set(obj_request);
1794 }
1795
1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1797 {
1798 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1799 obj_request->result, obj_request->length);
1800 /*
1801 * There is no such thing as a successful short discard. Set
1802 * it to our originally-requested length.
1803 */
1804 obj_request->xferred = obj_request->length;
1805 /* discarding a non-existent object is not a problem */
1806 if (obj_request->result == -ENOENT)
1807 obj_request->result = 0;
1808 obj_request_done_set(obj_request);
1809 }
1810
1811 /*
1812 * For a simple stat call there's nothing to do. We'll do more if
1813 * this is part of a write sequence for a layered image.
1814 */
1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1816 {
1817 dout("%s: obj %p\n", __func__, obj_request);
1818 obj_request_done_set(obj_request);
1819 }
1820
1821 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1822 {
1823 dout("%s: obj %p\n", __func__, obj_request);
1824
1825 if (obj_request_img_data_test(obj_request))
1826 rbd_osd_copyup_callback(obj_request);
1827 else
1828 obj_request_done_set(obj_request);
1829 }
1830
1831 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1832 struct ceph_msg *msg)
1833 {
1834 struct rbd_obj_request *obj_request = osd_req->r_priv;
1835 u16 opcode;
1836
1837 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1838 rbd_assert(osd_req == obj_request->osd_req);
1839 if (obj_request_img_data_test(obj_request)) {
1840 rbd_assert(obj_request->img_request);
1841 rbd_assert(obj_request->which != BAD_WHICH);
1842 } else {
1843 rbd_assert(obj_request->which == BAD_WHICH);
1844 }
1845
1846 if (osd_req->r_result < 0)
1847 obj_request->result = osd_req->r_result;
1848
1849 /*
1850 * We support a 64-bit length, but ultimately it has to be
1851 * passed to the block layer, which just supports a 32-bit
1852 * length field.
1853 */
1854 obj_request->xferred = osd_req->r_ops[0].outdata_len;
1855 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1856
1857 opcode = osd_req->r_ops[0].op;
1858 switch (opcode) {
1859 case CEPH_OSD_OP_READ:
1860 rbd_osd_read_callback(obj_request);
1861 break;
1862 case CEPH_OSD_OP_SETALLOCHINT:
1863 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1864 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1865 /* fall through */
1866 case CEPH_OSD_OP_WRITE:
1867 case CEPH_OSD_OP_WRITEFULL:
1868 rbd_osd_write_callback(obj_request);
1869 break;
1870 case CEPH_OSD_OP_STAT:
1871 rbd_osd_stat_callback(obj_request);
1872 break;
1873 case CEPH_OSD_OP_DELETE:
1874 case CEPH_OSD_OP_TRUNCATE:
1875 case CEPH_OSD_OP_ZERO:
1876 rbd_osd_discard_callback(obj_request);
1877 break;
1878 case CEPH_OSD_OP_CALL:
1879 rbd_osd_call_callback(obj_request);
1880 break;
1881 case CEPH_OSD_OP_NOTIFY_ACK:
1882 case CEPH_OSD_OP_WATCH:
1883 rbd_osd_trivial_callback(obj_request);
1884 break;
1885 default:
1886 rbd_warn(NULL, "%s: unsupported op %hu",
1887 obj_request->object_name, (unsigned short) opcode);
1888 break;
1889 }
1890
1891 if (obj_request_done_test(obj_request))
1892 rbd_obj_request_complete(obj_request);
1893 }
1894
1895 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1896 {
1897 struct rbd_img_request *img_request = obj_request->img_request;
1898 struct ceph_osd_request *osd_req = obj_request->osd_req;
1899 u64 snap_id;
1900
1901 rbd_assert(osd_req != NULL);
1902
1903 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1904 ceph_osdc_build_request(osd_req, obj_request->offset,
1905 NULL, snap_id, NULL);
1906 }
1907
1908 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1909 {
1910 struct rbd_img_request *img_request = obj_request->img_request;
1911 struct ceph_osd_request *osd_req = obj_request->osd_req;
1912 struct ceph_snap_context *snapc;
1913 struct timespec mtime = CURRENT_TIME;
1914
1915 rbd_assert(osd_req != NULL);
1916
1917 snapc = img_request ? img_request->snapc : NULL;
1918 ceph_osdc_build_request(osd_req, obj_request->offset,
1919 snapc, CEPH_NOSNAP, &mtime);
1920 }
1921
1922 /*
1923 * Create an osd request. A read request has one osd op (read).
1924 * A write request has either one (watch) or two (hint+write) osd ops.
1925 * (All rbd data writes are prefixed with an allocation hint op, but
1926 * technically osd watch is a write request, hence this distinction.)
1927 */
1928 static struct ceph_osd_request *rbd_osd_req_create(
1929 struct rbd_device *rbd_dev,
1930 enum obj_operation_type op_type,
1931 unsigned int num_ops,
1932 struct rbd_obj_request *obj_request)
1933 {
1934 struct ceph_snap_context *snapc = NULL;
1935 struct ceph_osd_client *osdc;
1936 struct ceph_osd_request *osd_req;
1937
1938 if (obj_request_img_data_test(obj_request) &&
1939 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1940 struct rbd_img_request *img_request = obj_request->img_request;
1941 if (op_type == OBJ_OP_WRITE) {
1942 rbd_assert(img_request_write_test(img_request));
1943 } else {
1944 rbd_assert(img_request_discard_test(img_request));
1945 }
1946 snapc = img_request->snapc;
1947 }
1948
1949 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1950
1951 /* Allocate and initialize the request, for the num_ops ops */
1952
1953 osdc = &rbd_dev->rbd_client->client->osdc;
1954 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1955 GFP_NOIO);
1956 if (!osd_req)
1957 return NULL; /* ENOMEM */
1958
1959 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1960 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1961 else
1962 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1963
1964 osd_req->r_callback = rbd_osd_req_callback;
1965 osd_req->r_priv = obj_request;
1966
1967 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1968 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1969
1970 return osd_req;
1971 }
1972
1973 /*
1974 * Create a copyup osd request based on the information in the object
1975 * request supplied. A copyup request has two or three osd ops, a
1976 * copyup method call, potentially a hint op, and a write or truncate
1977 * or zero op.
1978 */
1979 static struct ceph_osd_request *
1980 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1981 {
1982 struct rbd_img_request *img_request;
1983 struct ceph_snap_context *snapc;
1984 struct rbd_device *rbd_dev;
1985 struct ceph_osd_client *osdc;
1986 struct ceph_osd_request *osd_req;
1987 int num_osd_ops = 3;
1988
1989 rbd_assert(obj_request_img_data_test(obj_request));
1990 img_request = obj_request->img_request;
1991 rbd_assert(img_request);
1992 rbd_assert(img_request_write_test(img_request) ||
1993 img_request_discard_test(img_request));
1994
1995 if (img_request_discard_test(img_request))
1996 num_osd_ops = 2;
1997
1998 /* Allocate and initialize the request, for all the ops */
1999
2000 snapc = img_request->snapc;
2001 rbd_dev = img_request->rbd_dev;
2002 osdc = &rbd_dev->rbd_client->client->osdc;
2003 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2004 false, GFP_NOIO);
2005 if (!osd_req)
2006 return NULL; /* ENOMEM */
2007
2008 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2009 osd_req->r_callback = rbd_osd_req_callback;
2010 osd_req->r_priv = obj_request;
2011
2012 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2013 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2014
2015 return osd_req;
2016 }
2017
2018
2019 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2020 {
2021 ceph_osdc_put_request(osd_req);
2022 }
2023
2024 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2025
2026 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2027 u64 offset, u64 length,
2028 enum obj_request_type type)
2029 {
2030 struct rbd_obj_request *obj_request;
2031 size_t size;
2032 char *name;
2033
2034 rbd_assert(obj_request_type_valid(type));
2035
2036 size = strlen(object_name) + 1;
2037 name = kmalloc(size, GFP_NOIO);
2038 if (!name)
2039 return NULL;
2040
2041 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2042 if (!obj_request) {
2043 kfree(name);
2044 return NULL;
2045 }
2046
2047 obj_request->object_name = memcpy(name, object_name, size);
2048 obj_request->offset = offset;
2049 obj_request->length = length;
2050 obj_request->flags = 0;
2051 obj_request->which = BAD_WHICH;
2052 obj_request->type = type;
2053 INIT_LIST_HEAD(&obj_request->links);
2054 init_completion(&obj_request->completion);
2055 kref_init(&obj_request->kref);
2056
2057 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2058 offset, length, (int)type, obj_request);
2059
2060 return obj_request;
2061 }
2062
2063 static void rbd_obj_request_destroy(struct kref *kref)
2064 {
2065 struct rbd_obj_request *obj_request;
2066
2067 obj_request = container_of(kref, struct rbd_obj_request, kref);
2068
2069 dout("%s: obj %p\n", __func__, obj_request);
2070
2071 rbd_assert(obj_request->img_request == NULL);
2072 rbd_assert(obj_request->which == BAD_WHICH);
2073
2074 if (obj_request->osd_req)
2075 rbd_osd_req_destroy(obj_request->osd_req);
2076
2077 rbd_assert(obj_request_type_valid(obj_request->type));
2078 switch (obj_request->type) {
2079 case OBJ_REQUEST_NODATA:
2080 break; /* Nothing to do */
2081 case OBJ_REQUEST_BIO:
2082 if (obj_request->bio_list)
2083 bio_chain_put(obj_request->bio_list);
2084 break;
2085 case OBJ_REQUEST_PAGES:
2086 if (obj_request->pages)
2087 ceph_release_page_vector(obj_request->pages,
2088 obj_request->page_count);
2089 break;
2090 }
2091
2092 kfree(obj_request->object_name);
2093 obj_request->object_name = NULL;
2094 kmem_cache_free(rbd_obj_request_cache, obj_request);
2095 }
2096
2097 /* It's OK to call this for a device with no parent */
2098
2099 static void rbd_spec_put(struct rbd_spec *spec);
2100 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2101 {
2102 rbd_dev_remove_parent(rbd_dev);
2103 rbd_spec_put(rbd_dev->parent_spec);
2104 rbd_dev->parent_spec = NULL;
2105 rbd_dev->parent_overlap = 0;
2106 }
2107
2108 /*
2109 * Parent image reference counting is used to determine when an
2110 * image's parent fields can be safely torn down--after there are no
2111 * more in-flight requests to the parent image. When the last
2112 * reference is dropped, cleaning them up is safe.
2113 */
2114 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2115 {
2116 int counter;
2117
2118 if (!rbd_dev->parent_spec)
2119 return;
2120
2121 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2122 if (counter > 0)
2123 return;
2124
2125 /* Last reference; clean up parent data structures */
2126
2127 if (!counter)
2128 rbd_dev_unparent(rbd_dev);
2129 else
2130 rbd_warn(rbd_dev, "parent reference underflow");
2131 }
2132
2133 /*
2134 * If an image has a non-zero parent overlap, get a reference to its
2135 * parent.
2136 *
2137 * Returns true if the rbd device has a parent with a non-zero
2138 * overlap and a reference for it was successfully taken, or
2139 * false otherwise.
2140 */
2141 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2142 {
2143 int counter = 0;
2144
2145 if (!rbd_dev->parent_spec)
2146 return false;
2147
2148 down_read(&rbd_dev->header_rwsem);
2149 if (rbd_dev->parent_overlap)
2150 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2151 up_read(&rbd_dev->header_rwsem);
2152
2153 if (counter < 0)
2154 rbd_warn(rbd_dev, "parent reference overflow");
2155
2156 return counter > 0;
2157 }
2158
2159 /*
2160 * Caller is responsible for filling in the list of object requests
2161 * that comprises the image request, and the Linux request pointer
2162 * (if there is one).
2163 */
2164 static struct rbd_img_request *rbd_img_request_create(
2165 struct rbd_device *rbd_dev,
2166 u64 offset, u64 length,
2167 enum obj_operation_type op_type,
2168 struct ceph_snap_context *snapc)
2169 {
2170 struct rbd_img_request *img_request;
2171
2172 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2173 if (!img_request)
2174 return NULL;
2175
2176 img_request->rq = NULL;
2177 img_request->rbd_dev = rbd_dev;
2178 img_request->offset = offset;
2179 img_request->length = length;
2180 img_request->flags = 0;
2181 if (op_type == OBJ_OP_DISCARD) {
2182 img_request_discard_set(img_request);
2183 img_request->snapc = snapc;
2184 } else if (op_type == OBJ_OP_WRITE) {
2185 img_request_write_set(img_request);
2186 img_request->snapc = snapc;
2187 } else {
2188 img_request->snap_id = rbd_dev->spec->snap_id;
2189 }
2190 if (rbd_dev_parent_get(rbd_dev))
2191 img_request_layered_set(img_request);
2192 spin_lock_init(&img_request->completion_lock);
2193 img_request->next_completion = 0;
2194 img_request->callback = NULL;
2195 img_request->result = 0;
2196 img_request->obj_request_count = 0;
2197 INIT_LIST_HEAD(&img_request->obj_requests);
2198 kref_init(&img_request->kref);
2199
2200 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2201 obj_op_name(op_type), offset, length, img_request);
2202
2203 return img_request;
2204 }
2205
2206 static void rbd_img_request_destroy(struct kref *kref)
2207 {
2208 struct rbd_img_request *img_request;
2209 struct rbd_obj_request *obj_request;
2210 struct rbd_obj_request *next_obj_request;
2211
2212 img_request = container_of(kref, struct rbd_img_request, kref);
2213
2214 dout("%s: img %p\n", __func__, img_request);
2215
2216 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2217 rbd_img_obj_request_del(img_request, obj_request);
2218 rbd_assert(img_request->obj_request_count == 0);
2219
2220 if (img_request_layered_test(img_request)) {
2221 img_request_layered_clear(img_request);
2222 rbd_dev_parent_put(img_request->rbd_dev);
2223 }
2224
2225 if (img_request_write_test(img_request) ||
2226 img_request_discard_test(img_request))
2227 ceph_put_snap_context(img_request->snapc);
2228
2229 kmem_cache_free(rbd_img_request_cache, img_request);
2230 }
2231
2232 static struct rbd_img_request *rbd_parent_request_create(
2233 struct rbd_obj_request *obj_request,
2234 u64 img_offset, u64 length)
2235 {
2236 struct rbd_img_request *parent_request;
2237 struct rbd_device *rbd_dev;
2238
2239 rbd_assert(obj_request->img_request);
2240 rbd_dev = obj_request->img_request->rbd_dev;
2241
2242 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2243 length, OBJ_OP_READ, NULL);
2244 if (!parent_request)
2245 return NULL;
2246
2247 img_request_child_set(parent_request);
2248 rbd_obj_request_get(obj_request);
2249 parent_request->obj_request = obj_request;
2250
2251 return parent_request;
2252 }
2253
2254 static void rbd_parent_request_destroy(struct kref *kref)
2255 {
2256 struct rbd_img_request *parent_request;
2257 struct rbd_obj_request *orig_request;
2258
2259 parent_request = container_of(kref, struct rbd_img_request, kref);
2260 orig_request = parent_request->obj_request;
2261
2262 parent_request->obj_request = NULL;
2263 rbd_obj_request_put(orig_request);
2264 img_request_child_clear(parent_request);
2265
2266 rbd_img_request_destroy(kref);
2267 }
2268
2269 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2270 {
2271 struct rbd_img_request *img_request;
2272 unsigned int xferred;
2273 int result;
2274 bool more;
2275
2276 rbd_assert(obj_request_img_data_test(obj_request));
2277 img_request = obj_request->img_request;
2278
2279 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2280 xferred = (unsigned int)obj_request->xferred;
2281 result = obj_request->result;
2282 if (result) {
2283 struct rbd_device *rbd_dev = img_request->rbd_dev;
2284 enum obj_operation_type op_type;
2285
2286 if (img_request_discard_test(img_request))
2287 op_type = OBJ_OP_DISCARD;
2288 else if (img_request_write_test(img_request))
2289 op_type = OBJ_OP_WRITE;
2290 else
2291 op_type = OBJ_OP_READ;
2292
2293 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2294 obj_op_name(op_type), obj_request->length,
2295 obj_request->img_offset, obj_request->offset);
2296 rbd_warn(rbd_dev, " result %d xferred %x",
2297 result, xferred);
2298 if (!img_request->result)
2299 img_request->result = result;
2300 /*
2301 * Need to end I/O on the entire obj_request worth of
2302 * bytes in case of error.
2303 */
2304 xferred = obj_request->length;
2305 }
2306
2307 /* Image object requests don't own their page array */
2308
2309 if (obj_request->type == OBJ_REQUEST_PAGES) {
2310 obj_request->pages = NULL;
2311 obj_request->page_count = 0;
2312 }
2313
2314 if (img_request_child_test(img_request)) {
2315 rbd_assert(img_request->obj_request != NULL);
2316 more = obj_request->which < img_request->obj_request_count - 1;
2317 } else {
2318 rbd_assert(img_request->rq != NULL);
2319
2320 more = blk_update_request(img_request->rq, result, xferred);
2321 if (!more)
2322 __blk_mq_end_request(img_request->rq, result);
2323 }
2324
2325 return more;
2326 }
2327
2328 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2329 {
2330 struct rbd_img_request *img_request;
2331 u32 which = obj_request->which;
2332 bool more = true;
2333
2334 rbd_assert(obj_request_img_data_test(obj_request));
2335 img_request = obj_request->img_request;
2336
2337 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2338 rbd_assert(img_request != NULL);
2339 rbd_assert(img_request->obj_request_count > 0);
2340 rbd_assert(which != BAD_WHICH);
2341 rbd_assert(which < img_request->obj_request_count);
2342
2343 spin_lock_irq(&img_request->completion_lock);
2344 if (which != img_request->next_completion)
2345 goto out;
2346
2347 for_each_obj_request_from(img_request, obj_request) {
2348 rbd_assert(more);
2349 rbd_assert(which < img_request->obj_request_count);
2350
2351 if (!obj_request_done_test(obj_request))
2352 break;
2353 more = rbd_img_obj_end_request(obj_request);
2354 which++;
2355 }
2356
2357 rbd_assert(more ^ (which == img_request->obj_request_count));
2358 img_request->next_completion = which;
2359 out:
2360 spin_unlock_irq(&img_request->completion_lock);
2361 rbd_img_request_put(img_request);
2362
2363 if (!more)
2364 rbd_img_request_complete(img_request);
2365 }
2366
2367 /*
2368 * Add individual osd ops to the given ceph_osd_request and prepare
2369 * them for submission. num_ops is the current number of
2370 * osd operations already to the object request.
2371 */
2372 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2373 struct ceph_osd_request *osd_request,
2374 enum obj_operation_type op_type,
2375 unsigned int num_ops)
2376 {
2377 struct rbd_img_request *img_request = obj_request->img_request;
2378 struct rbd_device *rbd_dev = img_request->rbd_dev;
2379 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2380 u64 offset = obj_request->offset;
2381 u64 length = obj_request->length;
2382 u64 img_end;
2383 u16 opcode;
2384
2385 if (op_type == OBJ_OP_DISCARD) {
2386 if (!offset && length == object_size &&
2387 (!img_request_layered_test(img_request) ||
2388 !obj_request_overlaps_parent(obj_request))) {
2389 opcode = CEPH_OSD_OP_DELETE;
2390 } else if ((offset + length == object_size)) {
2391 opcode = CEPH_OSD_OP_TRUNCATE;
2392 } else {
2393 down_read(&rbd_dev->header_rwsem);
2394 img_end = rbd_dev->header.image_size;
2395 up_read(&rbd_dev->header_rwsem);
2396
2397 if (obj_request->img_offset + length == img_end)
2398 opcode = CEPH_OSD_OP_TRUNCATE;
2399 else
2400 opcode = CEPH_OSD_OP_ZERO;
2401 }
2402 } else if (op_type == OBJ_OP_WRITE) {
2403 if (!offset && length == object_size)
2404 opcode = CEPH_OSD_OP_WRITEFULL;
2405 else
2406 opcode = CEPH_OSD_OP_WRITE;
2407 osd_req_op_alloc_hint_init(osd_request, num_ops,
2408 object_size, object_size);
2409 num_ops++;
2410 } else {
2411 opcode = CEPH_OSD_OP_READ;
2412 }
2413
2414 if (opcode == CEPH_OSD_OP_DELETE)
2415 osd_req_op_init(osd_request, num_ops, opcode, 0);
2416 else
2417 osd_req_op_extent_init(osd_request, num_ops, opcode,
2418 offset, length, 0, 0);
2419
2420 if (obj_request->type == OBJ_REQUEST_BIO)
2421 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2422 obj_request->bio_list, length);
2423 else if (obj_request->type == OBJ_REQUEST_PAGES)
2424 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2425 obj_request->pages, length,
2426 offset & ~PAGE_MASK, false, false);
2427
2428 /* Discards are also writes */
2429 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2430 rbd_osd_req_format_write(obj_request);
2431 else
2432 rbd_osd_req_format_read(obj_request);
2433 }
2434
2435 /*
2436 * Split up an image request into one or more object requests, each
2437 * to a different object. The "type" parameter indicates whether
2438 * "data_desc" is the pointer to the head of a list of bio
2439 * structures, or the base of a page array. In either case this
2440 * function assumes data_desc describes memory sufficient to hold
2441 * all data described by the image request.
2442 */
2443 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2444 enum obj_request_type type,
2445 void *data_desc)
2446 {
2447 struct rbd_device *rbd_dev = img_request->rbd_dev;
2448 struct rbd_obj_request *obj_request = NULL;
2449 struct rbd_obj_request *next_obj_request;
2450 struct bio *bio_list = NULL;
2451 unsigned int bio_offset = 0;
2452 struct page **pages = NULL;
2453 enum obj_operation_type op_type;
2454 u64 img_offset;
2455 u64 resid;
2456
2457 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2458 (int)type, data_desc);
2459
2460 img_offset = img_request->offset;
2461 resid = img_request->length;
2462 rbd_assert(resid > 0);
2463 op_type = rbd_img_request_op_type(img_request);
2464
2465 if (type == OBJ_REQUEST_BIO) {
2466 bio_list = data_desc;
2467 rbd_assert(img_offset ==
2468 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2469 } else if (type == OBJ_REQUEST_PAGES) {
2470 pages = data_desc;
2471 }
2472
2473 while (resid) {
2474 struct ceph_osd_request *osd_req;
2475 const char *object_name;
2476 u64 offset;
2477 u64 length;
2478
2479 object_name = rbd_segment_name(rbd_dev, img_offset);
2480 if (!object_name)
2481 goto out_unwind;
2482 offset = rbd_segment_offset(rbd_dev, img_offset);
2483 length = rbd_segment_length(rbd_dev, img_offset, resid);
2484 obj_request = rbd_obj_request_create(object_name,
2485 offset, length, type);
2486 /* object request has its own copy of the object name */
2487 rbd_segment_name_free(object_name);
2488 if (!obj_request)
2489 goto out_unwind;
2490
2491 /*
2492 * set obj_request->img_request before creating the
2493 * osd_request so that it gets the right snapc
2494 */
2495 rbd_img_obj_request_add(img_request, obj_request);
2496
2497 if (type == OBJ_REQUEST_BIO) {
2498 unsigned int clone_size;
2499
2500 rbd_assert(length <= (u64)UINT_MAX);
2501 clone_size = (unsigned int)length;
2502 obj_request->bio_list =
2503 bio_chain_clone_range(&bio_list,
2504 &bio_offset,
2505 clone_size,
2506 GFP_NOIO);
2507 if (!obj_request->bio_list)
2508 goto out_unwind;
2509 } else if (type == OBJ_REQUEST_PAGES) {
2510 unsigned int page_count;
2511
2512 obj_request->pages = pages;
2513 page_count = (u32)calc_pages_for(offset, length);
2514 obj_request->page_count = page_count;
2515 if ((offset + length) & ~PAGE_MASK)
2516 page_count--; /* more on last page */
2517 pages += page_count;
2518 }
2519
2520 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2521 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2522 obj_request);
2523 if (!osd_req)
2524 goto out_unwind;
2525
2526 obj_request->osd_req = osd_req;
2527 obj_request->callback = rbd_img_obj_callback;
2528 obj_request->img_offset = img_offset;
2529
2530 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2531
2532 rbd_img_request_get(img_request);
2533
2534 img_offset += length;
2535 resid -= length;
2536 }
2537
2538 return 0;
2539
2540 out_unwind:
2541 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2542 rbd_img_obj_request_del(img_request, obj_request);
2543
2544 return -ENOMEM;
2545 }
2546
2547 static void
2548 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2549 {
2550 struct rbd_img_request *img_request;
2551 struct rbd_device *rbd_dev;
2552 struct page **pages;
2553 u32 page_count;
2554
2555 dout("%s: obj %p\n", __func__, obj_request);
2556
2557 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2558 obj_request->type == OBJ_REQUEST_NODATA);
2559 rbd_assert(obj_request_img_data_test(obj_request));
2560 img_request = obj_request->img_request;
2561 rbd_assert(img_request);
2562
2563 rbd_dev = img_request->rbd_dev;
2564 rbd_assert(rbd_dev);
2565
2566 pages = obj_request->copyup_pages;
2567 rbd_assert(pages != NULL);
2568 obj_request->copyup_pages = NULL;
2569 page_count = obj_request->copyup_page_count;
2570 rbd_assert(page_count);
2571 obj_request->copyup_page_count = 0;
2572 ceph_release_page_vector(pages, page_count);
2573
2574 /*
2575 * We want the transfer count to reflect the size of the
2576 * original write request. There is no such thing as a
2577 * successful short write, so if the request was successful
2578 * we can just set it to the originally-requested length.
2579 */
2580 if (!obj_request->result)
2581 obj_request->xferred = obj_request->length;
2582
2583 obj_request_done_set(obj_request);
2584 }
2585
2586 static void
2587 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2588 {
2589 struct rbd_obj_request *orig_request;
2590 struct ceph_osd_request *osd_req;
2591 struct ceph_osd_client *osdc;
2592 struct rbd_device *rbd_dev;
2593 struct page **pages;
2594 enum obj_operation_type op_type;
2595 u32 page_count;
2596 int img_result;
2597 u64 parent_length;
2598
2599 rbd_assert(img_request_child_test(img_request));
2600
2601 /* First get what we need from the image request */
2602
2603 pages = img_request->copyup_pages;
2604 rbd_assert(pages != NULL);
2605 img_request->copyup_pages = NULL;
2606 page_count = img_request->copyup_page_count;
2607 rbd_assert(page_count);
2608 img_request->copyup_page_count = 0;
2609
2610 orig_request = img_request->obj_request;
2611 rbd_assert(orig_request != NULL);
2612 rbd_assert(obj_request_type_valid(orig_request->type));
2613 img_result = img_request->result;
2614 parent_length = img_request->length;
2615 rbd_assert(parent_length == img_request->xferred);
2616 rbd_img_request_put(img_request);
2617
2618 rbd_assert(orig_request->img_request);
2619 rbd_dev = orig_request->img_request->rbd_dev;
2620 rbd_assert(rbd_dev);
2621
2622 /*
2623 * If the overlap has become 0 (most likely because the
2624 * image has been flattened) we need to free the pages
2625 * and re-submit the original write request.
2626 */
2627 if (!rbd_dev->parent_overlap) {
2628 struct ceph_osd_client *osdc;
2629
2630 ceph_release_page_vector(pages, page_count);
2631 osdc = &rbd_dev->rbd_client->client->osdc;
2632 img_result = rbd_obj_request_submit(osdc, orig_request);
2633 if (!img_result)
2634 return;
2635 }
2636
2637 if (img_result)
2638 goto out_err;
2639
2640 /*
2641 * The original osd request is of no use to use any more.
2642 * We need a new one that can hold the three ops in a copyup
2643 * request. Allocate the new copyup osd request for the
2644 * original request, and release the old one.
2645 */
2646 img_result = -ENOMEM;
2647 osd_req = rbd_osd_req_create_copyup(orig_request);
2648 if (!osd_req)
2649 goto out_err;
2650 rbd_osd_req_destroy(orig_request->osd_req);
2651 orig_request->osd_req = osd_req;
2652 orig_request->copyup_pages = pages;
2653 orig_request->copyup_page_count = page_count;
2654
2655 /* Initialize the copyup op */
2656
2657 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2658 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2659 false, false);
2660
2661 /* Add the other op(s) */
2662
2663 op_type = rbd_img_request_op_type(orig_request->img_request);
2664 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2665
2666 /* All set, send it off. */
2667
2668 osdc = &rbd_dev->rbd_client->client->osdc;
2669 img_result = rbd_obj_request_submit(osdc, orig_request);
2670 if (!img_result)
2671 return;
2672 out_err:
2673 /* Record the error code and complete the request */
2674
2675 orig_request->result = img_result;
2676 orig_request->xferred = 0;
2677 obj_request_done_set(orig_request);
2678 rbd_obj_request_complete(orig_request);
2679 }
2680
2681 /*
2682 * Read from the parent image the range of data that covers the
2683 * entire target of the given object request. This is used for
2684 * satisfying a layered image write request when the target of an
2685 * object request from the image request does not exist.
2686 *
2687 * A page array big enough to hold the returned data is allocated
2688 * and supplied to rbd_img_request_fill() as the "data descriptor."
2689 * When the read completes, this page array will be transferred to
2690 * the original object request for the copyup operation.
2691 *
2692 * If an error occurs, record it as the result of the original
2693 * object request and mark it done so it gets completed.
2694 */
2695 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2696 {
2697 struct rbd_img_request *img_request = NULL;
2698 struct rbd_img_request *parent_request = NULL;
2699 struct rbd_device *rbd_dev;
2700 u64 img_offset;
2701 u64 length;
2702 struct page **pages = NULL;
2703 u32 page_count;
2704 int result;
2705
2706 rbd_assert(obj_request_img_data_test(obj_request));
2707 rbd_assert(obj_request_type_valid(obj_request->type));
2708
2709 img_request = obj_request->img_request;
2710 rbd_assert(img_request != NULL);
2711 rbd_dev = img_request->rbd_dev;
2712 rbd_assert(rbd_dev->parent != NULL);
2713
2714 /*
2715 * Determine the byte range covered by the object in the
2716 * child image to which the original request was to be sent.
2717 */
2718 img_offset = obj_request->img_offset - obj_request->offset;
2719 length = (u64)1 << rbd_dev->header.obj_order;
2720
2721 /*
2722 * There is no defined parent data beyond the parent
2723 * overlap, so limit what we read at that boundary if
2724 * necessary.
2725 */
2726 if (img_offset + length > rbd_dev->parent_overlap) {
2727 rbd_assert(img_offset < rbd_dev->parent_overlap);
2728 length = rbd_dev->parent_overlap - img_offset;
2729 }
2730
2731 /*
2732 * Allocate a page array big enough to receive the data read
2733 * from the parent.
2734 */
2735 page_count = (u32)calc_pages_for(0, length);
2736 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2737 if (IS_ERR(pages)) {
2738 result = PTR_ERR(pages);
2739 pages = NULL;
2740 goto out_err;
2741 }
2742
2743 result = -ENOMEM;
2744 parent_request = rbd_parent_request_create(obj_request,
2745 img_offset, length);
2746 if (!parent_request)
2747 goto out_err;
2748
2749 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2750 if (result)
2751 goto out_err;
2752 parent_request->copyup_pages = pages;
2753 parent_request->copyup_page_count = page_count;
2754
2755 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2756 result = rbd_img_request_submit(parent_request);
2757 if (!result)
2758 return 0;
2759
2760 parent_request->copyup_pages = NULL;
2761 parent_request->copyup_page_count = 0;
2762 parent_request->obj_request = NULL;
2763 rbd_obj_request_put(obj_request);
2764 out_err:
2765 if (pages)
2766 ceph_release_page_vector(pages, page_count);
2767 if (parent_request)
2768 rbd_img_request_put(parent_request);
2769 obj_request->result = result;
2770 obj_request->xferred = 0;
2771 obj_request_done_set(obj_request);
2772
2773 return result;
2774 }
2775
2776 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2777 {
2778 struct rbd_obj_request *orig_request;
2779 struct rbd_device *rbd_dev;
2780 int result;
2781
2782 rbd_assert(!obj_request_img_data_test(obj_request));
2783
2784 /*
2785 * All we need from the object request is the original
2786 * request and the result of the STAT op. Grab those, then
2787 * we're done with the request.
2788 */
2789 orig_request = obj_request->obj_request;
2790 obj_request->obj_request = NULL;
2791 rbd_obj_request_put(orig_request);
2792 rbd_assert(orig_request);
2793 rbd_assert(orig_request->img_request);
2794
2795 result = obj_request->result;
2796 obj_request->result = 0;
2797
2798 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2799 obj_request, orig_request, result,
2800 obj_request->xferred, obj_request->length);
2801 rbd_obj_request_put(obj_request);
2802
2803 /*
2804 * If the overlap has become 0 (most likely because the
2805 * image has been flattened) we need to free the pages
2806 * and re-submit the original write request.
2807 */
2808 rbd_dev = orig_request->img_request->rbd_dev;
2809 if (!rbd_dev->parent_overlap) {
2810 struct ceph_osd_client *osdc;
2811
2812 osdc = &rbd_dev->rbd_client->client->osdc;
2813 result = rbd_obj_request_submit(osdc, orig_request);
2814 if (!result)
2815 return;
2816 }
2817
2818 /*
2819 * Our only purpose here is to determine whether the object
2820 * exists, and we don't want to treat the non-existence as
2821 * an error. If something else comes back, transfer the
2822 * error to the original request and complete it now.
2823 */
2824 if (!result) {
2825 obj_request_existence_set(orig_request, true);
2826 } else if (result == -ENOENT) {
2827 obj_request_existence_set(orig_request, false);
2828 } else if (result) {
2829 orig_request->result = result;
2830 goto out;
2831 }
2832
2833 /*
2834 * Resubmit the original request now that we have recorded
2835 * whether the target object exists.
2836 */
2837 orig_request->result = rbd_img_obj_request_submit(orig_request);
2838 out:
2839 if (orig_request->result)
2840 rbd_obj_request_complete(orig_request);
2841 }
2842
2843 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2844 {
2845 struct rbd_obj_request *stat_request;
2846 struct rbd_device *rbd_dev;
2847 struct ceph_osd_client *osdc;
2848 struct page **pages = NULL;
2849 u32 page_count;
2850 size_t size;
2851 int ret;
2852
2853 /*
2854 * The response data for a STAT call consists of:
2855 * le64 length;
2856 * struct {
2857 * le32 tv_sec;
2858 * le32 tv_nsec;
2859 * } mtime;
2860 */
2861 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2862 page_count = (u32)calc_pages_for(0, size);
2863 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2864 if (IS_ERR(pages))
2865 return PTR_ERR(pages);
2866
2867 ret = -ENOMEM;
2868 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2869 OBJ_REQUEST_PAGES);
2870 if (!stat_request)
2871 goto out;
2872
2873 rbd_obj_request_get(obj_request);
2874 stat_request->obj_request = obj_request;
2875 stat_request->pages = pages;
2876 stat_request->page_count = page_count;
2877
2878 rbd_assert(obj_request->img_request);
2879 rbd_dev = obj_request->img_request->rbd_dev;
2880 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2881 stat_request);
2882 if (!stat_request->osd_req)
2883 goto out;
2884 stat_request->callback = rbd_img_obj_exists_callback;
2885
2886 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2887 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2888 false, false);
2889 rbd_osd_req_format_read(stat_request);
2890
2891 osdc = &rbd_dev->rbd_client->client->osdc;
2892 ret = rbd_obj_request_submit(osdc, stat_request);
2893 out:
2894 if (ret)
2895 rbd_obj_request_put(obj_request);
2896
2897 return ret;
2898 }
2899
2900 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2901 {
2902 struct rbd_img_request *img_request;
2903 struct rbd_device *rbd_dev;
2904
2905 rbd_assert(obj_request_img_data_test(obj_request));
2906
2907 img_request = obj_request->img_request;
2908 rbd_assert(img_request);
2909 rbd_dev = img_request->rbd_dev;
2910
2911 /* Reads */
2912 if (!img_request_write_test(img_request) &&
2913 !img_request_discard_test(img_request))
2914 return true;
2915
2916 /* Non-layered writes */
2917 if (!img_request_layered_test(img_request))
2918 return true;
2919
2920 /*
2921 * Layered writes outside of the parent overlap range don't
2922 * share any data with the parent.
2923 */
2924 if (!obj_request_overlaps_parent(obj_request))
2925 return true;
2926
2927 /*
2928 * Entire-object layered writes - we will overwrite whatever
2929 * parent data there is anyway.
2930 */
2931 if (!obj_request->offset &&
2932 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2933 return true;
2934
2935 /*
2936 * If the object is known to already exist, its parent data has
2937 * already been copied.
2938 */
2939 if (obj_request_known_test(obj_request) &&
2940 obj_request_exists_test(obj_request))
2941 return true;
2942
2943 return false;
2944 }
2945
2946 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2947 {
2948 if (img_obj_request_simple(obj_request)) {
2949 struct rbd_device *rbd_dev;
2950 struct ceph_osd_client *osdc;
2951
2952 rbd_dev = obj_request->img_request->rbd_dev;
2953 osdc = &rbd_dev->rbd_client->client->osdc;
2954
2955 return rbd_obj_request_submit(osdc, obj_request);
2956 }
2957
2958 /*
2959 * It's a layered write. The target object might exist but
2960 * we may not know that yet. If we know it doesn't exist,
2961 * start by reading the data for the full target object from
2962 * the parent so we can use it for a copyup to the target.
2963 */
2964 if (obj_request_known_test(obj_request))
2965 return rbd_img_obj_parent_read_full(obj_request);
2966
2967 /* We don't know whether the target exists. Go find out. */
2968
2969 return rbd_img_obj_exists_submit(obj_request);
2970 }
2971
2972 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2973 {
2974 struct rbd_obj_request *obj_request;
2975 struct rbd_obj_request *next_obj_request;
2976
2977 dout("%s: img %p\n", __func__, img_request);
2978 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2979 int ret;
2980
2981 ret = rbd_img_obj_request_submit(obj_request);
2982 if (ret)
2983 return ret;
2984 }
2985
2986 return 0;
2987 }
2988
2989 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2990 {
2991 struct rbd_obj_request *obj_request;
2992 struct rbd_device *rbd_dev;
2993 u64 obj_end;
2994 u64 img_xferred;
2995 int img_result;
2996
2997 rbd_assert(img_request_child_test(img_request));
2998
2999 /* First get what we need from the image request and release it */
3000
3001 obj_request = img_request->obj_request;
3002 img_xferred = img_request->xferred;
3003 img_result = img_request->result;
3004 rbd_img_request_put(img_request);
3005
3006 /*
3007 * If the overlap has become 0 (most likely because the
3008 * image has been flattened) we need to re-submit the
3009 * original request.
3010 */
3011 rbd_assert(obj_request);
3012 rbd_assert(obj_request->img_request);
3013 rbd_dev = obj_request->img_request->rbd_dev;
3014 if (!rbd_dev->parent_overlap) {
3015 struct ceph_osd_client *osdc;
3016
3017 osdc = &rbd_dev->rbd_client->client->osdc;
3018 img_result = rbd_obj_request_submit(osdc, obj_request);
3019 if (!img_result)
3020 return;
3021 }
3022
3023 obj_request->result = img_result;
3024 if (obj_request->result)
3025 goto out;
3026
3027 /*
3028 * We need to zero anything beyond the parent overlap
3029 * boundary. Since rbd_img_obj_request_read_callback()
3030 * will zero anything beyond the end of a short read, an
3031 * easy way to do this is to pretend the data from the
3032 * parent came up short--ending at the overlap boundary.
3033 */
3034 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3035 obj_end = obj_request->img_offset + obj_request->length;
3036 if (obj_end > rbd_dev->parent_overlap) {
3037 u64 xferred = 0;
3038
3039 if (obj_request->img_offset < rbd_dev->parent_overlap)
3040 xferred = rbd_dev->parent_overlap -
3041 obj_request->img_offset;
3042
3043 obj_request->xferred = min(img_xferred, xferred);
3044 } else {
3045 obj_request->xferred = img_xferred;
3046 }
3047 out:
3048 rbd_img_obj_request_read_callback(obj_request);
3049 rbd_obj_request_complete(obj_request);
3050 }
3051
3052 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3053 {
3054 struct rbd_img_request *img_request;
3055 int result;
3056
3057 rbd_assert(obj_request_img_data_test(obj_request));
3058 rbd_assert(obj_request->img_request != NULL);
3059 rbd_assert(obj_request->result == (s32) -ENOENT);
3060 rbd_assert(obj_request_type_valid(obj_request->type));
3061
3062 /* rbd_read_finish(obj_request, obj_request->length); */
3063 img_request = rbd_parent_request_create(obj_request,
3064 obj_request->img_offset,
3065 obj_request->length);
3066 result = -ENOMEM;
3067 if (!img_request)
3068 goto out_err;
3069
3070 if (obj_request->type == OBJ_REQUEST_BIO)
3071 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3072 obj_request->bio_list);
3073 else
3074 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3075 obj_request->pages);
3076 if (result)
3077 goto out_err;
3078
3079 img_request->callback = rbd_img_parent_read_callback;
3080 result = rbd_img_request_submit(img_request);
3081 if (result)
3082 goto out_err;
3083
3084 return;
3085 out_err:
3086 if (img_request)
3087 rbd_img_request_put(img_request);
3088 obj_request->result = result;
3089 obj_request->xferred = 0;
3090 obj_request_done_set(obj_request);
3091 }
3092
3093 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3094 {
3095 struct rbd_obj_request *obj_request;
3096 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3097 int ret;
3098
3099 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3100 OBJ_REQUEST_NODATA);
3101 if (!obj_request)
3102 return -ENOMEM;
3103
3104 ret = -ENOMEM;
3105 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3106 obj_request);
3107 if (!obj_request->osd_req)
3108 goto out;
3109
3110 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3111 notify_id, 0, 0);
3112 rbd_osd_req_format_read(obj_request);
3113
3114 ret = rbd_obj_request_submit(osdc, obj_request);
3115 if (ret)
3116 goto out;
3117 ret = rbd_obj_request_wait(obj_request);
3118 out:
3119 rbd_obj_request_put(obj_request);
3120
3121 return ret;
3122 }
3123
3124 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3125 {
3126 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3127 int ret;
3128
3129 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3130 rbd_dev->header_name, (unsigned long long)notify_id,
3131 (unsigned int)opcode);
3132
3133 /*
3134 * Until adequate refresh error handling is in place, there is
3135 * not much we can do here, except warn.
3136 *
3137 * See http://tracker.ceph.com/issues/5040
3138 */
3139 ret = rbd_dev_refresh(rbd_dev);
3140 if (ret)
3141 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3142
3143 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3144 if (ret)
3145 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3146 }
3147
3148 /*
3149 * Send a (un)watch request and wait for the ack. Return a request
3150 * with a ref held on success or error.
3151 */
3152 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3153 struct rbd_device *rbd_dev,
3154 bool watch)
3155 {
3156 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3157 struct ceph_options *opts = osdc->client->options;
3158 struct rbd_obj_request *obj_request;
3159 int ret;
3160
3161 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3162 OBJ_REQUEST_NODATA);
3163 if (!obj_request)
3164 return ERR_PTR(-ENOMEM);
3165
3166 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3167 obj_request);
3168 if (!obj_request->osd_req) {
3169 ret = -ENOMEM;
3170 goto out;
3171 }
3172
3173 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3174 rbd_dev->watch_event->cookie, 0, watch);
3175 rbd_osd_req_format_write(obj_request);
3176
3177 if (watch)
3178 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3179
3180 ret = rbd_obj_request_submit(osdc, obj_request);
3181 if (ret)
3182 goto out;
3183
3184 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3185 if (ret)
3186 goto out;
3187
3188 ret = obj_request->result;
3189 if (ret) {
3190 if (watch)
3191 rbd_obj_request_end(obj_request);
3192 goto out;
3193 }
3194
3195 return obj_request;
3196
3197 out:
3198 rbd_obj_request_put(obj_request);
3199 return ERR_PTR(ret);
3200 }
3201
3202 /*
3203 * Initiate a watch request, synchronously.
3204 */
3205 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3206 {
3207 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3208 struct rbd_obj_request *obj_request;
3209 int ret;
3210
3211 rbd_assert(!rbd_dev->watch_event);
3212 rbd_assert(!rbd_dev->watch_request);
3213
3214 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3215 &rbd_dev->watch_event);
3216 if (ret < 0)
3217 return ret;
3218
3219 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3220 if (IS_ERR(obj_request)) {
3221 ceph_osdc_cancel_event(rbd_dev->watch_event);
3222 rbd_dev->watch_event = NULL;
3223 return PTR_ERR(obj_request);
3224 }
3225
3226 /*
3227 * A watch request is set to linger, so the underlying osd
3228 * request won't go away until we unregister it. We retain
3229 * a pointer to the object request during that time (in
3230 * rbd_dev->watch_request), so we'll keep a reference to it.
3231 * We'll drop that reference after we've unregistered it in
3232 * rbd_dev_header_unwatch_sync().
3233 */
3234 rbd_dev->watch_request = obj_request;
3235
3236 return 0;
3237 }
3238
3239 /*
3240 * Tear down a watch request, synchronously.
3241 */
3242 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3243 {
3244 struct rbd_obj_request *obj_request;
3245
3246 rbd_assert(rbd_dev->watch_event);
3247 rbd_assert(rbd_dev->watch_request);
3248
3249 rbd_obj_request_end(rbd_dev->watch_request);
3250 rbd_obj_request_put(rbd_dev->watch_request);
3251 rbd_dev->watch_request = NULL;
3252
3253 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3254 if (!IS_ERR(obj_request))
3255 rbd_obj_request_put(obj_request);
3256 else
3257 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3258 PTR_ERR(obj_request));
3259
3260 ceph_osdc_cancel_event(rbd_dev->watch_event);
3261 rbd_dev->watch_event = NULL;
3262
3263 dout("%s flushing notifies\n", __func__);
3264 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3265 }
3266
3267 /*
3268 * Synchronous osd object method call. Returns the number of bytes
3269 * returned in the outbound buffer, or a negative error code.
3270 */
3271 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3272 const char *object_name,
3273 const char *class_name,
3274 const char *method_name,
3275 const void *outbound,
3276 size_t outbound_size,
3277 void *inbound,
3278 size_t inbound_size)
3279 {
3280 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3281 struct rbd_obj_request *obj_request;
3282 struct page **pages;
3283 u32 page_count;
3284 int ret;
3285
3286 /*
3287 * Method calls are ultimately read operations. The result
3288 * should placed into the inbound buffer provided. They
3289 * also supply outbound data--parameters for the object
3290 * method. Currently if this is present it will be a
3291 * snapshot id.
3292 */
3293 page_count = (u32)calc_pages_for(0, inbound_size);
3294 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3295 if (IS_ERR(pages))
3296 return PTR_ERR(pages);
3297
3298 ret = -ENOMEM;
3299 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3300 OBJ_REQUEST_PAGES);
3301 if (!obj_request)
3302 goto out;
3303
3304 obj_request->pages = pages;
3305 obj_request->page_count = page_count;
3306
3307 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3308 obj_request);
3309 if (!obj_request->osd_req)
3310 goto out;
3311
3312 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3313 class_name, method_name);
3314 if (outbound_size) {
3315 struct ceph_pagelist *pagelist;
3316
3317 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3318 if (!pagelist)
3319 goto out;
3320
3321 ceph_pagelist_init(pagelist);
3322 ceph_pagelist_append(pagelist, outbound, outbound_size);
3323 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3324 pagelist);
3325 }
3326 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3327 obj_request->pages, inbound_size,
3328 0, false, false);
3329 rbd_osd_req_format_read(obj_request);
3330
3331 ret = rbd_obj_request_submit(osdc, obj_request);
3332 if (ret)
3333 goto out;
3334 ret = rbd_obj_request_wait(obj_request);
3335 if (ret)
3336 goto out;
3337
3338 ret = obj_request->result;
3339 if (ret < 0)
3340 goto out;
3341
3342 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3343 ret = (int)obj_request->xferred;
3344 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3345 out:
3346 if (obj_request)
3347 rbd_obj_request_put(obj_request);
3348 else
3349 ceph_release_page_vector(pages, page_count);
3350
3351 return ret;
3352 }
3353
3354 static void rbd_queue_workfn(struct work_struct *work)
3355 {
3356 struct request *rq = blk_mq_rq_from_pdu(work);
3357 struct rbd_device *rbd_dev = rq->q->queuedata;
3358 struct rbd_img_request *img_request;
3359 struct ceph_snap_context *snapc = NULL;
3360 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3361 u64 length = blk_rq_bytes(rq);
3362 enum obj_operation_type op_type;
3363 u64 mapping_size;
3364 int result;
3365
3366 if (rq->cmd_type != REQ_TYPE_FS) {
3367 dout("%s: non-fs request type %d\n", __func__,
3368 (int) rq->cmd_type);
3369 result = -EIO;
3370 goto err;
3371 }
3372
3373 if (rq->cmd_flags & REQ_DISCARD)
3374 op_type = OBJ_OP_DISCARD;
3375 else if (rq->cmd_flags & REQ_WRITE)
3376 op_type = OBJ_OP_WRITE;
3377 else
3378 op_type = OBJ_OP_READ;
3379
3380 /* Ignore/skip any zero-length requests */
3381
3382 if (!length) {
3383 dout("%s: zero-length request\n", __func__);
3384 result = 0;
3385 goto err_rq;
3386 }
3387
3388 /* Only reads are allowed to a read-only device */
3389
3390 if (op_type != OBJ_OP_READ) {
3391 if (rbd_dev->mapping.read_only) {
3392 result = -EROFS;
3393 goto err_rq;
3394 }
3395 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3396 }
3397
3398 /*
3399 * Quit early if the mapped snapshot no longer exists. It's
3400 * still possible the snapshot will have disappeared by the
3401 * time our request arrives at the osd, but there's no sense in
3402 * sending it if we already know.
3403 */
3404 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3405 dout("request for non-existent snapshot");
3406 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3407 result = -ENXIO;
3408 goto err_rq;
3409 }
3410
3411 if (offset && length > U64_MAX - offset + 1) {
3412 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3413 length);
3414 result = -EINVAL;
3415 goto err_rq; /* Shouldn't happen */
3416 }
3417
3418 blk_mq_start_request(rq);
3419
3420 down_read(&rbd_dev->header_rwsem);
3421 mapping_size = rbd_dev->mapping.size;
3422 if (op_type != OBJ_OP_READ) {
3423 snapc = rbd_dev->header.snapc;
3424 ceph_get_snap_context(snapc);
3425 }
3426 up_read(&rbd_dev->header_rwsem);
3427
3428 if (offset + length > mapping_size) {
3429 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3430 length, mapping_size);
3431 result = -EIO;
3432 goto err_rq;
3433 }
3434
3435 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3436 snapc);
3437 if (!img_request) {
3438 result = -ENOMEM;
3439 goto err_rq;
3440 }
3441 img_request->rq = rq;
3442 snapc = NULL; /* img_request consumes a ref */
3443
3444 if (op_type == OBJ_OP_DISCARD)
3445 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3446 NULL);
3447 else
3448 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3449 rq->bio);
3450 if (result)
3451 goto err_img_request;
3452
3453 result = rbd_img_request_submit(img_request);
3454 if (result)
3455 goto err_img_request;
3456
3457 return;
3458
3459 err_img_request:
3460 rbd_img_request_put(img_request);
3461 err_rq:
3462 if (result)
3463 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3464 obj_op_name(op_type), length, offset, result);
3465 ceph_put_snap_context(snapc);
3466 err:
3467 blk_mq_end_request(rq, result);
3468 }
3469
3470 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3471 const struct blk_mq_queue_data *bd)
3472 {
3473 struct request *rq = bd->rq;
3474 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3475
3476 queue_work(rbd_wq, work);
3477 return BLK_MQ_RQ_QUEUE_OK;
3478 }
3479
3480 static void rbd_free_disk(struct rbd_device *rbd_dev)
3481 {
3482 struct gendisk *disk = rbd_dev->disk;
3483
3484 if (!disk)
3485 return;
3486
3487 rbd_dev->disk = NULL;
3488 if (disk->flags & GENHD_FL_UP) {
3489 del_gendisk(disk);
3490 if (disk->queue)
3491 blk_cleanup_queue(disk->queue);
3492 blk_mq_free_tag_set(&rbd_dev->tag_set);
3493 }
3494 put_disk(disk);
3495 }
3496
3497 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3498 const char *object_name,
3499 u64 offset, u64 length, void *buf)
3500
3501 {
3502 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3503 struct rbd_obj_request *obj_request;
3504 struct page **pages = NULL;
3505 u32 page_count;
3506 size_t size;
3507 int ret;
3508
3509 page_count = (u32) calc_pages_for(offset, length);
3510 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3511 if (IS_ERR(pages))
3512 return PTR_ERR(pages);
3513
3514 ret = -ENOMEM;
3515 obj_request = rbd_obj_request_create(object_name, offset, length,
3516 OBJ_REQUEST_PAGES);
3517 if (!obj_request)
3518 goto out;
3519
3520 obj_request->pages = pages;
3521 obj_request->page_count = page_count;
3522
3523 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3524 obj_request);
3525 if (!obj_request->osd_req)
3526 goto out;
3527
3528 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3529 offset, length, 0, 0);
3530 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3531 obj_request->pages,
3532 obj_request->length,
3533 obj_request->offset & ~PAGE_MASK,
3534 false, false);
3535 rbd_osd_req_format_read(obj_request);
3536
3537 ret = rbd_obj_request_submit(osdc, obj_request);
3538 if (ret)
3539 goto out;
3540 ret = rbd_obj_request_wait(obj_request);
3541 if (ret)
3542 goto out;
3543
3544 ret = obj_request->result;
3545 if (ret < 0)
3546 goto out;
3547
3548 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3549 size = (size_t) obj_request->xferred;
3550 ceph_copy_from_page_vector(pages, buf, 0, size);
3551 rbd_assert(size <= (size_t)INT_MAX);
3552 ret = (int)size;
3553 out:
3554 if (obj_request)
3555 rbd_obj_request_put(obj_request);
3556 else
3557 ceph_release_page_vector(pages, page_count);
3558
3559 return ret;
3560 }
3561
3562 /*
3563 * Read the complete header for the given rbd device. On successful
3564 * return, the rbd_dev->header field will contain up-to-date
3565 * information about the image.
3566 */
3567 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3568 {
3569 struct rbd_image_header_ondisk *ondisk = NULL;
3570 u32 snap_count = 0;
3571 u64 names_size = 0;
3572 u32 want_count;
3573 int ret;
3574
3575 /*
3576 * The complete header will include an array of its 64-bit
3577 * snapshot ids, followed by the names of those snapshots as
3578 * a contiguous block of NUL-terminated strings. Note that
3579 * the number of snapshots could change by the time we read
3580 * it in, in which case we re-read it.
3581 */
3582 do {
3583 size_t size;
3584
3585 kfree(ondisk);
3586
3587 size = sizeof (*ondisk);
3588 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3589 size += names_size;
3590 ondisk = kmalloc(size, GFP_KERNEL);
3591 if (!ondisk)
3592 return -ENOMEM;
3593
3594 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3595 0, size, ondisk);
3596 if (ret < 0)
3597 goto out;
3598 if ((size_t)ret < size) {
3599 ret = -ENXIO;
3600 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3601 size, ret);
3602 goto out;
3603 }
3604 if (!rbd_dev_ondisk_valid(ondisk)) {
3605 ret = -ENXIO;
3606 rbd_warn(rbd_dev, "invalid header");
3607 goto out;
3608 }
3609
3610 names_size = le64_to_cpu(ondisk->snap_names_len);
3611 want_count = snap_count;
3612 snap_count = le32_to_cpu(ondisk->snap_count);
3613 } while (snap_count != want_count);
3614
3615 ret = rbd_header_from_disk(rbd_dev, ondisk);
3616 out:
3617 kfree(ondisk);
3618
3619 return ret;
3620 }
3621
3622 /*
3623 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3624 * has disappeared from the (just updated) snapshot context.
3625 */
3626 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3627 {
3628 u64 snap_id;
3629
3630 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3631 return;
3632
3633 snap_id = rbd_dev->spec->snap_id;
3634 if (snap_id == CEPH_NOSNAP)
3635 return;
3636
3637 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3638 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3639 }
3640
3641 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3642 {
3643 sector_t size;
3644
3645 /*
3646 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3647 * try to update its size. If REMOVING is set, updating size
3648 * is just useless work since the device can't be opened.
3649 */
3650 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3651 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3652 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3653 dout("setting size to %llu sectors", (unsigned long long)size);
3654 set_capacity(rbd_dev->disk, size);
3655 revalidate_disk(rbd_dev->disk);
3656 }
3657 }
3658
3659 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3660 {
3661 u64 mapping_size;
3662 int ret;
3663
3664 down_write(&rbd_dev->header_rwsem);
3665 mapping_size = rbd_dev->mapping.size;
3666
3667 ret = rbd_dev_header_info(rbd_dev);
3668 if (ret)
3669 goto out;
3670
3671 /*
3672 * If there is a parent, see if it has disappeared due to the
3673 * mapped image getting flattened.
3674 */
3675 if (rbd_dev->parent) {
3676 ret = rbd_dev_v2_parent_info(rbd_dev);
3677 if (ret)
3678 goto out;
3679 }
3680
3681 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3682 rbd_dev->mapping.size = rbd_dev->header.image_size;
3683 } else {
3684 /* validate mapped snapshot's EXISTS flag */
3685 rbd_exists_validate(rbd_dev);
3686 }
3687
3688 out:
3689 up_write(&rbd_dev->header_rwsem);
3690 if (!ret && mapping_size != rbd_dev->mapping.size)
3691 rbd_dev_update_size(rbd_dev);
3692
3693 return ret;
3694 }
3695
3696 static int rbd_init_request(void *data, struct request *rq,
3697 unsigned int hctx_idx, unsigned int request_idx,
3698 unsigned int numa_node)
3699 {
3700 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3701
3702 INIT_WORK(work, rbd_queue_workfn);
3703 return 0;
3704 }
3705
3706 static struct blk_mq_ops rbd_mq_ops = {
3707 .queue_rq = rbd_queue_rq,
3708 .map_queue = blk_mq_map_queue,
3709 .init_request = rbd_init_request,
3710 };
3711
3712 static int rbd_init_disk(struct rbd_device *rbd_dev)
3713 {
3714 struct gendisk *disk;
3715 struct request_queue *q;
3716 u64 segment_size;
3717 int err;
3718
3719 /* create gendisk info */
3720 disk = alloc_disk(single_major ?
3721 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3722 RBD_MINORS_PER_MAJOR);
3723 if (!disk)
3724 return -ENOMEM;
3725
3726 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3727 rbd_dev->dev_id);
3728 disk->major = rbd_dev->major;
3729 disk->first_minor = rbd_dev->minor;
3730 if (single_major)
3731 disk->flags |= GENHD_FL_EXT_DEVT;
3732 disk->fops = &rbd_bd_ops;
3733 disk->private_data = rbd_dev;
3734
3735 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3736 rbd_dev->tag_set.ops = &rbd_mq_ops;
3737 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3738 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3739 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3740 rbd_dev->tag_set.nr_hw_queues = 1;
3741 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3742
3743 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3744 if (err)
3745 goto out_disk;
3746
3747 q = blk_mq_init_queue(&rbd_dev->tag_set);
3748 if (IS_ERR(q)) {
3749 err = PTR_ERR(q);
3750 goto out_tag_set;
3751 }
3752
3753 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3754 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3755
3756 /* set io sizes to object size */
3757 segment_size = rbd_obj_bytes(&rbd_dev->header);
3758 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3759 q->limits.max_sectors = queue_max_hw_sectors(q);
3760 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3761 blk_queue_max_segment_size(q, segment_size);
3762 blk_queue_io_min(q, segment_size);
3763 blk_queue_io_opt(q, segment_size);
3764
3765 /* enable the discard support */
3766 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3767 q->limits.discard_granularity = segment_size;
3768 q->limits.discard_alignment = segment_size;
3769 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3770 q->limits.discard_zeroes_data = 1;
3771
3772 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3773 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3774
3775 disk->queue = q;
3776
3777 q->queuedata = rbd_dev;
3778
3779 rbd_dev->disk = disk;
3780
3781 return 0;
3782 out_tag_set:
3783 blk_mq_free_tag_set(&rbd_dev->tag_set);
3784 out_disk:
3785 put_disk(disk);
3786 return err;
3787 }
3788
3789 /*
3790 sysfs
3791 */
3792
3793 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3794 {
3795 return container_of(dev, struct rbd_device, dev);
3796 }
3797
3798 static ssize_t rbd_size_show(struct device *dev,
3799 struct device_attribute *attr, char *buf)
3800 {
3801 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3802
3803 return sprintf(buf, "%llu\n",
3804 (unsigned long long)rbd_dev->mapping.size);
3805 }
3806
3807 /*
3808 * Note this shows the features for whatever's mapped, which is not
3809 * necessarily the base image.
3810 */
3811 static ssize_t rbd_features_show(struct device *dev,
3812 struct device_attribute *attr, char *buf)
3813 {
3814 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815
3816 return sprintf(buf, "0x%016llx\n",
3817 (unsigned long long)rbd_dev->mapping.features);
3818 }
3819
3820 static ssize_t rbd_major_show(struct device *dev,
3821 struct device_attribute *attr, char *buf)
3822 {
3823 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3824
3825 if (rbd_dev->major)
3826 return sprintf(buf, "%d\n", rbd_dev->major);
3827
3828 return sprintf(buf, "(none)\n");
3829 }
3830
3831 static ssize_t rbd_minor_show(struct device *dev,
3832 struct device_attribute *attr, char *buf)
3833 {
3834 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3835
3836 return sprintf(buf, "%d\n", rbd_dev->minor);
3837 }
3838
3839 static ssize_t rbd_client_id_show(struct device *dev,
3840 struct device_attribute *attr, char *buf)
3841 {
3842 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843
3844 return sprintf(buf, "client%lld\n",
3845 ceph_client_id(rbd_dev->rbd_client->client));
3846 }
3847
3848 static ssize_t rbd_pool_show(struct device *dev,
3849 struct device_attribute *attr, char *buf)
3850 {
3851 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3852
3853 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3854 }
3855
3856 static ssize_t rbd_pool_id_show(struct device *dev,
3857 struct device_attribute *attr, char *buf)
3858 {
3859 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860
3861 return sprintf(buf, "%llu\n",
3862 (unsigned long long) rbd_dev->spec->pool_id);
3863 }
3864
3865 static ssize_t rbd_name_show(struct device *dev,
3866 struct device_attribute *attr, char *buf)
3867 {
3868 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3869
3870 if (rbd_dev->spec->image_name)
3871 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3872
3873 return sprintf(buf, "(unknown)\n");
3874 }
3875
3876 static ssize_t rbd_image_id_show(struct device *dev,
3877 struct device_attribute *attr, char *buf)
3878 {
3879 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3880
3881 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3882 }
3883
3884 /*
3885 * Shows the name of the currently-mapped snapshot (or
3886 * RBD_SNAP_HEAD_NAME for the base image).
3887 */
3888 static ssize_t rbd_snap_show(struct device *dev,
3889 struct device_attribute *attr,
3890 char *buf)
3891 {
3892 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893
3894 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3895 }
3896
3897 /*
3898 * For a v2 image, shows the chain of parent images, separated by empty
3899 * lines. For v1 images or if there is no parent, shows "(no parent
3900 * image)".
3901 */
3902 static ssize_t rbd_parent_show(struct device *dev,
3903 struct device_attribute *attr,
3904 char *buf)
3905 {
3906 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3907 ssize_t count = 0;
3908
3909 if (!rbd_dev->parent)
3910 return sprintf(buf, "(no parent image)\n");
3911
3912 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3913 struct rbd_spec *spec = rbd_dev->parent_spec;
3914
3915 count += sprintf(&buf[count], "%s"
3916 "pool_id %llu\npool_name %s\n"
3917 "image_id %s\nimage_name %s\n"
3918 "snap_id %llu\nsnap_name %s\n"
3919 "overlap %llu\n",
3920 !count ? "" : "\n", /* first? */
3921 spec->pool_id, spec->pool_name,
3922 spec->image_id, spec->image_name ?: "(unknown)",
3923 spec->snap_id, spec->snap_name,
3924 rbd_dev->parent_overlap);
3925 }
3926
3927 return count;
3928 }
3929
3930 static ssize_t rbd_image_refresh(struct device *dev,
3931 struct device_attribute *attr,
3932 const char *buf,
3933 size_t size)
3934 {
3935 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3936 int ret;
3937
3938 ret = rbd_dev_refresh(rbd_dev);
3939 if (ret)
3940 return ret;
3941
3942 return size;
3943 }
3944
3945 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3946 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3947 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3948 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3949 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3950 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3951 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3952 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3953 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3954 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3955 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3956 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3957
3958 static struct attribute *rbd_attrs[] = {
3959 &dev_attr_size.attr,
3960 &dev_attr_features.attr,
3961 &dev_attr_major.attr,
3962 &dev_attr_minor.attr,
3963 &dev_attr_client_id.attr,
3964 &dev_attr_pool.attr,
3965 &dev_attr_pool_id.attr,
3966 &dev_attr_name.attr,
3967 &dev_attr_image_id.attr,
3968 &dev_attr_current_snap.attr,
3969 &dev_attr_parent.attr,
3970 &dev_attr_refresh.attr,
3971 NULL
3972 };
3973
3974 static struct attribute_group rbd_attr_group = {
3975 .attrs = rbd_attrs,
3976 };
3977
3978 static const struct attribute_group *rbd_attr_groups[] = {
3979 &rbd_attr_group,
3980 NULL
3981 };
3982
3983 static void rbd_dev_release(struct device *dev);
3984
3985 static struct device_type rbd_device_type = {
3986 .name = "rbd",
3987 .groups = rbd_attr_groups,
3988 .release = rbd_dev_release,
3989 };
3990
3991 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3992 {
3993 kref_get(&spec->kref);
3994
3995 return spec;
3996 }
3997
3998 static void rbd_spec_free(struct kref *kref);
3999 static void rbd_spec_put(struct rbd_spec *spec)
4000 {
4001 if (spec)
4002 kref_put(&spec->kref, rbd_spec_free);
4003 }
4004
4005 static struct rbd_spec *rbd_spec_alloc(void)
4006 {
4007 struct rbd_spec *spec;
4008
4009 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4010 if (!spec)
4011 return NULL;
4012
4013 spec->pool_id = CEPH_NOPOOL;
4014 spec->snap_id = CEPH_NOSNAP;
4015 kref_init(&spec->kref);
4016
4017 return spec;
4018 }
4019
4020 static void rbd_spec_free(struct kref *kref)
4021 {
4022 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4023
4024 kfree(spec->pool_name);
4025 kfree(spec->image_id);
4026 kfree(spec->image_name);
4027 kfree(spec->snap_name);
4028 kfree(spec);
4029 }
4030
4031 static void rbd_dev_release(struct device *dev)
4032 {
4033 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4034 bool need_put = !!rbd_dev->opts;
4035
4036 rbd_put_client(rbd_dev->rbd_client);
4037 rbd_spec_put(rbd_dev->spec);
4038 kfree(rbd_dev->opts);
4039 kfree(rbd_dev);
4040
4041 /*
4042 * This is racy, but way better than putting module outside of
4043 * the release callback. The race window is pretty small, so
4044 * doing something similar to dm (dm-builtin.c) is overkill.
4045 */
4046 if (need_put)
4047 module_put(THIS_MODULE);
4048 }
4049
4050 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4051 struct rbd_spec *spec,
4052 struct rbd_options *opts)
4053 {
4054 struct rbd_device *rbd_dev;
4055
4056 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4057 if (!rbd_dev)
4058 return NULL;
4059
4060 spin_lock_init(&rbd_dev->lock);
4061 rbd_dev->flags = 0;
4062 atomic_set(&rbd_dev->parent_ref, 0);
4063 INIT_LIST_HEAD(&rbd_dev->node);
4064 init_rwsem(&rbd_dev->header_rwsem);
4065
4066 rbd_dev->dev.bus = &rbd_bus_type;
4067 rbd_dev->dev.type = &rbd_device_type;
4068 rbd_dev->dev.parent = &rbd_root_dev;
4069 device_initialize(&rbd_dev->dev);
4070
4071 rbd_dev->rbd_client = rbdc;
4072 rbd_dev->spec = spec;
4073 rbd_dev->opts = opts;
4074
4075 /* Initialize the layout used for all rbd requests */
4076
4077 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4078 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4079 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4080 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4081
4082 /*
4083 * If this is a mapping rbd_dev (as opposed to a parent one),
4084 * pin our module. We have a ref from do_rbd_add(), so use
4085 * __module_get().
4086 */
4087 if (rbd_dev->opts)
4088 __module_get(THIS_MODULE);
4089
4090 return rbd_dev;
4091 }
4092
4093 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4094 {
4095 if (rbd_dev)
4096 put_device(&rbd_dev->dev);
4097 }
4098
4099 /*
4100 * Get the size and object order for an image snapshot, or if
4101 * snap_id is CEPH_NOSNAP, gets this information for the base
4102 * image.
4103 */
4104 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4105 u8 *order, u64 *snap_size)
4106 {
4107 __le64 snapid = cpu_to_le64(snap_id);
4108 int ret;
4109 struct {
4110 u8 order;
4111 __le64 size;
4112 } __attribute__ ((packed)) size_buf = { 0 };
4113
4114 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4115 "rbd", "get_size",
4116 &snapid, sizeof (snapid),
4117 &size_buf, sizeof (size_buf));
4118 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4119 if (ret < 0)
4120 return ret;
4121 if (ret < sizeof (size_buf))
4122 return -ERANGE;
4123
4124 if (order) {
4125 *order = size_buf.order;
4126 dout(" order %u", (unsigned int)*order);
4127 }
4128 *snap_size = le64_to_cpu(size_buf.size);
4129
4130 dout(" snap_id 0x%016llx snap_size = %llu\n",
4131 (unsigned long long)snap_id,
4132 (unsigned long long)*snap_size);
4133
4134 return 0;
4135 }
4136
4137 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4138 {
4139 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4140 &rbd_dev->header.obj_order,
4141 &rbd_dev->header.image_size);
4142 }
4143
4144 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4145 {
4146 void *reply_buf;
4147 int ret;
4148 void *p;
4149
4150 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4151 if (!reply_buf)
4152 return -ENOMEM;
4153
4154 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4155 "rbd", "get_object_prefix", NULL, 0,
4156 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4157 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158 if (ret < 0)
4159 goto out;
4160
4161 p = reply_buf;
4162 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4163 p + ret, NULL, GFP_NOIO);
4164 ret = 0;
4165
4166 if (IS_ERR(rbd_dev->header.object_prefix)) {
4167 ret = PTR_ERR(rbd_dev->header.object_prefix);
4168 rbd_dev->header.object_prefix = NULL;
4169 } else {
4170 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4171 }
4172 out:
4173 kfree(reply_buf);
4174
4175 return ret;
4176 }
4177
4178 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4179 u64 *snap_features)
4180 {
4181 __le64 snapid = cpu_to_le64(snap_id);
4182 struct {
4183 __le64 features;
4184 __le64 incompat;
4185 } __attribute__ ((packed)) features_buf = { 0 };
4186 u64 unsup;
4187 int ret;
4188
4189 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4190 "rbd", "get_features",
4191 &snapid, sizeof (snapid),
4192 &features_buf, sizeof (features_buf));
4193 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4194 if (ret < 0)
4195 return ret;
4196 if (ret < sizeof (features_buf))
4197 return -ERANGE;
4198
4199 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4200 if (unsup) {
4201 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4202 unsup);
4203 return -ENXIO;
4204 }
4205
4206 *snap_features = le64_to_cpu(features_buf.features);
4207
4208 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4209 (unsigned long long)snap_id,
4210 (unsigned long long)*snap_features,
4211 (unsigned long long)le64_to_cpu(features_buf.incompat));
4212
4213 return 0;
4214 }
4215
4216 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4217 {
4218 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4219 &rbd_dev->header.features);
4220 }
4221
4222 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4223 {
4224 struct rbd_spec *parent_spec;
4225 size_t size;
4226 void *reply_buf = NULL;
4227 __le64 snapid;
4228 void *p;
4229 void *end;
4230 u64 pool_id;
4231 char *image_id;
4232 u64 snap_id;
4233 u64 overlap;
4234 int ret;
4235
4236 parent_spec = rbd_spec_alloc();
4237 if (!parent_spec)
4238 return -ENOMEM;
4239
4240 size = sizeof (__le64) + /* pool_id */
4241 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4242 sizeof (__le64) + /* snap_id */
4243 sizeof (__le64); /* overlap */
4244 reply_buf = kmalloc(size, GFP_KERNEL);
4245 if (!reply_buf) {
4246 ret = -ENOMEM;
4247 goto out_err;
4248 }
4249
4250 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4251 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4252 "rbd", "get_parent",
4253 &snapid, sizeof (snapid),
4254 reply_buf, size);
4255 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4256 if (ret < 0)
4257 goto out_err;
4258
4259 p = reply_buf;
4260 end = reply_buf + ret;
4261 ret = -ERANGE;
4262 ceph_decode_64_safe(&p, end, pool_id, out_err);
4263 if (pool_id == CEPH_NOPOOL) {
4264 /*
4265 * Either the parent never existed, or we have
4266 * record of it but the image got flattened so it no
4267 * longer has a parent. When the parent of a
4268 * layered image disappears we immediately set the
4269 * overlap to 0. The effect of this is that all new
4270 * requests will be treated as if the image had no
4271 * parent.
4272 */
4273 if (rbd_dev->parent_overlap) {
4274 rbd_dev->parent_overlap = 0;
4275 rbd_dev_parent_put(rbd_dev);
4276 pr_info("%s: clone image has been flattened\n",
4277 rbd_dev->disk->disk_name);
4278 }
4279
4280 goto out; /* No parent? No problem. */
4281 }
4282
4283 /* The ceph file layout needs to fit pool id in 32 bits */
4284
4285 ret = -EIO;
4286 if (pool_id > (u64)U32_MAX) {
4287 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4288 (unsigned long long)pool_id, U32_MAX);
4289 goto out_err;
4290 }
4291
4292 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4293 if (IS_ERR(image_id)) {
4294 ret = PTR_ERR(image_id);
4295 goto out_err;
4296 }
4297 ceph_decode_64_safe(&p, end, snap_id, out_err);
4298 ceph_decode_64_safe(&p, end, overlap, out_err);
4299
4300 /*
4301 * The parent won't change (except when the clone is
4302 * flattened, already handled that). So we only need to
4303 * record the parent spec we have not already done so.
4304 */
4305 if (!rbd_dev->parent_spec) {
4306 parent_spec->pool_id = pool_id;
4307 parent_spec->image_id = image_id;
4308 parent_spec->snap_id = snap_id;
4309 rbd_dev->parent_spec = parent_spec;
4310 parent_spec = NULL; /* rbd_dev now owns this */
4311 } else {
4312 kfree(image_id);
4313 }
4314
4315 /*
4316 * We always update the parent overlap. If it's zero we issue
4317 * a warning, as we will proceed as if there was no parent.
4318 */
4319 if (!overlap) {
4320 if (parent_spec) {
4321 /* refresh, careful to warn just once */
4322 if (rbd_dev->parent_overlap)
4323 rbd_warn(rbd_dev,
4324 "clone now standalone (overlap became 0)");
4325 } else {
4326 /* initial probe */
4327 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4328 }
4329 }
4330 rbd_dev->parent_overlap = overlap;
4331
4332 out:
4333 ret = 0;
4334 out_err:
4335 kfree(reply_buf);
4336 rbd_spec_put(parent_spec);
4337
4338 return ret;
4339 }
4340
4341 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4342 {
4343 struct {
4344 __le64 stripe_unit;
4345 __le64 stripe_count;
4346 } __attribute__ ((packed)) striping_info_buf = { 0 };
4347 size_t size = sizeof (striping_info_buf);
4348 void *p;
4349 u64 obj_size;
4350 u64 stripe_unit;
4351 u64 stripe_count;
4352 int ret;
4353
4354 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4355 "rbd", "get_stripe_unit_count", NULL, 0,
4356 (char *)&striping_info_buf, size);
4357 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4358 if (ret < 0)
4359 return ret;
4360 if (ret < size)
4361 return -ERANGE;
4362
4363 /*
4364 * We don't actually support the "fancy striping" feature
4365 * (STRIPINGV2) yet, but if the striping sizes are the
4366 * defaults the behavior is the same as before. So find
4367 * out, and only fail if the image has non-default values.
4368 */
4369 ret = -EINVAL;
4370 obj_size = (u64)1 << rbd_dev->header.obj_order;
4371 p = &striping_info_buf;
4372 stripe_unit = ceph_decode_64(&p);
4373 if (stripe_unit != obj_size) {
4374 rbd_warn(rbd_dev, "unsupported stripe unit "
4375 "(got %llu want %llu)",
4376 stripe_unit, obj_size);
4377 return -EINVAL;
4378 }
4379 stripe_count = ceph_decode_64(&p);
4380 if (stripe_count != 1) {
4381 rbd_warn(rbd_dev, "unsupported stripe count "
4382 "(got %llu want 1)", stripe_count);
4383 return -EINVAL;
4384 }
4385 rbd_dev->header.stripe_unit = stripe_unit;
4386 rbd_dev->header.stripe_count = stripe_count;
4387
4388 return 0;
4389 }
4390
4391 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4392 {
4393 size_t image_id_size;
4394 char *image_id;
4395 void *p;
4396 void *end;
4397 size_t size;
4398 void *reply_buf = NULL;
4399 size_t len = 0;
4400 char *image_name = NULL;
4401 int ret;
4402
4403 rbd_assert(!rbd_dev->spec->image_name);
4404
4405 len = strlen(rbd_dev->spec->image_id);
4406 image_id_size = sizeof (__le32) + len;
4407 image_id = kmalloc(image_id_size, GFP_KERNEL);
4408 if (!image_id)
4409 return NULL;
4410
4411 p = image_id;
4412 end = image_id + image_id_size;
4413 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4414
4415 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4416 reply_buf = kmalloc(size, GFP_KERNEL);
4417 if (!reply_buf)
4418 goto out;
4419
4420 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4421 "rbd", "dir_get_name",
4422 image_id, image_id_size,
4423 reply_buf, size);
4424 if (ret < 0)
4425 goto out;
4426 p = reply_buf;
4427 end = reply_buf + ret;
4428
4429 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4430 if (IS_ERR(image_name))
4431 image_name = NULL;
4432 else
4433 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4434 out:
4435 kfree(reply_buf);
4436 kfree(image_id);
4437
4438 return image_name;
4439 }
4440
4441 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4442 {
4443 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4444 const char *snap_name;
4445 u32 which = 0;
4446
4447 /* Skip over names until we find the one we are looking for */
4448
4449 snap_name = rbd_dev->header.snap_names;
4450 while (which < snapc->num_snaps) {
4451 if (!strcmp(name, snap_name))
4452 return snapc->snaps[which];
4453 snap_name += strlen(snap_name) + 1;
4454 which++;
4455 }
4456 return CEPH_NOSNAP;
4457 }
4458
4459 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4460 {
4461 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4462 u32 which;
4463 bool found = false;
4464 u64 snap_id;
4465
4466 for (which = 0; !found && which < snapc->num_snaps; which++) {
4467 const char *snap_name;
4468
4469 snap_id = snapc->snaps[which];
4470 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4471 if (IS_ERR(snap_name)) {
4472 /* ignore no-longer existing snapshots */
4473 if (PTR_ERR(snap_name) == -ENOENT)
4474 continue;
4475 else
4476 break;
4477 }
4478 found = !strcmp(name, snap_name);
4479 kfree(snap_name);
4480 }
4481 return found ? snap_id : CEPH_NOSNAP;
4482 }
4483
4484 /*
4485 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4486 * no snapshot by that name is found, or if an error occurs.
4487 */
4488 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4489 {
4490 if (rbd_dev->image_format == 1)
4491 return rbd_v1_snap_id_by_name(rbd_dev, name);
4492
4493 return rbd_v2_snap_id_by_name(rbd_dev, name);
4494 }
4495
4496 /*
4497 * An image being mapped will have everything but the snap id.
4498 */
4499 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4500 {
4501 struct rbd_spec *spec = rbd_dev->spec;
4502
4503 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4504 rbd_assert(spec->image_id && spec->image_name);
4505 rbd_assert(spec->snap_name);
4506
4507 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4508 u64 snap_id;
4509
4510 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4511 if (snap_id == CEPH_NOSNAP)
4512 return -ENOENT;
4513
4514 spec->snap_id = snap_id;
4515 } else {
4516 spec->snap_id = CEPH_NOSNAP;
4517 }
4518
4519 return 0;
4520 }
4521
4522 /*
4523 * A parent image will have all ids but none of the names.
4524 *
4525 * All names in an rbd spec are dynamically allocated. It's OK if we
4526 * can't figure out the name for an image id.
4527 */
4528 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4529 {
4530 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4531 struct rbd_spec *spec = rbd_dev->spec;
4532 const char *pool_name;
4533 const char *image_name;
4534 const char *snap_name;
4535 int ret;
4536
4537 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4538 rbd_assert(spec->image_id);
4539 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4540
4541 /* Get the pool name; we have to make our own copy of this */
4542
4543 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4544 if (!pool_name) {
4545 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4546 return -EIO;
4547 }
4548 pool_name = kstrdup(pool_name, GFP_KERNEL);
4549 if (!pool_name)
4550 return -ENOMEM;
4551
4552 /* Fetch the image name; tolerate failure here */
4553
4554 image_name = rbd_dev_image_name(rbd_dev);
4555 if (!image_name)
4556 rbd_warn(rbd_dev, "unable to get image name");
4557
4558 /* Fetch the snapshot name */
4559
4560 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4561 if (IS_ERR(snap_name)) {
4562 ret = PTR_ERR(snap_name);
4563 goto out_err;
4564 }
4565
4566 spec->pool_name = pool_name;
4567 spec->image_name = image_name;
4568 spec->snap_name = snap_name;
4569
4570 return 0;
4571
4572 out_err:
4573 kfree(image_name);
4574 kfree(pool_name);
4575 return ret;
4576 }
4577
4578 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4579 {
4580 size_t size;
4581 int ret;
4582 void *reply_buf;
4583 void *p;
4584 void *end;
4585 u64 seq;
4586 u32 snap_count;
4587 struct ceph_snap_context *snapc;
4588 u32 i;
4589
4590 /*
4591 * We'll need room for the seq value (maximum snapshot id),
4592 * snapshot count, and array of that many snapshot ids.
4593 * For now we have a fixed upper limit on the number we're
4594 * prepared to receive.
4595 */
4596 size = sizeof (__le64) + sizeof (__le32) +
4597 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4598 reply_buf = kzalloc(size, GFP_KERNEL);
4599 if (!reply_buf)
4600 return -ENOMEM;
4601
4602 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4603 "rbd", "get_snapcontext", NULL, 0,
4604 reply_buf, size);
4605 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4606 if (ret < 0)
4607 goto out;
4608
4609 p = reply_buf;
4610 end = reply_buf + ret;
4611 ret = -ERANGE;
4612 ceph_decode_64_safe(&p, end, seq, out);
4613 ceph_decode_32_safe(&p, end, snap_count, out);
4614
4615 /*
4616 * Make sure the reported number of snapshot ids wouldn't go
4617 * beyond the end of our buffer. But before checking that,
4618 * make sure the computed size of the snapshot context we
4619 * allocate is representable in a size_t.
4620 */
4621 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4622 / sizeof (u64)) {
4623 ret = -EINVAL;
4624 goto out;
4625 }
4626 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4627 goto out;
4628 ret = 0;
4629
4630 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4631 if (!snapc) {
4632 ret = -ENOMEM;
4633 goto out;
4634 }
4635 snapc->seq = seq;
4636 for (i = 0; i < snap_count; i++)
4637 snapc->snaps[i] = ceph_decode_64(&p);
4638
4639 ceph_put_snap_context(rbd_dev->header.snapc);
4640 rbd_dev->header.snapc = snapc;
4641
4642 dout(" snap context seq = %llu, snap_count = %u\n",
4643 (unsigned long long)seq, (unsigned int)snap_count);
4644 out:
4645 kfree(reply_buf);
4646
4647 return ret;
4648 }
4649
4650 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4651 u64 snap_id)
4652 {
4653 size_t size;
4654 void *reply_buf;
4655 __le64 snapid;
4656 int ret;
4657 void *p;
4658 void *end;
4659 char *snap_name;
4660
4661 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4662 reply_buf = kmalloc(size, GFP_KERNEL);
4663 if (!reply_buf)
4664 return ERR_PTR(-ENOMEM);
4665
4666 snapid = cpu_to_le64(snap_id);
4667 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4668 "rbd", "get_snapshot_name",
4669 &snapid, sizeof (snapid),
4670 reply_buf, size);
4671 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4672 if (ret < 0) {
4673 snap_name = ERR_PTR(ret);
4674 goto out;
4675 }
4676
4677 p = reply_buf;
4678 end = reply_buf + ret;
4679 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4680 if (IS_ERR(snap_name))
4681 goto out;
4682
4683 dout(" snap_id 0x%016llx snap_name = %s\n",
4684 (unsigned long long)snap_id, snap_name);
4685 out:
4686 kfree(reply_buf);
4687
4688 return snap_name;
4689 }
4690
4691 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4692 {
4693 bool first_time = rbd_dev->header.object_prefix == NULL;
4694 int ret;
4695
4696 ret = rbd_dev_v2_image_size(rbd_dev);
4697 if (ret)
4698 return ret;
4699
4700 if (first_time) {
4701 ret = rbd_dev_v2_header_onetime(rbd_dev);
4702 if (ret)
4703 return ret;
4704 }
4705
4706 ret = rbd_dev_v2_snap_context(rbd_dev);
4707 if (ret && first_time) {
4708 kfree(rbd_dev->header.object_prefix);
4709 rbd_dev->header.object_prefix = NULL;
4710 }
4711
4712 return ret;
4713 }
4714
4715 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4716 {
4717 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4718
4719 if (rbd_dev->image_format == 1)
4720 return rbd_dev_v1_header_info(rbd_dev);
4721
4722 return rbd_dev_v2_header_info(rbd_dev);
4723 }
4724
4725 /*
4726 * Get a unique rbd identifier for the given new rbd_dev, and add
4727 * the rbd_dev to the global list.
4728 */
4729 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4730 {
4731 int new_dev_id;
4732
4733 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4734 0, minor_to_rbd_dev_id(1 << MINORBITS),
4735 GFP_KERNEL);
4736 if (new_dev_id < 0)
4737 return new_dev_id;
4738
4739 rbd_dev->dev_id = new_dev_id;
4740
4741 spin_lock(&rbd_dev_list_lock);
4742 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4743 spin_unlock(&rbd_dev_list_lock);
4744
4745 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4746
4747 return 0;
4748 }
4749
4750 /*
4751 * Remove an rbd_dev from the global list, and record that its
4752 * identifier is no longer in use.
4753 */
4754 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4755 {
4756 spin_lock(&rbd_dev_list_lock);
4757 list_del_init(&rbd_dev->node);
4758 spin_unlock(&rbd_dev_list_lock);
4759
4760 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4761
4762 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4763 }
4764
4765 /*
4766 * Skips over white space at *buf, and updates *buf to point to the
4767 * first found non-space character (if any). Returns the length of
4768 * the token (string of non-white space characters) found. Note
4769 * that *buf must be terminated with '\0'.
4770 */
4771 static inline size_t next_token(const char **buf)
4772 {
4773 /*
4774 * These are the characters that produce nonzero for
4775 * isspace() in the "C" and "POSIX" locales.
4776 */
4777 const char *spaces = " \f\n\r\t\v";
4778
4779 *buf += strspn(*buf, spaces); /* Find start of token */
4780
4781 return strcspn(*buf, spaces); /* Return token length */
4782 }
4783
4784 /*
4785 * Finds the next token in *buf, dynamically allocates a buffer big
4786 * enough to hold a copy of it, and copies the token into the new
4787 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4788 * that a duplicate buffer is created even for a zero-length token.
4789 *
4790 * Returns a pointer to the newly-allocated duplicate, or a null
4791 * pointer if memory for the duplicate was not available. If
4792 * the lenp argument is a non-null pointer, the length of the token
4793 * (not including the '\0') is returned in *lenp.
4794 *
4795 * If successful, the *buf pointer will be updated to point beyond
4796 * the end of the found token.
4797 *
4798 * Note: uses GFP_KERNEL for allocation.
4799 */
4800 static inline char *dup_token(const char **buf, size_t *lenp)
4801 {
4802 char *dup;
4803 size_t len;
4804
4805 len = next_token(buf);
4806 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4807 if (!dup)
4808 return NULL;
4809 *(dup + len) = '\0';
4810 *buf += len;
4811
4812 if (lenp)
4813 *lenp = len;
4814
4815 return dup;
4816 }
4817
4818 /*
4819 * Parse the options provided for an "rbd add" (i.e., rbd image
4820 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4821 * and the data written is passed here via a NUL-terminated buffer.
4822 * Returns 0 if successful or an error code otherwise.
4823 *
4824 * The information extracted from these options is recorded in
4825 * the other parameters which return dynamically-allocated
4826 * structures:
4827 * ceph_opts
4828 * The address of a pointer that will refer to a ceph options
4829 * structure. Caller must release the returned pointer using
4830 * ceph_destroy_options() when it is no longer needed.
4831 * rbd_opts
4832 * Address of an rbd options pointer. Fully initialized by
4833 * this function; caller must release with kfree().
4834 * spec
4835 * Address of an rbd image specification pointer. Fully
4836 * initialized by this function based on parsed options.
4837 * Caller must release with rbd_spec_put().
4838 *
4839 * The options passed take this form:
4840 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4841 * where:
4842 * <mon_addrs>
4843 * A comma-separated list of one or more monitor addresses.
4844 * A monitor address is an ip address, optionally followed
4845 * by a port number (separated by a colon).
4846 * I.e.: ip1[:port1][,ip2[:port2]...]
4847 * <options>
4848 * A comma-separated list of ceph and/or rbd options.
4849 * <pool_name>
4850 * The name of the rados pool containing the rbd image.
4851 * <image_name>
4852 * The name of the image in that pool to map.
4853 * <snap_id>
4854 * An optional snapshot id. If provided, the mapping will
4855 * present data from the image at the time that snapshot was
4856 * created. The image head is used if no snapshot id is
4857 * provided. Snapshot mappings are always read-only.
4858 */
4859 static int rbd_add_parse_args(const char *buf,
4860 struct ceph_options **ceph_opts,
4861 struct rbd_options **opts,
4862 struct rbd_spec **rbd_spec)
4863 {
4864 size_t len;
4865 char *options;
4866 const char *mon_addrs;
4867 char *snap_name;
4868 size_t mon_addrs_size;
4869 struct rbd_spec *spec = NULL;
4870 struct rbd_options *rbd_opts = NULL;
4871 struct ceph_options *copts;
4872 int ret;
4873
4874 /* The first four tokens are required */
4875
4876 len = next_token(&buf);
4877 if (!len) {
4878 rbd_warn(NULL, "no monitor address(es) provided");
4879 return -EINVAL;
4880 }
4881 mon_addrs = buf;
4882 mon_addrs_size = len + 1;
4883 buf += len;
4884
4885 ret = -EINVAL;
4886 options = dup_token(&buf, NULL);
4887 if (!options)
4888 return -ENOMEM;
4889 if (!*options) {
4890 rbd_warn(NULL, "no options provided");
4891 goto out_err;
4892 }
4893
4894 spec = rbd_spec_alloc();
4895 if (!spec)
4896 goto out_mem;
4897
4898 spec->pool_name = dup_token(&buf, NULL);
4899 if (!spec->pool_name)
4900 goto out_mem;
4901 if (!*spec->pool_name) {
4902 rbd_warn(NULL, "no pool name provided");
4903 goto out_err;
4904 }
4905
4906 spec->image_name = dup_token(&buf, NULL);
4907 if (!spec->image_name)
4908 goto out_mem;
4909 if (!*spec->image_name) {
4910 rbd_warn(NULL, "no image name provided");
4911 goto out_err;
4912 }
4913
4914 /*
4915 * Snapshot name is optional; default is to use "-"
4916 * (indicating the head/no snapshot).
4917 */
4918 len = next_token(&buf);
4919 if (!len) {
4920 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4921 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4922 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4923 ret = -ENAMETOOLONG;
4924 goto out_err;
4925 }
4926 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4927 if (!snap_name)
4928 goto out_mem;
4929 *(snap_name + len) = '\0';
4930 spec->snap_name = snap_name;
4931
4932 /* Initialize all rbd options to the defaults */
4933
4934 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4935 if (!rbd_opts)
4936 goto out_mem;
4937
4938 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4939 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4940
4941 copts = ceph_parse_options(options, mon_addrs,
4942 mon_addrs + mon_addrs_size - 1,
4943 parse_rbd_opts_token, rbd_opts);
4944 if (IS_ERR(copts)) {
4945 ret = PTR_ERR(copts);
4946 goto out_err;
4947 }
4948 kfree(options);
4949
4950 *ceph_opts = copts;
4951 *opts = rbd_opts;
4952 *rbd_spec = spec;
4953
4954 return 0;
4955 out_mem:
4956 ret = -ENOMEM;
4957 out_err:
4958 kfree(rbd_opts);
4959 rbd_spec_put(spec);
4960 kfree(options);
4961
4962 return ret;
4963 }
4964
4965 /*
4966 * Return pool id (>= 0) or a negative error code.
4967 */
4968 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4969 {
4970 struct ceph_options *opts = rbdc->client->options;
4971 u64 newest_epoch;
4972 int tries = 0;
4973 int ret;
4974
4975 again:
4976 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4977 if (ret == -ENOENT && tries++ < 1) {
4978 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4979 &newest_epoch);
4980 if (ret < 0)
4981 return ret;
4982
4983 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4984 ceph_monc_request_next_osdmap(&rbdc->client->monc);
4985 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4986 newest_epoch,
4987 opts->mount_timeout);
4988 goto again;
4989 } else {
4990 /* the osdmap we have is new enough */
4991 return -ENOENT;
4992 }
4993 }
4994
4995 return ret;
4996 }
4997
4998 /*
4999 * An rbd format 2 image has a unique identifier, distinct from the
5000 * name given to it by the user. Internally, that identifier is
5001 * what's used to specify the names of objects related to the image.
5002 *
5003 * A special "rbd id" object is used to map an rbd image name to its
5004 * id. If that object doesn't exist, then there is no v2 rbd image
5005 * with the supplied name.
5006 *
5007 * This function will record the given rbd_dev's image_id field if
5008 * it can be determined, and in that case will return 0. If any
5009 * errors occur a negative errno will be returned and the rbd_dev's
5010 * image_id field will be unchanged (and should be NULL).
5011 */
5012 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5013 {
5014 int ret;
5015 size_t size;
5016 char *object_name;
5017 void *response;
5018 char *image_id;
5019
5020 /*
5021 * When probing a parent image, the image id is already
5022 * known (and the image name likely is not). There's no
5023 * need to fetch the image id again in this case. We
5024 * do still need to set the image format though.
5025 */
5026 if (rbd_dev->spec->image_id) {
5027 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5028
5029 return 0;
5030 }
5031
5032 /*
5033 * First, see if the format 2 image id file exists, and if
5034 * so, get the image's persistent id from it.
5035 */
5036 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5037 object_name = kmalloc(size, GFP_NOIO);
5038 if (!object_name)
5039 return -ENOMEM;
5040 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5041 dout("rbd id object name is %s\n", object_name);
5042
5043 /* Response will be an encoded string, which includes a length */
5044
5045 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5046 response = kzalloc(size, GFP_NOIO);
5047 if (!response) {
5048 ret = -ENOMEM;
5049 goto out;
5050 }
5051
5052 /* If it doesn't exist we'll assume it's a format 1 image */
5053
5054 ret = rbd_obj_method_sync(rbd_dev, object_name,
5055 "rbd", "get_id", NULL, 0,
5056 response, RBD_IMAGE_ID_LEN_MAX);
5057 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5058 if (ret == -ENOENT) {
5059 image_id = kstrdup("", GFP_KERNEL);
5060 ret = image_id ? 0 : -ENOMEM;
5061 if (!ret)
5062 rbd_dev->image_format = 1;
5063 } else if (ret >= 0) {
5064 void *p = response;
5065
5066 image_id = ceph_extract_encoded_string(&p, p + ret,
5067 NULL, GFP_NOIO);
5068 ret = PTR_ERR_OR_ZERO(image_id);
5069 if (!ret)
5070 rbd_dev->image_format = 2;
5071 }
5072
5073 if (!ret) {
5074 rbd_dev->spec->image_id = image_id;
5075 dout("image_id is %s\n", image_id);
5076 }
5077 out:
5078 kfree(response);
5079 kfree(object_name);
5080
5081 return ret;
5082 }
5083
5084 /*
5085 * Undo whatever state changes are made by v1 or v2 header info
5086 * call.
5087 */
5088 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5089 {
5090 struct rbd_image_header *header;
5091
5092 rbd_dev_parent_put(rbd_dev);
5093
5094 /* Free dynamic fields from the header, then zero it out */
5095
5096 header = &rbd_dev->header;
5097 ceph_put_snap_context(header->snapc);
5098 kfree(header->snap_sizes);
5099 kfree(header->snap_names);
5100 kfree(header->object_prefix);
5101 memset(header, 0, sizeof (*header));
5102 }
5103
5104 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5105 {
5106 int ret;
5107
5108 ret = rbd_dev_v2_object_prefix(rbd_dev);
5109 if (ret)
5110 goto out_err;
5111
5112 /*
5113 * Get the and check features for the image. Currently the
5114 * features are assumed to never change.
5115 */
5116 ret = rbd_dev_v2_features(rbd_dev);
5117 if (ret)
5118 goto out_err;
5119
5120 /* If the image supports fancy striping, get its parameters */
5121
5122 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5123 ret = rbd_dev_v2_striping_info(rbd_dev);
5124 if (ret < 0)
5125 goto out_err;
5126 }
5127 /* No support for crypto and compression type format 2 images */
5128
5129 return 0;
5130 out_err:
5131 rbd_dev->header.features = 0;
5132 kfree(rbd_dev->header.object_prefix);
5133 rbd_dev->header.object_prefix = NULL;
5134
5135 return ret;
5136 }
5137
5138 /*
5139 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5140 * rbd_dev_image_probe() recursion depth, which means it's also the
5141 * length of the already discovered part of the parent chain.
5142 */
5143 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5144 {
5145 struct rbd_device *parent = NULL;
5146 int ret;
5147
5148 if (!rbd_dev->parent_spec)
5149 return 0;
5150
5151 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5152 pr_info("parent chain is too long (%d)\n", depth);
5153 ret = -EINVAL;
5154 goto out_err;
5155 }
5156
5157 parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5158 NULL);
5159 if (!parent) {
5160 ret = -ENOMEM;
5161 goto out_err;
5162 }
5163
5164 /*
5165 * Images related by parent/child relationships always share
5166 * rbd_client and spec/parent_spec, so bump their refcounts.
5167 */
5168 __rbd_get_client(rbd_dev->rbd_client);
5169 rbd_spec_get(rbd_dev->parent_spec);
5170
5171 ret = rbd_dev_image_probe(parent, depth);
5172 if (ret < 0)
5173 goto out_err;
5174
5175 rbd_dev->parent = parent;
5176 atomic_set(&rbd_dev->parent_ref, 1);
5177 return 0;
5178
5179 out_err:
5180 rbd_dev_unparent(rbd_dev);
5181 rbd_dev_destroy(parent);
5182 return ret;
5183 }
5184
5185 /*
5186 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5187 * upon return.
5188 */
5189 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5190 {
5191 int ret;
5192
5193 /* Get an id and fill in device name. */
5194
5195 ret = rbd_dev_id_get(rbd_dev);
5196 if (ret)
5197 goto err_out_unlock;
5198
5199 BUILD_BUG_ON(DEV_NAME_LEN
5200 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5201 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5202
5203 /* Record our major and minor device numbers. */
5204
5205 if (!single_major) {
5206 ret = register_blkdev(0, rbd_dev->name);
5207 if (ret < 0)
5208 goto err_out_id;
5209
5210 rbd_dev->major = ret;
5211 rbd_dev->minor = 0;
5212 } else {
5213 rbd_dev->major = rbd_major;
5214 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5215 }
5216
5217 /* Set up the blkdev mapping. */
5218
5219 ret = rbd_init_disk(rbd_dev);
5220 if (ret)
5221 goto err_out_blkdev;
5222
5223 ret = rbd_dev_mapping_set(rbd_dev);
5224 if (ret)
5225 goto err_out_disk;
5226
5227 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5228 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5229
5230 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5231 ret = device_add(&rbd_dev->dev);
5232 if (ret)
5233 goto err_out_mapping;
5234
5235 /* Everything's ready. Announce the disk to the world. */
5236
5237 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5238 up_write(&rbd_dev->header_rwsem);
5239
5240 add_disk(rbd_dev->disk);
5241 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5242 (unsigned long long) rbd_dev->mapping.size);
5243
5244 return ret;
5245
5246 err_out_mapping:
5247 rbd_dev_mapping_clear(rbd_dev);
5248 err_out_disk:
5249 rbd_free_disk(rbd_dev);
5250 err_out_blkdev:
5251 if (!single_major)
5252 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5253 err_out_id:
5254 rbd_dev_id_put(rbd_dev);
5255 err_out_unlock:
5256 up_write(&rbd_dev->header_rwsem);
5257 return ret;
5258 }
5259
5260 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5261 {
5262 struct rbd_spec *spec = rbd_dev->spec;
5263 size_t size;
5264
5265 /* Record the header object name for this rbd image. */
5266
5267 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5268
5269 if (rbd_dev->image_format == 1)
5270 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5271 else
5272 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5273
5274 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5275 if (!rbd_dev->header_name)
5276 return -ENOMEM;
5277
5278 if (rbd_dev->image_format == 1)
5279 sprintf(rbd_dev->header_name, "%s%s",
5280 spec->image_name, RBD_SUFFIX);
5281 else
5282 sprintf(rbd_dev->header_name, "%s%s",
5283 RBD_HEADER_PREFIX, spec->image_id);
5284 return 0;
5285 }
5286
5287 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5288 {
5289 rbd_dev_unprobe(rbd_dev);
5290 kfree(rbd_dev->header_name);
5291 rbd_dev->header_name = NULL;
5292 rbd_dev->image_format = 0;
5293 kfree(rbd_dev->spec->image_id);
5294 rbd_dev->spec->image_id = NULL;
5295
5296 rbd_dev_destroy(rbd_dev);
5297 }
5298
5299 /*
5300 * Probe for the existence of the header object for the given rbd
5301 * device. If this image is the one being mapped (i.e., not a
5302 * parent), initiate a watch on its header object before using that
5303 * object to get detailed information about the rbd image.
5304 */
5305 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5306 {
5307 int ret;
5308
5309 /*
5310 * Get the id from the image id object. Unless there's an
5311 * error, rbd_dev->spec->image_id will be filled in with
5312 * a dynamically-allocated string, and rbd_dev->image_format
5313 * will be set to either 1 or 2.
5314 */
5315 ret = rbd_dev_image_id(rbd_dev);
5316 if (ret)
5317 return ret;
5318
5319 ret = rbd_dev_header_name(rbd_dev);
5320 if (ret)
5321 goto err_out_format;
5322
5323 if (!depth) {
5324 ret = rbd_dev_header_watch_sync(rbd_dev);
5325 if (ret) {
5326 if (ret == -ENOENT)
5327 pr_info("image %s/%s does not exist\n",
5328 rbd_dev->spec->pool_name,
5329 rbd_dev->spec->image_name);
5330 goto out_header_name;
5331 }
5332 }
5333
5334 ret = rbd_dev_header_info(rbd_dev);
5335 if (ret)
5336 goto err_out_watch;
5337
5338 /*
5339 * If this image is the one being mapped, we have pool name and
5340 * id, image name and id, and snap name - need to fill snap id.
5341 * Otherwise this is a parent image, identified by pool, image
5342 * and snap ids - need to fill in names for those ids.
5343 */
5344 if (!depth)
5345 ret = rbd_spec_fill_snap_id(rbd_dev);
5346 else
5347 ret = rbd_spec_fill_names(rbd_dev);
5348 if (ret) {
5349 if (ret == -ENOENT)
5350 pr_info("snap %s/%s@%s does not exist\n",
5351 rbd_dev->spec->pool_name,
5352 rbd_dev->spec->image_name,
5353 rbd_dev->spec->snap_name);
5354 goto err_out_probe;
5355 }
5356
5357 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5358 ret = rbd_dev_v2_parent_info(rbd_dev);
5359 if (ret)
5360 goto err_out_probe;
5361
5362 /*
5363 * Need to warn users if this image is the one being
5364 * mapped and has a parent.
5365 */
5366 if (!depth && rbd_dev->parent_spec)
5367 rbd_warn(rbd_dev,
5368 "WARNING: kernel layering is EXPERIMENTAL!");
5369 }
5370
5371 ret = rbd_dev_probe_parent(rbd_dev, depth);
5372 if (ret)
5373 goto err_out_probe;
5374
5375 dout("discovered format %u image, header name is %s\n",
5376 rbd_dev->image_format, rbd_dev->header_name);
5377 return 0;
5378
5379 err_out_probe:
5380 rbd_dev_unprobe(rbd_dev);
5381 err_out_watch:
5382 if (!depth)
5383 rbd_dev_header_unwatch_sync(rbd_dev);
5384 out_header_name:
5385 kfree(rbd_dev->header_name);
5386 rbd_dev->header_name = NULL;
5387 err_out_format:
5388 rbd_dev->image_format = 0;
5389 kfree(rbd_dev->spec->image_id);
5390 rbd_dev->spec->image_id = NULL;
5391 return ret;
5392 }
5393
5394 static ssize_t do_rbd_add(struct bus_type *bus,
5395 const char *buf,
5396 size_t count)
5397 {
5398 struct rbd_device *rbd_dev = NULL;
5399 struct ceph_options *ceph_opts = NULL;
5400 struct rbd_options *rbd_opts = NULL;
5401 struct rbd_spec *spec = NULL;
5402 struct rbd_client *rbdc;
5403 bool read_only;
5404 int rc;
5405
5406 if (!try_module_get(THIS_MODULE))
5407 return -ENODEV;
5408
5409 /* parse add command */
5410 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5411 if (rc < 0)
5412 goto out;
5413
5414 rbdc = rbd_get_client(ceph_opts);
5415 if (IS_ERR(rbdc)) {
5416 rc = PTR_ERR(rbdc);
5417 goto err_out_args;
5418 }
5419
5420 /* pick the pool */
5421 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5422 if (rc < 0) {
5423 if (rc == -ENOENT)
5424 pr_info("pool %s does not exist\n", spec->pool_name);
5425 goto err_out_client;
5426 }
5427 spec->pool_id = (u64)rc;
5428
5429 /* The ceph file layout needs to fit pool id in 32 bits */
5430
5431 if (spec->pool_id > (u64)U32_MAX) {
5432 rbd_warn(NULL, "pool id too large (%llu > %u)",
5433 (unsigned long long)spec->pool_id, U32_MAX);
5434 rc = -EIO;
5435 goto err_out_client;
5436 }
5437
5438 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5439 if (!rbd_dev) {
5440 rc = -ENOMEM;
5441 goto err_out_client;
5442 }
5443 rbdc = NULL; /* rbd_dev now owns this */
5444 spec = NULL; /* rbd_dev now owns this */
5445 rbd_opts = NULL; /* rbd_dev now owns this */
5446
5447 down_write(&rbd_dev->header_rwsem);
5448 rc = rbd_dev_image_probe(rbd_dev, 0);
5449 if (rc < 0)
5450 goto err_out_rbd_dev;
5451
5452 /* If we are mapping a snapshot it must be marked read-only */
5453
5454 read_only = rbd_dev->opts->read_only;
5455 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5456 read_only = true;
5457 rbd_dev->mapping.read_only = read_only;
5458
5459 rc = rbd_dev_device_setup(rbd_dev);
5460 if (rc) {
5461 /*
5462 * rbd_dev_header_unwatch_sync() can't be moved into
5463 * rbd_dev_image_release() without refactoring, see
5464 * commit 1f3ef78861ac.
5465 */
5466 rbd_dev_header_unwatch_sync(rbd_dev);
5467 rbd_dev_image_release(rbd_dev);
5468 goto out;
5469 }
5470
5471 rc = count;
5472 out:
5473 module_put(THIS_MODULE);
5474 return rc;
5475
5476 err_out_rbd_dev:
5477 up_write(&rbd_dev->header_rwsem);
5478 rbd_dev_destroy(rbd_dev);
5479 err_out_client:
5480 rbd_put_client(rbdc);
5481 err_out_args:
5482 rbd_spec_put(spec);
5483 kfree(rbd_opts);
5484 goto out;
5485 }
5486
5487 static ssize_t rbd_add(struct bus_type *bus,
5488 const char *buf,
5489 size_t count)
5490 {
5491 if (single_major)
5492 return -EINVAL;
5493
5494 return do_rbd_add(bus, buf, count);
5495 }
5496
5497 static ssize_t rbd_add_single_major(struct bus_type *bus,
5498 const char *buf,
5499 size_t count)
5500 {
5501 return do_rbd_add(bus, buf, count);
5502 }
5503
5504 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5505 {
5506 rbd_free_disk(rbd_dev);
5507 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5508 device_del(&rbd_dev->dev);
5509 rbd_dev_mapping_clear(rbd_dev);
5510 if (!single_major)
5511 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5512 rbd_dev_id_put(rbd_dev);
5513 }
5514
5515 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5516 {
5517 while (rbd_dev->parent) {
5518 struct rbd_device *first = rbd_dev;
5519 struct rbd_device *second = first->parent;
5520 struct rbd_device *third;
5521
5522 /*
5523 * Follow to the parent with no grandparent and
5524 * remove it.
5525 */
5526 while (second && (third = second->parent)) {
5527 first = second;
5528 second = third;
5529 }
5530 rbd_assert(second);
5531 rbd_dev_image_release(second);
5532 first->parent = NULL;
5533 first->parent_overlap = 0;
5534
5535 rbd_assert(first->parent_spec);
5536 rbd_spec_put(first->parent_spec);
5537 first->parent_spec = NULL;
5538 }
5539 }
5540
5541 static ssize_t do_rbd_remove(struct bus_type *bus,
5542 const char *buf,
5543 size_t count)
5544 {
5545 struct rbd_device *rbd_dev = NULL;
5546 struct list_head *tmp;
5547 int dev_id;
5548 unsigned long ul;
5549 bool already = false;
5550 int ret;
5551
5552 ret = kstrtoul(buf, 10, &ul);
5553 if (ret)
5554 return ret;
5555
5556 /* convert to int; abort if we lost anything in the conversion */
5557 dev_id = (int)ul;
5558 if (dev_id != ul)
5559 return -EINVAL;
5560
5561 ret = -ENOENT;
5562 spin_lock(&rbd_dev_list_lock);
5563 list_for_each(tmp, &rbd_dev_list) {
5564 rbd_dev = list_entry(tmp, struct rbd_device, node);
5565 if (rbd_dev->dev_id == dev_id) {
5566 ret = 0;
5567 break;
5568 }
5569 }
5570 if (!ret) {
5571 spin_lock_irq(&rbd_dev->lock);
5572 if (rbd_dev->open_count)
5573 ret = -EBUSY;
5574 else
5575 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5576 &rbd_dev->flags);
5577 spin_unlock_irq(&rbd_dev->lock);
5578 }
5579 spin_unlock(&rbd_dev_list_lock);
5580 if (ret < 0 || already)
5581 return ret;
5582
5583 rbd_dev_header_unwatch_sync(rbd_dev);
5584
5585 /*
5586 * Don't free anything from rbd_dev->disk until after all
5587 * notifies are completely processed. Otherwise
5588 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5589 * in a potential use after free of rbd_dev->disk or rbd_dev.
5590 */
5591 rbd_dev_device_release(rbd_dev);
5592 rbd_dev_image_release(rbd_dev);
5593
5594 return count;
5595 }
5596
5597 static ssize_t rbd_remove(struct bus_type *bus,
5598 const char *buf,
5599 size_t count)
5600 {
5601 if (single_major)
5602 return -EINVAL;
5603
5604 return do_rbd_remove(bus, buf, count);
5605 }
5606
5607 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5608 const char *buf,
5609 size_t count)
5610 {
5611 return do_rbd_remove(bus, buf, count);
5612 }
5613
5614 /*
5615 * create control files in sysfs
5616 * /sys/bus/rbd/...
5617 */
5618 static int rbd_sysfs_init(void)
5619 {
5620 int ret;
5621
5622 ret = device_register(&rbd_root_dev);
5623 if (ret < 0)
5624 return ret;
5625
5626 ret = bus_register(&rbd_bus_type);
5627 if (ret < 0)
5628 device_unregister(&rbd_root_dev);
5629
5630 return ret;
5631 }
5632
5633 static void rbd_sysfs_cleanup(void)
5634 {
5635 bus_unregister(&rbd_bus_type);
5636 device_unregister(&rbd_root_dev);
5637 }
5638
5639 static int rbd_slab_init(void)
5640 {
5641 rbd_assert(!rbd_img_request_cache);
5642 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5643 if (!rbd_img_request_cache)
5644 return -ENOMEM;
5645
5646 rbd_assert(!rbd_obj_request_cache);
5647 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5648 if (!rbd_obj_request_cache)
5649 goto out_err;
5650
5651 rbd_assert(!rbd_segment_name_cache);
5652 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5653 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5654 if (rbd_segment_name_cache)
5655 return 0;
5656 out_err:
5657 kmem_cache_destroy(rbd_obj_request_cache);
5658 rbd_obj_request_cache = NULL;
5659
5660 kmem_cache_destroy(rbd_img_request_cache);
5661 rbd_img_request_cache = NULL;
5662
5663 return -ENOMEM;
5664 }
5665
5666 static void rbd_slab_exit(void)
5667 {
5668 rbd_assert(rbd_segment_name_cache);
5669 kmem_cache_destroy(rbd_segment_name_cache);
5670 rbd_segment_name_cache = NULL;
5671
5672 rbd_assert(rbd_obj_request_cache);
5673 kmem_cache_destroy(rbd_obj_request_cache);
5674 rbd_obj_request_cache = NULL;
5675
5676 rbd_assert(rbd_img_request_cache);
5677 kmem_cache_destroy(rbd_img_request_cache);
5678 rbd_img_request_cache = NULL;
5679 }
5680
5681 static int __init rbd_init(void)
5682 {
5683 int rc;
5684
5685 if (!libceph_compatible(NULL)) {
5686 rbd_warn(NULL, "libceph incompatibility (quitting)");
5687 return -EINVAL;
5688 }
5689
5690 rc = rbd_slab_init();
5691 if (rc)
5692 return rc;
5693
5694 /*
5695 * The number of active work items is limited by the number of
5696 * rbd devices * queue depth, so leave @max_active at default.
5697 */
5698 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5699 if (!rbd_wq) {
5700 rc = -ENOMEM;
5701 goto err_out_slab;
5702 }
5703
5704 if (single_major) {
5705 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5706 if (rbd_major < 0) {
5707 rc = rbd_major;
5708 goto err_out_wq;
5709 }
5710 }
5711
5712 rc = rbd_sysfs_init();
5713 if (rc)
5714 goto err_out_blkdev;
5715
5716 if (single_major)
5717 pr_info("loaded (major %d)\n", rbd_major);
5718 else
5719 pr_info("loaded\n");
5720
5721 return 0;
5722
5723 err_out_blkdev:
5724 if (single_major)
5725 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5726 err_out_wq:
5727 destroy_workqueue(rbd_wq);
5728 err_out_slab:
5729 rbd_slab_exit();
5730 return rc;
5731 }
5732
5733 static void __exit rbd_exit(void)
5734 {
5735 ida_destroy(&rbd_dev_id_ida);
5736 rbd_sysfs_cleanup();
5737 if (single_major)
5738 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5739 destroy_workqueue(rbd_wq);
5740 rbd_slab_exit();
5741 }
5742
5743 module_init(rbd_init);
5744 module_exit(rbd_exit);
5745
5746 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5747 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5748 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5749 /* following authorship retained from original osdblk.c */
5750 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5751
5752 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5753 MODULE_LICENSE("GPL");
This page took 0.147894 seconds and 6 git commands to generate.