Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
57 */
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60
61 /*
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
66 */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 unsigned int counter;
70
71 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 if (counter <= (unsigned int)INT_MAX)
73 return (int)counter;
74
75 atomic_dec(v);
76
77 return -EINVAL;
78 }
79
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 int counter;
84
85 counter = atomic_dec_return(v);
86 if (counter >= 0)
87 return counter;
88
89 atomic_inc(v);
90
91 return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98
99 #define RBD_MAX_PARENT_CHAIN_LEN 16
100
101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN \
103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104
105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
106
107 #define RBD_SNAP_HEAD_NAME "-"
108
109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
110
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX 64
114
115 #define RBD_OBJ_PREFIX_LEN_MAX 64
116
117 /* Feature bits */
118
119 #define RBD_FEATURE_LAYERING (1<<0)
120 #define RBD_FEATURE_STRIPINGV2 (1<<1)
121 #define RBD_FEATURES_ALL \
122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123
124 /* Features supported by this (client software) implementation. */
125
126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
127
128 /*
129 * An RBD device name will be "rbd#", where the "rbd" comes from
130 * RBD_DRV_NAME above, and # is a unique integer identifier.
131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132 * enough to hold all possible device names.
133 */
134 #define DEV_NAME_LEN 32
135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
136
137 /*
138 * block device image metadata (in-memory version)
139 */
140 struct rbd_image_header {
141 /* These six fields never change for a given rbd image */
142 char *object_prefix;
143 __u8 obj_order;
144 __u8 crypt_type;
145 __u8 comp_type;
146 u64 stripe_unit;
147 u64 stripe_count;
148 u64 features; /* Might be changeable someday? */
149
150 /* The remaining fields need to be updated occasionally */
151 u64 image_size;
152 struct ceph_snap_context *snapc;
153 char *snap_names; /* format 1 only */
154 u64 *snap_sizes; /* format 1 only */
155 };
156
157 /*
158 * An rbd image specification.
159 *
160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161 * identify an image. Each rbd_dev structure includes a pointer to
162 * an rbd_spec structure that encapsulates this identity.
163 *
164 * Each of the id's in an rbd_spec has an associated name. For a
165 * user-mapped image, the names are supplied and the id's associated
166 * with them are looked up. For a layered image, a parent image is
167 * defined by the tuple, and the names are looked up.
168 *
169 * An rbd_dev structure contains a parent_spec pointer which is
170 * non-null if the image it represents is a child in a layered
171 * image. This pointer will refer to the rbd_spec structure used
172 * by the parent rbd_dev for its own identity (i.e., the structure
173 * is shared between the parent and child).
174 *
175 * Since these structures are populated once, during the discovery
176 * phase of image construction, they are effectively immutable so
177 * we make no effort to synchronize access to them.
178 *
179 * Note that code herein does not assume the image name is known (it
180 * could be a null pointer).
181 */
182 struct rbd_spec {
183 u64 pool_id;
184 const char *pool_name;
185
186 const char *image_id;
187 const char *image_name;
188
189 u64 snap_id;
190 const char *snap_name;
191
192 struct kref kref;
193 };
194
195 /*
196 * an instance of the client. multiple devices may share an rbd client.
197 */
198 struct rbd_client {
199 struct ceph_client *client;
200 struct kref kref;
201 struct list_head node;
202 };
203
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206
207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
208
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211
212 enum obj_request_type {
213 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215
216 enum obj_operation_type {
217 OBJ_OP_WRITE,
218 OBJ_OP_READ,
219 OBJ_OP_DISCARD,
220 };
221
222 enum obj_req_flags {
223 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
224 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
225 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
226 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
227 };
228
229 struct rbd_obj_request {
230 const char *object_name;
231 u64 offset; /* object start byte */
232 u64 length; /* bytes from offset */
233 unsigned long flags;
234
235 /*
236 * An object request associated with an image will have its
237 * img_data flag set; a standalone object request will not.
238 *
239 * A standalone object request will have which == BAD_WHICH
240 * and a null obj_request pointer.
241 *
242 * An object request initiated in support of a layered image
243 * object (to check for its existence before a write) will
244 * have which == BAD_WHICH and a non-null obj_request pointer.
245 *
246 * Finally, an object request for rbd image data will have
247 * which != BAD_WHICH, and will have a non-null img_request
248 * pointer. The value of which will be in the range
249 * 0..(img_request->obj_request_count-1).
250 */
251 union {
252 struct rbd_obj_request *obj_request; /* STAT op */
253 struct {
254 struct rbd_img_request *img_request;
255 u64 img_offset;
256 /* links for img_request->obj_requests list */
257 struct list_head links;
258 };
259 };
260 u32 which; /* posn image request list */
261
262 enum obj_request_type type;
263 union {
264 struct bio *bio_list;
265 struct {
266 struct page **pages;
267 u32 page_count;
268 };
269 };
270 struct page **copyup_pages;
271 u32 copyup_page_count;
272
273 struct ceph_osd_request *osd_req;
274
275 u64 xferred; /* bytes transferred */
276 int result;
277
278 rbd_obj_callback_t callback;
279 struct completion completion;
280
281 struct kref kref;
282 };
283
284 enum img_req_flags {
285 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
286 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
287 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
288 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
289 };
290
291 struct rbd_img_request {
292 struct rbd_device *rbd_dev;
293 u64 offset; /* starting image byte offset */
294 u64 length; /* byte count from offset */
295 unsigned long flags;
296 union {
297 u64 snap_id; /* for reads */
298 struct ceph_snap_context *snapc; /* for writes */
299 };
300 union {
301 struct request *rq; /* block request */
302 struct rbd_obj_request *obj_request; /* obj req initiator */
303 };
304 struct page **copyup_pages;
305 u32 copyup_page_count;
306 spinlock_t completion_lock;/* protects next_completion */
307 u32 next_completion;
308 rbd_img_callback_t callback;
309 u64 xferred;/* aggregate bytes transferred */
310 int result; /* first nonzero obj_request result */
311
312 u32 obj_request_count;
313 struct list_head obj_requests; /* rbd_obj_request structs */
314
315 struct kref kref;
316 };
317
318 #define for_each_obj_request(ireq, oreq) \
319 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324
325 struct rbd_mapping {
326 u64 size;
327 u64 features;
328 bool read_only;
329 };
330
331 /*
332 * a single device
333 */
334 struct rbd_device {
335 int dev_id; /* blkdev unique id */
336
337 int major; /* blkdev assigned major */
338 int minor;
339 struct gendisk *disk; /* blkdev's gendisk and rq */
340
341 u32 image_format; /* Either 1 or 2 */
342 struct rbd_client *rbd_client;
343
344 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345
346 spinlock_t lock; /* queue, flags, open_count */
347
348 struct rbd_image_header header;
349 unsigned long flags; /* possibly lock protected */
350 struct rbd_spec *spec;
351 struct rbd_options *opts;
352
353 char *header_name;
354
355 struct ceph_file_layout layout;
356
357 struct ceph_osd_event *watch_event;
358 struct rbd_obj_request *watch_request;
359
360 struct rbd_spec *parent_spec;
361 u64 parent_overlap;
362 atomic_t parent_ref;
363 struct rbd_device *parent;
364
365 /* Block layer tags. */
366 struct blk_mq_tag_set tag_set;
367
368 /* protects updating the header */
369 struct rw_semaphore header_rwsem;
370
371 struct rbd_mapping mapping;
372
373 struct list_head node;
374
375 /* sysfs related */
376 struct device dev;
377 unsigned long open_count; /* protected by lock */
378 };
379
380 /*
381 * Flag bits for rbd_dev->flags. If atomicity is required,
382 * rbd_dev->lock is used to protect access.
383 *
384 * Currently, only the "removing" flag (which is coupled with the
385 * "open_count" field) requires atomic access.
386 */
387 enum rbd_dev_flags {
388 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
389 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
390 };
391
392 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
393
394 static LIST_HEAD(rbd_dev_list); /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396
397 static LIST_HEAD(rbd_client_list); /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399
400 /* Slab caches for frequently-allocated structures */
401
402 static struct kmem_cache *rbd_img_request_cache;
403 static struct kmem_cache *rbd_obj_request_cache;
404 static struct kmem_cache *rbd_segment_name_cache;
405
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408
409 static struct workqueue_struct *rbd_wq;
410
411 /*
412 * Default to false for now, as single-major requires >= 0.75 version of
413 * userspace rbd utility.
414 */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420
421 static void rbd_dev_device_release(struct device *dev);
422
423 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
424 size_t count);
425 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
426 size_t count);
427 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
428 size_t count);
429 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
430 size_t count);
431 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
432 static void rbd_spec_put(struct rbd_spec *spec);
433
434 static int rbd_dev_id_to_minor(int dev_id)
435 {
436 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438
439 static int minor_to_rbd_dev_id(int minor)
440 {
441 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
442 }
443
444 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
445 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
446 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
447 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
448
449 static struct attribute *rbd_bus_attrs[] = {
450 &bus_attr_add.attr,
451 &bus_attr_remove.attr,
452 &bus_attr_add_single_major.attr,
453 &bus_attr_remove_single_major.attr,
454 NULL,
455 };
456
457 static umode_t rbd_bus_is_visible(struct kobject *kobj,
458 struct attribute *attr, int index)
459 {
460 if (!single_major &&
461 (attr == &bus_attr_add_single_major.attr ||
462 attr == &bus_attr_remove_single_major.attr))
463 return 0;
464
465 return attr->mode;
466 }
467
468 static const struct attribute_group rbd_bus_group = {
469 .attrs = rbd_bus_attrs,
470 .is_visible = rbd_bus_is_visible,
471 };
472 __ATTRIBUTE_GROUPS(rbd_bus);
473
474 static struct bus_type rbd_bus_type = {
475 .name = "rbd",
476 .bus_groups = rbd_bus_groups,
477 };
478
479 static void rbd_root_dev_release(struct device *dev)
480 {
481 }
482
483 static struct device rbd_root_dev = {
484 .init_name = "rbd",
485 .release = rbd_root_dev_release,
486 };
487
488 static __printf(2, 3)
489 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
490 {
491 struct va_format vaf;
492 va_list args;
493
494 va_start(args, fmt);
495 vaf.fmt = fmt;
496 vaf.va = &args;
497
498 if (!rbd_dev)
499 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
500 else if (rbd_dev->disk)
501 printk(KERN_WARNING "%s: %s: %pV\n",
502 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
503 else if (rbd_dev->spec && rbd_dev->spec->image_name)
504 printk(KERN_WARNING "%s: image %s: %pV\n",
505 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
506 else if (rbd_dev->spec && rbd_dev->spec->image_id)
507 printk(KERN_WARNING "%s: id %s: %pV\n",
508 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
509 else /* punt */
510 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
511 RBD_DRV_NAME, rbd_dev, &vaf);
512 va_end(args);
513 }
514
515 #ifdef RBD_DEBUG
516 #define rbd_assert(expr) \
517 if (unlikely(!(expr))) { \
518 printk(KERN_ERR "\nAssertion failure in %s() " \
519 "at line %d:\n\n" \
520 "\trbd_assert(%s);\n\n", \
521 __func__, __LINE__, #expr); \
522 BUG(); \
523 }
524 #else /* !RBD_DEBUG */
525 # define rbd_assert(expr) ((void) 0)
526 #endif /* !RBD_DEBUG */
527
528 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
529 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
530 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
531 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
532
533 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
535 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
536 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
537 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
538 u64 snap_id);
539 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
540 u8 *order, u64 *snap_size);
541 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
542 u64 *snap_features);
543 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
544
545 static int rbd_open(struct block_device *bdev, fmode_t mode)
546 {
547 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
548 bool removing = false;
549
550 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
551 return -EROFS;
552
553 spin_lock_irq(&rbd_dev->lock);
554 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
555 removing = true;
556 else
557 rbd_dev->open_count++;
558 spin_unlock_irq(&rbd_dev->lock);
559 if (removing)
560 return -ENOENT;
561
562 (void) get_device(&rbd_dev->dev);
563
564 return 0;
565 }
566
567 static void rbd_release(struct gendisk *disk, fmode_t mode)
568 {
569 struct rbd_device *rbd_dev = disk->private_data;
570 unsigned long open_count_before;
571
572 spin_lock_irq(&rbd_dev->lock);
573 open_count_before = rbd_dev->open_count--;
574 spin_unlock_irq(&rbd_dev->lock);
575 rbd_assert(open_count_before > 0);
576
577 put_device(&rbd_dev->dev);
578 }
579
580 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
581 {
582 int ret = 0;
583 int val;
584 bool ro;
585 bool ro_changed = false;
586
587 /* get_user() may sleep, so call it before taking rbd_dev->lock */
588 if (get_user(val, (int __user *)(arg)))
589 return -EFAULT;
590
591 ro = val ? true : false;
592 /* Snapshot doesn't allow to write*/
593 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
594 return -EROFS;
595
596 spin_lock_irq(&rbd_dev->lock);
597 /* prevent others open this device */
598 if (rbd_dev->open_count > 1) {
599 ret = -EBUSY;
600 goto out;
601 }
602
603 if (rbd_dev->mapping.read_only != ro) {
604 rbd_dev->mapping.read_only = ro;
605 ro_changed = true;
606 }
607
608 out:
609 spin_unlock_irq(&rbd_dev->lock);
610 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
611 if (ret == 0 && ro_changed)
612 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
613
614 return ret;
615 }
616
617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
618 unsigned int cmd, unsigned long arg)
619 {
620 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
621 int ret = 0;
622
623 switch (cmd) {
624 case BLKROSET:
625 ret = rbd_ioctl_set_ro(rbd_dev, arg);
626 break;
627 default:
628 ret = -ENOTTY;
629 }
630
631 return ret;
632 }
633
634 #ifdef CONFIG_COMPAT
635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
636 unsigned int cmd, unsigned long arg)
637 {
638 return rbd_ioctl(bdev, mode, cmd, arg);
639 }
640 #endif /* CONFIG_COMPAT */
641
642 static const struct block_device_operations rbd_bd_ops = {
643 .owner = THIS_MODULE,
644 .open = rbd_open,
645 .release = rbd_release,
646 .ioctl = rbd_ioctl,
647 #ifdef CONFIG_COMPAT
648 .compat_ioctl = rbd_compat_ioctl,
649 #endif
650 };
651
652 /*
653 * Initialize an rbd client instance. Success or not, this function
654 * consumes ceph_opts. Caller holds client_mutex.
655 */
656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
657 {
658 struct rbd_client *rbdc;
659 int ret = -ENOMEM;
660
661 dout("%s:\n", __func__);
662 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
663 if (!rbdc)
664 goto out_opt;
665
666 kref_init(&rbdc->kref);
667 INIT_LIST_HEAD(&rbdc->node);
668
669 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
670 if (IS_ERR(rbdc->client))
671 goto out_rbdc;
672 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
673
674 ret = ceph_open_session(rbdc->client);
675 if (ret < 0)
676 goto out_client;
677
678 spin_lock(&rbd_client_list_lock);
679 list_add_tail(&rbdc->node, &rbd_client_list);
680 spin_unlock(&rbd_client_list_lock);
681
682 dout("%s: rbdc %p\n", __func__, rbdc);
683
684 return rbdc;
685 out_client:
686 ceph_destroy_client(rbdc->client);
687 out_rbdc:
688 kfree(rbdc);
689 out_opt:
690 if (ceph_opts)
691 ceph_destroy_options(ceph_opts);
692 dout("%s: error %d\n", __func__, ret);
693
694 return ERR_PTR(ret);
695 }
696
697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
698 {
699 kref_get(&rbdc->kref);
700
701 return rbdc;
702 }
703
704 /*
705 * Find a ceph client with specific addr and configuration. If
706 * found, bump its reference count.
707 */
708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
709 {
710 struct rbd_client *client_node;
711 bool found = false;
712
713 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
714 return NULL;
715
716 spin_lock(&rbd_client_list_lock);
717 list_for_each_entry(client_node, &rbd_client_list, node) {
718 if (!ceph_compare_options(ceph_opts, client_node->client)) {
719 __rbd_get_client(client_node);
720
721 found = true;
722 break;
723 }
724 }
725 spin_unlock(&rbd_client_list_lock);
726
727 return found ? client_node : NULL;
728 }
729
730 /*
731 * (Per device) rbd map options
732 */
733 enum {
734 Opt_queue_depth,
735 Opt_last_int,
736 /* int args above */
737 Opt_last_string,
738 /* string args above */
739 Opt_read_only,
740 Opt_read_write,
741 Opt_err
742 };
743
744 static match_table_t rbd_opts_tokens = {
745 {Opt_queue_depth, "queue_depth=%d"},
746 /* int args above */
747 /* string args above */
748 {Opt_read_only, "read_only"},
749 {Opt_read_only, "ro"}, /* Alternate spelling */
750 {Opt_read_write, "read_write"},
751 {Opt_read_write, "rw"}, /* Alternate spelling */
752 {Opt_err, NULL}
753 };
754
755 struct rbd_options {
756 int queue_depth;
757 bool read_only;
758 };
759
760 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
761 #define RBD_READ_ONLY_DEFAULT false
762
763 static int parse_rbd_opts_token(char *c, void *private)
764 {
765 struct rbd_options *rbd_opts = private;
766 substring_t argstr[MAX_OPT_ARGS];
767 int token, intval, ret;
768
769 token = match_token(c, rbd_opts_tokens, argstr);
770 if (token < Opt_last_int) {
771 ret = match_int(&argstr[0], &intval);
772 if (ret < 0) {
773 pr_err("bad mount option arg (not int) at '%s'\n", c);
774 return ret;
775 }
776 dout("got int token %d val %d\n", token, intval);
777 } else if (token > Opt_last_int && token < Opt_last_string) {
778 dout("got string token %d val %s\n", token, argstr[0].from);
779 } else {
780 dout("got token %d\n", token);
781 }
782
783 switch (token) {
784 case Opt_queue_depth:
785 if (intval < 1) {
786 pr_err("queue_depth out of range\n");
787 return -EINVAL;
788 }
789 rbd_opts->queue_depth = intval;
790 break;
791 case Opt_read_only:
792 rbd_opts->read_only = true;
793 break;
794 case Opt_read_write:
795 rbd_opts->read_only = false;
796 break;
797 default:
798 /* libceph prints "bad option" msg */
799 return -EINVAL;
800 }
801
802 return 0;
803 }
804
805 static char* obj_op_name(enum obj_operation_type op_type)
806 {
807 switch (op_type) {
808 case OBJ_OP_READ:
809 return "read";
810 case OBJ_OP_WRITE:
811 return "write";
812 case OBJ_OP_DISCARD:
813 return "discard";
814 default:
815 return "???";
816 }
817 }
818
819 /*
820 * Get a ceph client with specific addr and configuration, if one does
821 * not exist create it. Either way, ceph_opts is consumed by this
822 * function.
823 */
824 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
825 {
826 struct rbd_client *rbdc;
827
828 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
829 rbdc = rbd_client_find(ceph_opts);
830 if (rbdc) /* using an existing client */
831 ceph_destroy_options(ceph_opts);
832 else
833 rbdc = rbd_client_create(ceph_opts);
834 mutex_unlock(&client_mutex);
835
836 return rbdc;
837 }
838
839 /*
840 * Destroy ceph client
841 *
842 * Caller must hold rbd_client_list_lock.
843 */
844 static void rbd_client_release(struct kref *kref)
845 {
846 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
847
848 dout("%s: rbdc %p\n", __func__, rbdc);
849 spin_lock(&rbd_client_list_lock);
850 list_del(&rbdc->node);
851 spin_unlock(&rbd_client_list_lock);
852
853 ceph_destroy_client(rbdc->client);
854 kfree(rbdc);
855 }
856
857 /*
858 * Drop reference to ceph client node. If it's not referenced anymore, release
859 * it.
860 */
861 static void rbd_put_client(struct rbd_client *rbdc)
862 {
863 if (rbdc)
864 kref_put(&rbdc->kref, rbd_client_release);
865 }
866
867 static bool rbd_image_format_valid(u32 image_format)
868 {
869 return image_format == 1 || image_format == 2;
870 }
871
872 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
873 {
874 size_t size;
875 u32 snap_count;
876
877 /* The header has to start with the magic rbd header text */
878 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
879 return false;
880
881 /* The bio layer requires at least sector-sized I/O */
882
883 if (ondisk->options.order < SECTOR_SHIFT)
884 return false;
885
886 /* If we use u64 in a few spots we may be able to loosen this */
887
888 if (ondisk->options.order > 8 * sizeof (int) - 1)
889 return false;
890
891 /*
892 * The size of a snapshot header has to fit in a size_t, and
893 * that limits the number of snapshots.
894 */
895 snap_count = le32_to_cpu(ondisk->snap_count);
896 size = SIZE_MAX - sizeof (struct ceph_snap_context);
897 if (snap_count > size / sizeof (__le64))
898 return false;
899
900 /*
901 * Not only that, but the size of the entire the snapshot
902 * header must also be representable in a size_t.
903 */
904 size -= snap_count * sizeof (__le64);
905 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
906 return false;
907
908 return true;
909 }
910
911 /*
912 * Fill an rbd image header with information from the given format 1
913 * on-disk header.
914 */
915 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
916 struct rbd_image_header_ondisk *ondisk)
917 {
918 struct rbd_image_header *header = &rbd_dev->header;
919 bool first_time = header->object_prefix == NULL;
920 struct ceph_snap_context *snapc;
921 char *object_prefix = NULL;
922 char *snap_names = NULL;
923 u64 *snap_sizes = NULL;
924 u32 snap_count;
925 size_t size;
926 int ret = -ENOMEM;
927 u32 i;
928
929 /* Allocate this now to avoid having to handle failure below */
930
931 if (first_time) {
932 size_t len;
933
934 len = strnlen(ondisk->object_prefix,
935 sizeof (ondisk->object_prefix));
936 object_prefix = kmalloc(len + 1, GFP_KERNEL);
937 if (!object_prefix)
938 return -ENOMEM;
939 memcpy(object_prefix, ondisk->object_prefix, len);
940 object_prefix[len] = '\0';
941 }
942
943 /* Allocate the snapshot context and fill it in */
944
945 snap_count = le32_to_cpu(ondisk->snap_count);
946 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
947 if (!snapc)
948 goto out_err;
949 snapc->seq = le64_to_cpu(ondisk->snap_seq);
950 if (snap_count) {
951 struct rbd_image_snap_ondisk *snaps;
952 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
953
954 /* We'll keep a copy of the snapshot names... */
955
956 if (snap_names_len > (u64)SIZE_MAX)
957 goto out_2big;
958 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
959 if (!snap_names)
960 goto out_err;
961
962 /* ...as well as the array of their sizes. */
963
964 size = snap_count * sizeof (*header->snap_sizes);
965 snap_sizes = kmalloc(size, GFP_KERNEL);
966 if (!snap_sizes)
967 goto out_err;
968
969 /*
970 * Copy the names, and fill in each snapshot's id
971 * and size.
972 *
973 * Note that rbd_dev_v1_header_info() guarantees the
974 * ondisk buffer we're working with has
975 * snap_names_len bytes beyond the end of the
976 * snapshot id array, this memcpy() is safe.
977 */
978 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
979 snaps = ondisk->snaps;
980 for (i = 0; i < snap_count; i++) {
981 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
982 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
983 }
984 }
985
986 /* We won't fail any more, fill in the header */
987
988 if (first_time) {
989 header->object_prefix = object_prefix;
990 header->obj_order = ondisk->options.order;
991 header->crypt_type = ondisk->options.crypt_type;
992 header->comp_type = ondisk->options.comp_type;
993 /* The rest aren't used for format 1 images */
994 header->stripe_unit = 0;
995 header->stripe_count = 0;
996 header->features = 0;
997 } else {
998 ceph_put_snap_context(header->snapc);
999 kfree(header->snap_names);
1000 kfree(header->snap_sizes);
1001 }
1002
1003 /* The remaining fields always get updated (when we refresh) */
1004
1005 header->image_size = le64_to_cpu(ondisk->image_size);
1006 header->snapc = snapc;
1007 header->snap_names = snap_names;
1008 header->snap_sizes = snap_sizes;
1009
1010 return 0;
1011 out_2big:
1012 ret = -EIO;
1013 out_err:
1014 kfree(snap_sizes);
1015 kfree(snap_names);
1016 ceph_put_snap_context(snapc);
1017 kfree(object_prefix);
1018
1019 return ret;
1020 }
1021
1022 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1023 {
1024 const char *snap_name;
1025
1026 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1027
1028 /* Skip over names until we find the one we are looking for */
1029
1030 snap_name = rbd_dev->header.snap_names;
1031 while (which--)
1032 snap_name += strlen(snap_name) + 1;
1033
1034 return kstrdup(snap_name, GFP_KERNEL);
1035 }
1036
1037 /*
1038 * Snapshot id comparison function for use with qsort()/bsearch().
1039 * Note that result is for snapshots in *descending* order.
1040 */
1041 static int snapid_compare_reverse(const void *s1, const void *s2)
1042 {
1043 u64 snap_id1 = *(u64 *)s1;
1044 u64 snap_id2 = *(u64 *)s2;
1045
1046 if (snap_id1 < snap_id2)
1047 return 1;
1048 return snap_id1 == snap_id2 ? 0 : -1;
1049 }
1050
1051 /*
1052 * Search a snapshot context to see if the given snapshot id is
1053 * present.
1054 *
1055 * Returns the position of the snapshot id in the array if it's found,
1056 * or BAD_SNAP_INDEX otherwise.
1057 *
1058 * Note: The snapshot array is in kept sorted (by the osd) in
1059 * reverse order, highest snapshot id first.
1060 */
1061 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1062 {
1063 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1064 u64 *found;
1065
1066 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1067 sizeof (snap_id), snapid_compare_reverse);
1068
1069 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1070 }
1071
1072 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1073 u64 snap_id)
1074 {
1075 u32 which;
1076 const char *snap_name;
1077
1078 which = rbd_dev_snap_index(rbd_dev, snap_id);
1079 if (which == BAD_SNAP_INDEX)
1080 return ERR_PTR(-ENOENT);
1081
1082 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1083 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1084 }
1085
1086 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1087 {
1088 if (snap_id == CEPH_NOSNAP)
1089 return RBD_SNAP_HEAD_NAME;
1090
1091 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1092 if (rbd_dev->image_format == 1)
1093 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1094
1095 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1096 }
1097
1098 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1099 u64 *snap_size)
1100 {
1101 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1102 if (snap_id == CEPH_NOSNAP) {
1103 *snap_size = rbd_dev->header.image_size;
1104 } else if (rbd_dev->image_format == 1) {
1105 u32 which;
1106
1107 which = rbd_dev_snap_index(rbd_dev, snap_id);
1108 if (which == BAD_SNAP_INDEX)
1109 return -ENOENT;
1110
1111 *snap_size = rbd_dev->header.snap_sizes[which];
1112 } else {
1113 u64 size = 0;
1114 int ret;
1115
1116 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1117 if (ret)
1118 return ret;
1119
1120 *snap_size = size;
1121 }
1122 return 0;
1123 }
1124
1125 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1126 u64 *snap_features)
1127 {
1128 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1129 if (snap_id == CEPH_NOSNAP) {
1130 *snap_features = rbd_dev->header.features;
1131 } else if (rbd_dev->image_format == 1) {
1132 *snap_features = 0; /* No features for format 1 */
1133 } else {
1134 u64 features = 0;
1135 int ret;
1136
1137 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1138 if (ret)
1139 return ret;
1140
1141 *snap_features = features;
1142 }
1143 return 0;
1144 }
1145
1146 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1147 {
1148 u64 snap_id = rbd_dev->spec->snap_id;
1149 u64 size = 0;
1150 u64 features = 0;
1151 int ret;
1152
1153 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1154 if (ret)
1155 return ret;
1156 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1157 if (ret)
1158 return ret;
1159
1160 rbd_dev->mapping.size = size;
1161 rbd_dev->mapping.features = features;
1162
1163 return 0;
1164 }
1165
1166 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1167 {
1168 rbd_dev->mapping.size = 0;
1169 rbd_dev->mapping.features = 0;
1170 }
1171
1172 static void rbd_segment_name_free(const char *name)
1173 {
1174 /* The explicit cast here is needed to drop the const qualifier */
1175
1176 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1177 }
1178
1179 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1180 {
1181 char *name;
1182 u64 segment;
1183 int ret;
1184 char *name_format;
1185
1186 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1187 if (!name)
1188 return NULL;
1189 segment = offset >> rbd_dev->header.obj_order;
1190 name_format = "%s.%012llx";
1191 if (rbd_dev->image_format == 2)
1192 name_format = "%s.%016llx";
1193 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1194 rbd_dev->header.object_prefix, segment);
1195 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1196 pr_err("error formatting segment name for #%llu (%d)\n",
1197 segment, ret);
1198 rbd_segment_name_free(name);
1199 name = NULL;
1200 }
1201
1202 return name;
1203 }
1204
1205 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1206 {
1207 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1208
1209 return offset & (segment_size - 1);
1210 }
1211
1212 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1213 u64 offset, u64 length)
1214 {
1215 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1216
1217 offset &= segment_size - 1;
1218
1219 rbd_assert(length <= U64_MAX - offset);
1220 if (offset + length > segment_size)
1221 length = segment_size - offset;
1222
1223 return length;
1224 }
1225
1226 /*
1227 * returns the size of an object in the image
1228 */
1229 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1230 {
1231 return 1 << header->obj_order;
1232 }
1233
1234 /*
1235 * bio helpers
1236 */
1237
1238 static void bio_chain_put(struct bio *chain)
1239 {
1240 struct bio *tmp;
1241
1242 while (chain) {
1243 tmp = chain;
1244 chain = chain->bi_next;
1245 bio_put(tmp);
1246 }
1247 }
1248
1249 /*
1250 * zeros a bio chain, starting at specific offset
1251 */
1252 static void zero_bio_chain(struct bio *chain, int start_ofs)
1253 {
1254 struct bio_vec bv;
1255 struct bvec_iter iter;
1256 unsigned long flags;
1257 void *buf;
1258 int pos = 0;
1259
1260 while (chain) {
1261 bio_for_each_segment(bv, chain, iter) {
1262 if (pos + bv.bv_len > start_ofs) {
1263 int remainder = max(start_ofs - pos, 0);
1264 buf = bvec_kmap_irq(&bv, &flags);
1265 memset(buf + remainder, 0,
1266 bv.bv_len - remainder);
1267 flush_dcache_page(bv.bv_page);
1268 bvec_kunmap_irq(buf, &flags);
1269 }
1270 pos += bv.bv_len;
1271 }
1272
1273 chain = chain->bi_next;
1274 }
1275 }
1276
1277 /*
1278 * similar to zero_bio_chain(), zeros data defined by a page array,
1279 * starting at the given byte offset from the start of the array and
1280 * continuing up to the given end offset. The pages array is
1281 * assumed to be big enough to hold all bytes up to the end.
1282 */
1283 static void zero_pages(struct page **pages, u64 offset, u64 end)
1284 {
1285 struct page **page = &pages[offset >> PAGE_SHIFT];
1286
1287 rbd_assert(end > offset);
1288 rbd_assert(end - offset <= (u64)SIZE_MAX);
1289 while (offset < end) {
1290 size_t page_offset;
1291 size_t length;
1292 unsigned long flags;
1293 void *kaddr;
1294
1295 page_offset = offset & ~PAGE_MASK;
1296 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1297 local_irq_save(flags);
1298 kaddr = kmap_atomic(*page);
1299 memset(kaddr + page_offset, 0, length);
1300 flush_dcache_page(*page);
1301 kunmap_atomic(kaddr);
1302 local_irq_restore(flags);
1303
1304 offset += length;
1305 page++;
1306 }
1307 }
1308
1309 /*
1310 * Clone a portion of a bio, starting at the given byte offset
1311 * and continuing for the number of bytes indicated.
1312 */
1313 static struct bio *bio_clone_range(struct bio *bio_src,
1314 unsigned int offset,
1315 unsigned int len,
1316 gfp_t gfpmask)
1317 {
1318 struct bio *bio;
1319
1320 bio = bio_clone(bio_src, gfpmask);
1321 if (!bio)
1322 return NULL; /* ENOMEM */
1323
1324 bio_advance(bio, offset);
1325 bio->bi_iter.bi_size = len;
1326
1327 return bio;
1328 }
1329
1330 /*
1331 * Clone a portion of a bio chain, starting at the given byte offset
1332 * into the first bio in the source chain and continuing for the
1333 * number of bytes indicated. The result is another bio chain of
1334 * exactly the given length, or a null pointer on error.
1335 *
1336 * The bio_src and offset parameters are both in-out. On entry they
1337 * refer to the first source bio and the offset into that bio where
1338 * the start of data to be cloned is located.
1339 *
1340 * On return, bio_src is updated to refer to the bio in the source
1341 * chain that contains first un-cloned byte, and *offset will
1342 * contain the offset of that byte within that bio.
1343 */
1344 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1345 unsigned int *offset,
1346 unsigned int len,
1347 gfp_t gfpmask)
1348 {
1349 struct bio *bi = *bio_src;
1350 unsigned int off = *offset;
1351 struct bio *chain = NULL;
1352 struct bio **end;
1353
1354 /* Build up a chain of clone bios up to the limit */
1355
1356 if (!bi || off >= bi->bi_iter.bi_size || !len)
1357 return NULL; /* Nothing to clone */
1358
1359 end = &chain;
1360 while (len) {
1361 unsigned int bi_size;
1362 struct bio *bio;
1363
1364 if (!bi) {
1365 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1366 goto out_err; /* EINVAL; ran out of bio's */
1367 }
1368 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1369 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1370 if (!bio)
1371 goto out_err; /* ENOMEM */
1372
1373 *end = bio;
1374 end = &bio->bi_next;
1375
1376 off += bi_size;
1377 if (off == bi->bi_iter.bi_size) {
1378 bi = bi->bi_next;
1379 off = 0;
1380 }
1381 len -= bi_size;
1382 }
1383 *bio_src = bi;
1384 *offset = off;
1385
1386 return chain;
1387 out_err:
1388 bio_chain_put(chain);
1389
1390 return NULL;
1391 }
1392
1393 /*
1394 * The default/initial value for all object request flags is 0. For
1395 * each flag, once its value is set to 1 it is never reset to 0
1396 * again.
1397 */
1398 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1399 {
1400 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1401 struct rbd_device *rbd_dev;
1402
1403 rbd_dev = obj_request->img_request->rbd_dev;
1404 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1405 obj_request);
1406 }
1407 }
1408
1409 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1410 {
1411 smp_mb();
1412 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1413 }
1414
1415 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1416 {
1417 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1418 struct rbd_device *rbd_dev = NULL;
1419
1420 if (obj_request_img_data_test(obj_request))
1421 rbd_dev = obj_request->img_request->rbd_dev;
1422 rbd_warn(rbd_dev, "obj_request %p already marked done",
1423 obj_request);
1424 }
1425 }
1426
1427 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1428 {
1429 smp_mb();
1430 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1431 }
1432
1433 /*
1434 * This sets the KNOWN flag after (possibly) setting the EXISTS
1435 * flag. The latter is set based on the "exists" value provided.
1436 *
1437 * Note that for our purposes once an object exists it never goes
1438 * away again. It's possible that the response from two existence
1439 * checks are separated by the creation of the target object, and
1440 * the first ("doesn't exist") response arrives *after* the second
1441 * ("does exist"). In that case we ignore the second one.
1442 */
1443 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1444 bool exists)
1445 {
1446 if (exists)
1447 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1448 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1449 smp_mb();
1450 }
1451
1452 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1453 {
1454 smp_mb();
1455 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1456 }
1457
1458 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1459 {
1460 smp_mb();
1461 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1462 }
1463
1464 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1465 {
1466 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1467
1468 return obj_request->img_offset <
1469 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1470 }
1471
1472 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1473 {
1474 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1475 atomic_read(&obj_request->kref.refcount));
1476 kref_get(&obj_request->kref);
1477 }
1478
1479 static void rbd_obj_request_destroy(struct kref *kref);
1480 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1481 {
1482 rbd_assert(obj_request != NULL);
1483 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1484 atomic_read(&obj_request->kref.refcount));
1485 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1486 }
1487
1488 static void rbd_img_request_get(struct rbd_img_request *img_request)
1489 {
1490 dout("%s: img %p (was %d)\n", __func__, img_request,
1491 atomic_read(&img_request->kref.refcount));
1492 kref_get(&img_request->kref);
1493 }
1494
1495 static bool img_request_child_test(struct rbd_img_request *img_request);
1496 static void rbd_parent_request_destroy(struct kref *kref);
1497 static void rbd_img_request_destroy(struct kref *kref);
1498 static void rbd_img_request_put(struct rbd_img_request *img_request)
1499 {
1500 rbd_assert(img_request != NULL);
1501 dout("%s: img %p (was %d)\n", __func__, img_request,
1502 atomic_read(&img_request->kref.refcount));
1503 if (img_request_child_test(img_request))
1504 kref_put(&img_request->kref, rbd_parent_request_destroy);
1505 else
1506 kref_put(&img_request->kref, rbd_img_request_destroy);
1507 }
1508
1509 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1510 struct rbd_obj_request *obj_request)
1511 {
1512 rbd_assert(obj_request->img_request == NULL);
1513
1514 /* Image request now owns object's original reference */
1515 obj_request->img_request = img_request;
1516 obj_request->which = img_request->obj_request_count;
1517 rbd_assert(!obj_request_img_data_test(obj_request));
1518 obj_request_img_data_set(obj_request);
1519 rbd_assert(obj_request->which != BAD_WHICH);
1520 img_request->obj_request_count++;
1521 list_add_tail(&obj_request->links, &img_request->obj_requests);
1522 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1523 obj_request->which);
1524 }
1525
1526 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1527 struct rbd_obj_request *obj_request)
1528 {
1529 rbd_assert(obj_request->which != BAD_WHICH);
1530
1531 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1532 obj_request->which);
1533 list_del(&obj_request->links);
1534 rbd_assert(img_request->obj_request_count > 0);
1535 img_request->obj_request_count--;
1536 rbd_assert(obj_request->which == img_request->obj_request_count);
1537 obj_request->which = BAD_WHICH;
1538 rbd_assert(obj_request_img_data_test(obj_request));
1539 rbd_assert(obj_request->img_request == img_request);
1540 obj_request->img_request = NULL;
1541 obj_request->callback = NULL;
1542 rbd_obj_request_put(obj_request);
1543 }
1544
1545 static bool obj_request_type_valid(enum obj_request_type type)
1546 {
1547 switch (type) {
1548 case OBJ_REQUEST_NODATA:
1549 case OBJ_REQUEST_BIO:
1550 case OBJ_REQUEST_PAGES:
1551 return true;
1552 default:
1553 return false;
1554 }
1555 }
1556
1557 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1558 struct rbd_obj_request *obj_request)
1559 {
1560 dout("%s %p\n", __func__, obj_request);
1561 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1562 }
1563
1564 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1565 {
1566 dout("%s %p\n", __func__, obj_request);
1567 ceph_osdc_cancel_request(obj_request->osd_req);
1568 }
1569
1570 /*
1571 * Wait for an object request to complete. If interrupted, cancel the
1572 * underlying osd request.
1573 *
1574 * @timeout: in jiffies, 0 means "wait forever"
1575 */
1576 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1577 unsigned long timeout)
1578 {
1579 long ret;
1580
1581 dout("%s %p\n", __func__, obj_request);
1582 ret = wait_for_completion_interruptible_timeout(
1583 &obj_request->completion,
1584 ceph_timeout_jiffies(timeout));
1585 if (ret <= 0) {
1586 if (ret == 0)
1587 ret = -ETIMEDOUT;
1588 rbd_obj_request_end(obj_request);
1589 } else {
1590 ret = 0;
1591 }
1592
1593 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1594 return ret;
1595 }
1596
1597 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1598 {
1599 return __rbd_obj_request_wait(obj_request, 0);
1600 }
1601
1602 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1603 unsigned long timeout)
1604 {
1605 return __rbd_obj_request_wait(obj_request, timeout);
1606 }
1607
1608 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1609 {
1610
1611 dout("%s: img %p\n", __func__, img_request);
1612
1613 /*
1614 * If no error occurred, compute the aggregate transfer
1615 * count for the image request. We could instead use
1616 * atomic64_cmpxchg() to update it as each object request
1617 * completes; not clear which way is better off hand.
1618 */
1619 if (!img_request->result) {
1620 struct rbd_obj_request *obj_request;
1621 u64 xferred = 0;
1622
1623 for_each_obj_request(img_request, obj_request)
1624 xferred += obj_request->xferred;
1625 img_request->xferred = xferred;
1626 }
1627
1628 if (img_request->callback)
1629 img_request->callback(img_request);
1630 else
1631 rbd_img_request_put(img_request);
1632 }
1633
1634 /*
1635 * The default/initial value for all image request flags is 0. Each
1636 * is conditionally set to 1 at image request initialization time
1637 * and currently never change thereafter.
1638 */
1639 static void img_request_write_set(struct rbd_img_request *img_request)
1640 {
1641 set_bit(IMG_REQ_WRITE, &img_request->flags);
1642 smp_mb();
1643 }
1644
1645 static bool img_request_write_test(struct rbd_img_request *img_request)
1646 {
1647 smp_mb();
1648 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1649 }
1650
1651 /*
1652 * Set the discard flag when the img_request is an discard request
1653 */
1654 static void img_request_discard_set(struct rbd_img_request *img_request)
1655 {
1656 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1657 smp_mb();
1658 }
1659
1660 static bool img_request_discard_test(struct rbd_img_request *img_request)
1661 {
1662 smp_mb();
1663 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1664 }
1665
1666 static void img_request_child_set(struct rbd_img_request *img_request)
1667 {
1668 set_bit(IMG_REQ_CHILD, &img_request->flags);
1669 smp_mb();
1670 }
1671
1672 static void img_request_child_clear(struct rbd_img_request *img_request)
1673 {
1674 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1675 smp_mb();
1676 }
1677
1678 static bool img_request_child_test(struct rbd_img_request *img_request)
1679 {
1680 smp_mb();
1681 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1682 }
1683
1684 static void img_request_layered_set(struct rbd_img_request *img_request)
1685 {
1686 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1687 smp_mb();
1688 }
1689
1690 static void img_request_layered_clear(struct rbd_img_request *img_request)
1691 {
1692 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1693 smp_mb();
1694 }
1695
1696 static bool img_request_layered_test(struct rbd_img_request *img_request)
1697 {
1698 smp_mb();
1699 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1700 }
1701
1702 static enum obj_operation_type
1703 rbd_img_request_op_type(struct rbd_img_request *img_request)
1704 {
1705 if (img_request_write_test(img_request))
1706 return OBJ_OP_WRITE;
1707 else if (img_request_discard_test(img_request))
1708 return OBJ_OP_DISCARD;
1709 else
1710 return OBJ_OP_READ;
1711 }
1712
1713 static void
1714 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1715 {
1716 u64 xferred = obj_request->xferred;
1717 u64 length = obj_request->length;
1718
1719 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1720 obj_request, obj_request->img_request, obj_request->result,
1721 xferred, length);
1722 /*
1723 * ENOENT means a hole in the image. We zero-fill the entire
1724 * length of the request. A short read also implies zero-fill
1725 * to the end of the request. An error requires the whole
1726 * length of the request to be reported finished with an error
1727 * to the block layer. In each case we update the xferred
1728 * count to indicate the whole request was satisfied.
1729 */
1730 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1731 if (obj_request->result == -ENOENT) {
1732 if (obj_request->type == OBJ_REQUEST_BIO)
1733 zero_bio_chain(obj_request->bio_list, 0);
1734 else
1735 zero_pages(obj_request->pages, 0, length);
1736 obj_request->result = 0;
1737 } else if (xferred < length && !obj_request->result) {
1738 if (obj_request->type == OBJ_REQUEST_BIO)
1739 zero_bio_chain(obj_request->bio_list, xferred);
1740 else
1741 zero_pages(obj_request->pages, xferred, length);
1742 }
1743 obj_request->xferred = length;
1744 obj_request_done_set(obj_request);
1745 }
1746
1747 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1748 {
1749 dout("%s: obj %p cb %p\n", __func__, obj_request,
1750 obj_request->callback);
1751 if (obj_request->callback)
1752 obj_request->callback(obj_request);
1753 else
1754 complete_all(&obj_request->completion);
1755 }
1756
1757 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1758 {
1759 dout("%s: obj %p\n", __func__, obj_request);
1760 obj_request_done_set(obj_request);
1761 }
1762
1763 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1764 {
1765 struct rbd_img_request *img_request = NULL;
1766 struct rbd_device *rbd_dev = NULL;
1767 bool layered = false;
1768
1769 if (obj_request_img_data_test(obj_request)) {
1770 img_request = obj_request->img_request;
1771 layered = img_request && img_request_layered_test(img_request);
1772 rbd_dev = img_request->rbd_dev;
1773 }
1774
1775 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1776 obj_request, img_request, obj_request->result,
1777 obj_request->xferred, obj_request->length);
1778 if (layered && obj_request->result == -ENOENT &&
1779 obj_request->img_offset < rbd_dev->parent_overlap)
1780 rbd_img_parent_read(obj_request);
1781 else if (img_request)
1782 rbd_img_obj_request_read_callback(obj_request);
1783 else
1784 obj_request_done_set(obj_request);
1785 }
1786
1787 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1788 {
1789 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1790 obj_request->result, obj_request->length);
1791 /*
1792 * There is no such thing as a successful short write. Set
1793 * it to our originally-requested length.
1794 */
1795 obj_request->xferred = obj_request->length;
1796 obj_request_done_set(obj_request);
1797 }
1798
1799 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1800 {
1801 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1802 obj_request->result, obj_request->length);
1803 /*
1804 * There is no such thing as a successful short discard. Set
1805 * it to our originally-requested length.
1806 */
1807 obj_request->xferred = obj_request->length;
1808 /* discarding a non-existent object is not a problem */
1809 if (obj_request->result == -ENOENT)
1810 obj_request->result = 0;
1811 obj_request_done_set(obj_request);
1812 }
1813
1814 /*
1815 * For a simple stat call there's nothing to do. We'll do more if
1816 * this is part of a write sequence for a layered image.
1817 */
1818 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1819 {
1820 dout("%s: obj %p\n", __func__, obj_request);
1821 obj_request_done_set(obj_request);
1822 }
1823
1824 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1825 {
1826 dout("%s: obj %p\n", __func__, obj_request);
1827
1828 if (obj_request_img_data_test(obj_request))
1829 rbd_osd_copyup_callback(obj_request);
1830 else
1831 obj_request_done_set(obj_request);
1832 }
1833
1834 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1835 struct ceph_msg *msg)
1836 {
1837 struct rbd_obj_request *obj_request = osd_req->r_priv;
1838 u16 opcode;
1839
1840 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1841 rbd_assert(osd_req == obj_request->osd_req);
1842 if (obj_request_img_data_test(obj_request)) {
1843 rbd_assert(obj_request->img_request);
1844 rbd_assert(obj_request->which != BAD_WHICH);
1845 } else {
1846 rbd_assert(obj_request->which == BAD_WHICH);
1847 }
1848
1849 if (osd_req->r_result < 0)
1850 obj_request->result = osd_req->r_result;
1851
1852 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1853
1854 /*
1855 * We support a 64-bit length, but ultimately it has to be
1856 * passed to the block layer, which just supports a 32-bit
1857 * length field.
1858 */
1859 obj_request->xferred = osd_req->r_reply_op_len[0];
1860 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1861
1862 opcode = osd_req->r_ops[0].op;
1863 switch (opcode) {
1864 case CEPH_OSD_OP_READ:
1865 rbd_osd_read_callback(obj_request);
1866 break;
1867 case CEPH_OSD_OP_SETALLOCHINT:
1868 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1869 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1870 /* fall through */
1871 case CEPH_OSD_OP_WRITE:
1872 case CEPH_OSD_OP_WRITEFULL:
1873 rbd_osd_write_callback(obj_request);
1874 break;
1875 case CEPH_OSD_OP_STAT:
1876 rbd_osd_stat_callback(obj_request);
1877 break;
1878 case CEPH_OSD_OP_DELETE:
1879 case CEPH_OSD_OP_TRUNCATE:
1880 case CEPH_OSD_OP_ZERO:
1881 rbd_osd_discard_callback(obj_request);
1882 break;
1883 case CEPH_OSD_OP_CALL:
1884 rbd_osd_call_callback(obj_request);
1885 break;
1886 case CEPH_OSD_OP_NOTIFY_ACK:
1887 case CEPH_OSD_OP_WATCH:
1888 rbd_osd_trivial_callback(obj_request);
1889 break;
1890 default:
1891 rbd_warn(NULL, "%s: unsupported op %hu",
1892 obj_request->object_name, (unsigned short) opcode);
1893 break;
1894 }
1895
1896 if (obj_request_done_test(obj_request))
1897 rbd_obj_request_complete(obj_request);
1898 }
1899
1900 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1901 {
1902 struct rbd_img_request *img_request = obj_request->img_request;
1903 struct ceph_osd_request *osd_req = obj_request->osd_req;
1904 u64 snap_id;
1905
1906 rbd_assert(osd_req != NULL);
1907
1908 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1909 ceph_osdc_build_request(osd_req, obj_request->offset,
1910 NULL, snap_id, NULL);
1911 }
1912
1913 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1914 {
1915 struct rbd_img_request *img_request = obj_request->img_request;
1916 struct ceph_osd_request *osd_req = obj_request->osd_req;
1917 struct ceph_snap_context *snapc;
1918 struct timespec mtime = CURRENT_TIME;
1919
1920 rbd_assert(osd_req != NULL);
1921
1922 snapc = img_request ? img_request->snapc : NULL;
1923 ceph_osdc_build_request(osd_req, obj_request->offset,
1924 snapc, CEPH_NOSNAP, &mtime);
1925 }
1926
1927 /*
1928 * Create an osd request. A read request has one osd op (read).
1929 * A write request has either one (watch) or two (hint+write) osd ops.
1930 * (All rbd data writes are prefixed with an allocation hint op, but
1931 * technically osd watch is a write request, hence this distinction.)
1932 */
1933 static struct ceph_osd_request *rbd_osd_req_create(
1934 struct rbd_device *rbd_dev,
1935 enum obj_operation_type op_type,
1936 unsigned int num_ops,
1937 struct rbd_obj_request *obj_request)
1938 {
1939 struct ceph_snap_context *snapc = NULL;
1940 struct ceph_osd_client *osdc;
1941 struct ceph_osd_request *osd_req;
1942
1943 if (obj_request_img_data_test(obj_request) &&
1944 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1945 struct rbd_img_request *img_request = obj_request->img_request;
1946 if (op_type == OBJ_OP_WRITE) {
1947 rbd_assert(img_request_write_test(img_request));
1948 } else {
1949 rbd_assert(img_request_discard_test(img_request));
1950 }
1951 snapc = img_request->snapc;
1952 }
1953
1954 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1955
1956 /* Allocate and initialize the request, for the num_ops ops */
1957
1958 osdc = &rbd_dev->rbd_client->client->osdc;
1959 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1960 GFP_ATOMIC);
1961 if (!osd_req)
1962 return NULL; /* ENOMEM */
1963
1964 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1965 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1966 else
1967 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1968
1969 osd_req->r_callback = rbd_osd_req_callback;
1970 osd_req->r_priv = obj_request;
1971
1972 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1973 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1974
1975 return osd_req;
1976 }
1977
1978 /*
1979 * Create a copyup osd request based on the information in the object
1980 * request supplied. A copyup request has two or three osd ops, a
1981 * copyup method call, potentially a hint op, and a write or truncate
1982 * or zero op.
1983 */
1984 static struct ceph_osd_request *
1985 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1986 {
1987 struct rbd_img_request *img_request;
1988 struct ceph_snap_context *snapc;
1989 struct rbd_device *rbd_dev;
1990 struct ceph_osd_client *osdc;
1991 struct ceph_osd_request *osd_req;
1992 int num_osd_ops = 3;
1993
1994 rbd_assert(obj_request_img_data_test(obj_request));
1995 img_request = obj_request->img_request;
1996 rbd_assert(img_request);
1997 rbd_assert(img_request_write_test(img_request) ||
1998 img_request_discard_test(img_request));
1999
2000 if (img_request_discard_test(img_request))
2001 num_osd_ops = 2;
2002
2003 /* Allocate and initialize the request, for all the ops */
2004
2005 snapc = img_request->snapc;
2006 rbd_dev = img_request->rbd_dev;
2007 osdc = &rbd_dev->rbd_client->client->osdc;
2008 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2009 false, GFP_ATOMIC);
2010 if (!osd_req)
2011 return NULL; /* ENOMEM */
2012
2013 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2014 osd_req->r_callback = rbd_osd_req_callback;
2015 osd_req->r_priv = obj_request;
2016
2017 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2018 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2019
2020 return osd_req;
2021 }
2022
2023
2024 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2025 {
2026 ceph_osdc_put_request(osd_req);
2027 }
2028
2029 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2030
2031 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2032 u64 offset, u64 length,
2033 enum obj_request_type type)
2034 {
2035 struct rbd_obj_request *obj_request;
2036 size_t size;
2037 char *name;
2038
2039 rbd_assert(obj_request_type_valid(type));
2040
2041 size = strlen(object_name) + 1;
2042 name = kmalloc(size, GFP_NOIO);
2043 if (!name)
2044 return NULL;
2045
2046 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2047 if (!obj_request) {
2048 kfree(name);
2049 return NULL;
2050 }
2051
2052 obj_request->object_name = memcpy(name, object_name, size);
2053 obj_request->offset = offset;
2054 obj_request->length = length;
2055 obj_request->flags = 0;
2056 obj_request->which = BAD_WHICH;
2057 obj_request->type = type;
2058 INIT_LIST_HEAD(&obj_request->links);
2059 init_completion(&obj_request->completion);
2060 kref_init(&obj_request->kref);
2061
2062 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2063 offset, length, (int)type, obj_request);
2064
2065 return obj_request;
2066 }
2067
2068 static void rbd_obj_request_destroy(struct kref *kref)
2069 {
2070 struct rbd_obj_request *obj_request;
2071
2072 obj_request = container_of(kref, struct rbd_obj_request, kref);
2073
2074 dout("%s: obj %p\n", __func__, obj_request);
2075
2076 rbd_assert(obj_request->img_request == NULL);
2077 rbd_assert(obj_request->which == BAD_WHICH);
2078
2079 if (obj_request->osd_req)
2080 rbd_osd_req_destroy(obj_request->osd_req);
2081
2082 rbd_assert(obj_request_type_valid(obj_request->type));
2083 switch (obj_request->type) {
2084 case OBJ_REQUEST_NODATA:
2085 break; /* Nothing to do */
2086 case OBJ_REQUEST_BIO:
2087 if (obj_request->bio_list)
2088 bio_chain_put(obj_request->bio_list);
2089 break;
2090 case OBJ_REQUEST_PAGES:
2091 if (obj_request->pages)
2092 ceph_release_page_vector(obj_request->pages,
2093 obj_request->page_count);
2094 break;
2095 }
2096
2097 kfree(obj_request->object_name);
2098 obj_request->object_name = NULL;
2099 kmem_cache_free(rbd_obj_request_cache, obj_request);
2100 }
2101
2102 /* It's OK to call this for a device with no parent */
2103
2104 static void rbd_spec_put(struct rbd_spec *spec);
2105 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2106 {
2107 rbd_dev_remove_parent(rbd_dev);
2108 rbd_spec_put(rbd_dev->parent_spec);
2109 rbd_dev->parent_spec = NULL;
2110 rbd_dev->parent_overlap = 0;
2111 }
2112
2113 /*
2114 * Parent image reference counting is used to determine when an
2115 * image's parent fields can be safely torn down--after there are no
2116 * more in-flight requests to the parent image. When the last
2117 * reference is dropped, cleaning them up is safe.
2118 */
2119 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2120 {
2121 int counter;
2122
2123 if (!rbd_dev->parent_spec)
2124 return;
2125
2126 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2127 if (counter > 0)
2128 return;
2129
2130 /* Last reference; clean up parent data structures */
2131
2132 if (!counter)
2133 rbd_dev_unparent(rbd_dev);
2134 else
2135 rbd_warn(rbd_dev, "parent reference underflow");
2136 }
2137
2138 /*
2139 * If an image has a non-zero parent overlap, get a reference to its
2140 * parent.
2141 *
2142 * Returns true if the rbd device has a parent with a non-zero
2143 * overlap and a reference for it was successfully taken, or
2144 * false otherwise.
2145 */
2146 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2147 {
2148 int counter = 0;
2149
2150 if (!rbd_dev->parent_spec)
2151 return false;
2152
2153 down_read(&rbd_dev->header_rwsem);
2154 if (rbd_dev->parent_overlap)
2155 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2156 up_read(&rbd_dev->header_rwsem);
2157
2158 if (counter < 0)
2159 rbd_warn(rbd_dev, "parent reference overflow");
2160
2161 return counter > 0;
2162 }
2163
2164 /*
2165 * Caller is responsible for filling in the list of object requests
2166 * that comprises the image request, and the Linux request pointer
2167 * (if there is one).
2168 */
2169 static struct rbd_img_request *rbd_img_request_create(
2170 struct rbd_device *rbd_dev,
2171 u64 offset, u64 length,
2172 enum obj_operation_type op_type,
2173 struct ceph_snap_context *snapc)
2174 {
2175 struct rbd_img_request *img_request;
2176
2177 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2178 if (!img_request)
2179 return NULL;
2180
2181 img_request->rq = NULL;
2182 img_request->rbd_dev = rbd_dev;
2183 img_request->offset = offset;
2184 img_request->length = length;
2185 img_request->flags = 0;
2186 if (op_type == OBJ_OP_DISCARD) {
2187 img_request_discard_set(img_request);
2188 img_request->snapc = snapc;
2189 } else if (op_type == OBJ_OP_WRITE) {
2190 img_request_write_set(img_request);
2191 img_request->snapc = snapc;
2192 } else {
2193 img_request->snap_id = rbd_dev->spec->snap_id;
2194 }
2195 if (rbd_dev_parent_get(rbd_dev))
2196 img_request_layered_set(img_request);
2197 spin_lock_init(&img_request->completion_lock);
2198 img_request->next_completion = 0;
2199 img_request->callback = NULL;
2200 img_request->result = 0;
2201 img_request->obj_request_count = 0;
2202 INIT_LIST_HEAD(&img_request->obj_requests);
2203 kref_init(&img_request->kref);
2204
2205 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2206 obj_op_name(op_type), offset, length, img_request);
2207
2208 return img_request;
2209 }
2210
2211 static void rbd_img_request_destroy(struct kref *kref)
2212 {
2213 struct rbd_img_request *img_request;
2214 struct rbd_obj_request *obj_request;
2215 struct rbd_obj_request *next_obj_request;
2216
2217 img_request = container_of(kref, struct rbd_img_request, kref);
2218
2219 dout("%s: img %p\n", __func__, img_request);
2220
2221 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2222 rbd_img_obj_request_del(img_request, obj_request);
2223 rbd_assert(img_request->obj_request_count == 0);
2224
2225 if (img_request_layered_test(img_request)) {
2226 img_request_layered_clear(img_request);
2227 rbd_dev_parent_put(img_request->rbd_dev);
2228 }
2229
2230 if (img_request_write_test(img_request) ||
2231 img_request_discard_test(img_request))
2232 ceph_put_snap_context(img_request->snapc);
2233
2234 kmem_cache_free(rbd_img_request_cache, img_request);
2235 }
2236
2237 static struct rbd_img_request *rbd_parent_request_create(
2238 struct rbd_obj_request *obj_request,
2239 u64 img_offset, u64 length)
2240 {
2241 struct rbd_img_request *parent_request;
2242 struct rbd_device *rbd_dev;
2243
2244 rbd_assert(obj_request->img_request);
2245 rbd_dev = obj_request->img_request->rbd_dev;
2246
2247 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2248 length, OBJ_OP_READ, NULL);
2249 if (!parent_request)
2250 return NULL;
2251
2252 img_request_child_set(parent_request);
2253 rbd_obj_request_get(obj_request);
2254 parent_request->obj_request = obj_request;
2255
2256 return parent_request;
2257 }
2258
2259 static void rbd_parent_request_destroy(struct kref *kref)
2260 {
2261 struct rbd_img_request *parent_request;
2262 struct rbd_obj_request *orig_request;
2263
2264 parent_request = container_of(kref, struct rbd_img_request, kref);
2265 orig_request = parent_request->obj_request;
2266
2267 parent_request->obj_request = NULL;
2268 rbd_obj_request_put(orig_request);
2269 img_request_child_clear(parent_request);
2270
2271 rbd_img_request_destroy(kref);
2272 }
2273
2274 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2275 {
2276 struct rbd_img_request *img_request;
2277 unsigned int xferred;
2278 int result;
2279 bool more;
2280
2281 rbd_assert(obj_request_img_data_test(obj_request));
2282 img_request = obj_request->img_request;
2283
2284 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2285 xferred = (unsigned int)obj_request->xferred;
2286 result = obj_request->result;
2287 if (result) {
2288 struct rbd_device *rbd_dev = img_request->rbd_dev;
2289 enum obj_operation_type op_type;
2290
2291 if (img_request_discard_test(img_request))
2292 op_type = OBJ_OP_DISCARD;
2293 else if (img_request_write_test(img_request))
2294 op_type = OBJ_OP_WRITE;
2295 else
2296 op_type = OBJ_OP_READ;
2297
2298 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2299 obj_op_name(op_type), obj_request->length,
2300 obj_request->img_offset, obj_request->offset);
2301 rbd_warn(rbd_dev, " result %d xferred %x",
2302 result, xferred);
2303 if (!img_request->result)
2304 img_request->result = result;
2305 /*
2306 * Need to end I/O on the entire obj_request worth of
2307 * bytes in case of error.
2308 */
2309 xferred = obj_request->length;
2310 }
2311
2312 /* Image object requests don't own their page array */
2313
2314 if (obj_request->type == OBJ_REQUEST_PAGES) {
2315 obj_request->pages = NULL;
2316 obj_request->page_count = 0;
2317 }
2318
2319 if (img_request_child_test(img_request)) {
2320 rbd_assert(img_request->obj_request != NULL);
2321 more = obj_request->which < img_request->obj_request_count - 1;
2322 } else {
2323 rbd_assert(img_request->rq != NULL);
2324
2325 more = blk_update_request(img_request->rq, result, xferred);
2326 if (!more)
2327 __blk_mq_end_request(img_request->rq, result);
2328 }
2329
2330 return more;
2331 }
2332
2333 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2334 {
2335 struct rbd_img_request *img_request;
2336 u32 which = obj_request->which;
2337 bool more = true;
2338
2339 rbd_assert(obj_request_img_data_test(obj_request));
2340 img_request = obj_request->img_request;
2341
2342 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2343 rbd_assert(img_request != NULL);
2344 rbd_assert(img_request->obj_request_count > 0);
2345 rbd_assert(which != BAD_WHICH);
2346 rbd_assert(which < img_request->obj_request_count);
2347
2348 spin_lock_irq(&img_request->completion_lock);
2349 if (which != img_request->next_completion)
2350 goto out;
2351
2352 for_each_obj_request_from(img_request, obj_request) {
2353 rbd_assert(more);
2354 rbd_assert(which < img_request->obj_request_count);
2355
2356 if (!obj_request_done_test(obj_request))
2357 break;
2358 more = rbd_img_obj_end_request(obj_request);
2359 which++;
2360 }
2361
2362 rbd_assert(more ^ (which == img_request->obj_request_count));
2363 img_request->next_completion = which;
2364 out:
2365 spin_unlock_irq(&img_request->completion_lock);
2366 rbd_img_request_put(img_request);
2367
2368 if (!more)
2369 rbd_img_request_complete(img_request);
2370 }
2371
2372 /*
2373 * Add individual osd ops to the given ceph_osd_request and prepare
2374 * them for submission. num_ops is the current number of
2375 * osd operations already to the object request.
2376 */
2377 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2378 struct ceph_osd_request *osd_request,
2379 enum obj_operation_type op_type,
2380 unsigned int num_ops)
2381 {
2382 struct rbd_img_request *img_request = obj_request->img_request;
2383 struct rbd_device *rbd_dev = img_request->rbd_dev;
2384 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2385 u64 offset = obj_request->offset;
2386 u64 length = obj_request->length;
2387 u64 img_end;
2388 u16 opcode;
2389
2390 if (op_type == OBJ_OP_DISCARD) {
2391 if (!offset && length == object_size &&
2392 (!img_request_layered_test(img_request) ||
2393 !obj_request_overlaps_parent(obj_request))) {
2394 opcode = CEPH_OSD_OP_DELETE;
2395 } else if ((offset + length == object_size)) {
2396 opcode = CEPH_OSD_OP_TRUNCATE;
2397 } else {
2398 down_read(&rbd_dev->header_rwsem);
2399 img_end = rbd_dev->header.image_size;
2400 up_read(&rbd_dev->header_rwsem);
2401
2402 if (obj_request->img_offset + length == img_end)
2403 opcode = CEPH_OSD_OP_TRUNCATE;
2404 else
2405 opcode = CEPH_OSD_OP_ZERO;
2406 }
2407 } else if (op_type == OBJ_OP_WRITE) {
2408 if (!offset && length == object_size)
2409 opcode = CEPH_OSD_OP_WRITEFULL;
2410 else
2411 opcode = CEPH_OSD_OP_WRITE;
2412 osd_req_op_alloc_hint_init(osd_request, num_ops,
2413 object_size, object_size);
2414 num_ops++;
2415 } else {
2416 opcode = CEPH_OSD_OP_READ;
2417 }
2418
2419 if (opcode == CEPH_OSD_OP_DELETE)
2420 osd_req_op_init(osd_request, num_ops, opcode, 0);
2421 else
2422 osd_req_op_extent_init(osd_request, num_ops, opcode,
2423 offset, length, 0, 0);
2424
2425 if (obj_request->type == OBJ_REQUEST_BIO)
2426 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2427 obj_request->bio_list, length);
2428 else if (obj_request->type == OBJ_REQUEST_PAGES)
2429 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2430 obj_request->pages, length,
2431 offset & ~PAGE_MASK, false, false);
2432
2433 /* Discards are also writes */
2434 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2435 rbd_osd_req_format_write(obj_request);
2436 else
2437 rbd_osd_req_format_read(obj_request);
2438 }
2439
2440 /*
2441 * Split up an image request into one or more object requests, each
2442 * to a different object. The "type" parameter indicates whether
2443 * "data_desc" is the pointer to the head of a list of bio
2444 * structures, or the base of a page array. In either case this
2445 * function assumes data_desc describes memory sufficient to hold
2446 * all data described by the image request.
2447 */
2448 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2449 enum obj_request_type type,
2450 void *data_desc)
2451 {
2452 struct rbd_device *rbd_dev = img_request->rbd_dev;
2453 struct rbd_obj_request *obj_request = NULL;
2454 struct rbd_obj_request *next_obj_request;
2455 struct bio *bio_list = NULL;
2456 unsigned int bio_offset = 0;
2457 struct page **pages = NULL;
2458 enum obj_operation_type op_type;
2459 u64 img_offset;
2460 u64 resid;
2461
2462 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2463 (int)type, data_desc);
2464
2465 img_offset = img_request->offset;
2466 resid = img_request->length;
2467 rbd_assert(resid > 0);
2468 op_type = rbd_img_request_op_type(img_request);
2469
2470 if (type == OBJ_REQUEST_BIO) {
2471 bio_list = data_desc;
2472 rbd_assert(img_offset ==
2473 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2474 } else if (type == OBJ_REQUEST_PAGES) {
2475 pages = data_desc;
2476 }
2477
2478 while (resid) {
2479 struct ceph_osd_request *osd_req;
2480 const char *object_name;
2481 u64 offset;
2482 u64 length;
2483
2484 object_name = rbd_segment_name(rbd_dev, img_offset);
2485 if (!object_name)
2486 goto out_unwind;
2487 offset = rbd_segment_offset(rbd_dev, img_offset);
2488 length = rbd_segment_length(rbd_dev, img_offset, resid);
2489 obj_request = rbd_obj_request_create(object_name,
2490 offset, length, type);
2491 /* object request has its own copy of the object name */
2492 rbd_segment_name_free(object_name);
2493 if (!obj_request)
2494 goto out_unwind;
2495
2496 /*
2497 * set obj_request->img_request before creating the
2498 * osd_request so that it gets the right snapc
2499 */
2500 rbd_img_obj_request_add(img_request, obj_request);
2501
2502 if (type == OBJ_REQUEST_BIO) {
2503 unsigned int clone_size;
2504
2505 rbd_assert(length <= (u64)UINT_MAX);
2506 clone_size = (unsigned int)length;
2507 obj_request->bio_list =
2508 bio_chain_clone_range(&bio_list,
2509 &bio_offset,
2510 clone_size,
2511 GFP_ATOMIC);
2512 if (!obj_request->bio_list)
2513 goto out_unwind;
2514 } else if (type == OBJ_REQUEST_PAGES) {
2515 unsigned int page_count;
2516
2517 obj_request->pages = pages;
2518 page_count = (u32)calc_pages_for(offset, length);
2519 obj_request->page_count = page_count;
2520 if ((offset + length) & ~PAGE_MASK)
2521 page_count--; /* more on last page */
2522 pages += page_count;
2523 }
2524
2525 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2526 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2527 obj_request);
2528 if (!osd_req)
2529 goto out_unwind;
2530
2531 obj_request->osd_req = osd_req;
2532 obj_request->callback = rbd_img_obj_callback;
2533 obj_request->img_offset = img_offset;
2534
2535 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2536
2537 rbd_img_request_get(img_request);
2538
2539 img_offset += length;
2540 resid -= length;
2541 }
2542
2543 return 0;
2544
2545 out_unwind:
2546 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2547 rbd_img_obj_request_del(img_request, obj_request);
2548
2549 return -ENOMEM;
2550 }
2551
2552 static void
2553 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2554 {
2555 struct rbd_img_request *img_request;
2556 struct rbd_device *rbd_dev;
2557 struct page **pages;
2558 u32 page_count;
2559
2560 dout("%s: obj %p\n", __func__, obj_request);
2561
2562 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2563 obj_request->type == OBJ_REQUEST_NODATA);
2564 rbd_assert(obj_request_img_data_test(obj_request));
2565 img_request = obj_request->img_request;
2566 rbd_assert(img_request);
2567
2568 rbd_dev = img_request->rbd_dev;
2569 rbd_assert(rbd_dev);
2570
2571 pages = obj_request->copyup_pages;
2572 rbd_assert(pages != NULL);
2573 obj_request->copyup_pages = NULL;
2574 page_count = obj_request->copyup_page_count;
2575 rbd_assert(page_count);
2576 obj_request->copyup_page_count = 0;
2577 ceph_release_page_vector(pages, page_count);
2578
2579 /*
2580 * We want the transfer count to reflect the size of the
2581 * original write request. There is no such thing as a
2582 * successful short write, so if the request was successful
2583 * we can just set it to the originally-requested length.
2584 */
2585 if (!obj_request->result)
2586 obj_request->xferred = obj_request->length;
2587
2588 obj_request_done_set(obj_request);
2589 }
2590
2591 static void
2592 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2593 {
2594 struct rbd_obj_request *orig_request;
2595 struct ceph_osd_request *osd_req;
2596 struct ceph_osd_client *osdc;
2597 struct rbd_device *rbd_dev;
2598 struct page **pages;
2599 enum obj_operation_type op_type;
2600 u32 page_count;
2601 int img_result;
2602 u64 parent_length;
2603
2604 rbd_assert(img_request_child_test(img_request));
2605
2606 /* First get what we need from the image request */
2607
2608 pages = img_request->copyup_pages;
2609 rbd_assert(pages != NULL);
2610 img_request->copyup_pages = NULL;
2611 page_count = img_request->copyup_page_count;
2612 rbd_assert(page_count);
2613 img_request->copyup_page_count = 0;
2614
2615 orig_request = img_request->obj_request;
2616 rbd_assert(orig_request != NULL);
2617 rbd_assert(obj_request_type_valid(orig_request->type));
2618 img_result = img_request->result;
2619 parent_length = img_request->length;
2620 rbd_assert(parent_length == img_request->xferred);
2621 rbd_img_request_put(img_request);
2622
2623 rbd_assert(orig_request->img_request);
2624 rbd_dev = orig_request->img_request->rbd_dev;
2625 rbd_assert(rbd_dev);
2626
2627 /*
2628 * If the overlap has become 0 (most likely because the
2629 * image has been flattened) we need to free the pages
2630 * and re-submit the original write request.
2631 */
2632 if (!rbd_dev->parent_overlap) {
2633 struct ceph_osd_client *osdc;
2634
2635 ceph_release_page_vector(pages, page_count);
2636 osdc = &rbd_dev->rbd_client->client->osdc;
2637 img_result = rbd_obj_request_submit(osdc, orig_request);
2638 if (!img_result)
2639 return;
2640 }
2641
2642 if (img_result)
2643 goto out_err;
2644
2645 /*
2646 * The original osd request is of no use to use any more.
2647 * We need a new one that can hold the three ops in a copyup
2648 * request. Allocate the new copyup osd request for the
2649 * original request, and release the old one.
2650 */
2651 img_result = -ENOMEM;
2652 osd_req = rbd_osd_req_create_copyup(orig_request);
2653 if (!osd_req)
2654 goto out_err;
2655 rbd_osd_req_destroy(orig_request->osd_req);
2656 orig_request->osd_req = osd_req;
2657 orig_request->copyup_pages = pages;
2658 orig_request->copyup_page_count = page_count;
2659
2660 /* Initialize the copyup op */
2661
2662 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2663 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2664 false, false);
2665
2666 /* Add the other op(s) */
2667
2668 op_type = rbd_img_request_op_type(orig_request->img_request);
2669 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2670
2671 /* All set, send it off. */
2672
2673 osdc = &rbd_dev->rbd_client->client->osdc;
2674 img_result = rbd_obj_request_submit(osdc, orig_request);
2675 if (!img_result)
2676 return;
2677 out_err:
2678 /* Record the error code and complete the request */
2679
2680 orig_request->result = img_result;
2681 orig_request->xferred = 0;
2682 obj_request_done_set(orig_request);
2683 rbd_obj_request_complete(orig_request);
2684 }
2685
2686 /*
2687 * Read from the parent image the range of data that covers the
2688 * entire target of the given object request. This is used for
2689 * satisfying a layered image write request when the target of an
2690 * object request from the image request does not exist.
2691 *
2692 * A page array big enough to hold the returned data is allocated
2693 * and supplied to rbd_img_request_fill() as the "data descriptor."
2694 * When the read completes, this page array will be transferred to
2695 * the original object request for the copyup operation.
2696 *
2697 * If an error occurs, record it as the result of the original
2698 * object request and mark it done so it gets completed.
2699 */
2700 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2701 {
2702 struct rbd_img_request *img_request = NULL;
2703 struct rbd_img_request *parent_request = NULL;
2704 struct rbd_device *rbd_dev;
2705 u64 img_offset;
2706 u64 length;
2707 struct page **pages = NULL;
2708 u32 page_count;
2709 int result;
2710
2711 rbd_assert(obj_request_img_data_test(obj_request));
2712 rbd_assert(obj_request_type_valid(obj_request->type));
2713
2714 img_request = obj_request->img_request;
2715 rbd_assert(img_request != NULL);
2716 rbd_dev = img_request->rbd_dev;
2717 rbd_assert(rbd_dev->parent != NULL);
2718
2719 /*
2720 * Determine the byte range covered by the object in the
2721 * child image to which the original request was to be sent.
2722 */
2723 img_offset = obj_request->img_offset - obj_request->offset;
2724 length = (u64)1 << rbd_dev->header.obj_order;
2725
2726 /*
2727 * There is no defined parent data beyond the parent
2728 * overlap, so limit what we read at that boundary if
2729 * necessary.
2730 */
2731 if (img_offset + length > rbd_dev->parent_overlap) {
2732 rbd_assert(img_offset < rbd_dev->parent_overlap);
2733 length = rbd_dev->parent_overlap - img_offset;
2734 }
2735
2736 /*
2737 * Allocate a page array big enough to receive the data read
2738 * from the parent.
2739 */
2740 page_count = (u32)calc_pages_for(0, length);
2741 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2742 if (IS_ERR(pages)) {
2743 result = PTR_ERR(pages);
2744 pages = NULL;
2745 goto out_err;
2746 }
2747
2748 result = -ENOMEM;
2749 parent_request = rbd_parent_request_create(obj_request,
2750 img_offset, length);
2751 if (!parent_request)
2752 goto out_err;
2753
2754 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2755 if (result)
2756 goto out_err;
2757 parent_request->copyup_pages = pages;
2758 parent_request->copyup_page_count = page_count;
2759
2760 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2761 result = rbd_img_request_submit(parent_request);
2762 if (!result)
2763 return 0;
2764
2765 parent_request->copyup_pages = NULL;
2766 parent_request->copyup_page_count = 0;
2767 parent_request->obj_request = NULL;
2768 rbd_obj_request_put(obj_request);
2769 out_err:
2770 if (pages)
2771 ceph_release_page_vector(pages, page_count);
2772 if (parent_request)
2773 rbd_img_request_put(parent_request);
2774 obj_request->result = result;
2775 obj_request->xferred = 0;
2776 obj_request_done_set(obj_request);
2777
2778 return result;
2779 }
2780
2781 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2782 {
2783 struct rbd_obj_request *orig_request;
2784 struct rbd_device *rbd_dev;
2785 int result;
2786
2787 rbd_assert(!obj_request_img_data_test(obj_request));
2788
2789 /*
2790 * All we need from the object request is the original
2791 * request and the result of the STAT op. Grab those, then
2792 * we're done with the request.
2793 */
2794 orig_request = obj_request->obj_request;
2795 obj_request->obj_request = NULL;
2796 rbd_obj_request_put(orig_request);
2797 rbd_assert(orig_request);
2798 rbd_assert(orig_request->img_request);
2799
2800 result = obj_request->result;
2801 obj_request->result = 0;
2802
2803 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2804 obj_request, orig_request, result,
2805 obj_request->xferred, obj_request->length);
2806 rbd_obj_request_put(obj_request);
2807
2808 /*
2809 * If the overlap has become 0 (most likely because the
2810 * image has been flattened) we need to free the pages
2811 * and re-submit the original write request.
2812 */
2813 rbd_dev = orig_request->img_request->rbd_dev;
2814 if (!rbd_dev->parent_overlap) {
2815 struct ceph_osd_client *osdc;
2816
2817 osdc = &rbd_dev->rbd_client->client->osdc;
2818 result = rbd_obj_request_submit(osdc, orig_request);
2819 if (!result)
2820 return;
2821 }
2822
2823 /*
2824 * Our only purpose here is to determine whether the object
2825 * exists, and we don't want to treat the non-existence as
2826 * an error. If something else comes back, transfer the
2827 * error to the original request and complete it now.
2828 */
2829 if (!result) {
2830 obj_request_existence_set(orig_request, true);
2831 } else if (result == -ENOENT) {
2832 obj_request_existence_set(orig_request, false);
2833 } else if (result) {
2834 orig_request->result = result;
2835 goto out;
2836 }
2837
2838 /*
2839 * Resubmit the original request now that we have recorded
2840 * whether the target object exists.
2841 */
2842 orig_request->result = rbd_img_obj_request_submit(orig_request);
2843 out:
2844 if (orig_request->result)
2845 rbd_obj_request_complete(orig_request);
2846 }
2847
2848 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2849 {
2850 struct rbd_obj_request *stat_request;
2851 struct rbd_device *rbd_dev;
2852 struct ceph_osd_client *osdc;
2853 struct page **pages = NULL;
2854 u32 page_count;
2855 size_t size;
2856 int ret;
2857
2858 /*
2859 * The response data for a STAT call consists of:
2860 * le64 length;
2861 * struct {
2862 * le32 tv_sec;
2863 * le32 tv_nsec;
2864 * } mtime;
2865 */
2866 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2867 page_count = (u32)calc_pages_for(0, size);
2868 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2869 if (IS_ERR(pages))
2870 return PTR_ERR(pages);
2871
2872 ret = -ENOMEM;
2873 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2874 OBJ_REQUEST_PAGES);
2875 if (!stat_request)
2876 goto out;
2877
2878 rbd_obj_request_get(obj_request);
2879 stat_request->obj_request = obj_request;
2880 stat_request->pages = pages;
2881 stat_request->page_count = page_count;
2882
2883 rbd_assert(obj_request->img_request);
2884 rbd_dev = obj_request->img_request->rbd_dev;
2885 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2886 stat_request);
2887 if (!stat_request->osd_req)
2888 goto out;
2889 stat_request->callback = rbd_img_obj_exists_callback;
2890
2891 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2892 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2893 false, false);
2894 rbd_osd_req_format_read(stat_request);
2895
2896 osdc = &rbd_dev->rbd_client->client->osdc;
2897 ret = rbd_obj_request_submit(osdc, stat_request);
2898 out:
2899 if (ret)
2900 rbd_obj_request_put(obj_request);
2901
2902 return ret;
2903 }
2904
2905 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2906 {
2907 struct rbd_img_request *img_request;
2908 struct rbd_device *rbd_dev;
2909
2910 rbd_assert(obj_request_img_data_test(obj_request));
2911
2912 img_request = obj_request->img_request;
2913 rbd_assert(img_request);
2914 rbd_dev = img_request->rbd_dev;
2915
2916 /* Reads */
2917 if (!img_request_write_test(img_request) &&
2918 !img_request_discard_test(img_request))
2919 return true;
2920
2921 /* Non-layered writes */
2922 if (!img_request_layered_test(img_request))
2923 return true;
2924
2925 /*
2926 * Layered writes outside of the parent overlap range don't
2927 * share any data with the parent.
2928 */
2929 if (!obj_request_overlaps_parent(obj_request))
2930 return true;
2931
2932 /*
2933 * Entire-object layered writes - we will overwrite whatever
2934 * parent data there is anyway.
2935 */
2936 if (!obj_request->offset &&
2937 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2938 return true;
2939
2940 /*
2941 * If the object is known to already exist, its parent data has
2942 * already been copied.
2943 */
2944 if (obj_request_known_test(obj_request) &&
2945 obj_request_exists_test(obj_request))
2946 return true;
2947
2948 return false;
2949 }
2950
2951 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2952 {
2953 if (img_obj_request_simple(obj_request)) {
2954 struct rbd_device *rbd_dev;
2955 struct ceph_osd_client *osdc;
2956
2957 rbd_dev = obj_request->img_request->rbd_dev;
2958 osdc = &rbd_dev->rbd_client->client->osdc;
2959
2960 return rbd_obj_request_submit(osdc, obj_request);
2961 }
2962
2963 /*
2964 * It's a layered write. The target object might exist but
2965 * we may not know that yet. If we know it doesn't exist,
2966 * start by reading the data for the full target object from
2967 * the parent so we can use it for a copyup to the target.
2968 */
2969 if (obj_request_known_test(obj_request))
2970 return rbd_img_obj_parent_read_full(obj_request);
2971
2972 /* We don't know whether the target exists. Go find out. */
2973
2974 return rbd_img_obj_exists_submit(obj_request);
2975 }
2976
2977 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2978 {
2979 struct rbd_obj_request *obj_request;
2980 struct rbd_obj_request *next_obj_request;
2981
2982 dout("%s: img %p\n", __func__, img_request);
2983 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2984 int ret;
2985
2986 ret = rbd_img_obj_request_submit(obj_request);
2987 if (ret)
2988 return ret;
2989 }
2990
2991 return 0;
2992 }
2993
2994 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2995 {
2996 struct rbd_obj_request *obj_request;
2997 struct rbd_device *rbd_dev;
2998 u64 obj_end;
2999 u64 img_xferred;
3000 int img_result;
3001
3002 rbd_assert(img_request_child_test(img_request));
3003
3004 /* First get what we need from the image request and release it */
3005
3006 obj_request = img_request->obj_request;
3007 img_xferred = img_request->xferred;
3008 img_result = img_request->result;
3009 rbd_img_request_put(img_request);
3010
3011 /*
3012 * If the overlap has become 0 (most likely because the
3013 * image has been flattened) we need to re-submit the
3014 * original request.
3015 */
3016 rbd_assert(obj_request);
3017 rbd_assert(obj_request->img_request);
3018 rbd_dev = obj_request->img_request->rbd_dev;
3019 if (!rbd_dev->parent_overlap) {
3020 struct ceph_osd_client *osdc;
3021
3022 osdc = &rbd_dev->rbd_client->client->osdc;
3023 img_result = rbd_obj_request_submit(osdc, obj_request);
3024 if (!img_result)
3025 return;
3026 }
3027
3028 obj_request->result = img_result;
3029 if (obj_request->result)
3030 goto out;
3031
3032 /*
3033 * We need to zero anything beyond the parent overlap
3034 * boundary. Since rbd_img_obj_request_read_callback()
3035 * will zero anything beyond the end of a short read, an
3036 * easy way to do this is to pretend the data from the
3037 * parent came up short--ending at the overlap boundary.
3038 */
3039 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3040 obj_end = obj_request->img_offset + obj_request->length;
3041 if (obj_end > rbd_dev->parent_overlap) {
3042 u64 xferred = 0;
3043
3044 if (obj_request->img_offset < rbd_dev->parent_overlap)
3045 xferred = rbd_dev->parent_overlap -
3046 obj_request->img_offset;
3047
3048 obj_request->xferred = min(img_xferred, xferred);
3049 } else {
3050 obj_request->xferred = img_xferred;
3051 }
3052 out:
3053 rbd_img_obj_request_read_callback(obj_request);
3054 rbd_obj_request_complete(obj_request);
3055 }
3056
3057 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3058 {
3059 struct rbd_img_request *img_request;
3060 int result;
3061
3062 rbd_assert(obj_request_img_data_test(obj_request));
3063 rbd_assert(obj_request->img_request != NULL);
3064 rbd_assert(obj_request->result == (s32) -ENOENT);
3065 rbd_assert(obj_request_type_valid(obj_request->type));
3066
3067 /* rbd_read_finish(obj_request, obj_request->length); */
3068 img_request = rbd_parent_request_create(obj_request,
3069 obj_request->img_offset,
3070 obj_request->length);
3071 result = -ENOMEM;
3072 if (!img_request)
3073 goto out_err;
3074
3075 if (obj_request->type == OBJ_REQUEST_BIO)
3076 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3077 obj_request->bio_list);
3078 else
3079 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3080 obj_request->pages);
3081 if (result)
3082 goto out_err;
3083
3084 img_request->callback = rbd_img_parent_read_callback;
3085 result = rbd_img_request_submit(img_request);
3086 if (result)
3087 goto out_err;
3088
3089 return;
3090 out_err:
3091 if (img_request)
3092 rbd_img_request_put(img_request);
3093 obj_request->result = result;
3094 obj_request->xferred = 0;
3095 obj_request_done_set(obj_request);
3096 }
3097
3098 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3099 {
3100 struct rbd_obj_request *obj_request;
3101 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3102 int ret;
3103
3104 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3105 OBJ_REQUEST_NODATA);
3106 if (!obj_request)
3107 return -ENOMEM;
3108
3109 ret = -ENOMEM;
3110 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3111 obj_request);
3112 if (!obj_request->osd_req)
3113 goto out;
3114
3115 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3116 notify_id, 0, 0);
3117 rbd_osd_req_format_read(obj_request);
3118
3119 ret = rbd_obj_request_submit(osdc, obj_request);
3120 if (ret)
3121 goto out;
3122 ret = rbd_obj_request_wait(obj_request);
3123 out:
3124 rbd_obj_request_put(obj_request);
3125
3126 return ret;
3127 }
3128
3129 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3130 {
3131 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3132 int ret;
3133
3134 if (!rbd_dev)
3135 return;
3136
3137 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3138 rbd_dev->header_name, (unsigned long long)notify_id,
3139 (unsigned int)opcode);
3140
3141 /*
3142 * Until adequate refresh error handling is in place, there is
3143 * not much we can do here, except warn.
3144 *
3145 * See http://tracker.ceph.com/issues/5040
3146 */
3147 ret = rbd_dev_refresh(rbd_dev);
3148 if (ret)
3149 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3150
3151 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3152 if (ret)
3153 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3154 }
3155
3156 /*
3157 * Send a (un)watch request and wait for the ack. Return a request
3158 * with a ref held on success or error.
3159 */
3160 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3161 struct rbd_device *rbd_dev,
3162 bool watch)
3163 {
3164 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3165 struct ceph_options *opts = osdc->client->options;
3166 struct rbd_obj_request *obj_request;
3167 int ret;
3168
3169 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3170 OBJ_REQUEST_NODATA);
3171 if (!obj_request)
3172 return ERR_PTR(-ENOMEM);
3173
3174 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3175 obj_request);
3176 if (!obj_request->osd_req) {
3177 ret = -ENOMEM;
3178 goto out;
3179 }
3180
3181 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3182 rbd_dev->watch_event->cookie, 0, watch);
3183 rbd_osd_req_format_write(obj_request);
3184
3185 if (watch)
3186 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3187
3188 ret = rbd_obj_request_submit(osdc, obj_request);
3189 if (ret)
3190 goto out;
3191
3192 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3193 if (ret)
3194 goto out;
3195
3196 ret = obj_request->result;
3197 if (ret) {
3198 if (watch)
3199 rbd_obj_request_end(obj_request);
3200 goto out;
3201 }
3202
3203 return obj_request;
3204
3205 out:
3206 rbd_obj_request_put(obj_request);
3207 return ERR_PTR(ret);
3208 }
3209
3210 /*
3211 * Initiate a watch request, synchronously.
3212 */
3213 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3214 {
3215 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3216 struct rbd_obj_request *obj_request;
3217 int ret;
3218
3219 rbd_assert(!rbd_dev->watch_event);
3220 rbd_assert(!rbd_dev->watch_request);
3221
3222 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3223 &rbd_dev->watch_event);
3224 if (ret < 0)
3225 return ret;
3226
3227 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3228 if (IS_ERR(obj_request)) {
3229 ceph_osdc_cancel_event(rbd_dev->watch_event);
3230 rbd_dev->watch_event = NULL;
3231 return PTR_ERR(obj_request);
3232 }
3233
3234 /*
3235 * A watch request is set to linger, so the underlying osd
3236 * request won't go away until we unregister it. We retain
3237 * a pointer to the object request during that time (in
3238 * rbd_dev->watch_request), so we'll keep a reference to it.
3239 * We'll drop that reference after we've unregistered it in
3240 * rbd_dev_header_unwatch_sync().
3241 */
3242 rbd_dev->watch_request = obj_request;
3243
3244 return 0;
3245 }
3246
3247 /*
3248 * Tear down a watch request, synchronously.
3249 */
3250 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3251 {
3252 struct rbd_obj_request *obj_request;
3253
3254 rbd_assert(rbd_dev->watch_event);
3255 rbd_assert(rbd_dev->watch_request);
3256
3257 rbd_obj_request_end(rbd_dev->watch_request);
3258 rbd_obj_request_put(rbd_dev->watch_request);
3259 rbd_dev->watch_request = NULL;
3260
3261 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3262 if (!IS_ERR(obj_request))
3263 rbd_obj_request_put(obj_request);
3264 else
3265 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3266 PTR_ERR(obj_request));
3267
3268 ceph_osdc_cancel_event(rbd_dev->watch_event);
3269 rbd_dev->watch_event = NULL;
3270 }
3271
3272 /*
3273 * Synchronous osd object method call. Returns the number of bytes
3274 * returned in the outbound buffer, or a negative error code.
3275 */
3276 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3277 const char *object_name,
3278 const char *class_name,
3279 const char *method_name,
3280 const void *outbound,
3281 size_t outbound_size,
3282 void *inbound,
3283 size_t inbound_size)
3284 {
3285 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3286 struct rbd_obj_request *obj_request;
3287 struct page **pages;
3288 u32 page_count;
3289 int ret;
3290
3291 /*
3292 * Method calls are ultimately read operations. The result
3293 * should placed into the inbound buffer provided. They
3294 * also supply outbound data--parameters for the object
3295 * method. Currently if this is present it will be a
3296 * snapshot id.
3297 */
3298 page_count = (u32)calc_pages_for(0, inbound_size);
3299 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3300 if (IS_ERR(pages))
3301 return PTR_ERR(pages);
3302
3303 ret = -ENOMEM;
3304 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3305 OBJ_REQUEST_PAGES);
3306 if (!obj_request)
3307 goto out;
3308
3309 obj_request->pages = pages;
3310 obj_request->page_count = page_count;
3311
3312 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3313 obj_request);
3314 if (!obj_request->osd_req)
3315 goto out;
3316
3317 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3318 class_name, method_name);
3319 if (outbound_size) {
3320 struct ceph_pagelist *pagelist;
3321
3322 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3323 if (!pagelist)
3324 goto out;
3325
3326 ceph_pagelist_init(pagelist);
3327 ceph_pagelist_append(pagelist, outbound, outbound_size);
3328 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3329 pagelist);
3330 }
3331 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3332 obj_request->pages, inbound_size,
3333 0, false, false);
3334 rbd_osd_req_format_read(obj_request);
3335
3336 ret = rbd_obj_request_submit(osdc, obj_request);
3337 if (ret)
3338 goto out;
3339 ret = rbd_obj_request_wait(obj_request);
3340 if (ret)
3341 goto out;
3342
3343 ret = obj_request->result;
3344 if (ret < 0)
3345 goto out;
3346
3347 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3348 ret = (int)obj_request->xferred;
3349 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3350 out:
3351 if (obj_request)
3352 rbd_obj_request_put(obj_request);
3353 else
3354 ceph_release_page_vector(pages, page_count);
3355
3356 return ret;
3357 }
3358
3359 static void rbd_queue_workfn(struct work_struct *work)
3360 {
3361 struct request *rq = blk_mq_rq_from_pdu(work);
3362 struct rbd_device *rbd_dev = rq->q->queuedata;
3363 struct rbd_img_request *img_request;
3364 struct ceph_snap_context *snapc = NULL;
3365 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3366 u64 length = blk_rq_bytes(rq);
3367 enum obj_operation_type op_type;
3368 u64 mapping_size;
3369 int result;
3370
3371 if (rq->cmd_type != REQ_TYPE_FS) {
3372 dout("%s: non-fs request type %d\n", __func__,
3373 (int) rq->cmd_type);
3374 result = -EIO;
3375 goto err;
3376 }
3377
3378 if (rq->cmd_flags & REQ_DISCARD)
3379 op_type = OBJ_OP_DISCARD;
3380 else if (rq->cmd_flags & REQ_WRITE)
3381 op_type = OBJ_OP_WRITE;
3382 else
3383 op_type = OBJ_OP_READ;
3384
3385 /* Ignore/skip any zero-length requests */
3386
3387 if (!length) {
3388 dout("%s: zero-length request\n", __func__);
3389 result = 0;
3390 goto err_rq;
3391 }
3392
3393 /* Only reads are allowed to a read-only device */
3394
3395 if (op_type != OBJ_OP_READ) {
3396 if (rbd_dev->mapping.read_only) {
3397 result = -EROFS;
3398 goto err_rq;
3399 }
3400 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3401 }
3402
3403 /*
3404 * Quit early if the mapped snapshot no longer exists. It's
3405 * still possible the snapshot will have disappeared by the
3406 * time our request arrives at the osd, but there's no sense in
3407 * sending it if we already know.
3408 */
3409 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3410 dout("request for non-existent snapshot");
3411 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3412 result = -ENXIO;
3413 goto err_rq;
3414 }
3415
3416 if (offset && length > U64_MAX - offset + 1) {
3417 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3418 length);
3419 result = -EINVAL;
3420 goto err_rq; /* Shouldn't happen */
3421 }
3422
3423 blk_mq_start_request(rq);
3424
3425 down_read(&rbd_dev->header_rwsem);
3426 mapping_size = rbd_dev->mapping.size;
3427 if (op_type != OBJ_OP_READ) {
3428 snapc = rbd_dev->header.snapc;
3429 ceph_get_snap_context(snapc);
3430 }
3431 up_read(&rbd_dev->header_rwsem);
3432
3433 if (offset + length > mapping_size) {
3434 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3435 length, mapping_size);
3436 result = -EIO;
3437 goto err_rq;
3438 }
3439
3440 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3441 snapc);
3442 if (!img_request) {
3443 result = -ENOMEM;
3444 goto err_rq;
3445 }
3446 img_request->rq = rq;
3447
3448 if (op_type == OBJ_OP_DISCARD)
3449 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3450 NULL);
3451 else
3452 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3453 rq->bio);
3454 if (result)
3455 goto err_img_request;
3456
3457 result = rbd_img_request_submit(img_request);
3458 if (result)
3459 goto err_img_request;
3460
3461 return;
3462
3463 err_img_request:
3464 rbd_img_request_put(img_request);
3465 err_rq:
3466 if (result)
3467 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3468 obj_op_name(op_type), length, offset, result);
3469 ceph_put_snap_context(snapc);
3470 err:
3471 blk_mq_end_request(rq, result);
3472 }
3473
3474 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3475 const struct blk_mq_queue_data *bd)
3476 {
3477 struct request *rq = bd->rq;
3478 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3479
3480 queue_work(rbd_wq, work);
3481 return BLK_MQ_RQ_QUEUE_OK;
3482 }
3483
3484 static void rbd_free_disk(struct rbd_device *rbd_dev)
3485 {
3486 struct gendisk *disk = rbd_dev->disk;
3487
3488 if (!disk)
3489 return;
3490
3491 rbd_dev->disk = NULL;
3492 if (disk->flags & GENHD_FL_UP) {
3493 del_gendisk(disk);
3494 if (disk->queue)
3495 blk_cleanup_queue(disk->queue);
3496 blk_mq_free_tag_set(&rbd_dev->tag_set);
3497 }
3498 put_disk(disk);
3499 }
3500
3501 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3502 const char *object_name,
3503 u64 offset, u64 length, void *buf)
3504
3505 {
3506 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3507 struct rbd_obj_request *obj_request;
3508 struct page **pages = NULL;
3509 u32 page_count;
3510 size_t size;
3511 int ret;
3512
3513 page_count = (u32) calc_pages_for(offset, length);
3514 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3515 if (IS_ERR(pages))
3516 return PTR_ERR(pages);
3517
3518 ret = -ENOMEM;
3519 obj_request = rbd_obj_request_create(object_name, offset, length,
3520 OBJ_REQUEST_PAGES);
3521 if (!obj_request)
3522 goto out;
3523
3524 obj_request->pages = pages;
3525 obj_request->page_count = page_count;
3526
3527 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3528 obj_request);
3529 if (!obj_request->osd_req)
3530 goto out;
3531
3532 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3533 offset, length, 0, 0);
3534 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3535 obj_request->pages,
3536 obj_request->length,
3537 obj_request->offset & ~PAGE_MASK,
3538 false, false);
3539 rbd_osd_req_format_read(obj_request);
3540
3541 ret = rbd_obj_request_submit(osdc, obj_request);
3542 if (ret)
3543 goto out;
3544 ret = rbd_obj_request_wait(obj_request);
3545 if (ret)
3546 goto out;
3547
3548 ret = obj_request->result;
3549 if (ret < 0)
3550 goto out;
3551
3552 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3553 size = (size_t) obj_request->xferred;
3554 ceph_copy_from_page_vector(pages, buf, 0, size);
3555 rbd_assert(size <= (size_t)INT_MAX);
3556 ret = (int)size;
3557 out:
3558 if (obj_request)
3559 rbd_obj_request_put(obj_request);
3560 else
3561 ceph_release_page_vector(pages, page_count);
3562
3563 return ret;
3564 }
3565
3566 /*
3567 * Read the complete header for the given rbd device. On successful
3568 * return, the rbd_dev->header field will contain up-to-date
3569 * information about the image.
3570 */
3571 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3572 {
3573 struct rbd_image_header_ondisk *ondisk = NULL;
3574 u32 snap_count = 0;
3575 u64 names_size = 0;
3576 u32 want_count;
3577 int ret;
3578
3579 /*
3580 * The complete header will include an array of its 64-bit
3581 * snapshot ids, followed by the names of those snapshots as
3582 * a contiguous block of NUL-terminated strings. Note that
3583 * the number of snapshots could change by the time we read
3584 * it in, in which case we re-read it.
3585 */
3586 do {
3587 size_t size;
3588
3589 kfree(ondisk);
3590
3591 size = sizeof (*ondisk);
3592 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3593 size += names_size;
3594 ondisk = kmalloc(size, GFP_KERNEL);
3595 if (!ondisk)
3596 return -ENOMEM;
3597
3598 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3599 0, size, ondisk);
3600 if (ret < 0)
3601 goto out;
3602 if ((size_t)ret < size) {
3603 ret = -ENXIO;
3604 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3605 size, ret);
3606 goto out;
3607 }
3608 if (!rbd_dev_ondisk_valid(ondisk)) {
3609 ret = -ENXIO;
3610 rbd_warn(rbd_dev, "invalid header");
3611 goto out;
3612 }
3613
3614 names_size = le64_to_cpu(ondisk->snap_names_len);
3615 want_count = snap_count;
3616 snap_count = le32_to_cpu(ondisk->snap_count);
3617 } while (snap_count != want_count);
3618
3619 ret = rbd_header_from_disk(rbd_dev, ondisk);
3620 out:
3621 kfree(ondisk);
3622
3623 return ret;
3624 }
3625
3626 /*
3627 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3628 * has disappeared from the (just updated) snapshot context.
3629 */
3630 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3631 {
3632 u64 snap_id;
3633
3634 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3635 return;
3636
3637 snap_id = rbd_dev->spec->snap_id;
3638 if (snap_id == CEPH_NOSNAP)
3639 return;
3640
3641 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3642 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3643 }
3644
3645 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3646 {
3647 sector_t size;
3648 bool removing;
3649
3650 /*
3651 * Don't hold the lock while doing disk operations,
3652 * or lock ordering will conflict with the bdev mutex via:
3653 * rbd_add() -> blkdev_get() -> rbd_open()
3654 */
3655 spin_lock_irq(&rbd_dev->lock);
3656 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3657 spin_unlock_irq(&rbd_dev->lock);
3658 /*
3659 * If the device is being removed, rbd_dev->disk has
3660 * been destroyed, so don't try to update its size
3661 */
3662 if (!removing) {
3663 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3664 dout("setting size to %llu sectors", (unsigned long long)size);
3665 set_capacity(rbd_dev->disk, size);
3666 revalidate_disk(rbd_dev->disk);
3667 }
3668 }
3669
3670 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3671 {
3672 u64 mapping_size;
3673 int ret;
3674
3675 down_write(&rbd_dev->header_rwsem);
3676 mapping_size = rbd_dev->mapping.size;
3677
3678 ret = rbd_dev_header_info(rbd_dev);
3679 if (ret)
3680 goto out;
3681
3682 /*
3683 * If there is a parent, see if it has disappeared due to the
3684 * mapped image getting flattened.
3685 */
3686 if (rbd_dev->parent) {
3687 ret = rbd_dev_v2_parent_info(rbd_dev);
3688 if (ret)
3689 goto out;
3690 }
3691
3692 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3693 rbd_dev->mapping.size = rbd_dev->header.image_size;
3694 } else {
3695 /* validate mapped snapshot's EXISTS flag */
3696 rbd_exists_validate(rbd_dev);
3697 }
3698
3699 out:
3700 up_write(&rbd_dev->header_rwsem);
3701 if (!ret && mapping_size != rbd_dev->mapping.size)
3702 rbd_dev_update_size(rbd_dev);
3703
3704 return ret;
3705 }
3706
3707 static int rbd_init_request(void *data, struct request *rq,
3708 unsigned int hctx_idx, unsigned int request_idx,
3709 unsigned int numa_node)
3710 {
3711 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3712
3713 INIT_WORK(work, rbd_queue_workfn);
3714 return 0;
3715 }
3716
3717 static struct blk_mq_ops rbd_mq_ops = {
3718 .queue_rq = rbd_queue_rq,
3719 .map_queue = blk_mq_map_queue,
3720 .init_request = rbd_init_request,
3721 };
3722
3723 static int rbd_init_disk(struct rbd_device *rbd_dev)
3724 {
3725 struct gendisk *disk;
3726 struct request_queue *q;
3727 u64 segment_size;
3728 int err;
3729
3730 /* create gendisk info */
3731 disk = alloc_disk(single_major ?
3732 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3733 RBD_MINORS_PER_MAJOR);
3734 if (!disk)
3735 return -ENOMEM;
3736
3737 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3738 rbd_dev->dev_id);
3739 disk->major = rbd_dev->major;
3740 disk->first_minor = rbd_dev->minor;
3741 if (single_major)
3742 disk->flags |= GENHD_FL_EXT_DEVT;
3743 disk->fops = &rbd_bd_ops;
3744 disk->private_data = rbd_dev;
3745
3746 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3747 rbd_dev->tag_set.ops = &rbd_mq_ops;
3748 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3749 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3750 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3751 rbd_dev->tag_set.nr_hw_queues = 1;
3752 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3753
3754 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3755 if (err)
3756 goto out_disk;
3757
3758 q = blk_mq_init_queue(&rbd_dev->tag_set);
3759 if (IS_ERR(q)) {
3760 err = PTR_ERR(q);
3761 goto out_tag_set;
3762 }
3763
3764 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3765 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3766
3767 /* set io sizes to object size */
3768 segment_size = rbd_obj_bytes(&rbd_dev->header);
3769 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3770 q->limits.max_sectors = queue_max_hw_sectors(q);
3771 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3772 blk_queue_max_segment_size(q, segment_size);
3773 blk_queue_io_min(q, segment_size);
3774 blk_queue_io_opt(q, segment_size);
3775
3776 /* enable the discard support */
3777 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3778 q->limits.discard_granularity = segment_size;
3779 q->limits.discard_alignment = segment_size;
3780 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3781 q->limits.discard_zeroes_data = 1;
3782
3783 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3784 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3785
3786 disk->queue = q;
3787
3788 q->queuedata = rbd_dev;
3789
3790 rbd_dev->disk = disk;
3791
3792 return 0;
3793 out_tag_set:
3794 blk_mq_free_tag_set(&rbd_dev->tag_set);
3795 out_disk:
3796 put_disk(disk);
3797 return err;
3798 }
3799
3800 /*
3801 sysfs
3802 */
3803
3804 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3805 {
3806 return container_of(dev, struct rbd_device, dev);
3807 }
3808
3809 static ssize_t rbd_size_show(struct device *dev,
3810 struct device_attribute *attr, char *buf)
3811 {
3812 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3813
3814 return sprintf(buf, "%llu\n",
3815 (unsigned long long)rbd_dev->mapping.size);
3816 }
3817
3818 /*
3819 * Note this shows the features for whatever's mapped, which is not
3820 * necessarily the base image.
3821 */
3822 static ssize_t rbd_features_show(struct device *dev,
3823 struct device_attribute *attr, char *buf)
3824 {
3825 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3826
3827 return sprintf(buf, "0x%016llx\n",
3828 (unsigned long long)rbd_dev->mapping.features);
3829 }
3830
3831 static ssize_t rbd_major_show(struct device *dev,
3832 struct device_attribute *attr, char *buf)
3833 {
3834 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3835
3836 if (rbd_dev->major)
3837 return sprintf(buf, "%d\n", rbd_dev->major);
3838
3839 return sprintf(buf, "(none)\n");
3840 }
3841
3842 static ssize_t rbd_minor_show(struct device *dev,
3843 struct device_attribute *attr, char *buf)
3844 {
3845 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3846
3847 return sprintf(buf, "%d\n", rbd_dev->minor);
3848 }
3849
3850 static ssize_t rbd_client_id_show(struct device *dev,
3851 struct device_attribute *attr, char *buf)
3852 {
3853 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3854
3855 return sprintf(buf, "client%lld\n",
3856 ceph_client_id(rbd_dev->rbd_client->client));
3857 }
3858
3859 static ssize_t rbd_pool_show(struct device *dev,
3860 struct device_attribute *attr, char *buf)
3861 {
3862 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3863
3864 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3865 }
3866
3867 static ssize_t rbd_pool_id_show(struct device *dev,
3868 struct device_attribute *attr, char *buf)
3869 {
3870 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3871
3872 return sprintf(buf, "%llu\n",
3873 (unsigned long long) rbd_dev->spec->pool_id);
3874 }
3875
3876 static ssize_t rbd_name_show(struct device *dev,
3877 struct device_attribute *attr, char *buf)
3878 {
3879 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3880
3881 if (rbd_dev->spec->image_name)
3882 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3883
3884 return sprintf(buf, "(unknown)\n");
3885 }
3886
3887 static ssize_t rbd_image_id_show(struct device *dev,
3888 struct device_attribute *attr, char *buf)
3889 {
3890 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3891
3892 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3893 }
3894
3895 /*
3896 * Shows the name of the currently-mapped snapshot (or
3897 * RBD_SNAP_HEAD_NAME for the base image).
3898 */
3899 static ssize_t rbd_snap_show(struct device *dev,
3900 struct device_attribute *attr,
3901 char *buf)
3902 {
3903 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3904
3905 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3906 }
3907
3908 /*
3909 * For a v2 image, shows the chain of parent images, separated by empty
3910 * lines. For v1 images or if there is no parent, shows "(no parent
3911 * image)".
3912 */
3913 static ssize_t rbd_parent_show(struct device *dev,
3914 struct device_attribute *attr,
3915 char *buf)
3916 {
3917 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3918 ssize_t count = 0;
3919
3920 if (!rbd_dev->parent)
3921 return sprintf(buf, "(no parent image)\n");
3922
3923 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3924 struct rbd_spec *spec = rbd_dev->parent_spec;
3925
3926 count += sprintf(&buf[count], "%s"
3927 "pool_id %llu\npool_name %s\n"
3928 "image_id %s\nimage_name %s\n"
3929 "snap_id %llu\nsnap_name %s\n"
3930 "overlap %llu\n",
3931 !count ? "" : "\n", /* first? */
3932 spec->pool_id, spec->pool_name,
3933 spec->image_id, spec->image_name ?: "(unknown)",
3934 spec->snap_id, spec->snap_name,
3935 rbd_dev->parent_overlap);
3936 }
3937
3938 return count;
3939 }
3940
3941 static ssize_t rbd_image_refresh(struct device *dev,
3942 struct device_attribute *attr,
3943 const char *buf,
3944 size_t size)
3945 {
3946 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3947 int ret;
3948
3949 ret = rbd_dev_refresh(rbd_dev);
3950 if (ret)
3951 return ret;
3952
3953 return size;
3954 }
3955
3956 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3957 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3958 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3959 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3960 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3961 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3962 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3963 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3964 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3965 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3966 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3967 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3968
3969 static struct attribute *rbd_attrs[] = {
3970 &dev_attr_size.attr,
3971 &dev_attr_features.attr,
3972 &dev_attr_major.attr,
3973 &dev_attr_minor.attr,
3974 &dev_attr_client_id.attr,
3975 &dev_attr_pool.attr,
3976 &dev_attr_pool_id.attr,
3977 &dev_attr_name.attr,
3978 &dev_attr_image_id.attr,
3979 &dev_attr_current_snap.attr,
3980 &dev_attr_parent.attr,
3981 &dev_attr_refresh.attr,
3982 NULL
3983 };
3984
3985 static struct attribute_group rbd_attr_group = {
3986 .attrs = rbd_attrs,
3987 };
3988
3989 static const struct attribute_group *rbd_attr_groups[] = {
3990 &rbd_attr_group,
3991 NULL
3992 };
3993
3994 static void rbd_sysfs_dev_release(struct device *dev)
3995 {
3996 }
3997
3998 static struct device_type rbd_device_type = {
3999 .name = "rbd",
4000 .groups = rbd_attr_groups,
4001 .release = rbd_sysfs_dev_release,
4002 };
4003
4004 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4005 {
4006 kref_get(&spec->kref);
4007
4008 return spec;
4009 }
4010
4011 static void rbd_spec_free(struct kref *kref);
4012 static void rbd_spec_put(struct rbd_spec *spec)
4013 {
4014 if (spec)
4015 kref_put(&spec->kref, rbd_spec_free);
4016 }
4017
4018 static struct rbd_spec *rbd_spec_alloc(void)
4019 {
4020 struct rbd_spec *spec;
4021
4022 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4023 if (!spec)
4024 return NULL;
4025
4026 spec->pool_id = CEPH_NOPOOL;
4027 spec->snap_id = CEPH_NOSNAP;
4028 kref_init(&spec->kref);
4029
4030 return spec;
4031 }
4032
4033 static void rbd_spec_free(struct kref *kref)
4034 {
4035 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4036
4037 kfree(spec->pool_name);
4038 kfree(spec->image_id);
4039 kfree(spec->image_name);
4040 kfree(spec->snap_name);
4041 kfree(spec);
4042 }
4043
4044 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4045 struct rbd_spec *spec,
4046 struct rbd_options *opts)
4047 {
4048 struct rbd_device *rbd_dev;
4049
4050 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4051 if (!rbd_dev)
4052 return NULL;
4053
4054 spin_lock_init(&rbd_dev->lock);
4055 rbd_dev->flags = 0;
4056 atomic_set(&rbd_dev->parent_ref, 0);
4057 INIT_LIST_HEAD(&rbd_dev->node);
4058 init_rwsem(&rbd_dev->header_rwsem);
4059
4060 rbd_dev->rbd_client = rbdc;
4061 rbd_dev->spec = spec;
4062 rbd_dev->opts = opts;
4063
4064 /* Initialize the layout used for all rbd requests */
4065
4066 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4067 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4068 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4069 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4070
4071 return rbd_dev;
4072 }
4073
4074 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4075 {
4076 rbd_put_client(rbd_dev->rbd_client);
4077 rbd_spec_put(rbd_dev->spec);
4078 kfree(rbd_dev->opts);
4079 kfree(rbd_dev);
4080 }
4081
4082 /*
4083 * Get the size and object order for an image snapshot, or if
4084 * snap_id is CEPH_NOSNAP, gets this information for the base
4085 * image.
4086 */
4087 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4088 u8 *order, u64 *snap_size)
4089 {
4090 __le64 snapid = cpu_to_le64(snap_id);
4091 int ret;
4092 struct {
4093 u8 order;
4094 __le64 size;
4095 } __attribute__ ((packed)) size_buf = { 0 };
4096
4097 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4098 "rbd", "get_size",
4099 &snapid, sizeof (snapid),
4100 &size_buf, sizeof (size_buf));
4101 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4102 if (ret < 0)
4103 return ret;
4104 if (ret < sizeof (size_buf))
4105 return -ERANGE;
4106
4107 if (order) {
4108 *order = size_buf.order;
4109 dout(" order %u", (unsigned int)*order);
4110 }
4111 *snap_size = le64_to_cpu(size_buf.size);
4112
4113 dout(" snap_id 0x%016llx snap_size = %llu\n",
4114 (unsigned long long)snap_id,
4115 (unsigned long long)*snap_size);
4116
4117 return 0;
4118 }
4119
4120 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4121 {
4122 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4123 &rbd_dev->header.obj_order,
4124 &rbd_dev->header.image_size);
4125 }
4126
4127 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4128 {
4129 void *reply_buf;
4130 int ret;
4131 void *p;
4132
4133 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4134 if (!reply_buf)
4135 return -ENOMEM;
4136
4137 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4138 "rbd", "get_object_prefix", NULL, 0,
4139 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4140 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4141 if (ret < 0)
4142 goto out;
4143
4144 p = reply_buf;
4145 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4146 p + ret, NULL, GFP_NOIO);
4147 ret = 0;
4148
4149 if (IS_ERR(rbd_dev->header.object_prefix)) {
4150 ret = PTR_ERR(rbd_dev->header.object_prefix);
4151 rbd_dev->header.object_prefix = NULL;
4152 } else {
4153 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4154 }
4155 out:
4156 kfree(reply_buf);
4157
4158 return ret;
4159 }
4160
4161 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4162 u64 *snap_features)
4163 {
4164 __le64 snapid = cpu_to_le64(snap_id);
4165 struct {
4166 __le64 features;
4167 __le64 incompat;
4168 } __attribute__ ((packed)) features_buf = { 0 };
4169 u64 incompat;
4170 int ret;
4171
4172 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4173 "rbd", "get_features",
4174 &snapid, sizeof (snapid),
4175 &features_buf, sizeof (features_buf));
4176 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4177 if (ret < 0)
4178 return ret;
4179 if (ret < sizeof (features_buf))
4180 return -ERANGE;
4181
4182 incompat = le64_to_cpu(features_buf.incompat);
4183 if (incompat & ~RBD_FEATURES_SUPPORTED)
4184 return -ENXIO;
4185
4186 *snap_features = le64_to_cpu(features_buf.features);
4187
4188 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4189 (unsigned long long)snap_id,
4190 (unsigned long long)*snap_features,
4191 (unsigned long long)le64_to_cpu(features_buf.incompat));
4192
4193 return 0;
4194 }
4195
4196 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4197 {
4198 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4199 &rbd_dev->header.features);
4200 }
4201
4202 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4203 {
4204 struct rbd_spec *parent_spec;
4205 size_t size;
4206 void *reply_buf = NULL;
4207 __le64 snapid;
4208 void *p;
4209 void *end;
4210 u64 pool_id;
4211 char *image_id;
4212 u64 snap_id;
4213 u64 overlap;
4214 int ret;
4215
4216 parent_spec = rbd_spec_alloc();
4217 if (!parent_spec)
4218 return -ENOMEM;
4219
4220 size = sizeof (__le64) + /* pool_id */
4221 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4222 sizeof (__le64) + /* snap_id */
4223 sizeof (__le64); /* overlap */
4224 reply_buf = kmalloc(size, GFP_KERNEL);
4225 if (!reply_buf) {
4226 ret = -ENOMEM;
4227 goto out_err;
4228 }
4229
4230 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4231 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4232 "rbd", "get_parent",
4233 &snapid, sizeof (snapid),
4234 reply_buf, size);
4235 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4236 if (ret < 0)
4237 goto out_err;
4238
4239 p = reply_buf;
4240 end = reply_buf + ret;
4241 ret = -ERANGE;
4242 ceph_decode_64_safe(&p, end, pool_id, out_err);
4243 if (pool_id == CEPH_NOPOOL) {
4244 /*
4245 * Either the parent never existed, or we have
4246 * record of it but the image got flattened so it no
4247 * longer has a parent. When the parent of a
4248 * layered image disappears we immediately set the
4249 * overlap to 0. The effect of this is that all new
4250 * requests will be treated as if the image had no
4251 * parent.
4252 */
4253 if (rbd_dev->parent_overlap) {
4254 rbd_dev->parent_overlap = 0;
4255 rbd_dev_parent_put(rbd_dev);
4256 pr_info("%s: clone image has been flattened\n",
4257 rbd_dev->disk->disk_name);
4258 }
4259
4260 goto out; /* No parent? No problem. */
4261 }
4262
4263 /* The ceph file layout needs to fit pool id in 32 bits */
4264
4265 ret = -EIO;
4266 if (pool_id > (u64)U32_MAX) {
4267 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4268 (unsigned long long)pool_id, U32_MAX);
4269 goto out_err;
4270 }
4271
4272 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4273 if (IS_ERR(image_id)) {
4274 ret = PTR_ERR(image_id);
4275 goto out_err;
4276 }
4277 ceph_decode_64_safe(&p, end, snap_id, out_err);
4278 ceph_decode_64_safe(&p, end, overlap, out_err);
4279
4280 /*
4281 * The parent won't change (except when the clone is
4282 * flattened, already handled that). So we only need to
4283 * record the parent spec we have not already done so.
4284 */
4285 if (!rbd_dev->parent_spec) {
4286 parent_spec->pool_id = pool_id;
4287 parent_spec->image_id = image_id;
4288 parent_spec->snap_id = snap_id;
4289 rbd_dev->parent_spec = parent_spec;
4290 parent_spec = NULL; /* rbd_dev now owns this */
4291 } else {
4292 kfree(image_id);
4293 }
4294
4295 /*
4296 * We always update the parent overlap. If it's zero we issue
4297 * a warning, as we will proceed as if there was no parent.
4298 */
4299 if (!overlap) {
4300 if (parent_spec) {
4301 /* refresh, careful to warn just once */
4302 if (rbd_dev->parent_overlap)
4303 rbd_warn(rbd_dev,
4304 "clone now standalone (overlap became 0)");
4305 } else {
4306 /* initial probe */
4307 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4308 }
4309 }
4310 rbd_dev->parent_overlap = overlap;
4311
4312 out:
4313 ret = 0;
4314 out_err:
4315 kfree(reply_buf);
4316 rbd_spec_put(parent_spec);
4317
4318 return ret;
4319 }
4320
4321 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4322 {
4323 struct {
4324 __le64 stripe_unit;
4325 __le64 stripe_count;
4326 } __attribute__ ((packed)) striping_info_buf = { 0 };
4327 size_t size = sizeof (striping_info_buf);
4328 void *p;
4329 u64 obj_size;
4330 u64 stripe_unit;
4331 u64 stripe_count;
4332 int ret;
4333
4334 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4335 "rbd", "get_stripe_unit_count", NULL, 0,
4336 (char *)&striping_info_buf, size);
4337 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4338 if (ret < 0)
4339 return ret;
4340 if (ret < size)
4341 return -ERANGE;
4342
4343 /*
4344 * We don't actually support the "fancy striping" feature
4345 * (STRIPINGV2) yet, but if the striping sizes are the
4346 * defaults the behavior is the same as before. So find
4347 * out, and only fail if the image has non-default values.
4348 */
4349 ret = -EINVAL;
4350 obj_size = (u64)1 << rbd_dev->header.obj_order;
4351 p = &striping_info_buf;
4352 stripe_unit = ceph_decode_64(&p);
4353 if (stripe_unit != obj_size) {
4354 rbd_warn(rbd_dev, "unsupported stripe unit "
4355 "(got %llu want %llu)",
4356 stripe_unit, obj_size);
4357 return -EINVAL;
4358 }
4359 stripe_count = ceph_decode_64(&p);
4360 if (stripe_count != 1) {
4361 rbd_warn(rbd_dev, "unsupported stripe count "
4362 "(got %llu want 1)", stripe_count);
4363 return -EINVAL;
4364 }
4365 rbd_dev->header.stripe_unit = stripe_unit;
4366 rbd_dev->header.stripe_count = stripe_count;
4367
4368 return 0;
4369 }
4370
4371 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4372 {
4373 size_t image_id_size;
4374 char *image_id;
4375 void *p;
4376 void *end;
4377 size_t size;
4378 void *reply_buf = NULL;
4379 size_t len = 0;
4380 char *image_name = NULL;
4381 int ret;
4382
4383 rbd_assert(!rbd_dev->spec->image_name);
4384
4385 len = strlen(rbd_dev->spec->image_id);
4386 image_id_size = sizeof (__le32) + len;
4387 image_id = kmalloc(image_id_size, GFP_KERNEL);
4388 if (!image_id)
4389 return NULL;
4390
4391 p = image_id;
4392 end = image_id + image_id_size;
4393 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4394
4395 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4396 reply_buf = kmalloc(size, GFP_KERNEL);
4397 if (!reply_buf)
4398 goto out;
4399
4400 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4401 "rbd", "dir_get_name",
4402 image_id, image_id_size,
4403 reply_buf, size);
4404 if (ret < 0)
4405 goto out;
4406 p = reply_buf;
4407 end = reply_buf + ret;
4408
4409 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4410 if (IS_ERR(image_name))
4411 image_name = NULL;
4412 else
4413 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4414 out:
4415 kfree(reply_buf);
4416 kfree(image_id);
4417
4418 return image_name;
4419 }
4420
4421 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4422 {
4423 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4424 const char *snap_name;
4425 u32 which = 0;
4426
4427 /* Skip over names until we find the one we are looking for */
4428
4429 snap_name = rbd_dev->header.snap_names;
4430 while (which < snapc->num_snaps) {
4431 if (!strcmp(name, snap_name))
4432 return snapc->snaps[which];
4433 snap_name += strlen(snap_name) + 1;
4434 which++;
4435 }
4436 return CEPH_NOSNAP;
4437 }
4438
4439 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4440 {
4441 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4442 u32 which;
4443 bool found = false;
4444 u64 snap_id;
4445
4446 for (which = 0; !found && which < snapc->num_snaps; which++) {
4447 const char *snap_name;
4448
4449 snap_id = snapc->snaps[which];
4450 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4451 if (IS_ERR(snap_name)) {
4452 /* ignore no-longer existing snapshots */
4453 if (PTR_ERR(snap_name) == -ENOENT)
4454 continue;
4455 else
4456 break;
4457 }
4458 found = !strcmp(name, snap_name);
4459 kfree(snap_name);
4460 }
4461 return found ? snap_id : CEPH_NOSNAP;
4462 }
4463
4464 /*
4465 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4466 * no snapshot by that name is found, or if an error occurs.
4467 */
4468 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4469 {
4470 if (rbd_dev->image_format == 1)
4471 return rbd_v1_snap_id_by_name(rbd_dev, name);
4472
4473 return rbd_v2_snap_id_by_name(rbd_dev, name);
4474 }
4475
4476 /*
4477 * An image being mapped will have everything but the snap id.
4478 */
4479 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4480 {
4481 struct rbd_spec *spec = rbd_dev->spec;
4482
4483 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4484 rbd_assert(spec->image_id && spec->image_name);
4485 rbd_assert(spec->snap_name);
4486
4487 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4488 u64 snap_id;
4489
4490 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4491 if (snap_id == CEPH_NOSNAP)
4492 return -ENOENT;
4493
4494 spec->snap_id = snap_id;
4495 } else {
4496 spec->snap_id = CEPH_NOSNAP;
4497 }
4498
4499 return 0;
4500 }
4501
4502 /*
4503 * A parent image will have all ids but none of the names.
4504 *
4505 * All names in an rbd spec are dynamically allocated. It's OK if we
4506 * can't figure out the name for an image id.
4507 */
4508 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4509 {
4510 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4511 struct rbd_spec *spec = rbd_dev->spec;
4512 const char *pool_name;
4513 const char *image_name;
4514 const char *snap_name;
4515 int ret;
4516
4517 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4518 rbd_assert(spec->image_id);
4519 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4520
4521 /* Get the pool name; we have to make our own copy of this */
4522
4523 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4524 if (!pool_name) {
4525 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4526 return -EIO;
4527 }
4528 pool_name = kstrdup(pool_name, GFP_KERNEL);
4529 if (!pool_name)
4530 return -ENOMEM;
4531
4532 /* Fetch the image name; tolerate failure here */
4533
4534 image_name = rbd_dev_image_name(rbd_dev);
4535 if (!image_name)
4536 rbd_warn(rbd_dev, "unable to get image name");
4537
4538 /* Fetch the snapshot name */
4539
4540 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4541 if (IS_ERR(snap_name)) {
4542 ret = PTR_ERR(snap_name);
4543 goto out_err;
4544 }
4545
4546 spec->pool_name = pool_name;
4547 spec->image_name = image_name;
4548 spec->snap_name = snap_name;
4549
4550 return 0;
4551
4552 out_err:
4553 kfree(image_name);
4554 kfree(pool_name);
4555 return ret;
4556 }
4557
4558 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4559 {
4560 size_t size;
4561 int ret;
4562 void *reply_buf;
4563 void *p;
4564 void *end;
4565 u64 seq;
4566 u32 snap_count;
4567 struct ceph_snap_context *snapc;
4568 u32 i;
4569
4570 /*
4571 * We'll need room for the seq value (maximum snapshot id),
4572 * snapshot count, and array of that many snapshot ids.
4573 * For now we have a fixed upper limit on the number we're
4574 * prepared to receive.
4575 */
4576 size = sizeof (__le64) + sizeof (__le32) +
4577 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4578 reply_buf = kzalloc(size, GFP_KERNEL);
4579 if (!reply_buf)
4580 return -ENOMEM;
4581
4582 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4583 "rbd", "get_snapcontext", NULL, 0,
4584 reply_buf, size);
4585 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4586 if (ret < 0)
4587 goto out;
4588
4589 p = reply_buf;
4590 end = reply_buf + ret;
4591 ret = -ERANGE;
4592 ceph_decode_64_safe(&p, end, seq, out);
4593 ceph_decode_32_safe(&p, end, snap_count, out);
4594
4595 /*
4596 * Make sure the reported number of snapshot ids wouldn't go
4597 * beyond the end of our buffer. But before checking that,
4598 * make sure the computed size of the snapshot context we
4599 * allocate is representable in a size_t.
4600 */
4601 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4602 / sizeof (u64)) {
4603 ret = -EINVAL;
4604 goto out;
4605 }
4606 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4607 goto out;
4608 ret = 0;
4609
4610 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4611 if (!snapc) {
4612 ret = -ENOMEM;
4613 goto out;
4614 }
4615 snapc->seq = seq;
4616 for (i = 0; i < snap_count; i++)
4617 snapc->snaps[i] = ceph_decode_64(&p);
4618
4619 ceph_put_snap_context(rbd_dev->header.snapc);
4620 rbd_dev->header.snapc = snapc;
4621
4622 dout(" snap context seq = %llu, snap_count = %u\n",
4623 (unsigned long long)seq, (unsigned int)snap_count);
4624 out:
4625 kfree(reply_buf);
4626
4627 return ret;
4628 }
4629
4630 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4631 u64 snap_id)
4632 {
4633 size_t size;
4634 void *reply_buf;
4635 __le64 snapid;
4636 int ret;
4637 void *p;
4638 void *end;
4639 char *snap_name;
4640
4641 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4642 reply_buf = kmalloc(size, GFP_KERNEL);
4643 if (!reply_buf)
4644 return ERR_PTR(-ENOMEM);
4645
4646 snapid = cpu_to_le64(snap_id);
4647 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4648 "rbd", "get_snapshot_name",
4649 &snapid, sizeof (snapid),
4650 reply_buf, size);
4651 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4652 if (ret < 0) {
4653 snap_name = ERR_PTR(ret);
4654 goto out;
4655 }
4656
4657 p = reply_buf;
4658 end = reply_buf + ret;
4659 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4660 if (IS_ERR(snap_name))
4661 goto out;
4662
4663 dout(" snap_id 0x%016llx snap_name = %s\n",
4664 (unsigned long long)snap_id, snap_name);
4665 out:
4666 kfree(reply_buf);
4667
4668 return snap_name;
4669 }
4670
4671 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4672 {
4673 bool first_time = rbd_dev->header.object_prefix == NULL;
4674 int ret;
4675
4676 ret = rbd_dev_v2_image_size(rbd_dev);
4677 if (ret)
4678 return ret;
4679
4680 if (first_time) {
4681 ret = rbd_dev_v2_header_onetime(rbd_dev);
4682 if (ret)
4683 return ret;
4684 }
4685
4686 ret = rbd_dev_v2_snap_context(rbd_dev);
4687 if (ret && first_time) {
4688 kfree(rbd_dev->header.object_prefix);
4689 rbd_dev->header.object_prefix = NULL;
4690 }
4691
4692 return ret;
4693 }
4694
4695 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4696 {
4697 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4698
4699 if (rbd_dev->image_format == 1)
4700 return rbd_dev_v1_header_info(rbd_dev);
4701
4702 return rbd_dev_v2_header_info(rbd_dev);
4703 }
4704
4705 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4706 {
4707 struct device *dev;
4708 int ret;
4709
4710 dev = &rbd_dev->dev;
4711 dev->bus = &rbd_bus_type;
4712 dev->type = &rbd_device_type;
4713 dev->parent = &rbd_root_dev;
4714 dev->release = rbd_dev_device_release;
4715 dev_set_name(dev, "%d", rbd_dev->dev_id);
4716 ret = device_register(dev);
4717
4718 return ret;
4719 }
4720
4721 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4722 {
4723 device_unregister(&rbd_dev->dev);
4724 }
4725
4726 /*
4727 * Get a unique rbd identifier for the given new rbd_dev, and add
4728 * the rbd_dev to the global list.
4729 */
4730 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4731 {
4732 int new_dev_id;
4733
4734 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4735 0, minor_to_rbd_dev_id(1 << MINORBITS),
4736 GFP_KERNEL);
4737 if (new_dev_id < 0)
4738 return new_dev_id;
4739
4740 rbd_dev->dev_id = new_dev_id;
4741
4742 spin_lock(&rbd_dev_list_lock);
4743 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4744 spin_unlock(&rbd_dev_list_lock);
4745
4746 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4747
4748 return 0;
4749 }
4750
4751 /*
4752 * Remove an rbd_dev from the global list, and record that its
4753 * identifier is no longer in use.
4754 */
4755 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4756 {
4757 spin_lock(&rbd_dev_list_lock);
4758 list_del_init(&rbd_dev->node);
4759 spin_unlock(&rbd_dev_list_lock);
4760
4761 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4762
4763 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4764 }
4765
4766 /*
4767 * Skips over white space at *buf, and updates *buf to point to the
4768 * first found non-space character (if any). Returns the length of
4769 * the token (string of non-white space characters) found. Note
4770 * that *buf must be terminated with '\0'.
4771 */
4772 static inline size_t next_token(const char **buf)
4773 {
4774 /*
4775 * These are the characters that produce nonzero for
4776 * isspace() in the "C" and "POSIX" locales.
4777 */
4778 const char *spaces = " \f\n\r\t\v";
4779
4780 *buf += strspn(*buf, spaces); /* Find start of token */
4781
4782 return strcspn(*buf, spaces); /* Return token length */
4783 }
4784
4785 /*
4786 * Finds the next token in *buf, dynamically allocates a buffer big
4787 * enough to hold a copy of it, and copies the token into the new
4788 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4789 * that a duplicate buffer is created even for a zero-length token.
4790 *
4791 * Returns a pointer to the newly-allocated duplicate, or a null
4792 * pointer if memory for the duplicate was not available. If
4793 * the lenp argument is a non-null pointer, the length of the token
4794 * (not including the '\0') is returned in *lenp.
4795 *
4796 * If successful, the *buf pointer will be updated to point beyond
4797 * the end of the found token.
4798 *
4799 * Note: uses GFP_KERNEL for allocation.
4800 */
4801 static inline char *dup_token(const char **buf, size_t *lenp)
4802 {
4803 char *dup;
4804 size_t len;
4805
4806 len = next_token(buf);
4807 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4808 if (!dup)
4809 return NULL;
4810 *(dup + len) = '\0';
4811 *buf += len;
4812
4813 if (lenp)
4814 *lenp = len;
4815
4816 return dup;
4817 }
4818
4819 /*
4820 * Parse the options provided for an "rbd add" (i.e., rbd image
4821 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4822 * and the data written is passed here via a NUL-terminated buffer.
4823 * Returns 0 if successful or an error code otherwise.
4824 *
4825 * The information extracted from these options is recorded in
4826 * the other parameters which return dynamically-allocated
4827 * structures:
4828 * ceph_opts
4829 * The address of a pointer that will refer to a ceph options
4830 * structure. Caller must release the returned pointer using
4831 * ceph_destroy_options() when it is no longer needed.
4832 * rbd_opts
4833 * Address of an rbd options pointer. Fully initialized by
4834 * this function; caller must release with kfree().
4835 * spec
4836 * Address of an rbd image specification pointer. Fully
4837 * initialized by this function based on parsed options.
4838 * Caller must release with rbd_spec_put().
4839 *
4840 * The options passed take this form:
4841 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4842 * where:
4843 * <mon_addrs>
4844 * A comma-separated list of one or more monitor addresses.
4845 * A monitor address is an ip address, optionally followed
4846 * by a port number (separated by a colon).
4847 * I.e.: ip1[:port1][,ip2[:port2]...]
4848 * <options>
4849 * A comma-separated list of ceph and/or rbd options.
4850 * <pool_name>
4851 * The name of the rados pool containing the rbd image.
4852 * <image_name>
4853 * The name of the image in that pool to map.
4854 * <snap_id>
4855 * An optional snapshot id. If provided, the mapping will
4856 * present data from the image at the time that snapshot was
4857 * created. The image head is used if no snapshot id is
4858 * provided. Snapshot mappings are always read-only.
4859 */
4860 static int rbd_add_parse_args(const char *buf,
4861 struct ceph_options **ceph_opts,
4862 struct rbd_options **opts,
4863 struct rbd_spec **rbd_spec)
4864 {
4865 size_t len;
4866 char *options;
4867 const char *mon_addrs;
4868 char *snap_name;
4869 size_t mon_addrs_size;
4870 struct rbd_spec *spec = NULL;
4871 struct rbd_options *rbd_opts = NULL;
4872 struct ceph_options *copts;
4873 int ret;
4874
4875 /* The first four tokens are required */
4876
4877 len = next_token(&buf);
4878 if (!len) {
4879 rbd_warn(NULL, "no monitor address(es) provided");
4880 return -EINVAL;
4881 }
4882 mon_addrs = buf;
4883 mon_addrs_size = len + 1;
4884 buf += len;
4885
4886 ret = -EINVAL;
4887 options = dup_token(&buf, NULL);
4888 if (!options)
4889 return -ENOMEM;
4890 if (!*options) {
4891 rbd_warn(NULL, "no options provided");
4892 goto out_err;
4893 }
4894
4895 spec = rbd_spec_alloc();
4896 if (!spec)
4897 goto out_mem;
4898
4899 spec->pool_name = dup_token(&buf, NULL);
4900 if (!spec->pool_name)
4901 goto out_mem;
4902 if (!*spec->pool_name) {
4903 rbd_warn(NULL, "no pool name provided");
4904 goto out_err;
4905 }
4906
4907 spec->image_name = dup_token(&buf, NULL);
4908 if (!spec->image_name)
4909 goto out_mem;
4910 if (!*spec->image_name) {
4911 rbd_warn(NULL, "no image name provided");
4912 goto out_err;
4913 }
4914
4915 /*
4916 * Snapshot name is optional; default is to use "-"
4917 * (indicating the head/no snapshot).
4918 */
4919 len = next_token(&buf);
4920 if (!len) {
4921 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4922 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4923 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4924 ret = -ENAMETOOLONG;
4925 goto out_err;
4926 }
4927 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4928 if (!snap_name)
4929 goto out_mem;
4930 *(snap_name + len) = '\0';
4931 spec->snap_name = snap_name;
4932
4933 /* Initialize all rbd options to the defaults */
4934
4935 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4936 if (!rbd_opts)
4937 goto out_mem;
4938
4939 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4940 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4941
4942 copts = ceph_parse_options(options, mon_addrs,
4943 mon_addrs + mon_addrs_size - 1,
4944 parse_rbd_opts_token, rbd_opts);
4945 if (IS_ERR(copts)) {
4946 ret = PTR_ERR(copts);
4947 goto out_err;
4948 }
4949 kfree(options);
4950
4951 *ceph_opts = copts;
4952 *opts = rbd_opts;
4953 *rbd_spec = spec;
4954
4955 return 0;
4956 out_mem:
4957 ret = -ENOMEM;
4958 out_err:
4959 kfree(rbd_opts);
4960 rbd_spec_put(spec);
4961 kfree(options);
4962
4963 return ret;
4964 }
4965
4966 /*
4967 * Return pool id (>= 0) or a negative error code.
4968 */
4969 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4970 {
4971 struct ceph_options *opts = rbdc->client->options;
4972 u64 newest_epoch;
4973 int tries = 0;
4974 int ret;
4975
4976 again:
4977 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4978 if (ret == -ENOENT && tries++ < 1) {
4979 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4980 &newest_epoch);
4981 if (ret < 0)
4982 return ret;
4983
4984 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4985 ceph_monc_request_next_osdmap(&rbdc->client->monc);
4986 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4987 newest_epoch,
4988 opts->mount_timeout);
4989 goto again;
4990 } else {
4991 /* the osdmap we have is new enough */
4992 return -ENOENT;
4993 }
4994 }
4995
4996 return ret;
4997 }
4998
4999 /*
5000 * An rbd format 2 image has a unique identifier, distinct from the
5001 * name given to it by the user. Internally, that identifier is
5002 * what's used to specify the names of objects related to the image.
5003 *
5004 * A special "rbd id" object is used to map an rbd image name to its
5005 * id. If that object doesn't exist, then there is no v2 rbd image
5006 * with the supplied name.
5007 *
5008 * This function will record the given rbd_dev's image_id field if
5009 * it can be determined, and in that case will return 0. If any
5010 * errors occur a negative errno will be returned and the rbd_dev's
5011 * image_id field will be unchanged (and should be NULL).
5012 */
5013 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5014 {
5015 int ret;
5016 size_t size;
5017 char *object_name;
5018 void *response;
5019 char *image_id;
5020
5021 /*
5022 * When probing a parent image, the image id is already
5023 * known (and the image name likely is not). There's no
5024 * need to fetch the image id again in this case. We
5025 * do still need to set the image format though.
5026 */
5027 if (rbd_dev->spec->image_id) {
5028 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5029
5030 return 0;
5031 }
5032
5033 /*
5034 * First, see if the format 2 image id file exists, and if
5035 * so, get the image's persistent id from it.
5036 */
5037 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5038 object_name = kmalloc(size, GFP_NOIO);
5039 if (!object_name)
5040 return -ENOMEM;
5041 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5042 dout("rbd id object name is %s\n", object_name);
5043
5044 /* Response will be an encoded string, which includes a length */
5045
5046 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5047 response = kzalloc(size, GFP_NOIO);
5048 if (!response) {
5049 ret = -ENOMEM;
5050 goto out;
5051 }
5052
5053 /* If it doesn't exist we'll assume it's a format 1 image */
5054
5055 ret = rbd_obj_method_sync(rbd_dev, object_name,
5056 "rbd", "get_id", NULL, 0,
5057 response, RBD_IMAGE_ID_LEN_MAX);
5058 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5059 if (ret == -ENOENT) {
5060 image_id = kstrdup("", GFP_KERNEL);
5061 ret = image_id ? 0 : -ENOMEM;
5062 if (!ret)
5063 rbd_dev->image_format = 1;
5064 } else if (ret >= 0) {
5065 void *p = response;
5066
5067 image_id = ceph_extract_encoded_string(&p, p + ret,
5068 NULL, GFP_NOIO);
5069 ret = PTR_ERR_OR_ZERO(image_id);
5070 if (!ret)
5071 rbd_dev->image_format = 2;
5072 }
5073
5074 if (!ret) {
5075 rbd_dev->spec->image_id = image_id;
5076 dout("image_id is %s\n", image_id);
5077 }
5078 out:
5079 kfree(response);
5080 kfree(object_name);
5081
5082 return ret;
5083 }
5084
5085 /*
5086 * Undo whatever state changes are made by v1 or v2 header info
5087 * call.
5088 */
5089 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5090 {
5091 struct rbd_image_header *header;
5092
5093 rbd_dev_parent_put(rbd_dev);
5094
5095 /* Free dynamic fields from the header, then zero it out */
5096
5097 header = &rbd_dev->header;
5098 ceph_put_snap_context(header->snapc);
5099 kfree(header->snap_sizes);
5100 kfree(header->snap_names);
5101 kfree(header->object_prefix);
5102 memset(header, 0, sizeof (*header));
5103 }
5104
5105 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5106 {
5107 int ret;
5108
5109 ret = rbd_dev_v2_object_prefix(rbd_dev);
5110 if (ret)
5111 goto out_err;
5112
5113 /*
5114 * Get the and check features for the image. Currently the
5115 * features are assumed to never change.
5116 */
5117 ret = rbd_dev_v2_features(rbd_dev);
5118 if (ret)
5119 goto out_err;
5120
5121 /* If the image supports fancy striping, get its parameters */
5122
5123 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5124 ret = rbd_dev_v2_striping_info(rbd_dev);
5125 if (ret < 0)
5126 goto out_err;
5127 }
5128 /* No support for crypto and compression type format 2 images */
5129
5130 return 0;
5131 out_err:
5132 rbd_dev->header.features = 0;
5133 kfree(rbd_dev->header.object_prefix);
5134 rbd_dev->header.object_prefix = NULL;
5135
5136 return ret;
5137 }
5138
5139 /*
5140 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5141 * rbd_dev_image_probe() recursion depth, which means it's also the
5142 * length of the already discovered part of the parent chain.
5143 */
5144 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5145 {
5146 struct rbd_device *parent = NULL;
5147 int ret;
5148
5149 if (!rbd_dev->parent_spec)
5150 return 0;
5151
5152 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5153 pr_info("parent chain is too long (%d)\n", depth);
5154 ret = -EINVAL;
5155 goto out_err;
5156 }
5157
5158 parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5159 NULL);
5160 if (!parent) {
5161 ret = -ENOMEM;
5162 goto out_err;
5163 }
5164
5165 /*
5166 * Images related by parent/child relationships always share
5167 * rbd_client and spec/parent_spec, so bump their refcounts.
5168 */
5169 __rbd_get_client(rbd_dev->rbd_client);
5170 rbd_spec_get(rbd_dev->parent_spec);
5171
5172 ret = rbd_dev_image_probe(parent, depth);
5173 if (ret < 0)
5174 goto out_err;
5175
5176 rbd_dev->parent = parent;
5177 atomic_set(&rbd_dev->parent_ref, 1);
5178 return 0;
5179
5180 out_err:
5181 rbd_dev_unparent(rbd_dev);
5182 if (parent)
5183 rbd_dev_destroy(parent);
5184 return ret;
5185 }
5186
5187 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5188 {
5189 int ret;
5190
5191 /* Get an id and fill in device name. */
5192
5193 ret = rbd_dev_id_get(rbd_dev);
5194 if (ret)
5195 return ret;
5196
5197 BUILD_BUG_ON(DEV_NAME_LEN
5198 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5199 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5200
5201 /* Record our major and minor device numbers. */
5202
5203 if (!single_major) {
5204 ret = register_blkdev(0, rbd_dev->name);
5205 if (ret < 0)
5206 goto err_out_id;
5207
5208 rbd_dev->major = ret;
5209 rbd_dev->minor = 0;
5210 } else {
5211 rbd_dev->major = rbd_major;
5212 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5213 }
5214
5215 /* Set up the blkdev mapping. */
5216
5217 ret = rbd_init_disk(rbd_dev);
5218 if (ret)
5219 goto err_out_blkdev;
5220
5221 ret = rbd_dev_mapping_set(rbd_dev);
5222 if (ret)
5223 goto err_out_disk;
5224
5225 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5226 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5227
5228 ret = rbd_bus_add_dev(rbd_dev);
5229 if (ret)
5230 goto err_out_mapping;
5231
5232 /* Everything's ready. Announce the disk to the world. */
5233
5234 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5235 add_disk(rbd_dev->disk);
5236
5237 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5238 (unsigned long long) rbd_dev->mapping.size);
5239
5240 return ret;
5241
5242 err_out_mapping:
5243 rbd_dev_mapping_clear(rbd_dev);
5244 err_out_disk:
5245 rbd_free_disk(rbd_dev);
5246 err_out_blkdev:
5247 if (!single_major)
5248 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5249 err_out_id:
5250 rbd_dev_id_put(rbd_dev);
5251 rbd_dev_mapping_clear(rbd_dev);
5252
5253 return ret;
5254 }
5255
5256 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5257 {
5258 struct rbd_spec *spec = rbd_dev->spec;
5259 size_t size;
5260
5261 /* Record the header object name for this rbd image. */
5262
5263 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5264
5265 if (rbd_dev->image_format == 1)
5266 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5267 else
5268 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5269
5270 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5271 if (!rbd_dev->header_name)
5272 return -ENOMEM;
5273
5274 if (rbd_dev->image_format == 1)
5275 sprintf(rbd_dev->header_name, "%s%s",
5276 spec->image_name, RBD_SUFFIX);
5277 else
5278 sprintf(rbd_dev->header_name, "%s%s",
5279 RBD_HEADER_PREFIX, spec->image_id);
5280 return 0;
5281 }
5282
5283 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5284 {
5285 rbd_dev_unprobe(rbd_dev);
5286 kfree(rbd_dev->header_name);
5287 rbd_dev->header_name = NULL;
5288 rbd_dev->image_format = 0;
5289 kfree(rbd_dev->spec->image_id);
5290 rbd_dev->spec->image_id = NULL;
5291
5292 rbd_dev_destroy(rbd_dev);
5293 }
5294
5295 /*
5296 * Probe for the existence of the header object for the given rbd
5297 * device. If this image is the one being mapped (i.e., not a
5298 * parent), initiate a watch on its header object before using that
5299 * object to get detailed information about the rbd image.
5300 */
5301 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5302 {
5303 int ret;
5304
5305 /*
5306 * Get the id from the image id object. Unless there's an
5307 * error, rbd_dev->spec->image_id will be filled in with
5308 * a dynamically-allocated string, and rbd_dev->image_format
5309 * will be set to either 1 or 2.
5310 */
5311 ret = rbd_dev_image_id(rbd_dev);
5312 if (ret)
5313 return ret;
5314
5315 ret = rbd_dev_header_name(rbd_dev);
5316 if (ret)
5317 goto err_out_format;
5318
5319 if (!depth) {
5320 ret = rbd_dev_header_watch_sync(rbd_dev);
5321 if (ret) {
5322 if (ret == -ENOENT)
5323 pr_info("image %s/%s does not exist\n",
5324 rbd_dev->spec->pool_name,
5325 rbd_dev->spec->image_name);
5326 goto out_header_name;
5327 }
5328 }
5329
5330 ret = rbd_dev_header_info(rbd_dev);
5331 if (ret)
5332 goto err_out_watch;
5333
5334 /*
5335 * If this image is the one being mapped, we have pool name and
5336 * id, image name and id, and snap name - need to fill snap id.
5337 * Otherwise this is a parent image, identified by pool, image
5338 * and snap ids - need to fill in names for those ids.
5339 */
5340 if (!depth)
5341 ret = rbd_spec_fill_snap_id(rbd_dev);
5342 else
5343 ret = rbd_spec_fill_names(rbd_dev);
5344 if (ret) {
5345 if (ret == -ENOENT)
5346 pr_info("snap %s/%s@%s does not exist\n",
5347 rbd_dev->spec->pool_name,
5348 rbd_dev->spec->image_name,
5349 rbd_dev->spec->snap_name);
5350 goto err_out_probe;
5351 }
5352
5353 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5354 ret = rbd_dev_v2_parent_info(rbd_dev);
5355 if (ret)
5356 goto err_out_probe;
5357
5358 /*
5359 * Need to warn users if this image is the one being
5360 * mapped and has a parent.
5361 */
5362 if (!depth && rbd_dev->parent_spec)
5363 rbd_warn(rbd_dev,
5364 "WARNING: kernel layering is EXPERIMENTAL!");
5365 }
5366
5367 ret = rbd_dev_probe_parent(rbd_dev, depth);
5368 if (ret)
5369 goto err_out_probe;
5370
5371 dout("discovered format %u image, header name is %s\n",
5372 rbd_dev->image_format, rbd_dev->header_name);
5373 return 0;
5374
5375 err_out_probe:
5376 rbd_dev_unprobe(rbd_dev);
5377 err_out_watch:
5378 if (!depth)
5379 rbd_dev_header_unwatch_sync(rbd_dev);
5380 out_header_name:
5381 kfree(rbd_dev->header_name);
5382 rbd_dev->header_name = NULL;
5383 err_out_format:
5384 rbd_dev->image_format = 0;
5385 kfree(rbd_dev->spec->image_id);
5386 rbd_dev->spec->image_id = NULL;
5387 return ret;
5388 }
5389
5390 static ssize_t do_rbd_add(struct bus_type *bus,
5391 const char *buf,
5392 size_t count)
5393 {
5394 struct rbd_device *rbd_dev = NULL;
5395 struct ceph_options *ceph_opts = NULL;
5396 struct rbd_options *rbd_opts = NULL;
5397 struct rbd_spec *spec = NULL;
5398 struct rbd_client *rbdc;
5399 bool read_only;
5400 int rc = -ENOMEM;
5401
5402 if (!try_module_get(THIS_MODULE))
5403 return -ENODEV;
5404
5405 /* parse add command */
5406 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5407 if (rc < 0)
5408 goto err_out_module;
5409
5410 rbdc = rbd_get_client(ceph_opts);
5411 if (IS_ERR(rbdc)) {
5412 rc = PTR_ERR(rbdc);
5413 goto err_out_args;
5414 }
5415
5416 /* pick the pool */
5417 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5418 if (rc < 0) {
5419 if (rc == -ENOENT)
5420 pr_info("pool %s does not exist\n", spec->pool_name);
5421 goto err_out_client;
5422 }
5423 spec->pool_id = (u64)rc;
5424
5425 /* The ceph file layout needs to fit pool id in 32 bits */
5426
5427 if (spec->pool_id > (u64)U32_MAX) {
5428 rbd_warn(NULL, "pool id too large (%llu > %u)",
5429 (unsigned long long)spec->pool_id, U32_MAX);
5430 rc = -EIO;
5431 goto err_out_client;
5432 }
5433
5434 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5435 if (!rbd_dev)
5436 goto err_out_client;
5437 rbdc = NULL; /* rbd_dev now owns this */
5438 spec = NULL; /* rbd_dev now owns this */
5439 rbd_opts = NULL; /* rbd_dev now owns this */
5440
5441 rc = rbd_dev_image_probe(rbd_dev, 0);
5442 if (rc < 0)
5443 goto err_out_rbd_dev;
5444
5445 /* If we are mapping a snapshot it must be marked read-only */
5446
5447 read_only = rbd_dev->opts->read_only;
5448 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5449 read_only = true;
5450 rbd_dev->mapping.read_only = read_only;
5451
5452 rc = rbd_dev_device_setup(rbd_dev);
5453 if (rc) {
5454 /*
5455 * rbd_dev_header_unwatch_sync() can't be moved into
5456 * rbd_dev_image_release() without refactoring, see
5457 * commit 1f3ef78861ac.
5458 */
5459 rbd_dev_header_unwatch_sync(rbd_dev);
5460 rbd_dev_image_release(rbd_dev);
5461 goto err_out_module;
5462 }
5463
5464 return count;
5465
5466 err_out_rbd_dev:
5467 rbd_dev_destroy(rbd_dev);
5468 err_out_client:
5469 rbd_put_client(rbdc);
5470 err_out_args:
5471 rbd_spec_put(spec);
5472 kfree(rbd_opts);
5473 err_out_module:
5474 module_put(THIS_MODULE);
5475
5476 dout("Error adding device %s\n", buf);
5477
5478 return (ssize_t)rc;
5479 }
5480
5481 static ssize_t rbd_add(struct bus_type *bus,
5482 const char *buf,
5483 size_t count)
5484 {
5485 if (single_major)
5486 return -EINVAL;
5487
5488 return do_rbd_add(bus, buf, count);
5489 }
5490
5491 static ssize_t rbd_add_single_major(struct bus_type *bus,
5492 const char *buf,
5493 size_t count)
5494 {
5495 return do_rbd_add(bus, buf, count);
5496 }
5497
5498 static void rbd_dev_device_release(struct device *dev)
5499 {
5500 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5501
5502 rbd_free_disk(rbd_dev);
5503 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5504 rbd_dev_mapping_clear(rbd_dev);
5505 if (!single_major)
5506 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5507 rbd_dev_id_put(rbd_dev);
5508 rbd_dev_mapping_clear(rbd_dev);
5509 }
5510
5511 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5512 {
5513 while (rbd_dev->parent) {
5514 struct rbd_device *first = rbd_dev;
5515 struct rbd_device *second = first->parent;
5516 struct rbd_device *third;
5517
5518 /*
5519 * Follow to the parent with no grandparent and
5520 * remove it.
5521 */
5522 while (second && (third = second->parent)) {
5523 first = second;
5524 second = third;
5525 }
5526 rbd_assert(second);
5527 rbd_dev_image_release(second);
5528 first->parent = NULL;
5529 first->parent_overlap = 0;
5530
5531 rbd_assert(first->parent_spec);
5532 rbd_spec_put(first->parent_spec);
5533 first->parent_spec = NULL;
5534 }
5535 }
5536
5537 static ssize_t do_rbd_remove(struct bus_type *bus,
5538 const char *buf,
5539 size_t count)
5540 {
5541 struct rbd_device *rbd_dev = NULL;
5542 struct list_head *tmp;
5543 int dev_id;
5544 unsigned long ul;
5545 bool already = false;
5546 int ret;
5547
5548 ret = kstrtoul(buf, 10, &ul);
5549 if (ret)
5550 return ret;
5551
5552 /* convert to int; abort if we lost anything in the conversion */
5553 dev_id = (int)ul;
5554 if (dev_id != ul)
5555 return -EINVAL;
5556
5557 ret = -ENOENT;
5558 spin_lock(&rbd_dev_list_lock);
5559 list_for_each(tmp, &rbd_dev_list) {
5560 rbd_dev = list_entry(tmp, struct rbd_device, node);
5561 if (rbd_dev->dev_id == dev_id) {
5562 ret = 0;
5563 break;
5564 }
5565 }
5566 if (!ret) {
5567 spin_lock_irq(&rbd_dev->lock);
5568 if (rbd_dev->open_count)
5569 ret = -EBUSY;
5570 else
5571 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5572 &rbd_dev->flags);
5573 spin_unlock_irq(&rbd_dev->lock);
5574 }
5575 spin_unlock(&rbd_dev_list_lock);
5576 if (ret < 0 || already)
5577 return ret;
5578
5579 rbd_dev_header_unwatch_sync(rbd_dev);
5580 /*
5581 * flush remaining watch callbacks - these must be complete
5582 * before the osd_client is shutdown
5583 */
5584 dout("%s: flushing notifies", __func__);
5585 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5586
5587 /*
5588 * Don't free anything from rbd_dev->disk until after all
5589 * notifies are completely processed. Otherwise
5590 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5591 * in a potential use after free of rbd_dev->disk or rbd_dev.
5592 */
5593 rbd_bus_del_dev(rbd_dev);
5594 rbd_dev_image_release(rbd_dev);
5595 module_put(THIS_MODULE);
5596
5597 return count;
5598 }
5599
5600 static ssize_t rbd_remove(struct bus_type *bus,
5601 const char *buf,
5602 size_t count)
5603 {
5604 if (single_major)
5605 return -EINVAL;
5606
5607 return do_rbd_remove(bus, buf, count);
5608 }
5609
5610 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5611 const char *buf,
5612 size_t count)
5613 {
5614 return do_rbd_remove(bus, buf, count);
5615 }
5616
5617 /*
5618 * create control files in sysfs
5619 * /sys/bus/rbd/...
5620 */
5621 static int rbd_sysfs_init(void)
5622 {
5623 int ret;
5624
5625 ret = device_register(&rbd_root_dev);
5626 if (ret < 0)
5627 return ret;
5628
5629 ret = bus_register(&rbd_bus_type);
5630 if (ret < 0)
5631 device_unregister(&rbd_root_dev);
5632
5633 return ret;
5634 }
5635
5636 static void rbd_sysfs_cleanup(void)
5637 {
5638 bus_unregister(&rbd_bus_type);
5639 device_unregister(&rbd_root_dev);
5640 }
5641
5642 static int rbd_slab_init(void)
5643 {
5644 rbd_assert(!rbd_img_request_cache);
5645 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5646 sizeof (struct rbd_img_request),
5647 __alignof__(struct rbd_img_request),
5648 0, NULL);
5649 if (!rbd_img_request_cache)
5650 return -ENOMEM;
5651
5652 rbd_assert(!rbd_obj_request_cache);
5653 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5654 sizeof (struct rbd_obj_request),
5655 __alignof__(struct rbd_obj_request),
5656 0, NULL);
5657 if (!rbd_obj_request_cache)
5658 goto out_err;
5659
5660 rbd_assert(!rbd_segment_name_cache);
5661 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5662 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5663 if (rbd_segment_name_cache)
5664 return 0;
5665 out_err:
5666 if (rbd_obj_request_cache) {
5667 kmem_cache_destroy(rbd_obj_request_cache);
5668 rbd_obj_request_cache = NULL;
5669 }
5670
5671 kmem_cache_destroy(rbd_img_request_cache);
5672 rbd_img_request_cache = NULL;
5673
5674 return -ENOMEM;
5675 }
5676
5677 static void rbd_slab_exit(void)
5678 {
5679 rbd_assert(rbd_segment_name_cache);
5680 kmem_cache_destroy(rbd_segment_name_cache);
5681 rbd_segment_name_cache = NULL;
5682
5683 rbd_assert(rbd_obj_request_cache);
5684 kmem_cache_destroy(rbd_obj_request_cache);
5685 rbd_obj_request_cache = NULL;
5686
5687 rbd_assert(rbd_img_request_cache);
5688 kmem_cache_destroy(rbd_img_request_cache);
5689 rbd_img_request_cache = NULL;
5690 }
5691
5692 static int __init rbd_init(void)
5693 {
5694 int rc;
5695
5696 if (!libceph_compatible(NULL)) {
5697 rbd_warn(NULL, "libceph incompatibility (quitting)");
5698 return -EINVAL;
5699 }
5700
5701 rc = rbd_slab_init();
5702 if (rc)
5703 return rc;
5704
5705 /*
5706 * The number of active work items is limited by the number of
5707 * rbd devices * queue depth, so leave @max_active at default.
5708 */
5709 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5710 if (!rbd_wq) {
5711 rc = -ENOMEM;
5712 goto err_out_slab;
5713 }
5714
5715 if (single_major) {
5716 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5717 if (rbd_major < 0) {
5718 rc = rbd_major;
5719 goto err_out_wq;
5720 }
5721 }
5722
5723 rc = rbd_sysfs_init();
5724 if (rc)
5725 goto err_out_blkdev;
5726
5727 if (single_major)
5728 pr_info("loaded (major %d)\n", rbd_major);
5729 else
5730 pr_info("loaded\n");
5731
5732 return 0;
5733
5734 err_out_blkdev:
5735 if (single_major)
5736 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5737 err_out_wq:
5738 destroy_workqueue(rbd_wq);
5739 err_out_slab:
5740 rbd_slab_exit();
5741 return rc;
5742 }
5743
5744 static void __exit rbd_exit(void)
5745 {
5746 ida_destroy(&rbd_dev_id_ida);
5747 rbd_sysfs_cleanup();
5748 if (single_major)
5749 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5750 destroy_workqueue(rbd_wq);
5751 rbd_slab_exit();
5752 }
5753
5754 module_init(rbd_init);
5755 module_exit(rbd_exit);
5756
5757 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5758 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5759 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5760 /* following authorship retained from original osdblk.c */
5761 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5762
5763 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5764 MODULE_LICENSE("GPL");
This page took 0.138307 seconds and 6 git commands to generate.