[ALSA] Remove sound/driver.h
[deliverable/linux.git] / drivers / block / rd.c
1 /*
2 * ramdisk.c - Multiple RAM disk driver - gzip-loading version - v. 0.8 beta.
3 *
4 * (C) Chad Page, Theodore Ts'o, et. al, 1995.
5 *
6 * This RAM disk is designed to have filesystems created on it and mounted
7 * just like a regular floppy disk.
8 *
9 * It also does something suggested by Linus: use the buffer cache as the
10 * RAM disk data. This makes it possible to dynamically allocate the RAM disk
11 * buffer - with some consequences I have to deal with as I write this.
12 *
13 * This code is based on the original ramdisk.c, written mostly by
14 * Theodore Ts'o (TYT) in 1991. The code was largely rewritten by
15 * Chad Page to use the buffer cache to store the RAM disk data in
16 * 1995; Theodore then took over the driver again, and cleaned it up
17 * for inclusion in the mainline kernel.
18 *
19 * The original CRAMDISK code was written by Richard Lyons, and
20 * adapted by Chad Page to use the new RAM disk interface. Theodore
21 * Ts'o rewrote it so that both the compressed RAM disk loader and the
22 * kernel decompressor uses the same inflate.c codebase. The RAM disk
23 * loader now also loads into a dynamic (buffer cache based) RAM disk,
24 * not the old static RAM disk. Support for the old static RAM disk has
25 * been completely removed.
26 *
27 * Loadable module support added by Tom Dyas.
28 *
29 * Further cleanups by Chad Page (page0588@sundance.sjsu.edu):
30 * Cosmetic changes in #ifdef MODULE, code movement, etc.
31 * When the RAM disk module is removed, free the protected buffers
32 * Default RAM disk size changed to 2.88 MB
33 *
34 * Added initrd: Werner Almesberger & Hans Lermen, Feb '96
35 *
36 * 4/25/96 : Made RAM disk size a parameter (default is now 4 MB)
37 * - Chad Page
38 *
39 * Add support for fs images split across >1 disk, Paul Gortmaker, Mar '98
40 *
41 * Make block size and block size shift for RAM disks a global macro
42 * and set blk_size for -ENOSPC, Werner Fink <werner@suse.de>, Apr '99
43 */
44
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <asm/atomic.h>
48 #include <linux/bio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/init.h>
52 #include <linux/pagemap.h>
53 #include <linux/blkdev.h>
54 #include <linux/genhd.h>
55 #include <linux/buffer_head.h> /* for invalidate_bdev() */
56 #include <linux/backing-dev.h>
57 #include <linux/blkpg.h>
58 #include <linux/writeback.h>
59
60 #include <asm/uaccess.h>
61
62 /* Various static variables go here. Most are used only in the RAM disk code.
63 */
64
65 static struct gendisk *rd_disks[CONFIG_BLK_DEV_RAM_COUNT];
66 static struct block_device *rd_bdev[CONFIG_BLK_DEV_RAM_COUNT];/* Protected device data */
67 static struct request_queue *rd_queue[CONFIG_BLK_DEV_RAM_COUNT];
68
69 /*
70 * Parameters for the boot-loading of the RAM disk. These are set by
71 * init/main.c (from arguments to the kernel command line) or from the
72 * architecture-specific setup routine (from the stored boot sector
73 * information).
74 */
75 int rd_size = CONFIG_BLK_DEV_RAM_SIZE; /* Size of the RAM disks */
76 /*
77 * It would be very desirable to have a soft-blocksize (that in the case
78 * of the ramdisk driver is also the hardblocksize ;) of PAGE_SIZE because
79 * doing that we'll achieve a far better MM footprint. Using a rd_blocksize of
80 * BLOCK_SIZE in the worst case we'll make PAGE_SIZE/BLOCK_SIZE buffer-pages
81 * unfreeable. With a rd_blocksize of PAGE_SIZE instead we are sure that only
82 * 1 page will be protected. Depending on the size of the ramdisk you
83 * may want to change the ramdisk blocksize to achieve a better or worse MM
84 * behaviour. The default is still BLOCK_SIZE (needed by rd_load_image that
85 * supposes the filesystem in the image uses a BLOCK_SIZE blocksize).
86 */
87 static int rd_blocksize = CONFIG_BLK_DEV_RAM_BLOCKSIZE;
88
89 /*
90 * Copyright (C) 2000 Linus Torvalds.
91 * 2000 Transmeta Corp.
92 * aops copied from ramfs.
93 */
94
95 /*
96 * If a ramdisk page has buffers, some may be uptodate and some may be not.
97 * To bring the page uptodate we zero out the non-uptodate buffers. The
98 * page must be locked.
99 */
100 static void make_page_uptodate(struct page *page)
101 {
102 if (page_has_buffers(page)) {
103 struct buffer_head *bh = page_buffers(page);
104 struct buffer_head *head = bh;
105
106 do {
107 if (!buffer_uptodate(bh)) {
108 memset(bh->b_data, 0, bh->b_size);
109 /*
110 * akpm: I'm totally undecided about this. The
111 * buffer has just been magically brought "up to
112 * date", but nobody should want to be reading
113 * it anyway, because it hasn't been used for
114 * anything yet. It is still in a "not read
115 * from disk yet" state.
116 *
117 * But non-uptodate buffers against an uptodate
118 * page are against the rules. So do it anyway.
119 */
120 set_buffer_uptodate(bh);
121 }
122 } while ((bh = bh->b_this_page) != head);
123 } else {
124 memset(page_address(page), 0, PAGE_CACHE_SIZE);
125 }
126 flush_dcache_page(page);
127 SetPageUptodate(page);
128 }
129
130 static int ramdisk_readpage(struct file *file, struct page *page)
131 {
132 if (!PageUptodate(page))
133 make_page_uptodate(page);
134 unlock_page(page);
135 return 0;
136 }
137
138 static int ramdisk_prepare_write(struct file *file, struct page *page,
139 unsigned offset, unsigned to)
140 {
141 if (!PageUptodate(page))
142 make_page_uptodate(page);
143 return 0;
144 }
145
146 static int ramdisk_commit_write(struct file *file, struct page *page,
147 unsigned offset, unsigned to)
148 {
149 set_page_dirty(page);
150 return 0;
151 }
152
153 /*
154 * ->writepage to the blockdev's mapping has to redirty the page so that the
155 * VM doesn't go and steal it. We return AOP_WRITEPAGE_ACTIVATE so that the VM
156 * won't try to (pointlessly) write the page again for a while.
157 *
158 * Really, these pages should not be on the LRU at all.
159 */
160 static int ramdisk_writepage(struct page *page, struct writeback_control *wbc)
161 {
162 if (!PageUptodate(page))
163 make_page_uptodate(page);
164 SetPageDirty(page);
165 if (wbc->for_reclaim)
166 return AOP_WRITEPAGE_ACTIVATE;
167 unlock_page(page);
168 return 0;
169 }
170
171 /*
172 * This is a little speedup thing: short-circuit attempts to write back the
173 * ramdisk blockdev inode to its non-existent backing store.
174 */
175 static int ramdisk_writepages(struct address_space *mapping,
176 struct writeback_control *wbc)
177 {
178 return 0;
179 }
180
181 /*
182 * ramdisk blockdev pages have their own ->set_page_dirty() because we don't
183 * want them to contribute to dirty memory accounting.
184 */
185 static int ramdisk_set_page_dirty(struct page *page)
186 {
187 if (!TestSetPageDirty(page))
188 return 1;
189 return 0;
190 }
191
192 /*
193 * releasepage is called by pagevec_strip/try_to_release_page if
194 * buffers_heads_over_limit is true. Without a releasepage function
195 * try_to_free_buffers is called instead. That can unset the dirty
196 * bit of our ram disk pages, which will be eventually freed, even
197 * if the page is still in use.
198 */
199 static int ramdisk_releasepage(struct page *page, gfp_t dummy)
200 {
201 return 0;
202 }
203
204 static const struct address_space_operations ramdisk_aops = {
205 .readpage = ramdisk_readpage,
206 .prepare_write = ramdisk_prepare_write,
207 .commit_write = ramdisk_commit_write,
208 .writepage = ramdisk_writepage,
209 .set_page_dirty = ramdisk_set_page_dirty,
210 .writepages = ramdisk_writepages,
211 .releasepage = ramdisk_releasepage,
212 };
213
214 static int rd_blkdev_pagecache_IO(int rw, struct bio_vec *vec, sector_t sector,
215 struct address_space *mapping)
216 {
217 pgoff_t index = sector >> (PAGE_CACHE_SHIFT - 9);
218 unsigned int vec_offset = vec->bv_offset;
219 int offset = (sector << 9) & ~PAGE_CACHE_MASK;
220 int size = vec->bv_len;
221 int err = 0;
222
223 do {
224 int count;
225 struct page *page;
226 char *src;
227 char *dst;
228
229 count = PAGE_CACHE_SIZE - offset;
230 if (count > size)
231 count = size;
232 size -= count;
233
234 page = grab_cache_page(mapping, index);
235 if (!page) {
236 err = -ENOMEM;
237 goto out;
238 }
239
240 if (!PageUptodate(page))
241 make_page_uptodate(page);
242
243 index++;
244
245 if (rw == READ) {
246 src = kmap_atomic(page, KM_USER0) + offset;
247 dst = kmap_atomic(vec->bv_page, KM_USER1) + vec_offset;
248 } else {
249 src = kmap_atomic(vec->bv_page, KM_USER0) + vec_offset;
250 dst = kmap_atomic(page, KM_USER1) + offset;
251 }
252 offset = 0;
253 vec_offset += count;
254
255 memcpy(dst, src, count);
256
257 kunmap_atomic(src, KM_USER0);
258 kunmap_atomic(dst, KM_USER1);
259
260 if (rw == READ)
261 flush_dcache_page(vec->bv_page);
262 else
263 set_page_dirty(page);
264 unlock_page(page);
265 put_page(page);
266 } while (size);
267
268 out:
269 return err;
270 }
271
272 /*
273 * Basically, my strategy here is to set up a buffer-head which can't be
274 * deleted, and make that my Ramdisk. If the request is outside of the
275 * allocated size, we must get rid of it...
276 *
277 * 19-JAN-1998 Richard Gooch <rgooch@atnf.csiro.au> Added devfs support
278 *
279 */
280 static int rd_make_request(struct request_queue *q, struct bio *bio)
281 {
282 struct block_device *bdev = bio->bi_bdev;
283 struct address_space * mapping = bdev->bd_inode->i_mapping;
284 sector_t sector = bio->bi_sector;
285 unsigned long len = bio->bi_size >> 9;
286 int rw = bio_data_dir(bio);
287 struct bio_vec *bvec;
288 int ret = 0, i;
289
290 if (sector + len > get_capacity(bdev->bd_disk))
291 goto fail;
292
293 if (rw==READA)
294 rw=READ;
295
296 bio_for_each_segment(bvec, bio, i) {
297 ret |= rd_blkdev_pagecache_IO(rw, bvec, sector, mapping);
298 sector += bvec->bv_len >> 9;
299 }
300 if (ret)
301 goto fail;
302
303 bio_endio(bio, 0);
304 return 0;
305 fail:
306 bio_io_error(bio);
307 return 0;
308 }
309
310 static int rd_ioctl(struct inode *inode, struct file *file,
311 unsigned int cmd, unsigned long arg)
312 {
313 int error;
314 struct block_device *bdev = inode->i_bdev;
315
316 if (cmd != BLKFLSBUF)
317 return -ENOTTY;
318
319 /*
320 * special: we want to release the ramdisk memory, it's not like with
321 * the other blockdevices where this ioctl only flushes away the buffer
322 * cache
323 */
324 error = -EBUSY;
325 mutex_lock(&bdev->bd_mutex);
326 if (bdev->bd_openers <= 2) {
327 truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
328 error = 0;
329 }
330 mutex_unlock(&bdev->bd_mutex);
331 return error;
332 }
333
334 /*
335 * This is the backing_dev_info for the blockdev inode itself. It doesn't need
336 * writeback and it does not contribute to dirty memory accounting.
337 */
338 static struct backing_dev_info rd_backing_dev_info = {
339 .ra_pages = 0, /* No readahead */
340 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK | BDI_CAP_MAP_COPY,
341 .unplug_io_fn = default_unplug_io_fn,
342 };
343
344 /*
345 * This is the backing_dev_info for the files which live atop the ramdisk
346 * "device". These files do need writeback and they do contribute to dirty
347 * memory accounting.
348 */
349 static struct backing_dev_info rd_file_backing_dev_info = {
350 .ra_pages = 0, /* No readahead */
351 .capabilities = BDI_CAP_MAP_COPY, /* Does contribute to dirty memory */
352 .unplug_io_fn = default_unplug_io_fn,
353 };
354
355 static int rd_open(struct inode *inode, struct file *filp)
356 {
357 unsigned unit = iminor(inode);
358
359 if (rd_bdev[unit] == NULL) {
360 struct block_device *bdev = inode->i_bdev;
361 struct address_space *mapping;
362 unsigned bsize;
363 gfp_t gfp_mask;
364
365 inode = igrab(bdev->bd_inode);
366 rd_bdev[unit] = bdev;
367 bdev->bd_openers++;
368 bsize = bdev_hardsect_size(bdev);
369 bdev->bd_block_size = bsize;
370 inode->i_blkbits = blksize_bits(bsize);
371 inode->i_size = get_capacity(bdev->bd_disk)<<9;
372
373 mapping = inode->i_mapping;
374 mapping->a_ops = &ramdisk_aops;
375 mapping->backing_dev_info = &rd_backing_dev_info;
376 bdev->bd_inode_backing_dev_info = &rd_file_backing_dev_info;
377
378 /*
379 * Deep badness. rd_blkdev_pagecache_IO() needs to allocate
380 * pagecache pages within a request_fn. We cannot recur back
381 * into the filesystem which is mounted atop the ramdisk, because
382 * that would deadlock on fs locks. And we really don't want
383 * to reenter rd_blkdev_pagecache_IO when we're already within
384 * that function.
385 *
386 * So we turn off __GFP_FS and __GFP_IO.
387 *
388 * And to give this thing a hope of working, turn on __GFP_HIGH.
389 * Hopefully, there's enough regular memory allocation going on
390 * for the page allocator emergency pools to keep the ramdisk
391 * driver happy.
392 */
393 gfp_mask = mapping_gfp_mask(mapping);
394 gfp_mask &= ~(__GFP_FS|__GFP_IO);
395 gfp_mask |= __GFP_HIGH;
396 mapping_set_gfp_mask(mapping, gfp_mask);
397 }
398
399 return 0;
400 }
401
402 static struct block_device_operations rd_bd_op = {
403 .owner = THIS_MODULE,
404 .open = rd_open,
405 .ioctl = rd_ioctl,
406 };
407
408 /*
409 * Before freeing the module, invalidate all of the protected buffers!
410 */
411 static void __exit rd_cleanup(void)
412 {
413 int i;
414
415 for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
416 struct block_device *bdev = rd_bdev[i];
417 rd_bdev[i] = NULL;
418 if (bdev) {
419 invalidate_bdev(bdev);
420 blkdev_put(bdev);
421 }
422 del_gendisk(rd_disks[i]);
423 put_disk(rd_disks[i]);
424 blk_cleanup_queue(rd_queue[i]);
425 }
426 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
427
428 bdi_destroy(&rd_file_backing_dev_info);
429 bdi_destroy(&rd_backing_dev_info);
430 }
431
432 /*
433 * This is the registration and initialization section of the RAM disk driver
434 */
435 static int __init rd_init(void)
436 {
437 int i;
438 int err;
439
440 err = bdi_init(&rd_backing_dev_info);
441 if (err)
442 goto out2;
443
444 err = bdi_init(&rd_file_backing_dev_info);
445 if (err) {
446 bdi_destroy(&rd_backing_dev_info);
447 goto out2;
448 }
449
450 err = -ENOMEM;
451
452 if (rd_blocksize > PAGE_SIZE || rd_blocksize < 512 ||
453 (rd_blocksize & (rd_blocksize-1))) {
454 printk("RAMDISK: wrong blocksize %d, reverting to defaults\n",
455 rd_blocksize);
456 rd_blocksize = BLOCK_SIZE;
457 }
458
459 for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
460 rd_disks[i] = alloc_disk(1);
461 if (!rd_disks[i])
462 goto out;
463
464 rd_queue[i] = blk_alloc_queue(GFP_KERNEL);
465 if (!rd_queue[i]) {
466 put_disk(rd_disks[i]);
467 goto out;
468 }
469 }
470
471 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) {
472 err = -EIO;
473 goto out;
474 }
475
476 for (i = 0; i < CONFIG_BLK_DEV_RAM_COUNT; i++) {
477 struct gendisk *disk = rd_disks[i];
478
479 blk_queue_make_request(rd_queue[i], &rd_make_request);
480 blk_queue_hardsect_size(rd_queue[i], rd_blocksize);
481
482 /* rd_size is given in kB */
483 disk->major = RAMDISK_MAJOR;
484 disk->first_minor = i;
485 disk->fops = &rd_bd_op;
486 disk->queue = rd_queue[i];
487 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
488 sprintf(disk->disk_name, "ram%d", i);
489 set_capacity(disk, rd_size * 2);
490 add_disk(rd_disks[i]);
491 }
492
493 /* rd_size is given in kB */
494 printk("RAMDISK driver initialized: "
495 "%d RAM disks of %dK size %d blocksize\n",
496 CONFIG_BLK_DEV_RAM_COUNT, rd_size, rd_blocksize);
497
498 return 0;
499 out:
500 while (i--) {
501 put_disk(rd_disks[i]);
502 blk_cleanup_queue(rd_queue[i]);
503 }
504 bdi_destroy(&rd_backing_dev_info);
505 bdi_destroy(&rd_file_backing_dev_info);
506 out2:
507 return err;
508 }
509
510 module_init(rd_init);
511 module_exit(rd_cleanup);
512
513 /* options - nonmodular */
514 #ifndef MODULE
515 static int __init ramdisk_size(char *str)
516 {
517 rd_size = simple_strtol(str,NULL,0);
518 return 1;
519 }
520 static int __init ramdisk_blocksize(char *str)
521 {
522 rd_blocksize = simple_strtol(str,NULL,0);
523 return 1;
524 }
525 __setup("ramdisk_size=", ramdisk_size);
526 __setup("ramdisk_blocksize=", ramdisk_blocksize);
527 #endif
528
529 /* options - modular */
530 module_param(rd_size, int, 0);
531 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
532 module_param(rd_blocksize, int, 0);
533 MODULE_PARM_DESC(rd_blocksize, "Blocksize of each RAM disk in bytes.");
534 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
535
536 MODULE_LICENSE("GPL");
This page took 0.042079 seconds and 5 git commands to generate.