nvme-rdma: Remove unused includes
[deliverable/linux.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name) \
56 static ssize_t name##_show(struct device *d, \
57 struct device_attribute *attr, char *b) \
58 { \
59 struct zram *zram = dev_to_zram(d); \
60 \
61 deprecated_attr_warn(__stringify(name)); \
62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
63 (u64)atomic64_read(&zram->stats.name)); \
64 } \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69 return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74 return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
80 {
81 return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
86 {
87 meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
92 {
93 meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
103 {
104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline bool is_partial_io(struct bio_vec *bvec)
110 {
111 return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115 * Check if request is within bounds and aligned on zram logical blocks.
116 */
117 static inline bool valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
119 {
120 u64 end, bound;
121
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 return false;
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 return false;
127
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
132 return false;
133
134 /* I/O request is valid */
135 return true;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
147 {
148 unsigned long old_max, cur_max;
149
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
158 }
159
160 static bool page_zero_filled(void *ptr)
161 {
162 unsigned int pos;
163 unsigned long *page;
164
165 page = (unsigned long *)ptr;
166
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 if (page[pos])
169 return false;
170 }
171
172 return true;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177 struct page *page = bvec->bv_page;
178 void *user_mem;
179
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 else
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
186
187 flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 u32 val;
194 struct zram *zram = dev_to_zram(dev);
195
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
199
200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205 {
206 struct zram *zram = dev_to_zram(dev);
207
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213 {
214 struct zram *zram = dev_to_zram(dev);
215
216 deprecated_attr_warn("orig_data_size");
217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 u64 val = 0;
225 struct zram *zram = dev_to_zram(dev);
226
227 deprecated_attr_warn("mem_used_total");
228 down_read(&zram->init_lock);
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
231 val = zs_get_total_pages(meta->mem_pool);
232 }
233 up_read(&zram->init_lock);
234
235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240 {
241 u64 val;
242 struct zram *zram = dev_to_zram(dev);
243
244 deprecated_attr_warn("mem_limit");
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
248
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254 {
255 u64 limit;
256 char *tmp;
257 struct zram *zram = dev_to_zram(dev);
258
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
261 return -EINVAL;
262
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
266
267 return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272 {
273 u64 val = 0;
274 struct zram *zram = dev_to_zram(dev);
275
276 deprecated_attr_warn("mem_used_max");
277 down_read(&zram->init_lock);
278 if (init_done(zram))
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
281
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
287 {
288 int err;
289 unsigned long val;
290 struct zram *zram = dev_to_zram(dev);
291
292 err = kstrtoul(buf, 10, &val);
293 if (err || val != 0)
294 return -EINVAL;
295
296 down_read(&zram->init_lock);
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
301 }
302 up_read(&zram->init_lock);
303
304 return len;
305 }
306
307 /*
308 * We switched to per-cpu streams and this attr is not needed anymore.
309 * However, we will keep it around for some time, because:
310 * a) we may revert per-cpu streams in the future
311 * b) it's visible to user space and we need to follow our 2 years
312 * retirement rule; but we already have a number of 'soon to be
313 * altered' attrs, so max_comp_streams need to wait for the next
314 * layoff cycle.
315 */
316 static ssize_t max_comp_streams_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
320 }
321
322 static ssize_t max_comp_streams_store(struct device *dev,
323 struct device_attribute *attr, const char *buf, size_t len)
324 {
325 return len;
326 }
327
328 static ssize_t comp_algorithm_show(struct device *dev,
329 struct device_attribute *attr, char *buf)
330 {
331 size_t sz;
332 struct zram *zram = dev_to_zram(dev);
333
334 down_read(&zram->init_lock);
335 sz = zcomp_available_show(zram->compressor, buf);
336 up_read(&zram->init_lock);
337
338 return sz;
339 }
340
341 static ssize_t comp_algorithm_store(struct device *dev,
342 struct device_attribute *attr, const char *buf, size_t len)
343 {
344 struct zram *zram = dev_to_zram(dev);
345 char compressor[CRYPTO_MAX_ALG_NAME];
346 size_t sz;
347
348 strlcpy(compressor, buf, sizeof(compressor));
349 /* ignore trailing newline */
350 sz = strlen(compressor);
351 if (sz > 0 && compressor[sz - 1] == '\n')
352 compressor[sz - 1] = 0x00;
353
354 if (!zcomp_available_algorithm(compressor))
355 return -EINVAL;
356
357 down_write(&zram->init_lock);
358 if (init_done(zram)) {
359 up_write(&zram->init_lock);
360 pr_info("Can't change algorithm for initialized device\n");
361 return -EBUSY;
362 }
363
364 strlcpy(zram->compressor, compressor, sizeof(compressor));
365 up_write(&zram->init_lock);
366 return len;
367 }
368
369 static ssize_t compact_store(struct device *dev,
370 struct device_attribute *attr, const char *buf, size_t len)
371 {
372 struct zram *zram = dev_to_zram(dev);
373 struct zram_meta *meta;
374
375 down_read(&zram->init_lock);
376 if (!init_done(zram)) {
377 up_read(&zram->init_lock);
378 return -EINVAL;
379 }
380
381 meta = zram->meta;
382 zs_compact(meta->mem_pool);
383 up_read(&zram->init_lock);
384
385 return len;
386 }
387
388 static ssize_t io_stat_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
390 {
391 struct zram *zram = dev_to_zram(dev);
392 ssize_t ret;
393
394 down_read(&zram->init_lock);
395 ret = scnprintf(buf, PAGE_SIZE,
396 "%8llu %8llu %8llu %8llu\n",
397 (u64)atomic64_read(&zram->stats.failed_reads),
398 (u64)atomic64_read(&zram->stats.failed_writes),
399 (u64)atomic64_read(&zram->stats.invalid_io),
400 (u64)atomic64_read(&zram->stats.notify_free));
401 up_read(&zram->init_lock);
402
403 return ret;
404 }
405
406 static ssize_t mm_stat_show(struct device *dev,
407 struct device_attribute *attr, char *buf)
408 {
409 struct zram *zram = dev_to_zram(dev);
410 struct zs_pool_stats pool_stats;
411 u64 orig_size, mem_used = 0;
412 long max_used;
413 ssize_t ret;
414
415 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
416
417 down_read(&zram->init_lock);
418 if (init_done(zram)) {
419 mem_used = zs_get_total_pages(zram->meta->mem_pool);
420 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
421 }
422
423 orig_size = atomic64_read(&zram->stats.pages_stored);
424 max_used = atomic_long_read(&zram->stats.max_used_pages);
425
426 ret = scnprintf(buf, PAGE_SIZE,
427 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
428 orig_size << PAGE_SHIFT,
429 (u64)atomic64_read(&zram->stats.compr_data_size),
430 mem_used << PAGE_SHIFT,
431 zram->limit_pages << PAGE_SHIFT,
432 max_used << PAGE_SHIFT,
433 (u64)atomic64_read(&zram->stats.zero_pages),
434 pool_stats.pages_compacted);
435 up_read(&zram->init_lock);
436
437 return ret;
438 }
439
440 static ssize_t debug_stat_show(struct device *dev,
441 struct device_attribute *attr, char *buf)
442 {
443 int version = 1;
444 struct zram *zram = dev_to_zram(dev);
445 ssize_t ret;
446
447 down_read(&zram->init_lock);
448 ret = scnprintf(buf, PAGE_SIZE,
449 "version: %d\n%8llu\n",
450 version,
451 (u64)atomic64_read(&zram->stats.writestall));
452 up_read(&zram->init_lock);
453
454 return ret;
455 }
456
457 static DEVICE_ATTR_RO(io_stat);
458 static DEVICE_ATTR_RO(mm_stat);
459 static DEVICE_ATTR_RO(debug_stat);
460 ZRAM_ATTR_RO(num_reads);
461 ZRAM_ATTR_RO(num_writes);
462 ZRAM_ATTR_RO(failed_reads);
463 ZRAM_ATTR_RO(failed_writes);
464 ZRAM_ATTR_RO(invalid_io);
465 ZRAM_ATTR_RO(notify_free);
466 ZRAM_ATTR_RO(zero_pages);
467 ZRAM_ATTR_RO(compr_data_size);
468
469 static inline bool zram_meta_get(struct zram *zram)
470 {
471 if (atomic_inc_not_zero(&zram->refcount))
472 return true;
473 return false;
474 }
475
476 static inline void zram_meta_put(struct zram *zram)
477 {
478 atomic_dec(&zram->refcount);
479 }
480
481 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
482 {
483 size_t num_pages = disksize >> PAGE_SHIFT;
484 size_t index;
485
486 /* Free all pages that are still in this zram device */
487 for (index = 0; index < num_pages; index++) {
488 unsigned long handle = meta->table[index].handle;
489
490 if (!handle)
491 continue;
492
493 zs_free(meta->mem_pool, handle);
494 }
495
496 zs_destroy_pool(meta->mem_pool);
497 vfree(meta->table);
498 kfree(meta);
499 }
500
501 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
502 {
503 size_t num_pages;
504 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
505
506 if (!meta)
507 return NULL;
508
509 num_pages = disksize >> PAGE_SHIFT;
510 meta->table = vzalloc(num_pages * sizeof(*meta->table));
511 if (!meta->table) {
512 pr_err("Error allocating zram address table\n");
513 goto out_error;
514 }
515
516 meta->mem_pool = zs_create_pool(pool_name);
517 if (!meta->mem_pool) {
518 pr_err("Error creating memory pool\n");
519 goto out_error;
520 }
521
522 return meta;
523
524 out_error:
525 vfree(meta->table);
526 kfree(meta);
527 return NULL;
528 }
529
530 /*
531 * To protect concurrent access to the same index entry,
532 * caller should hold this table index entry's bit_spinlock to
533 * indicate this index entry is accessing.
534 */
535 static void zram_free_page(struct zram *zram, size_t index)
536 {
537 struct zram_meta *meta = zram->meta;
538 unsigned long handle = meta->table[index].handle;
539
540 if (unlikely(!handle)) {
541 /*
542 * No memory is allocated for zero filled pages.
543 * Simply clear zero page flag.
544 */
545 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
546 zram_clear_flag(meta, index, ZRAM_ZERO);
547 atomic64_dec(&zram->stats.zero_pages);
548 }
549 return;
550 }
551
552 zs_free(meta->mem_pool, handle);
553
554 atomic64_sub(zram_get_obj_size(meta, index),
555 &zram->stats.compr_data_size);
556 atomic64_dec(&zram->stats.pages_stored);
557
558 meta->table[index].handle = 0;
559 zram_set_obj_size(meta, index, 0);
560 }
561
562 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
563 {
564 int ret = 0;
565 unsigned char *cmem;
566 struct zram_meta *meta = zram->meta;
567 unsigned long handle;
568 unsigned int size;
569
570 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
571 handle = meta->table[index].handle;
572 size = zram_get_obj_size(meta, index);
573
574 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
575 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
576 clear_page(mem);
577 return 0;
578 }
579
580 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
581 if (size == PAGE_SIZE) {
582 copy_page(mem, cmem);
583 } else {
584 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
585
586 ret = zcomp_decompress(zstrm, cmem, size, mem);
587 zcomp_stream_put(zram->comp);
588 }
589 zs_unmap_object(meta->mem_pool, handle);
590 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
591
592 /* Should NEVER happen. Return bio error if it does. */
593 if (unlikely(ret)) {
594 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
595 return ret;
596 }
597
598 return 0;
599 }
600
601 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
602 u32 index, int offset)
603 {
604 int ret;
605 struct page *page;
606 unsigned char *user_mem, *uncmem = NULL;
607 struct zram_meta *meta = zram->meta;
608 page = bvec->bv_page;
609
610 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
611 if (unlikely(!meta->table[index].handle) ||
612 zram_test_flag(meta, index, ZRAM_ZERO)) {
613 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
614 handle_zero_page(bvec);
615 return 0;
616 }
617 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
618
619 if (is_partial_io(bvec))
620 /* Use a temporary buffer to decompress the page */
621 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
622
623 user_mem = kmap_atomic(page);
624 if (!is_partial_io(bvec))
625 uncmem = user_mem;
626
627 if (!uncmem) {
628 pr_err("Unable to allocate temp memory\n");
629 ret = -ENOMEM;
630 goto out_cleanup;
631 }
632
633 ret = zram_decompress_page(zram, uncmem, index);
634 /* Should NEVER happen. Return bio error if it does. */
635 if (unlikely(ret))
636 goto out_cleanup;
637
638 if (is_partial_io(bvec))
639 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
640 bvec->bv_len);
641
642 flush_dcache_page(page);
643 ret = 0;
644 out_cleanup:
645 kunmap_atomic(user_mem);
646 if (is_partial_io(bvec))
647 kfree(uncmem);
648 return ret;
649 }
650
651 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
652 int offset)
653 {
654 int ret = 0;
655 unsigned int clen;
656 unsigned long handle = 0;
657 struct page *page;
658 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
659 struct zram_meta *meta = zram->meta;
660 struct zcomp_strm *zstrm = NULL;
661 unsigned long alloced_pages;
662
663 page = bvec->bv_page;
664 if (is_partial_io(bvec)) {
665 /*
666 * This is a partial IO. We need to read the full page
667 * before to write the changes.
668 */
669 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
670 if (!uncmem) {
671 ret = -ENOMEM;
672 goto out;
673 }
674 ret = zram_decompress_page(zram, uncmem, index);
675 if (ret)
676 goto out;
677 }
678
679 compress_again:
680 user_mem = kmap_atomic(page);
681 if (is_partial_io(bvec)) {
682 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
683 bvec->bv_len);
684 kunmap_atomic(user_mem);
685 user_mem = NULL;
686 } else {
687 uncmem = user_mem;
688 }
689
690 if (page_zero_filled(uncmem)) {
691 if (user_mem)
692 kunmap_atomic(user_mem);
693 /* Free memory associated with this sector now. */
694 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
695 zram_free_page(zram, index);
696 zram_set_flag(meta, index, ZRAM_ZERO);
697 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
698
699 atomic64_inc(&zram->stats.zero_pages);
700 ret = 0;
701 goto out;
702 }
703
704 zstrm = zcomp_stream_get(zram->comp);
705 ret = zcomp_compress(zstrm, uncmem, &clen);
706 if (!is_partial_io(bvec)) {
707 kunmap_atomic(user_mem);
708 user_mem = NULL;
709 uncmem = NULL;
710 }
711
712 if (unlikely(ret)) {
713 pr_err("Compression failed! err=%d\n", ret);
714 goto out;
715 }
716
717 src = zstrm->buffer;
718 if (unlikely(clen > max_zpage_size)) {
719 clen = PAGE_SIZE;
720 if (is_partial_io(bvec))
721 src = uncmem;
722 }
723
724 /*
725 * handle allocation has 2 paths:
726 * a) fast path is executed with preemption disabled (for
727 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
728 * since we can't sleep;
729 * b) slow path enables preemption and attempts to allocate
730 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
731 * put per-cpu compression stream and, thus, to re-do
732 * the compression once handle is allocated.
733 *
734 * if we have a 'non-null' handle here then we are coming
735 * from the slow path and handle has already been allocated.
736 */
737 if (!handle)
738 handle = zs_malloc(meta->mem_pool, clen,
739 __GFP_KSWAPD_RECLAIM |
740 __GFP_NOWARN |
741 __GFP_HIGHMEM |
742 __GFP_MOVABLE);
743 if (!handle) {
744 zcomp_stream_put(zram->comp);
745 zstrm = NULL;
746
747 atomic64_inc(&zram->stats.writestall);
748
749 handle = zs_malloc(meta->mem_pool, clen,
750 GFP_NOIO | __GFP_HIGHMEM |
751 __GFP_MOVABLE);
752 if (handle)
753 goto compress_again;
754
755 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
756 index, clen);
757 ret = -ENOMEM;
758 goto out;
759 }
760
761 alloced_pages = zs_get_total_pages(meta->mem_pool);
762 update_used_max(zram, alloced_pages);
763
764 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
765 zs_free(meta->mem_pool, handle);
766 ret = -ENOMEM;
767 goto out;
768 }
769
770 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
771
772 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
773 src = kmap_atomic(page);
774 copy_page(cmem, src);
775 kunmap_atomic(src);
776 } else {
777 memcpy(cmem, src, clen);
778 }
779
780 zcomp_stream_put(zram->comp);
781 zstrm = NULL;
782 zs_unmap_object(meta->mem_pool, handle);
783
784 /*
785 * Free memory associated with this sector
786 * before overwriting unused sectors.
787 */
788 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
789 zram_free_page(zram, index);
790
791 meta->table[index].handle = handle;
792 zram_set_obj_size(meta, index, clen);
793 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
794
795 /* Update stats */
796 atomic64_add(clen, &zram->stats.compr_data_size);
797 atomic64_inc(&zram->stats.pages_stored);
798 out:
799 if (zstrm)
800 zcomp_stream_put(zram->comp);
801 if (is_partial_io(bvec))
802 kfree(uncmem);
803 return ret;
804 }
805
806 /*
807 * zram_bio_discard - handler on discard request
808 * @index: physical block index in PAGE_SIZE units
809 * @offset: byte offset within physical block
810 */
811 static void zram_bio_discard(struct zram *zram, u32 index,
812 int offset, struct bio *bio)
813 {
814 size_t n = bio->bi_iter.bi_size;
815 struct zram_meta *meta = zram->meta;
816
817 /*
818 * zram manages data in physical block size units. Because logical block
819 * size isn't identical with physical block size on some arch, we
820 * could get a discard request pointing to a specific offset within a
821 * certain physical block. Although we can handle this request by
822 * reading that physiclal block and decompressing and partially zeroing
823 * and re-compressing and then re-storing it, this isn't reasonable
824 * because our intent with a discard request is to save memory. So
825 * skipping this logical block is appropriate here.
826 */
827 if (offset) {
828 if (n <= (PAGE_SIZE - offset))
829 return;
830
831 n -= (PAGE_SIZE - offset);
832 index++;
833 }
834
835 while (n >= PAGE_SIZE) {
836 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
837 zram_free_page(zram, index);
838 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
839 atomic64_inc(&zram->stats.notify_free);
840 index++;
841 n -= PAGE_SIZE;
842 }
843 }
844
845 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
846 int offset, int rw)
847 {
848 unsigned long start_time = jiffies;
849 int ret;
850
851 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
852 &zram->disk->part0);
853
854 if (rw == READ) {
855 atomic64_inc(&zram->stats.num_reads);
856 ret = zram_bvec_read(zram, bvec, index, offset);
857 } else {
858 atomic64_inc(&zram->stats.num_writes);
859 ret = zram_bvec_write(zram, bvec, index, offset);
860 }
861
862 generic_end_io_acct(rw, &zram->disk->part0, start_time);
863
864 if (unlikely(ret)) {
865 if (rw == READ)
866 atomic64_inc(&zram->stats.failed_reads);
867 else
868 atomic64_inc(&zram->stats.failed_writes);
869 }
870
871 return ret;
872 }
873
874 static void __zram_make_request(struct zram *zram, struct bio *bio)
875 {
876 int offset, rw;
877 u32 index;
878 struct bio_vec bvec;
879 struct bvec_iter iter;
880
881 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
882 offset = (bio->bi_iter.bi_sector &
883 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
884
885 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
886 zram_bio_discard(zram, index, offset, bio);
887 bio_endio(bio);
888 return;
889 }
890
891 rw = bio_data_dir(bio);
892 bio_for_each_segment(bvec, bio, iter) {
893 int max_transfer_size = PAGE_SIZE - offset;
894
895 if (bvec.bv_len > max_transfer_size) {
896 /*
897 * zram_bvec_rw() can only make operation on a single
898 * zram page. Split the bio vector.
899 */
900 struct bio_vec bv;
901
902 bv.bv_page = bvec.bv_page;
903 bv.bv_len = max_transfer_size;
904 bv.bv_offset = bvec.bv_offset;
905
906 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
907 goto out;
908
909 bv.bv_len = bvec.bv_len - max_transfer_size;
910 bv.bv_offset += max_transfer_size;
911 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
912 goto out;
913 } else
914 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
915 goto out;
916
917 update_position(&index, &offset, &bvec);
918 }
919
920 bio_endio(bio);
921 return;
922
923 out:
924 bio_io_error(bio);
925 }
926
927 /*
928 * Handler function for all zram I/O requests.
929 */
930 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
931 {
932 struct zram *zram = queue->queuedata;
933
934 if (unlikely(!zram_meta_get(zram)))
935 goto error;
936
937 blk_queue_split(queue, &bio, queue->bio_split);
938
939 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
940 bio->bi_iter.bi_size)) {
941 atomic64_inc(&zram->stats.invalid_io);
942 goto put_zram;
943 }
944
945 __zram_make_request(zram, bio);
946 zram_meta_put(zram);
947 return BLK_QC_T_NONE;
948 put_zram:
949 zram_meta_put(zram);
950 error:
951 bio_io_error(bio);
952 return BLK_QC_T_NONE;
953 }
954
955 static void zram_slot_free_notify(struct block_device *bdev,
956 unsigned long index)
957 {
958 struct zram *zram;
959 struct zram_meta *meta;
960
961 zram = bdev->bd_disk->private_data;
962 meta = zram->meta;
963
964 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
965 zram_free_page(zram, index);
966 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
967 atomic64_inc(&zram->stats.notify_free);
968 }
969
970 static int zram_rw_page(struct block_device *bdev, sector_t sector,
971 struct page *page, int rw)
972 {
973 int offset, err = -EIO;
974 u32 index;
975 struct zram *zram;
976 struct bio_vec bv;
977
978 zram = bdev->bd_disk->private_data;
979 if (unlikely(!zram_meta_get(zram)))
980 goto out;
981
982 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
983 atomic64_inc(&zram->stats.invalid_io);
984 err = -EINVAL;
985 goto put_zram;
986 }
987
988 index = sector >> SECTORS_PER_PAGE_SHIFT;
989 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
990
991 bv.bv_page = page;
992 bv.bv_len = PAGE_SIZE;
993 bv.bv_offset = 0;
994
995 err = zram_bvec_rw(zram, &bv, index, offset, rw);
996 put_zram:
997 zram_meta_put(zram);
998 out:
999 /*
1000 * If I/O fails, just return error(ie, non-zero) without
1001 * calling page_endio.
1002 * It causes resubmit the I/O with bio request by upper functions
1003 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1004 * bio->bi_end_io does things to handle the error
1005 * (e.g., SetPageError, set_page_dirty and extra works).
1006 */
1007 if (err == 0)
1008 page_endio(page, rw, 0);
1009 return err;
1010 }
1011
1012 static void zram_reset_device(struct zram *zram)
1013 {
1014 struct zram_meta *meta;
1015 struct zcomp *comp;
1016 u64 disksize;
1017
1018 down_write(&zram->init_lock);
1019
1020 zram->limit_pages = 0;
1021
1022 if (!init_done(zram)) {
1023 up_write(&zram->init_lock);
1024 return;
1025 }
1026
1027 meta = zram->meta;
1028 comp = zram->comp;
1029 disksize = zram->disksize;
1030 /*
1031 * Refcount will go down to 0 eventually and r/w handler
1032 * cannot handle further I/O so it will bail out by
1033 * check zram_meta_get.
1034 */
1035 zram_meta_put(zram);
1036 /*
1037 * We want to free zram_meta in process context to avoid
1038 * deadlock between reclaim path and any other locks.
1039 */
1040 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1041
1042 /* Reset stats */
1043 memset(&zram->stats, 0, sizeof(zram->stats));
1044 zram->disksize = 0;
1045
1046 set_capacity(zram->disk, 0);
1047 part_stat_set_all(&zram->disk->part0, 0);
1048
1049 up_write(&zram->init_lock);
1050 /* I/O operation under all of CPU are done so let's free */
1051 zram_meta_free(meta, disksize);
1052 zcomp_destroy(comp);
1053 }
1054
1055 static ssize_t disksize_store(struct device *dev,
1056 struct device_attribute *attr, const char *buf, size_t len)
1057 {
1058 u64 disksize;
1059 struct zcomp *comp;
1060 struct zram_meta *meta;
1061 struct zram *zram = dev_to_zram(dev);
1062 int err;
1063
1064 disksize = memparse(buf, NULL);
1065 if (!disksize)
1066 return -EINVAL;
1067
1068 disksize = PAGE_ALIGN(disksize);
1069 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1070 if (!meta)
1071 return -ENOMEM;
1072
1073 comp = zcomp_create(zram->compressor);
1074 if (IS_ERR(comp)) {
1075 pr_err("Cannot initialise %s compressing backend\n",
1076 zram->compressor);
1077 err = PTR_ERR(comp);
1078 goto out_free_meta;
1079 }
1080
1081 down_write(&zram->init_lock);
1082 if (init_done(zram)) {
1083 pr_info("Cannot change disksize for initialized device\n");
1084 err = -EBUSY;
1085 goto out_destroy_comp;
1086 }
1087
1088 init_waitqueue_head(&zram->io_done);
1089 atomic_set(&zram->refcount, 1);
1090 zram->meta = meta;
1091 zram->comp = comp;
1092 zram->disksize = disksize;
1093 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1094 up_write(&zram->init_lock);
1095
1096 /*
1097 * Revalidate disk out of the init_lock to avoid lockdep splat.
1098 * It's okay because disk's capacity is protected by init_lock
1099 * so that revalidate_disk always sees up-to-date capacity.
1100 */
1101 revalidate_disk(zram->disk);
1102
1103 return len;
1104
1105 out_destroy_comp:
1106 up_write(&zram->init_lock);
1107 zcomp_destroy(comp);
1108 out_free_meta:
1109 zram_meta_free(meta, disksize);
1110 return err;
1111 }
1112
1113 static ssize_t reset_store(struct device *dev,
1114 struct device_attribute *attr, const char *buf, size_t len)
1115 {
1116 int ret;
1117 unsigned short do_reset;
1118 struct zram *zram;
1119 struct block_device *bdev;
1120
1121 ret = kstrtou16(buf, 10, &do_reset);
1122 if (ret)
1123 return ret;
1124
1125 if (!do_reset)
1126 return -EINVAL;
1127
1128 zram = dev_to_zram(dev);
1129 bdev = bdget_disk(zram->disk, 0);
1130 if (!bdev)
1131 return -ENOMEM;
1132
1133 mutex_lock(&bdev->bd_mutex);
1134 /* Do not reset an active device or claimed device */
1135 if (bdev->bd_openers || zram->claim) {
1136 mutex_unlock(&bdev->bd_mutex);
1137 bdput(bdev);
1138 return -EBUSY;
1139 }
1140
1141 /* From now on, anyone can't open /dev/zram[0-9] */
1142 zram->claim = true;
1143 mutex_unlock(&bdev->bd_mutex);
1144
1145 /* Make sure all the pending I/O are finished */
1146 fsync_bdev(bdev);
1147 zram_reset_device(zram);
1148 revalidate_disk(zram->disk);
1149 bdput(bdev);
1150
1151 mutex_lock(&bdev->bd_mutex);
1152 zram->claim = false;
1153 mutex_unlock(&bdev->bd_mutex);
1154
1155 return len;
1156 }
1157
1158 static int zram_open(struct block_device *bdev, fmode_t mode)
1159 {
1160 int ret = 0;
1161 struct zram *zram;
1162
1163 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1164
1165 zram = bdev->bd_disk->private_data;
1166 /* zram was claimed to reset so open request fails */
1167 if (zram->claim)
1168 ret = -EBUSY;
1169
1170 return ret;
1171 }
1172
1173 static const struct block_device_operations zram_devops = {
1174 .open = zram_open,
1175 .swap_slot_free_notify = zram_slot_free_notify,
1176 .rw_page = zram_rw_page,
1177 .owner = THIS_MODULE
1178 };
1179
1180 static DEVICE_ATTR_WO(compact);
1181 static DEVICE_ATTR_RW(disksize);
1182 static DEVICE_ATTR_RO(initstate);
1183 static DEVICE_ATTR_WO(reset);
1184 static DEVICE_ATTR_RO(orig_data_size);
1185 static DEVICE_ATTR_RO(mem_used_total);
1186 static DEVICE_ATTR_RW(mem_limit);
1187 static DEVICE_ATTR_RW(mem_used_max);
1188 static DEVICE_ATTR_RW(max_comp_streams);
1189 static DEVICE_ATTR_RW(comp_algorithm);
1190
1191 static struct attribute *zram_disk_attrs[] = {
1192 &dev_attr_disksize.attr,
1193 &dev_attr_initstate.attr,
1194 &dev_attr_reset.attr,
1195 &dev_attr_num_reads.attr,
1196 &dev_attr_num_writes.attr,
1197 &dev_attr_failed_reads.attr,
1198 &dev_attr_failed_writes.attr,
1199 &dev_attr_compact.attr,
1200 &dev_attr_invalid_io.attr,
1201 &dev_attr_notify_free.attr,
1202 &dev_attr_zero_pages.attr,
1203 &dev_attr_orig_data_size.attr,
1204 &dev_attr_compr_data_size.attr,
1205 &dev_attr_mem_used_total.attr,
1206 &dev_attr_mem_limit.attr,
1207 &dev_attr_mem_used_max.attr,
1208 &dev_attr_max_comp_streams.attr,
1209 &dev_attr_comp_algorithm.attr,
1210 &dev_attr_io_stat.attr,
1211 &dev_attr_mm_stat.attr,
1212 &dev_attr_debug_stat.attr,
1213 NULL,
1214 };
1215
1216 static struct attribute_group zram_disk_attr_group = {
1217 .attrs = zram_disk_attrs,
1218 };
1219
1220 /*
1221 * Allocate and initialize new zram device. the function returns
1222 * '>= 0' device_id upon success, and negative value otherwise.
1223 */
1224 static int zram_add(void)
1225 {
1226 struct zram *zram;
1227 struct request_queue *queue;
1228 int ret, device_id;
1229
1230 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1231 if (!zram)
1232 return -ENOMEM;
1233
1234 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1235 if (ret < 0)
1236 goto out_free_dev;
1237 device_id = ret;
1238
1239 init_rwsem(&zram->init_lock);
1240
1241 queue = blk_alloc_queue(GFP_KERNEL);
1242 if (!queue) {
1243 pr_err("Error allocating disk queue for device %d\n",
1244 device_id);
1245 ret = -ENOMEM;
1246 goto out_free_idr;
1247 }
1248
1249 blk_queue_make_request(queue, zram_make_request);
1250
1251 /* gendisk structure */
1252 zram->disk = alloc_disk(1);
1253 if (!zram->disk) {
1254 pr_err("Error allocating disk structure for device %d\n",
1255 device_id);
1256 ret = -ENOMEM;
1257 goto out_free_queue;
1258 }
1259
1260 zram->disk->major = zram_major;
1261 zram->disk->first_minor = device_id;
1262 zram->disk->fops = &zram_devops;
1263 zram->disk->queue = queue;
1264 zram->disk->queue->queuedata = zram;
1265 zram->disk->private_data = zram;
1266 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1267
1268 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1269 set_capacity(zram->disk, 0);
1270 /* zram devices sort of resembles non-rotational disks */
1271 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1272 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1273 /*
1274 * To ensure that we always get PAGE_SIZE aligned
1275 * and n*PAGE_SIZED sized I/O requests.
1276 */
1277 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1278 blk_queue_logical_block_size(zram->disk->queue,
1279 ZRAM_LOGICAL_BLOCK_SIZE);
1280 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1281 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1282 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1283 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1284 /*
1285 * zram_bio_discard() will clear all logical blocks if logical block
1286 * size is identical with physical block size(PAGE_SIZE). But if it is
1287 * different, we will skip discarding some parts of logical blocks in
1288 * the part of the request range which isn't aligned to physical block
1289 * size. So we can't ensure that all discarded logical blocks are
1290 * zeroed.
1291 */
1292 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1293 zram->disk->queue->limits.discard_zeroes_data = 1;
1294 else
1295 zram->disk->queue->limits.discard_zeroes_data = 0;
1296 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1297
1298 add_disk(zram->disk);
1299
1300 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1301 &zram_disk_attr_group);
1302 if (ret < 0) {
1303 pr_err("Error creating sysfs group for device %d\n",
1304 device_id);
1305 goto out_free_disk;
1306 }
1307 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1308 zram->meta = NULL;
1309
1310 pr_info("Added device: %s\n", zram->disk->disk_name);
1311 return device_id;
1312
1313 out_free_disk:
1314 del_gendisk(zram->disk);
1315 put_disk(zram->disk);
1316 out_free_queue:
1317 blk_cleanup_queue(queue);
1318 out_free_idr:
1319 idr_remove(&zram_index_idr, device_id);
1320 out_free_dev:
1321 kfree(zram);
1322 return ret;
1323 }
1324
1325 static int zram_remove(struct zram *zram)
1326 {
1327 struct block_device *bdev;
1328
1329 bdev = bdget_disk(zram->disk, 0);
1330 if (!bdev)
1331 return -ENOMEM;
1332
1333 mutex_lock(&bdev->bd_mutex);
1334 if (bdev->bd_openers || zram->claim) {
1335 mutex_unlock(&bdev->bd_mutex);
1336 bdput(bdev);
1337 return -EBUSY;
1338 }
1339
1340 zram->claim = true;
1341 mutex_unlock(&bdev->bd_mutex);
1342
1343 /*
1344 * Remove sysfs first, so no one will perform a disksize
1345 * store while we destroy the devices. This also helps during
1346 * hot_remove -- zram_reset_device() is the last holder of
1347 * ->init_lock, no later/concurrent disksize_store() or any
1348 * other sysfs handlers are possible.
1349 */
1350 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1351 &zram_disk_attr_group);
1352
1353 /* Make sure all the pending I/O are finished */
1354 fsync_bdev(bdev);
1355 zram_reset_device(zram);
1356 bdput(bdev);
1357
1358 pr_info("Removed device: %s\n", zram->disk->disk_name);
1359
1360 blk_cleanup_queue(zram->disk->queue);
1361 del_gendisk(zram->disk);
1362 put_disk(zram->disk);
1363 kfree(zram);
1364 return 0;
1365 }
1366
1367 /* zram-control sysfs attributes */
1368 static ssize_t hot_add_show(struct class *class,
1369 struct class_attribute *attr,
1370 char *buf)
1371 {
1372 int ret;
1373
1374 mutex_lock(&zram_index_mutex);
1375 ret = zram_add();
1376 mutex_unlock(&zram_index_mutex);
1377
1378 if (ret < 0)
1379 return ret;
1380 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1381 }
1382
1383 static ssize_t hot_remove_store(struct class *class,
1384 struct class_attribute *attr,
1385 const char *buf,
1386 size_t count)
1387 {
1388 struct zram *zram;
1389 int ret, dev_id;
1390
1391 /* dev_id is gendisk->first_minor, which is `int' */
1392 ret = kstrtoint(buf, 10, &dev_id);
1393 if (ret)
1394 return ret;
1395 if (dev_id < 0)
1396 return -EINVAL;
1397
1398 mutex_lock(&zram_index_mutex);
1399
1400 zram = idr_find(&zram_index_idr, dev_id);
1401 if (zram) {
1402 ret = zram_remove(zram);
1403 idr_remove(&zram_index_idr, dev_id);
1404 } else {
1405 ret = -ENODEV;
1406 }
1407
1408 mutex_unlock(&zram_index_mutex);
1409 return ret ? ret : count;
1410 }
1411
1412 static struct class_attribute zram_control_class_attrs[] = {
1413 __ATTR_RO(hot_add),
1414 __ATTR_WO(hot_remove),
1415 __ATTR_NULL,
1416 };
1417
1418 static struct class zram_control_class = {
1419 .name = "zram-control",
1420 .owner = THIS_MODULE,
1421 .class_attrs = zram_control_class_attrs,
1422 };
1423
1424 static int zram_remove_cb(int id, void *ptr, void *data)
1425 {
1426 zram_remove(ptr);
1427 return 0;
1428 }
1429
1430 static void destroy_devices(void)
1431 {
1432 class_unregister(&zram_control_class);
1433 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1434 idr_destroy(&zram_index_idr);
1435 unregister_blkdev(zram_major, "zram");
1436 }
1437
1438 static int __init zram_init(void)
1439 {
1440 int ret;
1441
1442 ret = class_register(&zram_control_class);
1443 if (ret) {
1444 pr_err("Unable to register zram-control class\n");
1445 return ret;
1446 }
1447
1448 zram_major = register_blkdev(0, "zram");
1449 if (zram_major <= 0) {
1450 pr_err("Unable to get major number\n");
1451 class_unregister(&zram_control_class);
1452 return -EBUSY;
1453 }
1454
1455 while (num_devices != 0) {
1456 mutex_lock(&zram_index_mutex);
1457 ret = zram_add();
1458 mutex_unlock(&zram_index_mutex);
1459 if (ret < 0)
1460 goto out_error;
1461 num_devices--;
1462 }
1463
1464 return 0;
1465
1466 out_error:
1467 destroy_devices();
1468 return ret;
1469 }
1470
1471 static void __exit zram_exit(void)
1472 {
1473 destroy_devices();
1474 }
1475
1476 module_init(zram_init);
1477 module_exit(zram_exit);
1478
1479 module_param(num_devices, uint, 0);
1480 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1481
1482 MODULE_LICENSE("Dual BSD/GPL");
1483 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1484 MODULE_DESCRIPTION("Compressed RAM Block Device");
This page took 0.062591 seconds and 5 git commands to generate.