MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 #define ZRAM_ATTR_RO(name) \
47 static ssize_t name##_show(struct device *d, \
48 struct device_attribute *attr, char *b) \
49 { \
50 struct zram *zram = dev_to_zram(d); \
51 return scnprintf(b, PAGE_SIZE, "%llu\n", \
52 (u64)atomic64_read(&zram->stats.name)); \
53 } \
54 static DEVICE_ATTR_RO(name);
55
56 static inline bool init_done(struct zram *zram)
57 {
58 return zram->disksize;
59 }
60
61 static inline struct zram *dev_to_zram(struct device *dev)
62 {
63 return (struct zram *)dev_to_disk(dev)->private_data;
64 }
65
66 static ssize_t disksize_show(struct device *dev,
67 struct device_attribute *attr, char *buf)
68 {
69 struct zram *zram = dev_to_zram(dev);
70
71 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
72 }
73
74 static ssize_t initstate_show(struct device *dev,
75 struct device_attribute *attr, char *buf)
76 {
77 u32 val;
78 struct zram *zram = dev_to_zram(dev);
79
80 down_read(&zram->init_lock);
81 val = init_done(zram);
82 up_read(&zram->init_lock);
83
84 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
85 }
86
87 static ssize_t orig_data_size_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
89 {
90 struct zram *zram = dev_to_zram(dev);
91
92 return scnprintf(buf, PAGE_SIZE, "%llu\n",
93 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
94 }
95
96 static ssize_t mem_used_total_show(struct device *dev,
97 struct device_attribute *attr, char *buf)
98 {
99 u64 val = 0;
100 struct zram *zram = dev_to_zram(dev);
101
102 down_read(&zram->init_lock);
103 if (init_done(zram)) {
104 struct zram_meta *meta = zram->meta;
105 val = zs_get_total_pages(meta->mem_pool);
106 }
107 up_read(&zram->init_lock);
108
109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
110 }
111
112 static ssize_t max_comp_streams_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114 {
115 int val;
116 struct zram *zram = dev_to_zram(dev);
117
118 down_read(&zram->init_lock);
119 val = zram->max_comp_streams;
120 up_read(&zram->init_lock);
121
122 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124
125 static ssize_t mem_limit_show(struct device *dev,
126 struct device_attribute *attr, char *buf)
127 {
128 u64 val;
129 struct zram *zram = dev_to_zram(dev);
130
131 down_read(&zram->init_lock);
132 val = zram->limit_pages;
133 up_read(&zram->init_lock);
134
135 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
136 }
137
138 static ssize_t mem_limit_store(struct device *dev,
139 struct device_attribute *attr, const char *buf, size_t len)
140 {
141 u64 limit;
142 char *tmp;
143 struct zram *zram = dev_to_zram(dev);
144
145 limit = memparse(buf, &tmp);
146 if (buf == tmp) /* no chars parsed, invalid input */
147 return -EINVAL;
148
149 down_write(&zram->init_lock);
150 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
151 up_write(&zram->init_lock);
152
153 return len;
154 }
155
156 static ssize_t mem_used_max_show(struct device *dev,
157 struct device_attribute *attr, char *buf)
158 {
159 u64 val = 0;
160 struct zram *zram = dev_to_zram(dev);
161
162 down_read(&zram->init_lock);
163 if (init_done(zram))
164 val = atomic_long_read(&zram->stats.max_used_pages);
165 up_read(&zram->init_lock);
166
167 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
168 }
169
170 static ssize_t mem_used_max_store(struct device *dev,
171 struct device_attribute *attr, const char *buf, size_t len)
172 {
173 int err;
174 unsigned long val;
175 struct zram *zram = dev_to_zram(dev);
176
177 err = kstrtoul(buf, 10, &val);
178 if (err || val != 0)
179 return -EINVAL;
180
181 down_read(&zram->init_lock);
182 if (init_done(zram)) {
183 struct zram_meta *meta = zram->meta;
184 atomic_long_set(&zram->stats.max_used_pages,
185 zs_get_total_pages(meta->mem_pool));
186 }
187 up_read(&zram->init_lock);
188
189 return len;
190 }
191
192 static ssize_t max_comp_streams_store(struct device *dev,
193 struct device_attribute *attr, const char *buf, size_t len)
194 {
195 int num;
196 struct zram *zram = dev_to_zram(dev);
197 int ret;
198
199 ret = kstrtoint(buf, 0, &num);
200 if (ret < 0)
201 return ret;
202 if (num < 1)
203 return -EINVAL;
204
205 down_write(&zram->init_lock);
206 if (init_done(zram)) {
207 if (!zcomp_set_max_streams(zram->comp, num)) {
208 pr_info("Cannot change max compression streams\n");
209 ret = -EINVAL;
210 goto out;
211 }
212 }
213
214 zram->max_comp_streams = num;
215 ret = len;
216 out:
217 up_write(&zram->init_lock);
218 return ret;
219 }
220
221 static ssize_t comp_algorithm_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 size_t sz;
225 struct zram *zram = dev_to_zram(dev);
226
227 down_read(&zram->init_lock);
228 sz = zcomp_available_show(zram->compressor, buf);
229 up_read(&zram->init_lock);
230
231 return sz;
232 }
233
234 static ssize_t comp_algorithm_store(struct device *dev,
235 struct device_attribute *attr, const char *buf, size_t len)
236 {
237 struct zram *zram = dev_to_zram(dev);
238 down_write(&zram->init_lock);
239 if (init_done(zram)) {
240 up_write(&zram->init_lock);
241 pr_info("Can't change algorithm for initialized device\n");
242 return -EBUSY;
243 }
244 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
245 up_write(&zram->init_lock);
246 return len;
247 }
248
249 /* flag operations needs meta->tb_lock */
250 static int zram_test_flag(struct zram_meta *meta, u32 index,
251 enum zram_pageflags flag)
252 {
253 return meta->table[index].value & BIT(flag);
254 }
255
256 static void zram_set_flag(struct zram_meta *meta, u32 index,
257 enum zram_pageflags flag)
258 {
259 meta->table[index].value |= BIT(flag);
260 }
261
262 static void zram_clear_flag(struct zram_meta *meta, u32 index,
263 enum zram_pageflags flag)
264 {
265 meta->table[index].value &= ~BIT(flag);
266 }
267
268 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
269 {
270 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
271 }
272
273 static void zram_set_obj_size(struct zram_meta *meta,
274 u32 index, size_t size)
275 {
276 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
277
278 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
279 }
280
281 static inline int is_partial_io(struct bio_vec *bvec)
282 {
283 return bvec->bv_len != PAGE_SIZE;
284 }
285
286 /*
287 * Check if request is within bounds and aligned on zram logical blocks.
288 */
289 static inline int valid_io_request(struct zram *zram,
290 sector_t start, unsigned int size)
291 {
292 u64 end, bound;
293
294 /* unaligned request */
295 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
296 return 0;
297 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
298 return 0;
299
300 end = start + (size >> SECTOR_SHIFT);
301 bound = zram->disksize >> SECTOR_SHIFT;
302 /* out of range range */
303 if (unlikely(start >= bound || end > bound || start > end))
304 return 0;
305
306 /* I/O request is valid */
307 return 1;
308 }
309
310 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
311 {
312 size_t num_pages = disksize >> PAGE_SHIFT;
313 size_t index;
314
315 /* Free all pages that are still in this zram device */
316 for (index = 0; index < num_pages; index++) {
317 unsigned long handle = meta->table[index].handle;
318
319 if (!handle)
320 continue;
321
322 zs_free(meta->mem_pool, handle);
323 }
324
325 zs_destroy_pool(meta->mem_pool);
326 vfree(meta->table);
327 kfree(meta);
328 }
329
330 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
331 {
332 size_t num_pages;
333 char pool_name[8];
334 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
335
336 if (!meta)
337 return NULL;
338
339 num_pages = disksize >> PAGE_SHIFT;
340 meta->table = vzalloc(num_pages * sizeof(*meta->table));
341 if (!meta->table) {
342 pr_err("Error allocating zram address table\n");
343 goto out_error;
344 }
345
346 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
347 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
348 if (!meta->mem_pool) {
349 pr_err("Error creating memory pool\n");
350 goto out_error;
351 }
352
353 return meta;
354
355 out_error:
356 vfree(meta->table);
357 kfree(meta);
358 return NULL;
359 }
360
361 static inline bool zram_meta_get(struct zram *zram)
362 {
363 if (atomic_inc_not_zero(&zram->refcount))
364 return true;
365 return false;
366 }
367
368 static inline void zram_meta_put(struct zram *zram)
369 {
370 atomic_dec(&zram->refcount);
371 }
372
373 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
374 {
375 if (*offset + bvec->bv_len >= PAGE_SIZE)
376 (*index)++;
377 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
378 }
379
380 static int page_zero_filled(void *ptr)
381 {
382 unsigned int pos;
383 unsigned long *page;
384
385 page = (unsigned long *)ptr;
386
387 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
388 if (page[pos])
389 return 0;
390 }
391
392 return 1;
393 }
394
395 static void handle_zero_page(struct bio_vec *bvec)
396 {
397 struct page *page = bvec->bv_page;
398 void *user_mem;
399
400 user_mem = kmap_atomic(page);
401 if (is_partial_io(bvec))
402 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
403 else
404 clear_page(user_mem);
405 kunmap_atomic(user_mem);
406
407 flush_dcache_page(page);
408 }
409
410
411 /*
412 * To protect concurrent access to the same index entry,
413 * caller should hold this table index entry's bit_spinlock to
414 * indicate this index entry is accessing.
415 */
416 static void zram_free_page(struct zram *zram, size_t index)
417 {
418 struct zram_meta *meta = zram->meta;
419 unsigned long handle = meta->table[index].handle;
420
421 if (unlikely(!handle)) {
422 /*
423 * No memory is allocated for zero filled pages.
424 * Simply clear zero page flag.
425 */
426 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
427 zram_clear_flag(meta, index, ZRAM_ZERO);
428 atomic64_dec(&zram->stats.zero_pages);
429 }
430 return;
431 }
432
433 zs_free(meta->mem_pool, handle);
434
435 atomic64_sub(zram_get_obj_size(meta, index),
436 &zram->stats.compr_data_size);
437 atomic64_dec(&zram->stats.pages_stored);
438
439 meta->table[index].handle = 0;
440 zram_set_obj_size(meta, index, 0);
441 }
442
443 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
444 {
445 int ret = 0;
446 unsigned char *cmem;
447 struct zram_meta *meta = zram->meta;
448 unsigned long handle;
449 size_t size;
450
451 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
452 handle = meta->table[index].handle;
453 size = zram_get_obj_size(meta, index);
454
455 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
456 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
457 clear_page(mem);
458 return 0;
459 }
460
461 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
462 if (size == PAGE_SIZE)
463 copy_page(mem, cmem);
464 else
465 ret = zcomp_decompress(zram->comp, cmem, size, mem);
466 zs_unmap_object(meta->mem_pool, handle);
467 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
468
469 /* Should NEVER happen. Return bio error if it does. */
470 if (unlikely(ret)) {
471 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
472 return ret;
473 }
474
475 return 0;
476 }
477
478 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
479 u32 index, int offset)
480 {
481 int ret;
482 struct page *page;
483 unsigned char *user_mem, *uncmem = NULL;
484 struct zram_meta *meta = zram->meta;
485 page = bvec->bv_page;
486
487 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
488 if (unlikely(!meta->table[index].handle) ||
489 zram_test_flag(meta, index, ZRAM_ZERO)) {
490 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
491 handle_zero_page(bvec);
492 return 0;
493 }
494 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
495
496 if (is_partial_io(bvec))
497 /* Use a temporary buffer to decompress the page */
498 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
499
500 user_mem = kmap_atomic(page);
501 if (!is_partial_io(bvec))
502 uncmem = user_mem;
503
504 if (!uncmem) {
505 pr_info("Unable to allocate temp memory\n");
506 ret = -ENOMEM;
507 goto out_cleanup;
508 }
509
510 ret = zram_decompress_page(zram, uncmem, index);
511 /* Should NEVER happen. Return bio error if it does. */
512 if (unlikely(ret))
513 goto out_cleanup;
514
515 if (is_partial_io(bvec))
516 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
517 bvec->bv_len);
518
519 flush_dcache_page(page);
520 ret = 0;
521 out_cleanup:
522 kunmap_atomic(user_mem);
523 if (is_partial_io(bvec))
524 kfree(uncmem);
525 return ret;
526 }
527
528 static inline void update_used_max(struct zram *zram,
529 const unsigned long pages)
530 {
531 int old_max, cur_max;
532
533 old_max = atomic_long_read(&zram->stats.max_used_pages);
534
535 do {
536 cur_max = old_max;
537 if (pages > cur_max)
538 old_max = atomic_long_cmpxchg(
539 &zram->stats.max_used_pages, cur_max, pages);
540 } while (old_max != cur_max);
541 }
542
543 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
544 int offset)
545 {
546 int ret = 0;
547 size_t clen;
548 unsigned long handle;
549 struct page *page;
550 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
551 struct zram_meta *meta = zram->meta;
552 struct zcomp_strm *zstrm;
553 bool locked = false;
554 unsigned long alloced_pages;
555
556 page = bvec->bv_page;
557 if (is_partial_io(bvec)) {
558 /*
559 * This is a partial IO. We need to read the full page
560 * before to write the changes.
561 */
562 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
563 if (!uncmem) {
564 ret = -ENOMEM;
565 goto out;
566 }
567 ret = zram_decompress_page(zram, uncmem, index);
568 if (ret)
569 goto out;
570 }
571
572 zstrm = zcomp_strm_find(zram->comp);
573 locked = true;
574 user_mem = kmap_atomic(page);
575
576 if (is_partial_io(bvec)) {
577 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
578 bvec->bv_len);
579 kunmap_atomic(user_mem);
580 user_mem = NULL;
581 } else {
582 uncmem = user_mem;
583 }
584
585 if (page_zero_filled(uncmem)) {
586 if (user_mem)
587 kunmap_atomic(user_mem);
588 /* Free memory associated with this sector now. */
589 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
590 zram_free_page(zram, index);
591 zram_set_flag(meta, index, ZRAM_ZERO);
592 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
593
594 atomic64_inc(&zram->stats.zero_pages);
595 ret = 0;
596 goto out;
597 }
598
599 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
600 if (!is_partial_io(bvec)) {
601 kunmap_atomic(user_mem);
602 user_mem = NULL;
603 uncmem = NULL;
604 }
605
606 if (unlikely(ret)) {
607 pr_err("Compression failed! err=%d\n", ret);
608 goto out;
609 }
610 src = zstrm->buffer;
611 if (unlikely(clen > max_zpage_size)) {
612 clen = PAGE_SIZE;
613 if (is_partial_io(bvec))
614 src = uncmem;
615 }
616
617 handle = zs_malloc(meta->mem_pool, clen);
618 if (!handle) {
619 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
620 index, clen);
621 ret = -ENOMEM;
622 goto out;
623 }
624
625 alloced_pages = zs_get_total_pages(meta->mem_pool);
626 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
627 zs_free(meta->mem_pool, handle);
628 ret = -ENOMEM;
629 goto out;
630 }
631
632 update_used_max(zram, alloced_pages);
633
634 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
635
636 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
637 src = kmap_atomic(page);
638 copy_page(cmem, src);
639 kunmap_atomic(src);
640 } else {
641 memcpy(cmem, src, clen);
642 }
643
644 zcomp_strm_release(zram->comp, zstrm);
645 locked = false;
646 zs_unmap_object(meta->mem_pool, handle);
647
648 /*
649 * Free memory associated with this sector
650 * before overwriting unused sectors.
651 */
652 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
653 zram_free_page(zram, index);
654
655 meta->table[index].handle = handle;
656 zram_set_obj_size(meta, index, clen);
657 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
658
659 /* Update stats */
660 atomic64_add(clen, &zram->stats.compr_data_size);
661 atomic64_inc(&zram->stats.pages_stored);
662 out:
663 if (locked)
664 zcomp_strm_release(zram->comp, zstrm);
665 if (is_partial_io(bvec))
666 kfree(uncmem);
667 return ret;
668 }
669
670 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
671 int offset, int rw)
672 {
673 int ret;
674
675 if (rw == READ) {
676 atomic64_inc(&zram->stats.num_reads);
677 ret = zram_bvec_read(zram, bvec, index, offset);
678 } else {
679 atomic64_inc(&zram->stats.num_writes);
680 ret = zram_bvec_write(zram, bvec, index, offset);
681 }
682
683 if (unlikely(ret)) {
684 if (rw == READ)
685 atomic64_inc(&zram->stats.failed_reads);
686 else
687 atomic64_inc(&zram->stats.failed_writes);
688 }
689
690 return ret;
691 }
692
693 /*
694 * zram_bio_discard - handler on discard request
695 * @index: physical block index in PAGE_SIZE units
696 * @offset: byte offset within physical block
697 */
698 static void zram_bio_discard(struct zram *zram, u32 index,
699 int offset, struct bio *bio)
700 {
701 size_t n = bio->bi_iter.bi_size;
702 struct zram_meta *meta = zram->meta;
703
704 /*
705 * zram manages data in physical block size units. Because logical block
706 * size isn't identical with physical block size on some arch, we
707 * could get a discard request pointing to a specific offset within a
708 * certain physical block. Although we can handle this request by
709 * reading that physiclal block and decompressing and partially zeroing
710 * and re-compressing and then re-storing it, this isn't reasonable
711 * because our intent with a discard request is to save memory. So
712 * skipping this logical block is appropriate here.
713 */
714 if (offset) {
715 if (n <= (PAGE_SIZE - offset))
716 return;
717
718 n -= (PAGE_SIZE - offset);
719 index++;
720 }
721
722 while (n >= PAGE_SIZE) {
723 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
724 zram_free_page(zram, index);
725 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
726 atomic64_inc(&zram->stats.notify_free);
727 index++;
728 n -= PAGE_SIZE;
729 }
730 }
731
732 static void zram_reset_device(struct zram *zram)
733 {
734 struct zram_meta *meta;
735 struct zcomp *comp;
736 u64 disksize;
737
738 down_write(&zram->init_lock);
739
740 zram->limit_pages = 0;
741
742 if (!init_done(zram)) {
743 up_write(&zram->init_lock);
744 return;
745 }
746
747 meta = zram->meta;
748 comp = zram->comp;
749 disksize = zram->disksize;
750 /*
751 * Refcount will go down to 0 eventually and r/w handler
752 * cannot handle further I/O so it will bail out by
753 * check zram_meta_get.
754 */
755 zram_meta_put(zram);
756 /*
757 * We want to free zram_meta in process context to avoid
758 * deadlock between reclaim path and any other locks.
759 */
760 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
761
762 /* Reset stats */
763 memset(&zram->stats, 0, sizeof(zram->stats));
764 zram->disksize = 0;
765 zram->max_comp_streams = 1;
766 set_capacity(zram->disk, 0);
767
768 up_write(&zram->init_lock);
769 /* I/O operation under all of CPU are done so let's free */
770 zram_meta_free(meta, disksize);
771 zcomp_destroy(comp);
772 }
773
774 static ssize_t disksize_store(struct device *dev,
775 struct device_attribute *attr, const char *buf, size_t len)
776 {
777 u64 disksize;
778 struct zcomp *comp;
779 struct zram_meta *meta;
780 struct zram *zram = dev_to_zram(dev);
781 int err;
782
783 disksize = memparse(buf, NULL);
784 if (!disksize)
785 return -EINVAL;
786
787 disksize = PAGE_ALIGN(disksize);
788 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
789 if (!meta)
790 return -ENOMEM;
791
792 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
793 if (IS_ERR(comp)) {
794 pr_info("Cannot initialise %s compressing backend\n",
795 zram->compressor);
796 err = PTR_ERR(comp);
797 goto out_free_meta;
798 }
799
800 down_write(&zram->init_lock);
801 if (init_done(zram)) {
802 pr_info("Cannot change disksize for initialized device\n");
803 err = -EBUSY;
804 goto out_destroy_comp;
805 }
806
807 init_waitqueue_head(&zram->io_done);
808 atomic_set(&zram->refcount, 1);
809 zram->meta = meta;
810 zram->comp = comp;
811 zram->disksize = disksize;
812 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
813 up_write(&zram->init_lock);
814
815 /*
816 * Revalidate disk out of the init_lock to avoid lockdep splat.
817 * It's okay because disk's capacity is protected by init_lock
818 * so that revalidate_disk always sees up-to-date capacity.
819 */
820 revalidate_disk(zram->disk);
821
822 return len;
823
824 out_destroy_comp:
825 up_write(&zram->init_lock);
826 zcomp_destroy(comp);
827 out_free_meta:
828 zram_meta_free(meta, disksize);
829 return err;
830 }
831
832 static ssize_t reset_store(struct device *dev,
833 struct device_attribute *attr, const char *buf, size_t len)
834 {
835 int ret;
836 unsigned short do_reset;
837 struct zram *zram;
838 struct block_device *bdev;
839
840 zram = dev_to_zram(dev);
841 bdev = bdget_disk(zram->disk, 0);
842
843 if (!bdev)
844 return -ENOMEM;
845
846 mutex_lock(&bdev->bd_mutex);
847 /* Do not reset an active device! */
848 if (bdev->bd_openers) {
849 ret = -EBUSY;
850 goto out;
851 }
852
853 ret = kstrtou16(buf, 10, &do_reset);
854 if (ret)
855 goto out;
856
857 if (!do_reset) {
858 ret = -EINVAL;
859 goto out;
860 }
861
862 /* Make sure all pending I/O is finished */
863 fsync_bdev(bdev);
864 zram_reset_device(zram);
865
866 mutex_unlock(&bdev->bd_mutex);
867 revalidate_disk(zram->disk);
868 bdput(bdev);
869
870 return len;
871
872 out:
873 mutex_unlock(&bdev->bd_mutex);
874 bdput(bdev);
875 return ret;
876 }
877
878 static void __zram_make_request(struct zram *zram, struct bio *bio)
879 {
880 int offset, rw;
881 u32 index;
882 struct bio_vec bvec;
883 struct bvec_iter iter;
884
885 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
886 offset = (bio->bi_iter.bi_sector &
887 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
888
889 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
890 zram_bio_discard(zram, index, offset, bio);
891 bio_endio(bio, 0);
892 return;
893 }
894
895 rw = bio_data_dir(bio);
896 bio_for_each_segment(bvec, bio, iter) {
897 int max_transfer_size = PAGE_SIZE - offset;
898
899 if (bvec.bv_len > max_transfer_size) {
900 /*
901 * zram_bvec_rw() can only make operation on a single
902 * zram page. Split the bio vector.
903 */
904 struct bio_vec bv;
905
906 bv.bv_page = bvec.bv_page;
907 bv.bv_len = max_transfer_size;
908 bv.bv_offset = bvec.bv_offset;
909
910 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
911 goto out;
912
913 bv.bv_len = bvec.bv_len - max_transfer_size;
914 bv.bv_offset += max_transfer_size;
915 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
916 goto out;
917 } else
918 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
919 goto out;
920
921 update_position(&index, &offset, &bvec);
922 }
923
924 set_bit(BIO_UPTODATE, &bio->bi_flags);
925 bio_endio(bio, 0);
926 return;
927
928 out:
929 bio_io_error(bio);
930 }
931
932 /*
933 * Handler function for all zram I/O requests.
934 */
935 static void zram_make_request(struct request_queue *queue, struct bio *bio)
936 {
937 struct zram *zram = queue->queuedata;
938
939 if (unlikely(!zram_meta_get(zram)))
940 goto error;
941
942 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
943 bio->bi_iter.bi_size)) {
944 atomic64_inc(&zram->stats.invalid_io);
945 goto put_zram;
946 }
947
948 __zram_make_request(zram, bio);
949 zram_meta_put(zram);
950 return;
951 put_zram:
952 zram_meta_put(zram);
953 error:
954 bio_io_error(bio);
955 }
956
957 static void zram_slot_free_notify(struct block_device *bdev,
958 unsigned long index)
959 {
960 struct zram *zram;
961 struct zram_meta *meta;
962
963 zram = bdev->bd_disk->private_data;
964 meta = zram->meta;
965
966 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
967 zram_free_page(zram, index);
968 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
969 atomic64_inc(&zram->stats.notify_free);
970 }
971
972 static int zram_rw_page(struct block_device *bdev, sector_t sector,
973 struct page *page, int rw)
974 {
975 int offset, err = -EIO;
976 u32 index;
977 struct zram *zram;
978 struct bio_vec bv;
979
980 zram = bdev->bd_disk->private_data;
981 if (unlikely(!zram_meta_get(zram)))
982 goto out;
983
984 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
985 atomic64_inc(&zram->stats.invalid_io);
986 err = -EINVAL;
987 goto put_zram;
988 }
989
990 index = sector >> SECTORS_PER_PAGE_SHIFT;
991 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
992
993 bv.bv_page = page;
994 bv.bv_len = PAGE_SIZE;
995 bv.bv_offset = 0;
996
997 err = zram_bvec_rw(zram, &bv, index, offset, rw);
998 put_zram:
999 zram_meta_put(zram);
1000 out:
1001 /*
1002 * If I/O fails, just return error(ie, non-zero) without
1003 * calling page_endio.
1004 * It causes resubmit the I/O with bio request by upper functions
1005 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1006 * bio->bi_end_io does things to handle the error
1007 * (e.g., SetPageError, set_page_dirty and extra works).
1008 */
1009 if (err == 0)
1010 page_endio(page, rw, 0);
1011 return err;
1012 }
1013
1014 static const struct block_device_operations zram_devops = {
1015 .swap_slot_free_notify = zram_slot_free_notify,
1016 .rw_page = zram_rw_page,
1017 .owner = THIS_MODULE
1018 };
1019
1020 static DEVICE_ATTR_RW(disksize);
1021 static DEVICE_ATTR_RO(initstate);
1022 static DEVICE_ATTR_WO(reset);
1023 static DEVICE_ATTR_RO(orig_data_size);
1024 static DEVICE_ATTR_RO(mem_used_total);
1025 static DEVICE_ATTR_RW(mem_limit);
1026 static DEVICE_ATTR_RW(mem_used_max);
1027 static DEVICE_ATTR_RW(max_comp_streams);
1028 static DEVICE_ATTR_RW(comp_algorithm);
1029
1030 ZRAM_ATTR_RO(num_reads);
1031 ZRAM_ATTR_RO(num_writes);
1032 ZRAM_ATTR_RO(failed_reads);
1033 ZRAM_ATTR_RO(failed_writes);
1034 ZRAM_ATTR_RO(invalid_io);
1035 ZRAM_ATTR_RO(notify_free);
1036 ZRAM_ATTR_RO(zero_pages);
1037 ZRAM_ATTR_RO(compr_data_size);
1038
1039 static struct attribute *zram_disk_attrs[] = {
1040 &dev_attr_disksize.attr,
1041 &dev_attr_initstate.attr,
1042 &dev_attr_reset.attr,
1043 &dev_attr_num_reads.attr,
1044 &dev_attr_num_writes.attr,
1045 &dev_attr_failed_reads.attr,
1046 &dev_attr_failed_writes.attr,
1047 &dev_attr_invalid_io.attr,
1048 &dev_attr_notify_free.attr,
1049 &dev_attr_zero_pages.attr,
1050 &dev_attr_orig_data_size.attr,
1051 &dev_attr_compr_data_size.attr,
1052 &dev_attr_mem_used_total.attr,
1053 &dev_attr_mem_limit.attr,
1054 &dev_attr_mem_used_max.attr,
1055 &dev_attr_max_comp_streams.attr,
1056 &dev_attr_comp_algorithm.attr,
1057 NULL,
1058 };
1059
1060 static struct attribute_group zram_disk_attr_group = {
1061 .attrs = zram_disk_attrs,
1062 };
1063
1064 static int create_device(struct zram *zram, int device_id)
1065 {
1066 struct request_queue *queue;
1067 int ret = -ENOMEM;
1068
1069 init_rwsem(&zram->init_lock);
1070
1071 queue = blk_alloc_queue(GFP_KERNEL);
1072 if (!queue) {
1073 pr_err("Error allocating disk queue for device %d\n",
1074 device_id);
1075 goto out;
1076 }
1077
1078 blk_queue_make_request(queue, zram_make_request);
1079
1080 /* gendisk structure */
1081 zram->disk = alloc_disk(1);
1082 if (!zram->disk) {
1083 pr_warn("Error allocating disk structure for device %d\n",
1084 device_id);
1085 goto out_free_queue;
1086 }
1087
1088 zram->disk->major = zram_major;
1089 zram->disk->first_minor = device_id;
1090 zram->disk->fops = &zram_devops;
1091 zram->disk->queue = queue;
1092 zram->disk->queue->queuedata = zram;
1093 zram->disk->private_data = zram;
1094 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1095
1096 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1097 set_capacity(zram->disk, 0);
1098 /* zram devices sort of resembles non-rotational disks */
1099 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1100 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1101 /*
1102 * To ensure that we always get PAGE_SIZE aligned
1103 * and n*PAGE_SIZED sized I/O requests.
1104 */
1105 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1106 blk_queue_logical_block_size(zram->disk->queue,
1107 ZRAM_LOGICAL_BLOCK_SIZE);
1108 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1109 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1110 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1111 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1112 /*
1113 * zram_bio_discard() will clear all logical blocks if logical block
1114 * size is identical with physical block size(PAGE_SIZE). But if it is
1115 * different, we will skip discarding some parts of logical blocks in
1116 * the part of the request range which isn't aligned to physical block
1117 * size. So we can't ensure that all discarded logical blocks are
1118 * zeroed.
1119 */
1120 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1121 zram->disk->queue->limits.discard_zeroes_data = 1;
1122 else
1123 zram->disk->queue->limits.discard_zeroes_data = 0;
1124 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1125
1126 add_disk(zram->disk);
1127
1128 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1129 &zram_disk_attr_group);
1130 if (ret < 0) {
1131 pr_warn("Error creating sysfs group");
1132 goto out_free_disk;
1133 }
1134 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1135 zram->meta = NULL;
1136 zram->max_comp_streams = 1;
1137 return 0;
1138
1139 out_free_disk:
1140 del_gendisk(zram->disk);
1141 put_disk(zram->disk);
1142 out_free_queue:
1143 blk_cleanup_queue(queue);
1144 out:
1145 return ret;
1146 }
1147
1148 static void destroy_devices(unsigned int nr)
1149 {
1150 struct zram *zram;
1151 unsigned int i;
1152
1153 for (i = 0; i < nr; i++) {
1154 zram = &zram_devices[i];
1155 /*
1156 * Remove sysfs first, so no one will perform a disksize
1157 * store while we destroy the devices
1158 */
1159 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1160 &zram_disk_attr_group);
1161
1162 zram_reset_device(zram);
1163
1164 blk_cleanup_queue(zram->disk->queue);
1165 del_gendisk(zram->disk);
1166 put_disk(zram->disk);
1167 }
1168
1169 kfree(zram_devices);
1170 unregister_blkdev(zram_major, "zram");
1171 pr_info("Destroyed %u device(s)\n", nr);
1172 }
1173
1174 static int __init zram_init(void)
1175 {
1176 int ret, dev_id;
1177
1178 if (num_devices > max_num_devices) {
1179 pr_warn("Invalid value for num_devices: %u\n",
1180 num_devices);
1181 return -EINVAL;
1182 }
1183
1184 zram_major = register_blkdev(0, "zram");
1185 if (zram_major <= 0) {
1186 pr_warn("Unable to get major number\n");
1187 return -EBUSY;
1188 }
1189
1190 /* Allocate the device array and initialize each one */
1191 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1192 if (!zram_devices) {
1193 unregister_blkdev(zram_major, "zram");
1194 return -ENOMEM;
1195 }
1196
1197 for (dev_id = 0; dev_id < num_devices; dev_id++) {
1198 ret = create_device(&zram_devices[dev_id], dev_id);
1199 if (ret)
1200 goto out_error;
1201 }
1202
1203 pr_info("Created %u device(s)\n", num_devices);
1204 return 0;
1205
1206 out_error:
1207 destroy_devices(dev_id);
1208 return ret;
1209 }
1210
1211 static void __exit zram_exit(void)
1212 {
1213 destroy_devices(num_devices);
1214 }
1215
1216 module_init(zram_init);
1217 module_exit(zram_exit);
1218
1219 module_param(num_devices, uint, 0);
1220 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1221
1222 MODULE_LICENSE("Dual BSD/GPL");
1223 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1224 MODULE_DESCRIPTION("Compressed RAM Block Device");
This page took 0.07218 seconds and 5 git commands to generate.