Merge tag 'asoc-fix-v4.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[deliverable/linux.git] / drivers / bus / arm-cci.c
1 /*
2 * CCI cache coherent interconnect driver
3 *
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/arm-cci.h>
18 #include <linux/io.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28
29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h>
31
32 static void __iomem *cci_ctrl_base;
33 static unsigned long cci_ctrl_phys;
34
35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
36 struct cci_nb_ports {
37 unsigned int nb_ace;
38 unsigned int nb_ace_lite;
39 };
40
41 static const struct cci_nb_ports cci400_ports = {
42 .nb_ace = 2,
43 .nb_ace_lite = 3
44 };
45
46 #define CCI400_PORTS_DATA (&cci400_ports)
47 #else
48 #define CCI400_PORTS_DATA (NULL)
49 #endif
50
51 static const struct of_device_id arm_cci_matches[] = {
52 #ifdef CONFIG_ARM_CCI400_COMMON
53 {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
54 #endif
55 {},
56 };
57
58 #ifdef CONFIG_ARM_CCI400_PMU
59
60 #define DRIVER_NAME "CCI-400"
61 #define DRIVER_NAME_PMU DRIVER_NAME " PMU"
62
63 #define CCI_PMCR 0x0100
64 #define CCI_PID2 0x0fe8
65
66 #define CCI_PMCR_CEN 0x00000001
67 #define CCI_PMCR_NCNT_MASK 0x0000f800
68 #define CCI_PMCR_NCNT_SHIFT 11
69
70 #define CCI_PID2_REV_MASK 0xf0
71 #define CCI_PID2_REV_SHIFT 4
72
73 #define CCI_PMU_EVT_SEL 0x000
74 #define CCI_PMU_CNTR 0x004
75 #define CCI_PMU_CNTR_CTRL 0x008
76 #define CCI_PMU_OVRFLW 0x00c
77
78 #define CCI_PMU_OVRFLW_FLAG 1
79
80 #define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K)
81
82 #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
83
84 #define CCI_PMU_EVENT_MASK 0xffUL
85 #define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7)
86 #define CCI_PMU_EVENT_CODE(event) (event & 0x1f)
87
88 #define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */
89
90 /* Types of interfaces that can generate events */
91 enum {
92 CCI_IF_SLAVE,
93 CCI_IF_MASTER,
94 CCI_IF_MAX,
95 };
96
97 struct event_range {
98 u32 min;
99 u32 max;
100 };
101
102 struct cci_pmu_hw_events {
103 struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
104 unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
105 raw_spinlock_t pmu_lock;
106 };
107
108 struct cci_pmu_model {
109 char *name;
110 struct event_range event_ranges[CCI_IF_MAX];
111 };
112
113 static struct cci_pmu_model cci_pmu_models[];
114
115 struct cci_pmu {
116 void __iomem *base;
117 struct pmu pmu;
118 int nr_irqs;
119 int irqs[CCI_PMU_MAX_HW_EVENTS];
120 unsigned long active_irqs;
121 const struct cci_pmu_model *model;
122 struct cci_pmu_hw_events hw_events;
123 struct platform_device *plat_device;
124 int num_events;
125 atomic_t active_events;
126 struct mutex reserve_mutex;
127 cpumask_t cpus;
128 };
129 static struct cci_pmu *pmu;
130
131 #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
132
133 /* Port ids */
134 #define CCI_PORT_S0 0
135 #define CCI_PORT_S1 1
136 #define CCI_PORT_S2 2
137 #define CCI_PORT_S3 3
138 #define CCI_PORT_S4 4
139 #define CCI_PORT_M0 5
140 #define CCI_PORT_M1 6
141 #define CCI_PORT_M2 7
142
143 #define CCI_REV_R0 0
144 #define CCI_REV_R1 1
145 #define CCI_REV_R1_PX 5
146
147 /*
148 * Instead of an event id to monitor CCI cycles, a dedicated counter is
149 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
150 * make use of this event in hardware.
151 */
152 enum cci400_perf_events {
153 CCI_PMU_CYCLES = 0xff
154 };
155
156 #define CCI_PMU_CYCLE_CNTR_IDX 0
157 #define CCI_PMU_CNTR0_IDX 1
158 #define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
159
160 /*
161 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
162 * ports and bits 4:0 are event codes. There are different event codes
163 * associated with each port type.
164 *
165 * Additionally, the range of events associated with the port types changed
166 * between Rev0 and Rev1.
167 *
168 * The constants below define the range of valid codes for each port type for
169 * the different revisions and are used to validate the event to be monitored.
170 */
171
172 #define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00
173 #define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13
174 #define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14
175 #define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a
176
177 #define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00
178 #define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14
179 #define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00
180 #define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11
181
182 static int pmu_validate_hw_event(unsigned long hw_event)
183 {
184 u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
185 u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
186 int if_type;
187
188 if (hw_event & ~CCI_PMU_EVENT_MASK)
189 return -ENOENT;
190
191 switch (ev_source) {
192 case CCI_PORT_S0:
193 case CCI_PORT_S1:
194 case CCI_PORT_S2:
195 case CCI_PORT_S3:
196 case CCI_PORT_S4:
197 /* Slave Interface */
198 if_type = CCI_IF_SLAVE;
199 break;
200 case CCI_PORT_M0:
201 case CCI_PORT_M1:
202 case CCI_PORT_M2:
203 /* Master Interface */
204 if_type = CCI_IF_MASTER;
205 break;
206 default:
207 return -ENOENT;
208 }
209
210 if (ev_code >= pmu->model->event_ranges[if_type].min &&
211 ev_code <= pmu->model->event_ranges[if_type].max)
212 return hw_event;
213
214 return -ENOENT;
215 }
216
217 static int probe_cci_revision(void)
218 {
219 int rev;
220 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
221 rev >>= CCI_PID2_REV_SHIFT;
222
223 if (rev < CCI_REV_R1_PX)
224 return CCI_REV_R0;
225 else
226 return CCI_REV_R1;
227 }
228
229 static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
230 {
231 if (platform_has_secure_cci_access())
232 return &cci_pmu_models[probe_cci_revision()];
233 return NULL;
234 }
235
236 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
237 {
238 return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
239 idx <= CCI_PMU_CNTR_LAST(cci_pmu);
240 }
241
242 static u32 pmu_read_register(int idx, unsigned int offset)
243 {
244 return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
245 }
246
247 static void pmu_write_register(u32 value, int idx, unsigned int offset)
248 {
249 return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
250 }
251
252 static void pmu_disable_counter(int idx)
253 {
254 pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
255 }
256
257 static void pmu_enable_counter(int idx)
258 {
259 pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
260 }
261
262 static void pmu_set_event(int idx, unsigned long event)
263 {
264 pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
265 }
266
267 static u32 pmu_get_max_counters(void)
268 {
269 u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
270 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
271
272 /* add 1 for cycle counter */
273 return n_cnts + 1;
274 }
275
276 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
277 {
278 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
279 struct hw_perf_event *hw_event = &event->hw;
280 unsigned long cci_event = hw_event->config_base;
281 int idx;
282
283 if (cci_event == CCI_PMU_CYCLES) {
284 if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
285 return -EAGAIN;
286
287 return CCI_PMU_CYCLE_CNTR_IDX;
288 }
289
290 for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
291 if (!test_and_set_bit(idx, hw->used_mask))
292 return idx;
293
294 /* No counters available */
295 return -EAGAIN;
296 }
297
298 static int pmu_map_event(struct perf_event *event)
299 {
300 int mapping;
301 unsigned long config = event->attr.config;
302
303 if (event->attr.type < PERF_TYPE_MAX)
304 return -ENOENT;
305
306 if (config == CCI_PMU_CYCLES)
307 mapping = config;
308 else
309 mapping = pmu_validate_hw_event(config);
310
311 return mapping;
312 }
313
314 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
315 {
316 int i;
317 struct platform_device *pmu_device = cci_pmu->plat_device;
318
319 if (unlikely(!pmu_device))
320 return -ENODEV;
321
322 if (pmu->nr_irqs < 1) {
323 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
324 return -ENODEV;
325 }
326
327 /*
328 * Register all available CCI PMU interrupts. In the interrupt handler
329 * we iterate over the counters checking for interrupt source (the
330 * overflowing counter) and clear it.
331 *
332 * This should allow handling of non-unique interrupt for the counters.
333 */
334 for (i = 0; i < pmu->nr_irqs; i++) {
335 int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
336 "arm-cci-pmu", cci_pmu);
337 if (err) {
338 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
339 pmu->irqs[i]);
340 return err;
341 }
342
343 set_bit(i, &pmu->active_irqs);
344 }
345
346 return 0;
347 }
348
349 static void pmu_free_irq(struct cci_pmu *cci_pmu)
350 {
351 int i;
352
353 for (i = 0; i < pmu->nr_irqs; i++) {
354 if (!test_and_clear_bit(i, &pmu->active_irqs))
355 continue;
356
357 free_irq(pmu->irqs[i], cci_pmu);
358 }
359 }
360
361 static u32 pmu_read_counter(struct perf_event *event)
362 {
363 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
364 struct hw_perf_event *hw_counter = &event->hw;
365 int idx = hw_counter->idx;
366 u32 value;
367
368 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
369 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
370 return 0;
371 }
372 value = pmu_read_register(idx, CCI_PMU_CNTR);
373
374 return value;
375 }
376
377 static void pmu_write_counter(struct perf_event *event, u32 value)
378 {
379 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
380 struct hw_perf_event *hw_counter = &event->hw;
381 int idx = hw_counter->idx;
382
383 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
384 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
385 else
386 pmu_write_register(value, idx, CCI_PMU_CNTR);
387 }
388
389 static u64 pmu_event_update(struct perf_event *event)
390 {
391 struct hw_perf_event *hwc = &event->hw;
392 u64 delta, prev_raw_count, new_raw_count;
393
394 do {
395 prev_raw_count = local64_read(&hwc->prev_count);
396 new_raw_count = pmu_read_counter(event);
397 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
398 new_raw_count) != prev_raw_count);
399
400 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
401
402 local64_add(delta, &event->count);
403
404 return new_raw_count;
405 }
406
407 static void pmu_read(struct perf_event *event)
408 {
409 pmu_event_update(event);
410 }
411
412 void pmu_event_set_period(struct perf_event *event)
413 {
414 struct hw_perf_event *hwc = &event->hw;
415 /*
416 * The CCI PMU counters have a period of 2^32. To account for the
417 * possiblity of extreme interrupt latency we program for a period of
418 * half that. Hopefully we can handle the interrupt before another 2^31
419 * events occur and the counter overtakes its previous value.
420 */
421 u64 val = 1ULL << 31;
422 local64_set(&hwc->prev_count, val);
423 pmu_write_counter(event, val);
424 }
425
426 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
427 {
428 unsigned long flags;
429 struct cci_pmu *cci_pmu = dev;
430 struct cci_pmu_hw_events *events = &pmu->hw_events;
431 int idx, handled = IRQ_NONE;
432
433 raw_spin_lock_irqsave(&events->pmu_lock, flags);
434 /*
435 * Iterate over counters and update the corresponding perf events.
436 * This should work regardless of whether we have per-counter overflow
437 * interrupt or a combined overflow interrupt.
438 */
439 for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
440 struct perf_event *event = events->events[idx];
441 struct hw_perf_event *hw_counter;
442
443 if (!event)
444 continue;
445
446 hw_counter = &event->hw;
447
448 /* Did this counter overflow? */
449 if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) &
450 CCI_PMU_OVRFLW_FLAG))
451 continue;
452
453 pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
454
455 pmu_event_update(event);
456 pmu_event_set_period(event);
457 handled = IRQ_HANDLED;
458 }
459 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
460
461 return IRQ_RETVAL(handled);
462 }
463
464 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
465 {
466 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
467 if (ret) {
468 pmu_free_irq(cci_pmu);
469 return ret;
470 }
471 return 0;
472 }
473
474 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
475 {
476 pmu_free_irq(cci_pmu);
477 }
478
479 static void hw_perf_event_destroy(struct perf_event *event)
480 {
481 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
482 atomic_t *active_events = &cci_pmu->active_events;
483 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
484
485 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
486 cci_pmu_put_hw(cci_pmu);
487 mutex_unlock(reserve_mutex);
488 }
489 }
490
491 static void cci_pmu_enable(struct pmu *pmu)
492 {
493 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
494 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
495 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events);
496 unsigned long flags;
497 u32 val;
498
499 if (!enabled)
500 return;
501
502 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
503
504 /* Enable all the PMU counters. */
505 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
506 writel(val, cci_ctrl_base + CCI_PMCR);
507 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
508
509 }
510
511 static void cci_pmu_disable(struct pmu *pmu)
512 {
513 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
514 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
515 unsigned long flags;
516 u32 val;
517
518 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
519
520 /* Disable all the PMU counters. */
521 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
522 writel(val, cci_ctrl_base + CCI_PMCR);
523 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
524 }
525
526 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
527 {
528 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
529 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
530 struct hw_perf_event *hwc = &event->hw;
531 int idx = hwc->idx;
532 unsigned long flags;
533
534 /*
535 * To handle interrupt latency, we always reprogram the period
536 * regardlesss of PERF_EF_RELOAD.
537 */
538 if (pmu_flags & PERF_EF_RELOAD)
539 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
540
541 hwc->state = 0;
542
543 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
544 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
545 return;
546 }
547
548 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
549
550 /* Configure the event to count, unless you are counting cycles */
551 if (idx != CCI_PMU_CYCLE_CNTR_IDX)
552 pmu_set_event(idx, hwc->config_base);
553
554 pmu_event_set_period(event);
555 pmu_enable_counter(idx);
556
557 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
558 }
559
560 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
561 {
562 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
563 struct hw_perf_event *hwc = &event->hw;
564 int idx = hwc->idx;
565
566 if (hwc->state & PERF_HES_STOPPED)
567 return;
568
569 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
570 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
571 return;
572 }
573
574 /*
575 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
576 * cci_pmu_start()
577 */
578 pmu_disable_counter(idx);
579 pmu_event_update(event);
580 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
581 }
582
583 static int cci_pmu_add(struct perf_event *event, int flags)
584 {
585 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
586 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
587 struct hw_perf_event *hwc = &event->hw;
588 int idx;
589 int err = 0;
590
591 perf_pmu_disable(event->pmu);
592
593 /* If we don't have a space for the counter then finish early. */
594 idx = pmu_get_event_idx(hw_events, event);
595 if (idx < 0) {
596 err = idx;
597 goto out;
598 }
599
600 event->hw.idx = idx;
601 hw_events->events[idx] = event;
602
603 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
604 if (flags & PERF_EF_START)
605 cci_pmu_start(event, PERF_EF_RELOAD);
606
607 /* Propagate our changes to the userspace mapping. */
608 perf_event_update_userpage(event);
609
610 out:
611 perf_pmu_enable(event->pmu);
612 return err;
613 }
614
615 static void cci_pmu_del(struct perf_event *event, int flags)
616 {
617 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
618 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
619 struct hw_perf_event *hwc = &event->hw;
620 int idx = hwc->idx;
621
622 cci_pmu_stop(event, PERF_EF_UPDATE);
623 hw_events->events[idx] = NULL;
624 clear_bit(idx, hw_events->used_mask);
625
626 perf_event_update_userpage(event);
627 }
628
629 static int
630 validate_event(struct pmu *cci_pmu,
631 struct cci_pmu_hw_events *hw_events,
632 struct perf_event *event)
633 {
634 if (is_software_event(event))
635 return 1;
636
637 /*
638 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
639 * core perf code won't check that the pmu->ctx == leader->ctx
640 * until after pmu->event_init(event).
641 */
642 if (event->pmu != cci_pmu)
643 return 0;
644
645 if (event->state < PERF_EVENT_STATE_OFF)
646 return 1;
647
648 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
649 return 1;
650
651 return pmu_get_event_idx(hw_events, event) >= 0;
652 }
653
654 static int
655 validate_group(struct perf_event *event)
656 {
657 struct perf_event *sibling, *leader = event->group_leader;
658 struct cci_pmu_hw_events fake_pmu = {
659 /*
660 * Initialise the fake PMU. We only need to populate the
661 * used_mask for the purposes of validation.
662 */
663 .used_mask = { 0 },
664 };
665
666 if (!validate_event(event->pmu, &fake_pmu, leader))
667 return -EINVAL;
668
669 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
670 if (!validate_event(event->pmu, &fake_pmu, sibling))
671 return -EINVAL;
672 }
673
674 if (!validate_event(event->pmu, &fake_pmu, event))
675 return -EINVAL;
676
677 return 0;
678 }
679
680 static int
681 __hw_perf_event_init(struct perf_event *event)
682 {
683 struct hw_perf_event *hwc = &event->hw;
684 int mapping;
685
686 mapping = pmu_map_event(event);
687
688 if (mapping < 0) {
689 pr_debug("event %x:%llx not supported\n", event->attr.type,
690 event->attr.config);
691 return mapping;
692 }
693
694 /*
695 * We don't assign an index until we actually place the event onto
696 * hardware. Use -1 to signify that we haven't decided where to put it
697 * yet.
698 */
699 hwc->idx = -1;
700 hwc->config_base = 0;
701 hwc->config = 0;
702 hwc->event_base = 0;
703
704 /*
705 * Store the event encoding into the config_base field.
706 */
707 hwc->config_base |= (unsigned long)mapping;
708
709 /*
710 * Limit the sample_period to half of the counter width. That way, the
711 * new counter value is far less likely to overtake the previous one
712 * unless you have some serious IRQ latency issues.
713 */
714 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1;
715 hwc->last_period = hwc->sample_period;
716 local64_set(&hwc->period_left, hwc->sample_period);
717
718 if (event->group_leader != event) {
719 if (validate_group(event) != 0)
720 return -EINVAL;
721 }
722
723 return 0;
724 }
725
726 static int cci_pmu_event_init(struct perf_event *event)
727 {
728 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
729 atomic_t *active_events = &cci_pmu->active_events;
730 int err = 0;
731 int cpu;
732
733 if (event->attr.type != event->pmu->type)
734 return -ENOENT;
735
736 /* Shared by all CPUs, no meaningful state to sample */
737 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
738 return -EOPNOTSUPP;
739
740 /* We have no filtering of any kind */
741 if (event->attr.exclude_user ||
742 event->attr.exclude_kernel ||
743 event->attr.exclude_hv ||
744 event->attr.exclude_idle ||
745 event->attr.exclude_host ||
746 event->attr.exclude_guest)
747 return -EINVAL;
748
749 /*
750 * Following the example set by other "uncore" PMUs, we accept any CPU
751 * and rewrite its affinity dynamically rather than having perf core
752 * handle cpu == -1 and pid == -1 for this case.
753 *
754 * The perf core will pin online CPUs for the duration of this call and
755 * the event being installed into its context, so the PMU's CPU can't
756 * change under our feet.
757 */
758 cpu = cpumask_first(&cci_pmu->cpus);
759 if (event->cpu < 0 || cpu < 0)
760 return -EINVAL;
761 event->cpu = cpu;
762
763 event->destroy = hw_perf_event_destroy;
764 if (!atomic_inc_not_zero(active_events)) {
765 mutex_lock(&cci_pmu->reserve_mutex);
766 if (atomic_read(active_events) == 0)
767 err = cci_pmu_get_hw(cci_pmu);
768 if (!err)
769 atomic_inc(active_events);
770 mutex_unlock(&cci_pmu->reserve_mutex);
771 }
772 if (err)
773 return err;
774
775 err = __hw_perf_event_init(event);
776 if (err)
777 hw_perf_event_destroy(event);
778
779 return err;
780 }
781
782 static ssize_t pmu_attr_cpumask_show(struct device *dev,
783 struct device_attribute *attr, char *buf)
784 {
785 int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
786 cpumask_pr_args(&pmu->cpus));
787 buf[n++] = '\n';
788 buf[n] = '\0';
789 return n;
790 }
791
792 static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL);
793
794 static struct attribute *pmu_attrs[] = {
795 &dev_attr_cpumask.attr,
796 NULL,
797 };
798
799 static struct attribute_group pmu_attr_group = {
800 .attrs = pmu_attrs,
801 };
802
803 static const struct attribute_group *pmu_attr_groups[] = {
804 &pmu_attr_group,
805 NULL
806 };
807
808 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
809 {
810 char *name = cci_pmu->model->name;
811 cci_pmu->pmu = (struct pmu) {
812 .name = cci_pmu->model->name,
813 .task_ctx_nr = perf_invalid_context,
814 .pmu_enable = cci_pmu_enable,
815 .pmu_disable = cci_pmu_disable,
816 .event_init = cci_pmu_event_init,
817 .add = cci_pmu_add,
818 .del = cci_pmu_del,
819 .start = cci_pmu_start,
820 .stop = cci_pmu_stop,
821 .read = pmu_read,
822 .attr_groups = pmu_attr_groups,
823 };
824
825 cci_pmu->plat_device = pdev;
826 cci_pmu->num_events = pmu_get_max_counters();
827
828 return perf_pmu_register(&cci_pmu->pmu, name, -1);
829 }
830
831 static int cci_pmu_cpu_notifier(struct notifier_block *self,
832 unsigned long action, void *hcpu)
833 {
834 unsigned int cpu = (long)hcpu;
835 unsigned int target;
836
837 switch (action & ~CPU_TASKS_FROZEN) {
838 case CPU_DOWN_PREPARE:
839 if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus))
840 break;
841 target = cpumask_any_but(cpu_online_mask, cpu);
842 if (target < 0) // UP, last CPU
843 break;
844 /*
845 * TODO: migrate context once core races on event->ctx have
846 * been fixed.
847 */
848 cpumask_set_cpu(target, &pmu->cpus);
849 default:
850 break;
851 }
852
853 return NOTIFY_OK;
854 }
855
856 static struct notifier_block cci_pmu_cpu_nb = {
857 .notifier_call = cci_pmu_cpu_notifier,
858 /*
859 * to migrate uncore events, our notifier should be executed
860 * before perf core's notifier.
861 */
862 .priority = CPU_PRI_PERF + 1,
863 };
864
865 static struct cci_pmu_model cci_pmu_models[] = {
866 [CCI_REV_R0] = {
867 .name = "CCI_400",
868 .event_ranges = {
869 [CCI_IF_SLAVE] = {
870 CCI_REV_R0_SLAVE_PORT_MIN_EV,
871 CCI_REV_R0_SLAVE_PORT_MAX_EV,
872 },
873 [CCI_IF_MASTER] = {
874 CCI_REV_R0_MASTER_PORT_MIN_EV,
875 CCI_REV_R0_MASTER_PORT_MAX_EV,
876 },
877 },
878 },
879 [CCI_REV_R1] = {
880 .name = "CCI_400_r1",
881 .event_ranges = {
882 [CCI_IF_SLAVE] = {
883 CCI_REV_R1_SLAVE_PORT_MIN_EV,
884 CCI_REV_R1_SLAVE_PORT_MAX_EV,
885 },
886 [CCI_IF_MASTER] = {
887 CCI_REV_R1_MASTER_PORT_MIN_EV,
888 CCI_REV_R1_MASTER_PORT_MAX_EV,
889 },
890 },
891 },
892 };
893
894 static const struct of_device_id arm_cci_pmu_matches[] = {
895 {
896 .compatible = "arm,cci-400-pmu",
897 .data = NULL,
898 },
899 {
900 .compatible = "arm,cci-400-pmu,r0",
901 .data = &cci_pmu_models[CCI_REV_R0],
902 },
903 {
904 .compatible = "arm,cci-400-pmu,r1",
905 .data = &cci_pmu_models[CCI_REV_R1],
906 },
907 {},
908 };
909
910 static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
911 {
912 const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
913 pdev->dev.of_node);
914 if (!match)
915 return NULL;
916 if (match->data)
917 return match->data;
918
919 dev_warn(&pdev->dev, "DEPRECATED compatible property,"
920 "requires secure access to CCI registers");
921 return probe_cci_model(pdev);
922 }
923
924 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
925 {
926 int i;
927
928 for (i = 0; i < nr_irqs; i++)
929 if (irq == irqs[i])
930 return true;
931
932 return false;
933 }
934
935 static int cci_pmu_probe(struct platform_device *pdev)
936 {
937 struct resource *res;
938 int i, ret, irq;
939 const struct cci_pmu_model *model;
940
941 model = get_cci_model(pdev);
942 if (!model) {
943 dev_warn(&pdev->dev, "CCI PMU version not supported\n");
944 return -ENODEV;
945 }
946
947 pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
948 if (!pmu)
949 return -ENOMEM;
950
951 pmu->model = model;
952 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
953 pmu->base = devm_ioremap_resource(&pdev->dev, res);
954 if (IS_ERR(pmu->base))
955 return -ENOMEM;
956
957 /*
958 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
959 * together to a common interrupt.
960 */
961 pmu->nr_irqs = 0;
962 for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
963 irq = platform_get_irq(pdev, i);
964 if (irq < 0)
965 break;
966
967 if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
968 continue;
969
970 pmu->irqs[pmu->nr_irqs++] = irq;
971 }
972
973 /*
974 * Ensure that the device tree has as many interrupts as the number
975 * of counters.
976 */
977 if (i < CCI_PMU_MAX_HW_EVENTS) {
978 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
979 i, CCI_PMU_MAX_HW_EVENTS);
980 return -EINVAL;
981 }
982
983 raw_spin_lock_init(&pmu->hw_events.pmu_lock);
984 mutex_init(&pmu->reserve_mutex);
985 atomic_set(&pmu->active_events, 0);
986 cpumask_set_cpu(smp_processor_id(), &pmu->cpus);
987
988 ret = register_cpu_notifier(&cci_pmu_cpu_nb);
989 if (ret)
990 return ret;
991
992 ret = cci_pmu_init(pmu, pdev);
993 if (ret)
994 return ret;
995
996 pr_info("ARM %s PMU driver probed", pmu->model->name);
997 return 0;
998 }
999
1000 static int cci_platform_probe(struct platform_device *pdev)
1001 {
1002 if (!cci_probed())
1003 return -ENODEV;
1004
1005 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1006 }
1007
1008 static struct platform_driver cci_pmu_driver = {
1009 .driver = {
1010 .name = DRIVER_NAME_PMU,
1011 .of_match_table = arm_cci_pmu_matches,
1012 },
1013 .probe = cci_pmu_probe,
1014 };
1015
1016 static struct platform_driver cci_platform_driver = {
1017 .driver = {
1018 .name = DRIVER_NAME,
1019 .of_match_table = arm_cci_matches,
1020 },
1021 .probe = cci_platform_probe,
1022 };
1023
1024 static int __init cci_platform_init(void)
1025 {
1026 int ret;
1027
1028 ret = platform_driver_register(&cci_pmu_driver);
1029 if (ret)
1030 return ret;
1031
1032 return platform_driver_register(&cci_platform_driver);
1033 }
1034
1035 #else /* !CONFIG_ARM_CCI400_PMU */
1036
1037 static int __init cci_platform_init(void)
1038 {
1039 return 0;
1040 }
1041
1042 #endif /* CONFIG_ARM_CCI400_PMU */
1043
1044 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
1045
1046 #define CCI_PORT_CTRL 0x0
1047 #define CCI_CTRL_STATUS 0xc
1048
1049 #define CCI_ENABLE_SNOOP_REQ 0x1
1050 #define CCI_ENABLE_DVM_REQ 0x2
1051 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1052
1053 enum cci_ace_port_type {
1054 ACE_INVALID_PORT = 0x0,
1055 ACE_PORT,
1056 ACE_LITE_PORT,
1057 };
1058
1059 struct cci_ace_port {
1060 void __iomem *base;
1061 unsigned long phys;
1062 enum cci_ace_port_type type;
1063 struct device_node *dn;
1064 };
1065
1066 static struct cci_ace_port *ports;
1067 static unsigned int nb_cci_ports;
1068
1069 struct cpu_port {
1070 u64 mpidr;
1071 u32 port;
1072 };
1073
1074 /*
1075 * Use the port MSB as valid flag, shift can be made dynamic
1076 * by computing number of bits required for port indexes.
1077 * Code disabling CCI cpu ports runs with D-cache invalidated
1078 * and SCTLR bit clear so data accesses must be kept to a minimum
1079 * to improve performance; for now shift is left static to
1080 * avoid one more data access while disabling the CCI port.
1081 */
1082 #define PORT_VALID_SHIFT 31
1083 #define PORT_VALID (0x1 << PORT_VALID_SHIFT)
1084
1085 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1086 {
1087 port->port = PORT_VALID | index;
1088 port->mpidr = mpidr;
1089 }
1090
1091 static inline bool cpu_port_is_valid(struct cpu_port *port)
1092 {
1093 return !!(port->port & PORT_VALID);
1094 }
1095
1096 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1097 {
1098 return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1099 }
1100
1101 static struct cpu_port cpu_port[NR_CPUS];
1102
1103 /**
1104 * __cci_ace_get_port - Function to retrieve the port index connected to
1105 * a cpu or device.
1106 *
1107 * @dn: device node of the device to look-up
1108 * @type: port type
1109 *
1110 * Return value:
1111 * - CCI port index if success
1112 * - -ENODEV if failure
1113 */
1114 static int __cci_ace_get_port(struct device_node *dn, int type)
1115 {
1116 int i;
1117 bool ace_match;
1118 struct device_node *cci_portn;
1119
1120 cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1121 for (i = 0; i < nb_cci_ports; i++) {
1122 ace_match = ports[i].type == type;
1123 if (ace_match && cci_portn == ports[i].dn)
1124 return i;
1125 }
1126 return -ENODEV;
1127 }
1128
1129 int cci_ace_get_port(struct device_node *dn)
1130 {
1131 return __cci_ace_get_port(dn, ACE_LITE_PORT);
1132 }
1133 EXPORT_SYMBOL_GPL(cci_ace_get_port);
1134
1135 static void cci_ace_init_ports(void)
1136 {
1137 int port, cpu;
1138 struct device_node *cpun;
1139
1140 /*
1141 * Port index look-up speeds up the function disabling ports by CPU,
1142 * since the logical to port index mapping is done once and does
1143 * not change after system boot.
1144 * The stashed index array is initialized for all possible CPUs
1145 * at probe time.
1146 */
1147 for_each_possible_cpu(cpu) {
1148 /* too early to use cpu->of_node */
1149 cpun = of_get_cpu_node(cpu, NULL);
1150
1151 if (WARN(!cpun, "Missing cpu device node\n"))
1152 continue;
1153
1154 port = __cci_ace_get_port(cpun, ACE_PORT);
1155 if (port < 0)
1156 continue;
1157
1158 init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1159 }
1160
1161 for_each_possible_cpu(cpu) {
1162 WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1163 "CPU %u does not have an associated CCI port\n",
1164 cpu);
1165 }
1166 }
1167 /*
1168 * Functions to enable/disable a CCI interconnect slave port
1169 *
1170 * They are called by low-level power management code to disable slave
1171 * interfaces snoops and DVM broadcast.
1172 * Since they may execute with cache data allocation disabled and
1173 * after the caches have been cleaned and invalidated the functions provide
1174 * no explicit locking since they may run with D-cache disabled, so normal
1175 * cacheable kernel locks based on ldrex/strex may not work.
1176 * Locking has to be provided by BSP implementations to ensure proper
1177 * operations.
1178 */
1179
1180 /**
1181 * cci_port_control() - function to control a CCI port
1182 *
1183 * @port: index of the port to setup
1184 * @enable: if true enables the port, if false disables it
1185 */
1186 static void notrace cci_port_control(unsigned int port, bool enable)
1187 {
1188 void __iomem *base = ports[port].base;
1189
1190 writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1191 /*
1192 * This function is called from power down procedures
1193 * and must not execute any instruction that might
1194 * cause the processor to be put in a quiescent state
1195 * (eg wfi). Hence, cpu_relax() can not be added to this
1196 * read loop to optimize power, since it might hide possibly
1197 * disruptive operations.
1198 */
1199 while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1200 ;
1201 }
1202
1203 /**
1204 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1205 * reference
1206 *
1207 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1208 *
1209 * Disabling a CCI port for a CPU implies disabling the CCI port
1210 * controlling that CPU cluster. Code disabling CPU CCI ports
1211 * must make sure that the CPU running the code is the last active CPU
1212 * in the cluster ie all other CPUs are quiescent in a low power state.
1213 *
1214 * Return:
1215 * 0 on success
1216 * -ENODEV on port look-up failure
1217 */
1218 int notrace cci_disable_port_by_cpu(u64 mpidr)
1219 {
1220 int cpu;
1221 bool is_valid;
1222 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1223 is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1224 if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1225 cci_port_control(cpu_port[cpu].port, false);
1226 return 0;
1227 }
1228 }
1229 return -ENODEV;
1230 }
1231 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1232
1233 /**
1234 * cci_enable_port_for_self() - enable a CCI port for calling CPU
1235 *
1236 * Enabling a CCI port for the calling CPU implies enabling the CCI
1237 * port controlling that CPU's cluster. Caller must make sure that the
1238 * CPU running the code is the first active CPU in the cluster and all
1239 * other CPUs are quiescent in a low power state or waiting for this CPU
1240 * to complete the CCI initialization.
1241 *
1242 * Because this is called when the MMU is still off and with no stack,
1243 * the code must be position independent and ideally rely on callee
1244 * clobbered registers only. To achieve this we must code this function
1245 * entirely in assembler.
1246 *
1247 * On success this returns with the proper CCI port enabled. In case of
1248 * any failure this never returns as the inability to enable the CCI is
1249 * fatal and there is no possible recovery at this stage.
1250 */
1251 asmlinkage void __naked cci_enable_port_for_self(void)
1252 {
1253 asm volatile ("\n"
1254 " .arch armv7-a\n"
1255 " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
1256 " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1257 " adr r1, 5f \n"
1258 " ldr r2, [r1] \n"
1259 " add r1, r1, r2 @ &cpu_port \n"
1260 " add ip, r1, %[sizeof_cpu_port] \n"
1261
1262 /* Loop over the cpu_port array looking for a matching MPIDR */
1263 "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1264 " cmp r2, r0 @ compare MPIDR \n"
1265 " bne 2f \n"
1266
1267 /* Found a match, now test port validity */
1268 " ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
1269 " tst r3, #"__stringify(PORT_VALID)" \n"
1270 " bne 3f \n"
1271
1272 /* no match, loop with the next cpu_port entry */
1273 "2: add r1, r1, %[sizeof_struct_cpu_port] \n"
1274 " cmp r1, ip @ done? \n"
1275 " blo 1b \n"
1276
1277 /* CCI port not found -- cheaply try to stall this CPU */
1278 "cci_port_not_found: \n"
1279 " wfi \n"
1280 " wfe \n"
1281 " b cci_port_not_found \n"
1282
1283 /* Use matched port index to look up the corresponding ports entry */
1284 "3: bic r3, r3, #"__stringify(PORT_VALID)" \n"
1285 " adr r0, 6f \n"
1286 " ldmia r0, {r1, r2} \n"
1287 " sub r1, r1, r0 @ virt - phys \n"
1288 " ldr r0, [r0, r2] @ *(&ports) \n"
1289 " mov r2, %[sizeof_struct_ace_port] \n"
1290 " mla r0, r2, r3, r0 @ &ports[index] \n"
1291 " sub r0, r0, r1 @ virt_to_phys() \n"
1292
1293 /* Enable the CCI port */
1294 " ldr r0, [r0, %[offsetof_port_phys]] \n"
1295 " mov r3, %[cci_enable_req]\n"
1296 " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
1297
1298 /* poll the status reg for completion */
1299 " adr r1, 7f \n"
1300 " ldr r0, [r1] \n"
1301 " ldr r0, [r0, r1] @ cci_ctrl_base \n"
1302 "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
1303 " tst r1, %[cci_control_status_bits] \n"
1304 " bne 4b \n"
1305
1306 " mov r0, #0 \n"
1307 " bx lr \n"
1308
1309 " .align 2 \n"
1310 "5: .word cpu_port - . \n"
1311 "6: .word . \n"
1312 " .word ports - 6b \n"
1313 "7: .word cci_ctrl_phys - . \n"
1314 : :
1315 [sizeof_cpu_port] "i" (sizeof(cpu_port)),
1316 [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
1317 [cci_control_status_bits] "i" cpu_to_le32(1),
1318 #ifndef __ARMEB__
1319 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
1320 #else
1321 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
1322 #endif
1323 [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
1324 [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
1325 [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
1326 [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
1327
1328 unreachable();
1329 }
1330
1331 /**
1332 * __cci_control_port_by_device() - function to control a CCI port by device
1333 * reference
1334 *
1335 * @dn: device node pointer of the device whose CCI port should be
1336 * controlled
1337 * @enable: if true enables the port, if false disables it
1338 *
1339 * Return:
1340 * 0 on success
1341 * -ENODEV on port look-up failure
1342 */
1343 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
1344 {
1345 int port;
1346
1347 if (!dn)
1348 return -ENODEV;
1349
1350 port = __cci_ace_get_port(dn, ACE_LITE_PORT);
1351 if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
1352 dn->full_name))
1353 return -ENODEV;
1354 cci_port_control(port, enable);
1355 return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
1358
1359 /**
1360 * __cci_control_port_by_index() - function to control a CCI port by port index
1361 *
1362 * @port: port index previously retrieved with cci_ace_get_port()
1363 * @enable: if true enables the port, if false disables it
1364 *
1365 * Return:
1366 * 0 on success
1367 * -ENODEV on port index out of range
1368 * -EPERM if operation carried out on an ACE PORT
1369 */
1370 int notrace __cci_control_port_by_index(u32 port, bool enable)
1371 {
1372 if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
1373 return -ENODEV;
1374 /*
1375 * CCI control for ports connected to CPUS is extremely fragile
1376 * and must be made to go through a specific and controlled
1377 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1378 * indexing is therefore disabled for ACE ports.
1379 */
1380 if (ports[port].type == ACE_PORT)
1381 return -EPERM;
1382
1383 cci_port_control(port, enable);
1384 return 0;
1385 }
1386 EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
1387
1388 static const struct of_device_id arm_cci_ctrl_if_matches[] = {
1389 {.compatible = "arm,cci-400-ctrl-if", },
1390 {},
1391 };
1392
1393 static int cci_probe_ports(struct device_node *np)
1394 {
1395 struct cci_nb_ports const *cci_config;
1396 int ret, i, nb_ace = 0, nb_ace_lite = 0;
1397 struct device_node *cp;
1398 struct resource res;
1399 const char *match_str;
1400 bool is_ace;
1401
1402
1403 cci_config = of_match_node(arm_cci_matches, np)->data;
1404 if (!cci_config)
1405 return -ENODEV;
1406
1407 nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
1408
1409 ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
1410 if (!ports)
1411 return -ENOMEM;
1412
1413 for_each_child_of_node(np, cp) {
1414 if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1415 continue;
1416
1417 i = nb_ace + nb_ace_lite;
1418
1419 if (i >= nb_cci_ports)
1420 break;
1421
1422 if (of_property_read_string(cp, "interface-type",
1423 &match_str)) {
1424 WARN(1, "node %s missing interface-type property\n",
1425 cp->full_name);
1426 continue;
1427 }
1428 is_ace = strcmp(match_str, "ace") == 0;
1429 if (!is_ace && strcmp(match_str, "ace-lite")) {
1430 WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1431 cp->full_name);
1432 continue;
1433 }
1434
1435 ret = of_address_to_resource(cp, 0, &res);
1436 if (!ret) {
1437 ports[i].base = ioremap(res.start, resource_size(&res));
1438 ports[i].phys = res.start;
1439 }
1440 if (ret || !ports[i].base) {
1441 WARN(1, "unable to ioremap CCI port %d\n", i);
1442 continue;
1443 }
1444
1445 if (is_ace) {
1446 if (WARN_ON(nb_ace >= cci_config->nb_ace))
1447 continue;
1448 ports[i].type = ACE_PORT;
1449 ++nb_ace;
1450 } else {
1451 if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1452 continue;
1453 ports[i].type = ACE_LITE_PORT;
1454 ++nb_ace_lite;
1455 }
1456 ports[i].dn = cp;
1457 }
1458
1459 /* initialize a stashed array of ACE ports to speed-up look-up */
1460 cci_ace_init_ports();
1461
1462 /*
1463 * Multi-cluster systems may need this data when non-coherent, during
1464 * cluster power-up/power-down. Make sure it reaches main memory.
1465 */
1466 sync_cache_w(&cci_ctrl_base);
1467 sync_cache_w(&cci_ctrl_phys);
1468 sync_cache_w(&ports);
1469 sync_cache_w(&cpu_port);
1470 __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1471 pr_info("ARM CCI driver probed\n");
1472
1473 return 0;
1474 }
1475 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */
1476 static inline int cci_probe_ports(struct device_node *np)
1477 {
1478 return 0;
1479 }
1480 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */
1481
1482 static int cci_probe(void)
1483 {
1484 int ret;
1485 struct device_node *np;
1486 struct resource res;
1487
1488 np = of_find_matching_node(NULL, arm_cci_matches);
1489 if(!np || !of_device_is_available(np))
1490 return -ENODEV;
1491
1492 ret = of_address_to_resource(np, 0, &res);
1493 if (!ret) {
1494 cci_ctrl_base = ioremap(res.start, resource_size(&res));
1495 cci_ctrl_phys = res.start;
1496 }
1497 if (ret || !cci_ctrl_base) {
1498 WARN(1, "unable to ioremap CCI ctrl\n");
1499 return -ENXIO;
1500 }
1501
1502 return cci_probe_ports(np);
1503 }
1504
1505 static int cci_init_status = -EAGAIN;
1506 static DEFINE_MUTEX(cci_probing);
1507
1508 static int cci_init(void)
1509 {
1510 if (cci_init_status != -EAGAIN)
1511 return cci_init_status;
1512
1513 mutex_lock(&cci_probing);
1514 if (cci_init_status == -EAGAIN)
1515 cci_init_status = cci_probe();
1516 mutex_unlock(&cci_probing);
1517 return cci_init_status;
1518 }
1519
1520 /*
1521 * To sort out early init calls ordering a helper function is provided to
1522 * check if the CCI driver has beed initialized. Function check if the driver
1523 * has been initialized, if not it calls the init function that probes
1524 * the driver and updates the return value.
1525 */
1526 bool cci_probed(void)
1527 {
1528 return cci_init() == 0;
1529 }
1530 EXPORT_SYMBOL_GPL(cci_probed);
1531
1532 early_initcall(cci_init);
1533 core_initcall(cci_platform_init);
1534 MODULE_LICENSE("GPL");
1535 MODULE_DESCRIPTION("ARM CCI support");
This page took 0.07704 seconds and 5 git commands to generate.