[PATCH] devfs: Remove the tty_driver devfs_name field as it's no longer needed
[deliverable/linux.git] / drivers / char / epca.c
1 /*
2
3
4 Copyright (C) 1996 Digi International.
5
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
8
9 ** This driver is no longer supported by Digi **
10
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
31
32
33 #include <linux/config.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/init.h>
38 #include <linux/serial.h>
39 #include <linux/delay.h>
40 #include <linux/ctype.h>
41 #include <linux/tty.h>
42 #include <linux/tty_flip.h>
43 #include <linux/slab.h>
44 #include <linux/ioport.h>
45 #include <linux/interrupt.h>
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include "digiPCI.h"
51
52
53 #include "digi1.h"
54 #include "digiFep1.h"
55 #include "epca.h"
56 #include "epcaconfig.h"
57
58 /* ---------------------- Begin defines ------------------------ */
59
60 #define VERSION "1.3.0.1-LK2.6"
61
62 /* This major needs to be submitted to Linux to join the majors list */
63
64 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
65
66
67 #define MAXCARDS 7
68 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
69
70 #define PFX "epca: "
71
72 /* ----------------- Begin global definitions ------------------- */
73
74 static int nbdevs, num_cards, liloconfig;
75 static int digi_poller_inhibited = 1 ;
76
77 static int setup_error_code;
78 static int invalid_lilo_config;
79
80 /* The ISA boards do window flipping into the same spaces so its only sane
81 with a single lock. It's still pretty efficient */
82
83 static spinlock_t epca_lock = SPIN_LOCK_UNLOCKED;
84
85 /* -----------------------------------------------------------------------
86 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
87 7 below.
88 --------------------------------------------------------------------------*/
89 static struct board_info boards[MAXBOARDS];
90
91
92 /* ------------- Begin structures used for driver registeration ---------- */
93
94 static struct tty_driver *pc_driver;
95 static struct tty_driver *pc_info;
96
97 /* ------------------ Begin Digi specific structures -------------------- */
98
99 /* ------------------------------------------------------------------------
100 digi_channels represents an array of structures that keep track of
101 each channel of the Digi product. Information such as transmit and
102 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
103 are stored here. This structure is NOT used to overlay the cards
104 physical channel structure.
105 -------------------------------------------------------------------------- */
106
107 static struct channel digi_channels[MAX_ALLOC];
108
109 /* ------------------------------------------------------------------------
110 card_ptr is an array used to hold the address of the
111 first channel structure of each card. This array will hold
112 the addresses of various channels located in digi_channels.
113 -------------------------------------------------------------------------- */
114 static struct channel *card_ptr[MAXCARDS];
115
116 static struct timer_list epca_timer;
117
118 /* ---------------------- Begin function prototypes --------------------- */
119
120 /* ----------------------------------------------------------------------
121 Begin generic memory functions. These functions will be alias
122 (point at) more specific functions dependent on the board being
123 configured.
124 ----------------------------------------------------------------------- */
125
126 static void memwinon(struct board_info *b, unsigned int win);
127 static void memwinoff(struct board_info *b, unsigned int win);
128 static void globalwinon(struct channel *ch);
129 static void rxwinon(struct channel *ch);
130 static void txwinon(struct channel *ch);
131 static void memoff(struct channel *ch);
132 static void assertgwinon(struct channel *ch);
133 static void assertmemoff(struct channel *ch);
134
135 /* ---- Begin more 'specific' memory functions for cx_like products --- */
136
137 static void pcxem_memwinon(struct board_info *b, unsigned int win);
138 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxem_globalwinon(struct channel *ch);
140 static void pcxem_rxwinon(struct channel *ch);
141 static void pcxem_txwinon(struct channel *ch);
142 static void pcxem_memoff(struct channel *ch);
143
144 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
145
146 static void pcxe_memwinon(struct board_info *b, unsigned int win);
147 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
148 static void pcxe_globalwinon(struct channel *ch);
149 static void pcxe_rxwinon(struct channel *ch);
150 static void pcxe_txwinon(struct channel *ch);
151 static void pcxe_memoff(struct channel *ch);
152
153 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
154 /* Note : pc64xe and pcxi share the same windowing routines */
155
156 static void pcxi_memwinon(struct board_info *b, unsigned int win);
157 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
158 static void pcxi_globalwinon(struct channel *ch);
159 static void pcxi_rxwinon(struct channel *ch);
160 static void pcxi_txwinon(struct channel *ch);
161 static void pcxi_memoff(struct channel *ch);
162
163 /* - Begin 'specific' do nothing memory functions needed for some cards - */
164
165 static void dummy_memwinon(struct board_info *b, unsigned int win);
166 static void dummy_memwinoff(struct board_info *b, unsigned int win);
167 static void dummy_globalwinon(struct channel *ch);
168 static void dummy_rxwinon(struct channel *ch);
169 static void dummy_txwinon(struct channel *ch);
170 static void dummy_memoff(struct channel *ch);
171 static void dummy_assertgwinon(struct channel *ch);
172 static void dummy_assertmemoff(struct channel *ch);
173
174 /* ------------------- Begin declare functions ----------------------- */
175
176 static struct channel *verifyChannel(struct tty_struct *);
177 static void pc_sched_event(struct channel *, int);
178 static void epca_error(int, char *);
179 static void pc_close(struct tty_struct *, struct file *);
180 static void shutdown(struct channel *);
181 static void pc_hangup(struct tty_struct *);
182 static void pc_put_char(struct tty_struct *, unsigned char);
183 static int pc_write_room(struct tty_struct *);
184 static int pc_chars_in_buffer(struct tty_struct *);
185 static void pc_flush_buffer(struct tty_struct *);
186 static void pc_flush_chars(struct tty_struct *);
187 static int block_til_ready(struct tty_struct *, struct file *,
188 struct channel *);
189 static int pc_open(struct tty_struct *, struct file *);
190 static void post_fep_init(unsigned int crd);
191 static void epcapoll(unsigned long);
192 static void doevent(int);
193 static void fepcmd(struct channel *, int, int, int, int, int);
194 static unsigned termios2digi_h(struct channel *ch, unsigned);
195 static unsigned termios2digi_i(struct channel *ch, unsigned);
196 static unsigned termios2digi_c(struct channel *ch, unsigned);
197 static void epcaparam(struct tty_struct *, struct channel *);
198 static void receive_data(struct channel *);
199 static int pc_ioctl(struct tty_struct *, struct file *,
200 unsigned int, unsigned long);
201 static int info_ioctl(struct tty_struct *, struct file *,
202 unsigned int, unsigned long);
203 static void pc_set_termios(struct tty_struct *, struct termios *);
204 static void do_softint(void *);
205 static void pc_stop(struct tty_struct *);
206 static void pc_start(struct tty_struct *);
207 static void pc_throttle(struct tty_struct * tty);
208 static void pc_unthrottle(struct tty_struct *tty);
209 static void digi_send_break(struct channel *ch, int msec);
210 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
211 void epca_setup(char *, int *);
212
213 static int get_termio(struct tty_struct *, struct termio __user *);
214 static int pc_write(struct tty_struct *, const unsigned char *, int);
215 static int pc_init(void);
216 static int init_PCI(void);
217
218
219 /* ------------------------------------------------------------------
220 Table of functions for each board to handle memory. Mantaining
221 parallelism is a *very* good idea here. The idea is for the
222 runtime code to blindly call these functions, not knowing/caring
223 about the underlying hardware. This stuff should contain no
224 conditionals; if more functionality is needed a different entry
225 should be established. These calls are the interface calls and
226 are the only functions that should be accessed. Anyone caught
227 making direct calls deserves what they get.
228 -------------------------------------------------------------------- */
229
230 static void memwinon(struct board_info *b, unsigned int win)
231 {
232 (b->memwinon)(b, win);
233 }
234
235 static void memwinoff(struct board_info *b, unsigned int win)
236 {
237 (b->memwinoff)(b, win);
238 }
239
240 static void globalwinon(struct channel *ch)
241 {
242 (ch->board->globalwinon)(ch);
243 }
244
245 static void rxwinon(struct channel *ch)
246 {
247 (ch->board->rxwinon)(ch);
248 }
249
250 static void txwinon(struct channel *ch)
251 {
252 (ch->board->txwinon)(ch);
253 }
254
255 static void memoff(struct channel *ch)
256 {
257 (ch->board->memoff)(ch);
258 }
259 static void assertgwinon(struct channel *ch)
260 {
261 (ch->board->assertgwinon)(ch);
262 }
263
264 static void assertmemoff(struct channel *ch)
265 {
266 (ch->board->assertmemoff)(ch);
267 }
268
269 /* ---------------------------------------------------------
270 PCXEM windowing is the same as that used in the PCXR
271 and CX series cards.
272 ------------------------------------------------------------ */
273
274 static void pcxem_memwinon(struct board_info *b, unsigned int win)
275 {
276 outb_p(FEPWIN|win, b->port + 1);
277 }
278
279 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
280 {
281 outb_p(0, b->port + 1);
282 }
283
284 static void pcxem_globalwinon(struct channel *ch)
285 {
286 outb_p( FEPWIN, (int)ch->board->port + 1);
287 }
288
289 static void pcxem_rxwinon(struct channel *ch)
290 {
291 outb_p(ch->rxwin, (int)ch->board->port + 1);
292 }
293
294 static void pcxem_txwinon(struct channel *ch)
295 {
296 outb_p(ch->txwin, (int)ch->board->port + 1);
297 }
298
299 static void pcxem_memoff(struct channel *ch)
300 {
301 outb_p(0, (int)ch->board->port + 1);
302 }
303
304 /* ----------------- Begin pcxe memory window stuff ------------------ */
305
306 static void pcxe_memwinon(struct board_info *b, unsigned int win)
307 {
308 outb_p(FEPWIN | win, b->port + 1);
309 }
310
311 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
312 {
313 outb_p(inb(b->port) & ~FEPMEM,
314 b->port + 1);
315 outb_p(0, b->port + 1);
316 }
317
318 static void pcxe_globalwinon(struct channel *ch)
319 {
320 outb_p( FEPWIN, (int)ch->board->port + 1);
321 }
322
323 static void pcxe_rxwinon(struct channel *ch)
324 {
325 outb_p(ch->rxwin, (int)ch->board->port + 1);
326 }
327
328 static void pcxe_txwinon(struct channel *ch)
329 {
330 outb_p(ch->txwin, (int)ch->board->port + 1);
331 }
332
333 static void pcxe_memoff(struct channel *ch)
334 {
335 outb_p(0, (int)ch->board->port);
336 outb_p(0, (int)ch->board->port + 1);
337 }
338
339 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
340
341 static void pcxi_memwinon(struct board_info *b, unsigned int win)
342 {
343 outb_p(inb(b->port) | FEPMEM, b->port);
344 }
345
346 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
347 {
348 outb_p(inb(b->port) & ~FEPMEM, b->port);
349 }
350
351 static void pcxi_globalwinon(struct channel *ch)
352 {
353 outb_p(FEPMEM, ch->board->port);
354 }
355
356 static void pcxi_rxwinon(struct channel *ch)
357 {
358 outb_p(FEPMEM, ch->board->port);
359 }
360
361 static void pcxi_txwinon(struct channel *ch)
362 {
363 outb_p(FEPMEM, ch->board->port);
364 }
365
366 static void pcxi_memoff(struct channel *ch)
367 {
368 outb_p(0, ch->board->port);
369 }
370
371 static void pcxi_assertgwinon(struct channel *ch)
372 {
373 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
374 }
375
376 static void pcxi_assertmemoff(struct channel *ch)
377 {
378 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
379 }
380
381
382 /* ----------------------------------------------------------------------
383 Not all of the cards need specific memory windowing routines. Some
384 cards (Such as PCI) needs no windowing routines at all. We provide
385 these do nothing routines so that the same code base can be used.
386 The driver will ALWAYS call a windowing routine if it thinks it needs
387 to; regardless of the card. However, dependent on the card the routine
388 may or may not do anything.
389 ---------------------------------------------------------------------------*/
390
391 static void dummy_memwinon(struct board_info *b, unsigned int win)
392 {
393 }
394
395 static void dummy_memwinoff(struct board_info *b, unsigned int win)
396 {
397 }
398
399 static void dummy_globalwinon(struct channel *ch)
400 {
401 }
402
403 static void dummy_rxwinon(struct channel *ch)
404 {
405 }
406
407 static void dummy_txwinon(struct channel *ch)
408 {
409 }
410
411 static void dummy_memoff(struct channel *ch)
412 {
413 }
414
415 static void dummy_assertgwinon(struct channel *ch)
416 {
417 }
418
419 static void dummy_assertmemoff(struct channel *ch)
420 {
421 }
422
423 /* ----------------- Begin verifyChannel function ----------------------- */
424 static struct channel *verifyChannel(struct tty_struct *tty)
425 { /* Begin verifyChannel */
426 /* --------------------------------------------------------------------
427 This routine basically provides a sanity check. It insures that
428 the channel returned is within the proper range of addresses as
429 well as properly initialized. If some bogus info gets passed in
430 through tty->driver_data this should catch it.
431 --------------------------------------------------------------------- */
432 if (tty) {
433 struct channel *ch = (struct channel *)tty->driver_data;
434 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
435 if (ch->magic == EPCA_MAGIC)
436 return ch;
437 }
438 }
439 return NULL;
440
441 } /* End verifyChannel */
442
443 /* ------------------ Begin pc_sched_event ------------------------- */
444
445 static void pc_sched_event(struct channel *ch, int event)
446 {
447 /* ----------------------------------------------------------------------
448 We call this to schedule interrupt processing on some event. The
449 kernel sees our request and calls the related routine in OUR driver.
450 -------------------------------------------------------------------------*/
451 ch->event |= 1 << event;
452 schedule_work(&ch->tqueue);
453 } /* End pc_sched_event */
454
455 /* ------------------ Begin epca_error ------------------------- */
456
457 static void epca_error(int line, char *msg)
458 {
459 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
460 }
461
462 /* ------------------ Begin pc_close ------------------------- */
463 static void pc_close(struct tty_struct * tty, struct file * filp)
464 {
465 struct channel *ch;
466 unsigned long flags;
467 /* ---------------------------------------------------------
468 verifyChannel returns the channel from the tty struct
469 if it is valid. This serves as a sanity check.
470 ------------------------------------------------------------- */
471 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
472 spin_lock_irqsave(&epca_lock, flags);
473 if (tty_hung_up_p(filp)) {
474 spin_unlock_irqrestore(&epca_lock, flags);
475 return;
476 }
477 /* Check to see if the channel is open more than once */
478 if (ch->count-- > 1) {
479 /* Begin channel is open more than once */
480 /* -------------------------------------------------------------
481 Return without doing anything. Someone might still be using
482 the channel.
483 ---------------------------------------------------------------- */
484 spin_unlock_irqrestore(&epca_lock, flags);
485 return;
486 } /* End channel is open more than once */
487
488 /* Port open only once go ahead with shutdown & reset */
489 BUG_ON(ch->count < 0);
490
491 /* ---------------------------------------------------------------
492 Let the rest of the driver know the channel is being closed.
493 This becomes important if an open is attempted before close
494 is finished.
495 ------------------------------------------------------------------ */
496 ch->asyncflags |= ASYNC_CLOSING;
497 tty->closing = 1;
498
499 spin_unlock_irqrestore(&epca_lock, flags);
500
501 if (ch->asyncflags & ASYNC_INITIALIZED) {
502 /* Setup an event to indicate when the transmit buffer empties */
503 setup_empty_event(tty, ch);
504 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
505 }
506 if (tty->driver->flush_buffer)
507 tty->driver->flush_buffer(tty);
508
509 tty_ldisc_flush(tty);
510 shutdown(ch);
511
512 spin_lock_irqsave(&epca_lock, flags);
513 tty->closing = 0;
514 ch->event = 0;
515 ch->tty = NULL;
516 spin_unlock_irqrestore(&epca_lock, flags);
517
518 if (ch->blocked_open) { /* Begin if blocked_open */
519 if (ch->close_delay)
520 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
521 wake_up_interruptible(&ch->open_wait);
522 } /* End if blocked_open */
523 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
524 ASYNC_CLOSING);
525 wake_up_interruptible(&ch->close_wait);
526 } /* End if ch != NULL */
527 } /* End pc_close */
528
529 /* ------------------ Begin shutdown ------------------------- */
530
531 static void shutdown(struct channel *ch)
532 { /* Begin shutdown */
533
534 unsigned long flags;
535 struct tty_struct *tty;
536 struct board_chan __iomem *bc;
537
538 if (!(ch->asyncflags & ASYNC_INITIALIZED))
539 return;
540
541 spin_lock_irqsave(&epca_lock, flags);
542
543 globalwinon(ch);
544 bc = ch->brdchan;
545
546 /* ------------------------------------------------------------------
547 In order for an event to be generated on the receipt of data the
548 idata flag must be set. Since we are shutting down, this is not
549 necessary clear this flag.
550 --------------------------------------------------------------------- */
551
552 if (bc)
553 writeb(0, &bc->idata);
554 tty = ch->tty;
555
556 /* ----------------------------------------------------------------
557 If we're a modem control device and HUPCL is on, drop RTS & DTR.
558 ------------------------------------------------------------------ */
559
560 if (tty->termios->c_cflag & HUPCL) {
561 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
562 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
563 }
564 memoff(ch);
565
566 /* ------------------------------------------------------------------
567 The channel has officialy been closed. The next time it is opened
568 it will have to reinitialized. Set a flag to indicate this.
569 ---------------------------------------------------------------------- */
570
571 /* Prevent future Digi programmed interrupts from coming active */
572
573 ch->asyncflags &= ~ASYNC_INITIALIZED;
574 spin_unlock_irqrestore(&epca_lock, flags);
575
576 } /* End shutdown */
577
578 /* ------------------ Begin pc_hangup ------------------------- */
579
580 static void pc_hangup(struct tty_struct *tty)
581 { /* Begin pc_hangup */
582 struct channel *ch;
583
584 /* ---------------------------------------------------------
585 verifyChannel returns the channel from the tty struct
586 if it is valid. This serves as a sanity check.
587 ------------------------------------------------------------- */
588
589 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
590 unsigned long flags;
591
592 if (tty->driver->flush_buffer)
593 tty->driver->flush_buffer(tty);
594 tty_ldisc_flush(tty);
595 shutdown(ch);
596
597 spin_lock_irqsave(&epca_lock, flags);
598 ch->tty = NULL;
599 ch->event = 0;
600 ch->count = 0;
601 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
602 spin_unlock_irqrestore(&epca_lock, flags);
603 wake_up_interruptible(&ch->open_wait);
604 } /* End if ch != NULL */
605
606 } /* End pc_hangup */
607
608 /* ------------------ Begin pc_write ------------------------- */
609
610 static int pc_write(struct tty_struct * tty,
611 const unsigned char *buf, int bytesAvailable)
612 { /* Begin pc_write */
613 unsigned int head, tail;
614 int dataLen;
615 int size;
616 int amountCopied;
617 struct channel *ch;
618 unsigned long flags;
619 int remain;
620 struct board_chan __iomem *bc;
621
622 /* ----------------------------------------------------------------
623 pc_write is primarily called directly by the kernel routine
624 tty_write (Though it can also be called by put_char) found in
625 tty_io.c. pc_write is passed a line discipline buffer where
626 the data to be written out is stored. The line discipline
627 implementation itself is done at the kernel level and is not
628 brought into the driver.
629 ------------------------------------------------------------------- */
630
631 /* ---------------------------------------------------------
632 verifyChannel returns the channel from the tty struct
633 if it is valid. This serves as a sanity check.
634 ------------------------------------------------------------- */
635
636 if ((ch = verifyChannel(tty)) == NULL)
637 return 0;
638
639 /* Make a pointer to the channel data structure found on the board. */
640
641 bc = ch->brdchan;
642 size = ch->txbufsize;
643 amountCopied = 0;
644
645 spin_lock_irqsave(&epca_lock, flags);
646 globalwinon(ch);
647
648 head = readw(&bc->tin) & (size - 1);
649 tail = readw(&bc->tout);
650
651 if (tail != readw(&bc->tout))
652 tail = readw(&bc->tout);
653 tail &= (size - 1);
654
655 /* If head >= tail, head has not wrapped around. */
656 if (head >= tail) { /* Begin head has not wrapped */
657 /* ---------------------------------------------------------------
658 remain (much like dataLen above) represents the total amount of
659 space available on the card for data. Here dataLen represents
660 the space existing between the head pointer and the end of
661 buffer. This is important because a memcpy cannot be told to
662 automatically wrap around when it hits the buffer end.
663 ------------------------------------------------------------------ */
664 dataLen = size - head;
665 remain = size - (head - tail) - 1;
666 } else { /* Begin head has wrapped around */
667
668 remain = tail - head - 1;
669 dataLen = remain;
670
671 } /* End head has wrapped around */
672 /* -------------------------------------------------------------------
673 Check the space on the card. If we have more data than
674 space; reduce the amount of data to fit the space.
675 ---------------------------------------------------------------------- */
676 bytesAvailable = min(remain, bytesAvailable);
677 txwinon(ch);
678 while (bytesAvailable > 0)
679 { /* Begin while there is data to copy onto card */
680
681 /* -----------------------------------------------------------------
682 If head is not wrapped, the below will make sure the first
683 data copy fills to the end of card buffer.
684 ------------------------------------------------------------------- */
685
686 dataLen = min(bytesAvailable, dataLen);
687 memcpy_toio(ch->txptr + head, buf, dataLen);
688 buf += dataLen;
689 head += dataLen;
690 amountCopied += dataLen;
691 bytesAvailable -= dataLen;
692
693 if (head >= size) {
694 head = 0;
695 dataLen = tail;
696 }
697 } /* End while there is data to copy onto card */
698 ch->statusflags |= TXBUSY;
699 globalwinon(ch);
700 writew(head, &bc->tin);
701
702 if ((ch->statusflags & LOWWAIT) == 0) {
703 ch->statusflags |= LOWWAIT;
704 writeb(1, &bc->ilow);
705 }
706 memoff(ch);
707 spin_unlock_irqrestore(&epca_lock, flags);
708 return(amountCopied);
709
710 } /* End pc_write */
711
712 /* ------------------ Begin pc_put_char ------------------------- */
713
714 static void pc_put_char(struct tty_struct *tty, unsigned char c)
715 { /* Begin pc_put_char */
716 pc_write(tty, &c, 1);
717 } /* End pc_put_char */
718
719 /* ------------------ Begin pc_write_room ------------------------- */
720
721 static int pc_write_room(struct tty_struct *tty)
722 { /* Begin pc_write_room */
723
724 int remain;
725 struct channel *ch;
726 unsigned long flags;
727 unsigned int head, tail;
728 struct board_chan __iomem *bc;
729
730 remain = 0;
731
732 /* ---------------------------------------------------------
733 verifyChannel returns the channel from the tty struct
734 if it is valid. This serves as a sanity check.
735 ------------------------------------------------------------- */
736
737 if ((ch = verifyChannel(tty)) != NULL) {
738 spin_lock_irqsave(&epca_lock, flags);
739 globalwinon(ch);
740
741 bc = ch->brdchan;
742 head = readw(&bc->tin) & (ch->txbufsize - 1);
743 tail = readw(&bc->tout);
744
745 if (tail != readw(&bc->tout))
746 tail = readw(&bc->tout);
747 /* Wrap tail if necessary */
748 tail &= (ch->txbufsize - 1);
749
750 if ((remain = tail - head - 1) < 0 )
751 remain += ch->txbufsize;
752
753 if (remain && (ch->statusflags & LOWWAIT) == 0) {
754 ch->statusflags |= LOWWAIT;
755 writeb(1, &bc->ilow);
756 }
757 memoff(ch);
758 spin_unlock_irqrestore(&epca_lock, flags);
759 }
760 /* Return how much room is left on card */
761 return remain;
762
763 } /* End pc_write_room */
764
765 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
766
767 static int pc_chars_in_buffer(struct tty_struct *tty)
768 { /* Begin pc_chars_in_buffer */
769
770 int chars;
771 unsigned int ctail, head, tail;
772 int remain;
773 unsigned long flags;
774 struct channel *ch;
775 struct board_chan __iomem *bc;
776
777 /* ---------------------------------------------------------
778 verifyChannel returns the channel from the tty struct
779 if it is valid. This serves as a sanity check.
780 ------------------------------------------------------------- */
781
782 if ((ch = verifyChannel(tty)) == NULL)
783 return(0);
784
785 spin_lock_irqsave(&epca_lock, flags);
786 globalwinon(ch);
787
788 bc = ch->brdchan;
789 tail = readw(&bc->tout);
790 head = readw(&bc->tin);
791 ctail = readw(&ch->mailbox->cout);
792
793 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
794 chars = 0;
795 else { /* Begin if some space on the card has been used */
796 head = readw(&bc->tin) & (ch->txbufsize - 1);
797 tail &= (ch->txbufsize - 1);
798 /* --------------------------------------------------------------
799 The logic here is basically opposite of the above pc_write_room
800 here we are finding the amount of bytes in the buffer filled.
801 Not the amount of bytes empty.
802 ------------------------------------------------------------------- */
803 if ((remain = tail - head - 1) < 0 )
804 remain += ch->txbufsize;
805 chars = (int)(ch->txbufsize - remain);
806 /* -------------------------------------------------------------
807 Make it possible to wakeup anything waiting for output
808 in tty_ioctl.c, etc.
809
810 If not already set. Setup an event to indicate when the
811 transmit buffer empties
812 ----------------------------------------------------------------- */
813 if (!(ch->statusflags & EMPTYWAIT))
814 setup_empty_event(tty,ch);
815
816 } /* End if some space on the card has been used */
817 memoff(ch);
818 spin_unlock_irqrestore(&epca_lock, flags);
819 /* Return number of characters residing on card. */
820 return(chars);
821
822 } /* End pc_chars_in_buffer */
823
824 /* ------------------ Begin pc_flush_buffer ---------------------- */
825
826 static void pc_flush_buffer(struct tty_struct *tty)
827 { /* Begin pc_flush_buffer */
828
829 unsigned int tail;
830 unsigned long flags;
831 struct channel *ch;
832 struct board_chan __iomem *bc;
833 /* ---------------------------------------------------------
834 verifyChannel returns the channel from the tty struct
835 if it is valid. This serves as a sanity check.
836 ------------------------------------------------------------- */
837 if ((ch = verifyChannel(tty)) == NULL)
838 return;
839
840 spin_lock_irqsave(&epca_lock, flags);
841 globalwinon(ch);
842 bc = ch->brdchan;
843 tail = readw(&bc->tout);
844 /* Have FEP move tout pointer; effectively flushing transmit buffer */
845 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
846 memoff(ch);
847 spin_unlock_irqrestore(&epca_lock, flags);
848 wake_up_interruptible(&tty->write_wait);
849 tty_wakeup(tty);
850 } /* End pc_flush_buffer */
851
852 /* ------------------ Begin pc_flush_chars ---------------------- */
853
854 static void pc_flush_chars(struct tty_struct *tty)
855 { /* Begin pc_flush_chars */
856 struct channel * ch;
857 /* ---------------------------------------------------------
858 verifyChannel returns the channel from the tty struct
859 if it is valid. This serves as a sanity check.
860 ------------------------------------------------------------- */
861 if ((ch = verifyChannel(tty)) != NULL) {
862 unsigned long flags;
863 spin_lock_irqsave(&epca_lock, flags);
864 /* ----------------------------------------------------------------
865 If not already set and the transmitter is busy setup an event
866 to indicate when the transmit empties.
867 ------------------------------------------------------------------- */
868 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
869 setup_empty_event(tty,ch);
870 spin_unlock_irqrestore(&epca_lock, flags);
871 }
872 } /* End pc_flush_chars */
873
874 /* ------------------ Begin block_til_ready ---------------------- */
875
876 static int block_til_ready(struct tty_struct *tty,
877 struct file *filp, struct channel *ch)
878 { /* Begin block_til_ready */
879 DECLARE_WAITQUEUE(wait,current);
880 int retval, do_clocal = 0;
881 unsigned long flags;
882
883 if (tty_hung_up_p(filp)) {
884 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
885 retval = -EAGAIN;
886 else
887 retval = -ERESTARTSYS;
888 return(retval);
889 }
890
891 /* -----------------------------------------------------------------
892 If the device is in the middle of being closed, then block
893 until it's done, and then try again.
894 -------------------------------------------------------------------- */
895 if (ch->asyncflags & ASYNC_CLOSING) {
896 interruptible_sleep_on(&ch->close_wait);
897
898 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
899 return -EAGAIN;
900 else
901 return -ERESTARTSYS;
902 }
903
904 if (filp->f_flags & O_NONBLOCK) {
905 /* -----------------------------------------------------------------
906 If non-blocking mode is set, then make the check up front
907 and then exit.
908 -------------------------------------------------------------------- */
909 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
910 return 0;
911 }
912 if (tty->termios->c_cflag & CLOCAL)
913 do_clocal = 1;
914 /* Block waiting for the carrier detect and the line to become free */
915
916 retval = 0;
917 add_wait_queue(&ch->open_wait, &wait);
918
919 spin_lock_irqsave(&epca_lock, flags);
920 /* We dec count so that pc_close will know when to free things */
921 if (!tty_hung_up_p(filp))
922 ch->count--;
923 ch->blocked_open++;
924 while(1)
925 { /* Begin forever while */
926 set_current_state(TASK_INTERRUPTIBLE);
927 if (tty_hung_up_p(filp) ||
928 !(ch->asyncflags & ASYNC_INITIALIZED))
929 {
930 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
931 retval = -EAGAIN;
932 else
933 retval = -ERESTARTSYS;
934 break;
935 }
936 if (!(ch->asyncflags & ASYNC_CLOSING) &&
937 (do_clocal || (ch->imodem & ch->dcd)))
938 break;
939 if (signal_pending(current)) {
940 retval = -ERESTARTSYS;
941 break;
942 }
943 spin_unlock_irqrestore(&epca_lock, flags);
944 /* ---------------------------------------------------------------
945 Allow someone else to be scheduled. We will occasionally go
946 through this loop until one of the above conditions change.
947 The below schedule call will allow other processes to enter and
948 prevent this loop from hogging the cpu.
949 ------------------------------------------------------------------ */
950 schedule();
951 spin_lock_irqsave(&epca_lock, flags);
952
953 } /* End forever while */
954
955 current->state = TASK_RUNNING;
956 remove_wait_queue(&ch->open_wait, &wait);
957 if (!tty_hung_up_p(filp))
958 ch->count++;
959 ch->blocked_open--;
960
961 spin_unlock_irqrestore(&epca_lock, flags);
962
963 if (retval)
964 return retval;
965
966 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
967 return 0;
968 } /* End block_til_ready */
969
970 /* ------------------ Begin pc_open ---------------------- */
971
972 static int pc_open(struct tty_struct *tty, struct file * filp)
973 { /* Begin pc_open */
974
975 struct channel *ch;
976 unsigned long flags;
977 int line, retval, boardnum;
978 struct board_chan __iomem *bc;
979 unsigned int head;
980
981 line = tty->index;
982 if (line < 0 || line >= nbdevs)
983 return -ENODEV;
984
985 ch = &digi_channels[line];
986 boardnum = ch->boardnum;
987
988 /* Check status of board configured in system. */
989
990 /* -----------------------------------------------------------------
991 I check to see if the epca_setup routine detected an user error.
992 It might be better to put this in pc_init, but for the moment it
993 goes here.
994 ---------------------------------------------------------------------- */
995
996 if (invalid_lilo_config) {
997 if (setup_error_code & INVALID_BOARD_TYPE)
998 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
999 if (setup_error_code & INVALID_NUM_PORTS)
1000 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1001 if (setup_error_code & INVALID_MEM_BASE)
1002 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1003 if (setup_error_code & INVALID_PORT_BASE)
1004 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1005 if (setup_error_code & INVALID_BOARD_STATUS)
1006 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1007 if (setup_error_code & INVALID_ALTPIN)
1008 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1009 tty->driver_data = NULL; /* Mark this device as 'down' */
1010 return -ENODEV;
1011 }
1012 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1013 tty->driver_data = NULL; /* Mark this device as 'down' */
1014 return(-ENODEV);
1015 }
1016
1017 if ((bc = ch->brdchan) == 0) {
1018 tty->driver_data = NULL;
1019 return -ENODEV;
1020 }
1021
1022 spin_lock_irqsave(&epca_lock, flags);
1023 /* ------------------------------------------------------------------
1024 Every time a channel is opened, increment a counter. This is
1025 necessary because we do not wish to flush and shutdown the channel
1026 until the last app holding the channel open, closes it.
1027 --------------------------------------------------------------------- */
1028 ch->count++;
1029 /* ----------------------------------------------------------------
1030 Set a kernel structures pointer to our local channel
1031 structure. This way we can get to it when passed only
1032 a tty struct.
1033 ------------------------------------------------------------------ */
1034 tty->driver_data = ch;
1035 /* ----------------------------------------------------------------
1036 If this is the first time the channel has been opened, initialize
1037 the tty->termios struct otherwise let pc_close handle it.
1038 -------------------------------------------------------------------- */
1039 globalwinon(ch);
1040 ch->statusflags = 0;
1041
1042 /* Save boards current modem status */
1043 ch->imodem = readb(&bc->mstat);
1044
1045 /* ----------------------------------------------------------------
1046 Set receive head and tail ptrs to each other. This indicates
1047 no data available to read.
1048 ----------------------------------------------------------------- */
1049 head = readw(&bc->rin);
1050 writew(head, &bc->rout);
1051
1052 /* Set the channels associated tty structure */
1053 ch->tty = tty;
1054
1055 /* -----------------------------------------------------------------
1056 The below routine generally sets up parity, baud, flow control
1057 issues, etc.... It effect both control flags and input flags.
1058 -------------------------------------------------------------------- */
1059 epcaparam(tty,ch);
1060 ch->asyncflags |= ASYNC_INITIALIZED;
1061 memoff(ch);
1062 spin_unlock_irqrestore(&epca_lock, flags);
1063
1064 retval = block_til_ready(tty, filp, ch);
1065 if (retval)
1066 return retval;
1067 /* -------------------------------------------------------------
1068 Set this again in case a hangup set it to zero while this
1069 open() was waiting for the line...
1070 --------------------------------------------------------------- */
1071 spin_lock_irqsave(&epca_lock, flags);
1072 ch->tty = tty;
1073 globalwinon(ch);
1074 /* Enable Digi Data events */
1075 writeb(1, &bc->idata);
1076 memoff(ch);
1077 spin_unlock_irqrestore(&epca_lock, flags);
1078 return 0;
1079 } /* End pc_open */
1080
1081 static int __init epca_module_init(void)
1082 { /* Begin init_module */
1083 return pc_init();
1084 }
1085
1086 module_init(epca_module_init);
1087
1088 static struct pci_driver epca_driver;
1089
1090 static void __exit epca_module_exit(void)
1091 {
1092 int count, crd;
1093 struct board_info *bd;
1094 struct channel *ch;
1095
1096 del_timer_sync(&epca_timer);
1097
1098 if ((tty_unregister_driver(pc_driver)) ||
1099 (tty_unregister_driver(pc_info)))
1100 {
1101 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1102 return;
1103 }
1104 put_tty_driver(pc_driver);
1105 put_tty_driver(pc_info);
1106
1107 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1108 bd = &boards[crd];
1109 if (!bd)
1110 { /* Begin sanity check */
1111 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1112 return;
1113 } /* End sanity check */
1114 ch = card_ptr[crd];
1115 for (count = 0; count < bd->numports; count++, ch++)
1116 { /* Begin for each port */
1117 if (ch) {
1118 if (ch->tty)
1119 tty_hangup(ch->tty);
1120 kfree(ch->tmp_buf);
1121 }
1122 } /* End for each port */
1123 } /* End for each card */
1124 pci_unregister_driver (&epca_driver);
1125 }
1126
1127 module_exit(epca_module_exit);
1128
1129 static struct tty_operations pc_ops = {
1130 .open = pc_open,
1131 .close = pc_close,
1132 .write = pc_write,
1133 .write_room = pc_write_room,
1134 .flush_buffer = pc_flush_buffer,
1135 .chars_in_buffer = pc_chars_in_buffer,
1136 .flush_chars = pc_flush_chars,
1137 .put_char = pc_put_char,
1138 .ioctl = pc_ioctl,
1139 .set_termios = pc_set_termios,
1140 .stop = pc_stop,
1141 .start = pc_start,
1142 .throttle = pc_throttle,
1143 .unthrottle = pc_unthrottle,
1144 .hangup = pc_hangup,
1145 };
1146
1147 static int info_open(struct tty_struct *tty, struct file * filp)
1148 {
1149 return 0;
1150 }
1151
1152 static struct tty_operations info_ops = {
1153 .open = info_open,
1154 .ioctl = info_ioctl,
1155 };
1156
1157 /* ------------------ Begin pc_init ---------------------- */
1158
1159 static int __init pc_init(void)
1160 { /* Begin pc_init */
1161 int crd;
1162 struct board_info *bd;
1163 unsigned char board_id = 0;
1164
1165 int pci_boards_found, pci_count;
1166
1167 pci_count = 0;
1168
1169 pc_driver = alloc_tty_driver(MAX_ALLOC);
1170 if (!pc_driver)
1171 return -ENOMEM;
1172
1173 pc_info = alloc_tty_driver(MAX_ALLOC);
1174 if (!pc_info) {
1175 put_tty_driver(pc_driver);
1176 return -ENOMEM;
1177 }
1178
1179 /* -----------------------------------------------------------------------
1180 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1181 board structure defined by digiConfig into drivers board structure.
1182 Note : If LILO has ran epca_setup then epca_setup will handle defining
1183 num_cards as well as copying the data into the board structure.
1184 -------------------------------------------------------------------------- */
1185 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1186
1187 nbdevs = NBDEVS;
1188 num_cards = NUMCARDS;
1189 memcpy((void *)&boards, (void *)&static_boards,
1190 (sizeof(struct board_info) * NUMCARDS));
1191 } /* End driver has been configured via. epcaconfig */
1192
1193 /* -----------------------------------------------------------------
1194 Note : If lilo was used to configure the driver and the
1195 ignore epcaconfig option was choosen (digiepca=2) then
1196 nbdevs and num_cards will equal 0 at this point. This is
1197 okay; PCI cards will still be picked up if detected.
1198 --------------------------------------------------------------------- */
1199
1200 /* -----------------------------------------------------------
1201 Set up interrupt, we will worry about memory allocation in
1202 post_fep_init.
1203 --------------------------------------------------------------- */
1204
1205
1206 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1207
1208 /* ------------------------------------------------------------------
1209 NOTE : This code assumes that the number of ports found in
1210 the boards array is correct. This could be wrong if
1211 the card in question is PCI (And therefore has no ports
1212 entry in the boards structure.) The rest of the
1213 information will be valid for PCI because the beginning
1214 of pc_init scans for PCI and determines i/o and base
1215 memory addresses. I am not sure if it is possible to
1216 read the number of ports supported by the card prior to
1217 it being booted (Since that is the state it is in when
1218 pc_init is run). Because it is not possible to query the
1219 number of supported ports until after the card has booted;
1220 we are required to calculate the card_ptrs as the card is
1221 is initialized (Inside post_fep_init). The negative thing
1222 about this approach is that digiDload's call to GET_INFO
1223 will have a bad port value. (Since this is called prior
1224 to post_fep_init.)
1225
1226 --------------------------------------------------------------------- */
1227
1228 pci_boards_found = 0;
1229 if(num_cards < MAXBOARDS)
1230 pci_boards_found += init_PCI();
1231 num_cards += pci_boards_found;
1232
1233 pc_driver->owner = THIS_MODULE;
1234 pc_driver->name = "ttyD";
1235 pc_driver->major = DIGI_MAJOR;
1236 pc_driver->minor_start = 0;
1237 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1238 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1239 pc_driver->init_termios = tty_std_termios;
1240 pc_driver->init_termios.c_iflag = 0;
1241 pc_driver->init_termios.c_oflag = 0;
1242 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1243 pc_driver->init_termios.c_lflag = 0;
1244 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1245 tty_set_operations(pc_driver, &pc_ops);
1246
1247 pc_info->owner = THIS_MODULE;
1248 pc_info->name = "digi_ctl";
1249 pc_info->major = DIGIINFOMAJOR;
1250 pc_info->minor_start = 0;
1251 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1252 pc_info->subtype = SERIAL_TYPE_INFO;
1253 pc_info->init_termios = tty_std_termios;
1254 pc_info->init_termios.c_iflag = 0;
1255 pc_info->init_termios.c_oflag = 0;
1256 pc_info->init_termios.c_lflag = 0;
1257 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1258 pc_info->flags = TTY_DRIVER_REAL_RAW;
1259 tty_set_operations(pc_info, &info_ops);
1260
1261
1262 for (crd = 0; crd < num_cards; crd++)
1263 { /* Begin for each card */
1264
1265 /* ------------------------------------------------------------------
1266 This is where the appropriate memory handlers for the hardware is
1267 set. Everything at runtime blindly jumps through these vectors.
1268 ---------------------------------------------------------------------- */
1269
1270 /* defined in epcaconfig.h */
1271 bd = &boards[crd];
1272
1273 switch (bd->type)
1274 { /* Begin switch on bd->type {board type} */
1275 case PCXEM:
1276 case EISAXEM:
1277 bd->memwinon = pcxem_memwinon ;
1278 bd->memwinoff = pcxem_memwinoff ;
1279 bd->globalwinon = pcxem_globalwinon ;
1280 bd->txwinon = pcxem_txwinon ;
1281 bd->rxwinon = pcxem_rxwinon ;
1282 bd->memoff = pcxem_memoff ;
1283 bd->assertgwinon = dummy_assertgwinon;
1284 bd->assertmemoff = dummy_assertmemoff;
1285 break;
1286
1287 case PCIXEM:
1288 case PCIXRJ:
1289 case PCIXR:
1290 bd->memwinon = dummy_memwinon;
1291 bd->memwinoff = dummy_memwinoff;
1292 bd->globalwinon = dummy_globalwinon;
1293 bd->txwinon = dummy_txwinon;
1294 bd->rxwinon = dummy_rxwinon;
1295 bd->memoff = dummy_memoff;
1296 bd->assertgwinon = dummy_assertgwinon;
1297 bd->assertmemoff = dummy_assertmemoff;
1298 break;
1299
1300 case PCXE:
1301 case PCXEVE:
1302
1303 bd->memwinon = pcxe_memwinon;
1304 bd->memwinoff = pcxe_memwinoff;
1305 bd->globalwinon = pcxe_globalwinon;
1306 bd->txwinon = pcxe_txwinon;
1307 bd->rxwinon = pcxe_rxwinon;
1308 bd->memoff = pcxe_memoff;
1309 bd->assertgwinon = dummy_assertgwinon;
1310 bd->assertmemoff = dummy_assertmemoff;
1311 break;
1312
1313 case PCXI:
1314 case PC64XE:
1315
1316 bd->memwinon = pcxi_memwinon;
1317 bd->memwinoff = pcxi_memwinoff;
1318 bd->globalwinon = pcxi_globalwinon;
1319 bd->txwinon = pcxi_txwinon;
1320 bd->rxwinon = pcxi_rxwinon;
1321 bd->memoff = pcxi_memoff;
1322 bd->assertgwinon = pcxi_assertgwinon;
1323 bd->assertmemoff = pcxi_assertmemoff;
1324 break;
1325
1326 default:
1327 break;
1328
1329 } /* End switch on bd->type */
1330
1331 /* ---------------------------------------------------------------
1332 Some cards need a memory segment to be defined for use in
1333 transmit and receive windowing operations. These boards
1334 are listed in the below switch. In the case of the XI the
1335 amount of memory on the board is variable so the memory_seg
1336 is also variable. This code determines what they segment
1337 should be.
1338 ----------------------------------------------------------------- */
1339
1340 switch (bd->type)
1341 { /* Begin switch on bd->type {board type} */
1342
1343 case PCXE:
1344 case PCXEVE:
1345 case PC64XE:
1346 bd->memory_seg = 0xf000;
1347 break;
1348
1349 case PCXI:
1350 board_id = inb((int)bd->port);
1351 if ((board_id & 0x1) == 0x1)
1352 { /* Begin it's an XI card */
1353
1354 /* Is it a 64K board */
1355 if ((board_id & 0x30) == 0)
1356 bd->memory_seg = 0xf000;
1357
1358 /* Is it a 128K board */
1359 if ((board_id & 0x30) == 0x10)
1360 bd->memory_seg = 0xe000;
1361
1362 /* Is is a 256K board */
1363 if ((board_id & 0x30) == 0x20)
1364 bd->memory_seg = 0xc000;
1365
1366 /* Is it a 512K board */
1367 if ((board_id & 0x30) == 0x30)
1368 bd->memory_seg = 0x8000;
1369
1370 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1371 break;
1372
1373 } /* End switch on bd->type */
1374
1375 } /* End for each card */
1376
1377 if (tty_register_driver(pc_driver))
1378 panic("Couldn't register Digi PC/ driver");
1379
1380 if (tty_register_driver(pc_info))
1381 panic("Couldn't register Digi PC/ info ");
1382
1383 /* -------------------------------------------------------------------
1384 Start up the poller to check for events on all enabled boards
1385 ---------------------------------------------------------------------- */
1386
1387 init_timer(&epca_timer);
1388 epca_timer.function = epcapoll;
1389 mod_timer(&epca_timer, jiffies + HZ/25);
1390 return 0;
1391
1392 } /* End pc_init */
1393
1394 /* ------------------ Begin post_fep_init ---------------------- */
1395
1396 static void post_fep_init(unsigned int crd)
1397 { /* Begin post_fep_init */
1398
1399 int i;
1400 void __iomem *memaddr;
1401 struct global_data __iomem *gd;
1402 struct board_info *bd;
1403 struct board_chan __iomem *bc;
1404 struct channel *ch;
1405 int shrinkmem = 0, lowwater ;
1406
1407 /* -------------------------------------------------------------
1408 This call is made by the user via. the ioctl call DIGI_INIT.
1409 It is responsible for setting up all the card specific stuff.
1410 ---------------------------------------------------------------- */
1411 bd = &boards[crd];
1412
1413 /* -----------------------------------------------------------------
1414 If this is a PCI board, get the port info. Remember PCI cards
1415 do not have entries into the epcaconfig.h file, so we can't get
1416 the number of ports from it. Unfortunetly, this means that anyone
1417 doing a DIGI_GETINFO before the board has booted will get an invalid
1418 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1419 after DIGI_INIT has been called will return the proper values.
1420 ------------------------------------------------------------------- */
1421
1422 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1423 /* --------------------------------------------------------------------
1424 Below we use XEMPORTS as a memory offset regardless of which PCI
1425 card it is. This is because all of the supported PCI cards have
1426 the same memory offset for the channel data. This will have to be
1427 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1428 states that the port offset is 0xC22 as opposed to 0xC02. This is
1429 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1430 On the PCI cards the number of ports is determined by reading a
1431 ID PROM located in the box attached to the card. The card can then
1432 determine the index the id to determine the number of ports available.
1433 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1434 if the box in question is a XEM or CX)).
1435 ------------------------------------------------------------------------ */
1436 /* PCI cards are already remapped at this point ISA are not */
1437 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1438 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1439 nbdevs += (bd->numports);
1440 } else {
1441 /* Fix up the mappings for ISA/EISA etc */
1442 /* FIXME: 64K - can we be smarter ? */
1443 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1444 }
1445
1446 if (crd != 0)
1447 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1448 else
1449 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1450
1451 ch = card_ptr[crd];
1452 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1453
1454 memaddr = bd->re_map_membase;
1455
1456 /* -----------------------------------------------------------------
1457 The below assignment will set bc to point at the BEGINING of
1458 the cards channel structures. For 1 card there will be between
1459 8 and 64 of these structures.
1460 -------------------------------------------------------------------- */
1461
1462 bc = memaddr + CHANSTRUCT;
1463
1464 /* -------------------------------------------------------------------
1465 The below assignment will set gd to point at the BEGINING of
1466 global memory address 0xc00. The first data in that global
1467 memory actually starts at address 0xc1a. The command in
1468 pointer begins at 0xd10.
1469 ---------------------------------------------------------------------- */
1470
1471 gd = memaddr + GLOBAL;
1472
1473 /* --------------------------------------------------------------------
1474 XEPORTS (address 0xc22) points at the number of channels the
1475 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1476 ----------------------------------------------------------------------- */
1477
1478 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1479 shrinkmem = 1;
1480 if (bd->type < PCIXEM)
1481 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1482 return;
1483 memwinon(bd, 0);
1484
1485 /* --------------------------------------------------------------------
1486 Remember ch is the main drivers channels structure, while bc is
1487 the cards channel structure.
1488 ------------------------------------------------------------------------ */
1489
1490 /* For every port on the card do ..... */
1491
1492 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1493 unsigned long flags;
1494 u16 tseg, rseg;
1495
1496 ch->brdchan = bc;
1497 ch->mailbox = gd;
1498 INIT_WORK(&ch->tqueue, do_softint, ch);
1499 ch->board = &boards[crd];
1500
1501 spin_lock_irqsave(&epca_lock, flags);
1502 switch (bd->type) {
1503 /* ----------------------------------------------------------------
1504 Since some of the boards use different bitmaps for their
1505 control signals we cannot hard code these values and retain
1506 portability. We virtualize this data here.
1507 ------------------------------------------------------------------- */
1508 case EISAXEM:
1509 case PCXEM:
1510 case PCIXEM:
1511 case PCIXRJ:
1512 case PCIXR:
1513 ch->m_rts = 0x02 ;
1514 ch->m_dcd = 0x80 ;
1515 ch->m_dsr = 0x20 ;
1516 ch->m_cts = 0x10 ;
1517 ch->m_ri = 0x40 ;
1518 ch->m_dtr = 0x01 ;
1519 break;
1520
1521 case PCXE:
1522 case PCXEVE:
1523 case PCXI:
1524 case PC64XE:
1525 ch->m_rts = 0x02 ;
1526 ch->m_dcd = 0x08 ;
1527 ch->m_dsr = 0x10 ;
1528 ch->m_cts = 0x20 ;
1529 ch->m_ri = 0x40 ;
1530 ch->m_dtr = 0x80 ;
1531 break;
1532
1533 } /* End switch bd->type */
1534
1535 if (boards[crd].altpin) {
1536 ch->dsr = ch->m_dcd;
1537 ch->dcd = ch->m_dsr;
1538 ch->digiext.digi_flags |= DIGI_ALTPIN;
1539 }
1540 else {
1541 ch->dcd = ch->m_dcd;
1542 ch->dsr = ch->m_dsr;
1543 }
1544
1545 ch->boardnum = crd;
1546 ch->channelnum = i;
1547 ch->magic = EPCA_MAGIC;
1548 ch->tty = NULL;
1549
1550 if (shrinkmem) {
1551 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1552 shrinkmem = 0;
1553 }
1554
1555 tseg = readw(&bc->tseg);
1556 rseg = readw(&bc->rseg);
1557
1558 switch (bd->type) {
1559
1560 case PCIXEM:
1561 case PCIXRJ:
1562 case PCIXR:
1563 /* Cover all the 2MEG cards */
1564 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1565 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1566 ch->txwin = FEPWIN | (tseg >> 11);
1567 ch->rxwin = FEPWIN | (rseg >> 11);
1568 break;
1569
1570 case PCXEM:
1571 case EISAXEM:
1572 /* Cover all the 32K windowed cards */
1573 /* Mask equal to window size - 1 */
1574 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1575 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1576 ch->txwin = FEPWIN | (tseg >> 11);
1577 ch->rxwin = FEPWIN | (rseg >> 11);
1578 break;
1579
1580 case PCXEVE:
1581 case PCXE:
1582 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1583 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1584 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1585 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1586 break;
1587
1588 case PCXI:
1589 case PC64XE:
1590 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1591 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1592 ch->txwin = ch->rxwin = 0;
1593 break;
1594
1595 } /* End switch bd->type */
1596
1597 ch->txbufhead = 0;
1598 ch->txbufsize = readw(&bc->tmax) + 1;
1599
1600 ch->rxbufhead = 0;
1601 ch->rxbufsize = readw(&bc->rmax) + 1;
1602
1603 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1604
1605 /* Set transmitter low water mark */
1606 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1607
1608 /* Set receiver low water mark */
1609
1610 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1611
1612 /* Set receiver high water mark */
1613
1614 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1615
1616 writew(100, &bc->edelay);
1617 writeb(1, &bc->idata);
1618
1619 ch->startc = readb(&bc->startc);
1620 ch->stopc = readb(&bc->stopc);
1621 ch->startca = readb(&bc->startca);
1622 ch->stopca = readb(&bc->stopca);
1623
1624 ch->fepcflag = 0;
1625 ch->fepiflag = 0;
1626 ch->fepoflag = 0;
1627 ch->fepstartc = 0;
1628 ch->fepstopc = 0;
1629 ch->fepstartca = 0;
1630 ch->fepstopca = 0;
1631
1632 ch->close_delay = 50;
1633 ch->count = 0;
1634 ch->blocked_open = 0;
1635 init_waitqueue_head(&ch->open_wait);
1636 init_waitqueue_head(&ch->close_wait);
1637
1638 spin_unlock_irqrestore(&epca_lock, flags);
1639
1640 ch->tmp_buf = kmalloc(ch->txbufsize,GFP_KERNEL);
1641 if (!ch->tmp_buf) {
1642 printk(KERN_ERR "POST FEP INIT : kmalloc failed for port 0x%x\n",i);
1643 release_region((int)bd->port, 4);
1644 while(i-- > 0)
1645 kfree((ch--)->tmp_buf);
1646 return;
1647 } else
1648 memset((void *)ch->tmp_buf,0,ch->txbufsize);
1649 } /* End for each port */
1650
1651 printk(KERN_INFO
1652 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1653 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1654 memwinoff(bd, 0);
1655
1656 } /* End post_fep_init */
1657
1658 /* --------------------- Begin epcapoll ------------------------ */
1659
1660 static void epcapoll(unsigned long ignored)
1661 { /* Begin epcapoll */
1662
1663 unsigned long flags;
1664 int crd;
1665 volatile unsigned int head, tail;
1666 struct channel *ch;
1667 struct board_info *bd;
1668
1669 /* -------------------------------------------------------------------
1670 This routine is called upon every timer interrupt. Even though
1671 the Digi series cards are capable of generating interrupts this
1672 method of non-looping polling is more efficient. This routine
1673 checks for card generated events (Such as receive data, are transmit
1674 buffer empty) and acts on those events.
1675 ----------------------------------------------------------------------- */
1676
1677 for (crd = 0; crd < num_cards; crd++)
1678 { /* Begin for each card */
1679
1680 bd = &boards[crd];
1681 ch = card_ptr[crd];
1682
1683 if ((bd->status == DISABLED) || digi_poller_inhibited)
1684 continue; /* Begin loop next interation */
1685
1686 /* -----------------------------------------------------------
1687 assertmemoff is not needed here; indeed it is an empty subroutine.
1688 It is being kept because future boards may need this as well as
1689 some legacy boards.
1690 ---------------------------------------------------------------- */
1691
1692 spin_lock_irqsave(&epca_lock, flags);
1693
1694 assertmemoff(ch);
1695
1696 globalwinon(ch);
1697
1698 /* ---------------------------------------------------------------
1699 In this case head and tail actually refer to the event queue not
1700 the transmit or receive queue.
1701 ------------------------------------------------------------------- */
1702
1703 head = readw(&ch->mailbox->ein);
1704 tail = readw(&ch->mailbox->eout);
1705
1706 /* If head isn't equal to tail we have an event */
1707
1708 if (head != tail)
1709 doevent(crd);
1710 memoff(ch);
1711
1712 spin_unlock_irqrestore(&epca_lock, flags);
1713
1714 } /* End for each card */
1715 mod_timer(&epca_timer, jiffies + (HZ / 25));
1716 } /* End epcapoll */
1717
1718 /* --------------------- Begin doevent ------------------------ */
1719
1720 static void doevent(int crd)
1721 { /* Begin doevent */
1722
1723 void __iomem *eventbuf;
1724 struct channel *ch, *chan0;
1725 static struct tty_struct *tty;
1726 struct board_info *bd;
1727 struct board_chan __iomem *bc;
1728 unsigned int tail, head;
1729 int event, channel;
1730 int mstat, lstat;
1731
1732 /* -------------------------------------------------------------------
1733 This subroutine is called by epcapoll when an event is detected
1734 in the event queue. This routine responds to those events.
1735 --------------------------------------------------------------------- */
1736 bd = &boards[crd];
1737
1738 chan0 = card_ptr[crd];
1739 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1740 assertgwinon(chan0);
1741 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1742 { /* Begin while something in event queue */
1743 assertgwinon(chan0);
1744 eventbuf = bd->re_map_membase + tail + ISTART;
1745 /* Get the channel the event occurred on */
1746 channel = readb(eventbuf);
1747 /* Get the actual event code that occurred */
1748 event = readb(eventbuf + 1);
1749 /* ----------------------------------------------------------------
1750 The two assignments below get the current modem status (mstat)
1751 and the previous modem status (lstat). These are useful becuase
1752 an event could signal a change in modem signals itself.
1753 ------------------------------------------------------------------- */
1754 mstat = readb(eventbuf + 2);
1755 lstat = readb(eventbuf + 3);
1756
1757 ch = chan0 + channel;
1758 if ((unsigned)channel >= bd->numports || !ch) {
1759 if (channel >= bd->numports)
1760 ch = chan0;
1761 bc = ch->brdchan;
1762 goto next;
1763 }
1764
1765 if ((bc = ch->brdchan) == NULL)
1766 goto next;
1767
1768 if (event & DATA_IND) { /* Begin DATA_IND */
1769 receive_data(ch);
1770 assertgwinon(ch);
1771 } /* End DATA_IND */
1772 /* else *//* Fix for DCD transition missed bug */
1773 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1774 /* A modem signal change has been indicated */
1775 ch->imodem = mstat;
1776 if (ch->asyncflags & ASYNC_CHECK_CD) {
1777 if (mstat & ch->dcd) /* We are now receiving dcd */
1778 wake_up_interruptible(&ch->open_wait);
1779 else
1780 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1781 }
1782 } /* End MODEMCHG_IND */
1783 tty = ch->tty;
1784 if (tty) { /* Begin if valid tty */
1785 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1786 /* A break has been indicated */
1787 tty_insert_flip_char(tty, 0, TTY_BREAK);
1788 tty_schedule_flip(tty);
1789 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1790 if (ch->statusflags & LOWWAIT)
1791 { /* Begin if LOWWAIT */
1792 ch->statusflags &= ~LOWWAIT;
1793 tty_wakeup(tty);
1794 wake_up_interruptible(&tty->write_wait);
1795 } /* End if LOWWAIT */
1796 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1797 /* This event is generated by setup_empty_event */
1798 ch->statusflags &= ~TXBUSY;
1799 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1800 ch->statusflags &= ~EMPTYWAIT;
1801 tty_wakeup(tty);
1802 wake_up_interruptible(&tty->write_wait);
1803 } /* End if EMPTYWAIT */
1804 } /* End EMPTYTX_IND */
1805 } /* End if valid tty */
1806 next:
1807 globalwinon(ch);
1808 BUG_ON(!bc);
1809 writew(1, &bc->idata);
1810 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1811 globalwinon(chan0);
1812 } /* End while something in event queue */
1813 } /* End doevent */
1814
1815 /* --------------------- Begin fepcmd ------------------------ */
1816
1817 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1818 int byte2, int ncmds, int bytecmd)
1819 { /* Begin fepcmd */
1820 unchar __iomem *memaddr;
1821 unsigned int head, cmdTail, cmdStart, cmdMax;
1822 long count;
1823 int n;
1824
1825 /* This is the routine in which commands may be passed to the card. */
1826
1827 if (ch->board->status == DISABLED)
1828 return;
1829 assertgwinon(ch);
1830 /* Remember head (As well as max) is just an offset not a base addr */
1831 head = readw(&ch->mailbox->cin);
1832 /* cmdStart is a base address */
1833 cmdStart = readw(&ch->mailbox->cstart);
1834 /* ------------------------------------------------------------------
1835 We do the addition below because we do not want a max pointer
1836 relative to cmdStart. We want a max pointer that points at the
1837 physical end of the command queue.
1838 -------------------------------------------------------------------- */
1839 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1840 memaddr = ch->board->re_map_membase;
1841
1842 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1843 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1844 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1845 return;
1846 }
1847 if (bytecmd) {
1848 writeb(cmd, memaddr + head + cmdStart + 0);
1849 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1850 /* Below word_or_byte is bits to set */
1851 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1852 /* Below byte2 is bits to reset */
1853 writeb(byte2, memaddr + head + cmdStart + 3);
1854 } else {
1855 writeb(cmd, memaddr + head + cmdStart + 0);
1856 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1857 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1858 }
1859 head = (head + 4) & (cmdMax - cmdStart - 4);
1860 writew(head, &ch->mailbox->cin);
1861 count = FEPTIMEOUT;
1862
1863 for (;;) { /* Begin forever loop */
1864 count--;
1865 if (count == 0) {
1866 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1867 return;
1868 }
1869 head = readw(&ch->mailbox->cin);
1870 cmdTail = readw(&ch->mailbox->cout);
1871 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1872 /* ----------------------------------------------------------
1873 Basically this will break when the FEP acknowledges the
1874 command by incrementing cmdTail (Making it equal to head).
1875 ------------------------------------------------------------- */
1876 if (n <= ncmds * (sizeof(short) * 4))
1877 break; /* Well nearly forever :-) */
1878 } /* End forever loop */
1879 } /* End fepcmd */
1880
1881 /* ---------------------------------------------------------------------
1882 Digi products use fields in their channels structures that are very
1883 similar to the c_cflag and c_iflag fields typically found in UNIX
1884 termios structures. The below three routines allow mappings
1885 between these hardware "flags" and their respective Linux flags.
1886 ------------------------------------------------------------------------- */
1887
1888 /* --------------------- Begin termios2digi_h -------------------- */
1889
1890 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1891 { /* Begin termios2digi_h */
1892 unsigned res = 0;
1893
1894 if (cflag & CRTSCTS) {
1895 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1896 res |= ((ch->m_cts) | (ch->m_rts));
1897 }
1898
1899 if (ch->digiext.digi_flags & RTSPACE)
1900 res |= ch->m_rts;
1901
1902 if (ch->digiext.digi_flags & DTRPACE)
1903 res |= ch->m_dtr;
1904
1905 if (ch->digiext.digi_flags & CTSPACE)
1906 res |= ch->m_cts;
1907
1908 if (ch->digiext.digi_flags & DSRPACE)
1909 res |= ch->dsr;
1910
1911 if (ch->digiext.digi_flags & DCDPACE)
1912 res |= ch->dcd;
1913
1914 if (res & (ch->m_rts))
1915 ch->digiext.digi_flags |= RTSPACE;
1916
1917 if (res & (ch->m_cts))
1918 ch->digiext.digi_flags |= CTSPACE;
1919
1920 return res;
1921
1922 } /* End termios2digi_h */
1923
1924 /* --------------------- Begin termios2digi_i -------------------- */
1925 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1926 { /* Begin termios2digi_i */
1927
1928 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1929 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1930 if (ch->digiext.digi_flags & DIGI_AIXON)
1931 res |= IAIXON;
1932 return res;
1933
1934 } /* End termios2digi_i */
1935
1936 /* --------------------- Begin termios2digi_c -------------------- */
1937
1938 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1939 { /* Begin termios2digi_c */
1940
1941 unsigned res = 0;
1942 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1943 ch->digiext.digi_flags |= DIGI_FAST;
1944 /* -------------------------------------------------------------
1945 HUPCL bit is used by FEP to indicate fast baud
1946 table is to be used.
1947 ----------------------------------------------------------------- */
1948 res |= FEP_HUPCL;
1949 } /* End detected CBAUDEX */
1950 else ch->digiext.digi_flags &= ~DIGI_FAST;
1951 /* -------------------------------------------------------------------
1952 CBAUD has bit position 0x1000 set these days to indicate Linux
1953 baud rate remap. Digi hardware can't handle the bit assignment.
1954 (We use a different bit assignment for high speed.). Clear this
1955 bit out.
1956 ---------------------------------------------------------------------- */
1957 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1958 /* -------------------------------------------------------------
1959 This gets a little confusing. The Digi cards have their own
1960 representation of c_cflags controling baud rate. For the most
1961 part this is identical to the Linux implementation. However;
1962 Digi supports one rate (76800) that Linux doesn't. This means
1963 that the c_cflag entry that would normally mean 76800 for Digi
1964 actually means 115200 under Linux. Without the below mapping,
1965 a stty 115200 would only drive the board at 76800. Since
1966 the rate 230400 is also found after 76800, the same problem afflicts
1967 us when we choose a rate of 230400. Without the below modificiation
1968 stty 230400 would actually give us 115200.
1969
1970 There are two additional differences. The Linux value for CLOCAL
1971 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1972 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1973 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1974 should be checked for a screened out prior to termios2digi_c
1975 returning. Since CLOCAL isn't used by the board this can be
1976 ignored as long as the returned value is used only by Digi hardware.
1977 ----------------------------------------------------------------- */
1978 if (cflag & CBAUDEX) {
1979 /* -------------------------------------------------------------
1980 The below code is trying to guarantee that only baud rates
1981 115200 and 230400 are remapped. We use exclusive or because
1982 the various baud rates share common bit positions and therefore
1983 can't be tested for easily.
1984 ----------------------------------------------------------------- */
1985
1986
1987 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1988 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1989 res += 1;
1990 }
1991 return res;
1992
1993 } /* End termios2digi_c */
1994
1995 /* --------------------- Begin epcaparam ----------------------- */
1996
1997 /* Caller must hold the locks */
1998 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1999 { /* Begin epcaparam */
2000
2001 unsigned int cmdHead;
2002 struct termios *ts;
2003 struct board_chan __iomem *bc;
2004 unsigned mval, hflow, cflag, iflag;
2005
2006 bc = ch->brdchan;
2007 epcaassert(bc !=0, "bc out of range");
2008
2009 assertgwinon(ch);
2010 ts = tty->termios;
2011 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
2012 cmdHead = readw(&bc->rin);
2013 writew(cmdHead, &bc->rout);
2014 cmdHead = readw(&bc->tin);
2015 /* Changing baud in mid-stream transmission can be wonderful */
2016 /* ---------------------------------------------------------------
2017 Flush current transmit buffer by setting cmdTail pointer (tout)
2018 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2019 ----------------------------------------------------------------- */
2020 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2021 mval = 0;
2022 } else { /* Begin CBAUD not detected */
2023 /* -------------------------------------------------------------------
2024 c_cflags have changed but that change had nothing to do with BAUD.
2025 Propagate the change to the card.
2026 ---------------------------------------------------------------------- */
2027 cflag = termios2digi_c(ch, ts->c_cflag);
2028 if (cflag != ch->fepcflag) {
2029 ch->fepcflag = cflag;
2030 /* Set baud rate, char size, stop bits, parity */
2031 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2032 }
2033 /* ----------------------------------------------------------------
2034 If the user has not forced CLOCAL and if the device is not a
2035 CALLOUT device (Which is always CLOCAL) we set flags such that
2036 the driver will wait on carrier detect.
2037 ------------------------------------------------------------------- */
2038 if (ts->c_cflag & CLOCAL)
2039 ch->asyncflags &= ~ASYNC_CHECK_CD;
2040 else
2041 ch->asyncflags |= ASYNC_CHECK_CD;
2042 mval = ch->m_dtr | ch->m_rts;
2043 } /* End CBAUD not detected */
2044 iflag = termios2digi_i(ch, ts->c_iflag);
2045 /* Check input mode flags */
2046 if (iflag != ch->fepiflag) {
2047 ch->fepiflag = iflag;
2048 /* ---------------------------------------------------------------
2049 Command sets channels iflag structure on the board. Such things
2050 as input soft flow control, handling of parity errors, and
2051 break handling are all set here.
2052 ------------------------------------------------------------------- */
2053 /* break handling, parity handling, input stripping, flow control chars */
2054 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2055 }
2056 /* ---------------------------------------------------------------
2057 Set the board mint value for this channel. This will cause hardware
2058 events to be generated each time the DCD signal (Described in mint)
2059 changes.
2060 ------------------------------------------------------------------- */
2061 writeb(ch->dcd, &bc->mint);
2062 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2063 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2064 writeb(0, &bc->mint);
2065 ch->imodem = readb(&bc->mstat);
2066 hflow = termios2digi_h(ch, ts->c_cflag);
2067 if (hflow != ch->hflow) {
2068 ch->hflow = hflow;
2069 /* --------------------------------------------------------------
2070 Hard flow control has been selected but the board is not
2071 using it. Activate hard flow control now.
2072 ----------------------------------------------------------------- */
2073 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2074 }
2075 mval ^= ch->modemfake & (mval ^ ch->modem);
2076
2077 if (ch->omodem ^ mval) {
2078 ch->omodem = mval;
2079 /* --------------------------------------------------------------
2080 The below command sets the DTR and RTS mstat structure. If
2081 hard flow control is NOT active these changes will drive the
2082 output of the actual DTR and RTS lines. If hard flow control
2083 is active, the changes will be saved in the mstat structure and
2084 only asserted when hard flow control is turned off.
2085 ----------------------------------------------------------------- */
2086
2087 /* First reset DTR & RTS; then set them */
2088 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2089 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2090 }
2091 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2092 ch->fepstartc = ch->startc;
2093 ch->fepstopc = ch->stopc;
2094 /* ------------------------------------------------------------
2095 The XON / XOFF characters have changed; propagate these
2096 changes to the card.
2097 --------------------------------------------------------------- */
2098 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2099 }
2100 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2101 ch->fepstartca = ch->startca;
2102 ch->fepstopca = ch->stopca;
2103 /* ---------------------------------------------------------------
2104 Similar to the above, this time the auxilarly XON / XOFF
2105 characters have changed; propagate these changes to the card.
2106 ------------------------------------------------------------------ */
2107 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2108 }
2109 } /* End epcaparam */
2110
2111 /* --------------------- Begin receive_data ----------------------- */
2112 /* Caller holds lock */
2113 static void receive_data(struct channel *ch)
2114 { /* Begin receive_data */
2115
2116 unchar *rptr;
2117 struct termios *ts = NULL;
2118 struct tty_struct *tty;
2119 struct board_chan __iomem *bc;
2120 int dataToRead, wrapgap, bytesAvailable;
2121 unsigned int tail, head;
2122 unsigned int wrapmask;
2123
2124 /* ---------------------------------------------------------------
2125 This routine is called by doint when a receive data event
2126 has taken place.
2127 ------------------------------------------------------------------- */
2128
2129 globalwinon(ch);
2130 if (ch->statusflags & RXSTOPPED)
2131 return;
2132 tty = ch->tty;
2133 if (tty)
2134 ts = tty->termios;
2135 bc = ch->brdchan;
2136 BUG_ON(!bc);
2137 wrapmask = ch->rxbufsize - 1;
2138
2139 /* ---------------------------------------------------------------------
2140 Get the head and tail pointers to the receiver queue. Wrap the
2141 head pointer if it has reached the end of the buffer.
2142 ------------------------------------------------------------------------ */
2143 head = readw(&bc->rin);
2144 head &= wrapmask;
2145 tail = readw(&bc->rout) & wrapmask;
2146
2147 bytesAvailable = (head - tail) & wrapmask;
2148 if (bytesAvailable == 0)
2149 return;
2150
2151 /* ------------------------------------------------------------------
2152 If CREAD bit is off or device not open, set TX tail to head
2153 --------------------------------------------------------------------- */
2154
2155 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2156 writew(head, &bc->rout);
2157 return;
2158 }
2159
2160 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
2161 return;
2162
2163 if (readb(&bc->orun)) {
2164 writeb(0, &bc->orun);
2165 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2166 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
2167 }
2168 rxwinon(ch);
2169 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2170 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2171 /* ---------------------------------------------------------------
2172 Even if head has wrapped around only report the amount of
2173 data to be equal to the size - tail. Remember memcpy can't
2174 automaticly wrap around the receive buffer.
2175 ----------------------------------------------------------------- */
2176 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2177 /* --------------------------------------------------------------
2178 Make sure we don't overflow the buffer
2179 ----------------------------------------------------------------- */
2180 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2181 if (dataToRead == 0)
2182 break;
2183 /* ---------------------------------------------------------------
2184 Move data read from our card into the line disciplines buffer
2185 for translation if necessary.
2186 ------------------------------------------------------------------ */
2187 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2188 tail = (tail + dataToRead) & wrapmask;
2189 bytesAvailable -= dataToRead;
2190 } /* End while there is data on the card */
2191 globalwinon(ch);
2192 writew(tail, &bc->rout);
2193 /* Must be called with global data */
2194 tty_schedule_flip(ch->tty);
2195 return;
2196 } /* End receive_data */
2197
2198 static int info_ioctl(struct tty_struct *tty, struct file * file,
2199 unsigned int cmd, unsigned long arg)
2200 {
2201 switch (cmd)
2202 { /* Begin switch cmd */
2203 case DIGI_GETINFO:
2204 { /* Begin case DIGI_GETINFO */
2205 struct digi_info di ;
2206 int brd;
2207
2208 if(get_user(brd, (unsigned int __user *)arg))
2209 return -EFAULT;
2210 if (brd < 0 || brd >= num_cards || num_cards == 0)
2211 return -ENODEV;
2212
2213 memset(&di, 0, sizeof(di));
2214
2215 di.board = brd ;
2216 di.status = boards[brd].status;
2217 di.type = boards[brd].type ;
2218 di.numports = boards[brd].numports ;
2219 /* Legacy fixups - just move along nothing to see */
2220 di.port = (unsigned char *)boards[brd].port ;
2221 di.membase = (unsigned char *)boards[brd].membase ;
2222
2223 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2224 return -EFAULT;
2225 break;
2226
2227 } /* End case DIGI_GETINFO */
2228
2229 case DIGI_POLLER:
2230 { /* Begin case DIGI_POLLER */
2231
2232 int brd = arg & 0xff000000 >> 16 ;
2233 unsigned char state = arg & 0xff ;
2234
2235 if (brd < 0 || brd >= num_cards) {
2236 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2237 return (-ENODEV);
2238 }
2239 digi_poller_inhibited = state ;
2240 break ;
2241 } /* End case DIGI_POLLER */
2242
2243 case DIGI_INIT:
2244 { /* Begin case DIGI_INIT */
2245 /* ------------------------------------------------------------
2246 This call is made by the apps to complete the initilization
2247 of the board(s). This routine is responsible for setting
2248 the card to its initial state and setting the drivers control
2249 fields to the sutianle settings for the card in question.
2250 ---------------------------------------------------------------- */
2251 int crd ;
2252 for (crd = 0; crd < num_cards; crd++)
2253 post_fep_init (crd);
2254 break ;
2255 } /* End case DIGI_INIT */
2256 default:
2257 return -ENOTTY;
2258 } /* End switch cmd */
2259 return (0) ;
2260 }
2261 /* --------------------- Begin pc_ioctl ----------------------- */
2262
2263 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2264 {
2265 struct channel *ch = (struct channel *) tty->driver_data;
2266 struct board_chan __iomem *bc;
2267 unsigned int mstat, mflag = 0;
2268 unsigned long flags;
2269
2270 if (ch)
2271 bc = ch->brdchan;
2272 else
2273 return -EINVAL;
2274
2275 spin_lock_irqsave(&epca_lock, flags);
2276 globalwinon(ch);
2277 mstat = readb(&bc->mstat);
2278 memoff(ch);
2279 spin_unlock_irqrestore(&epca_lock, flags);
2280
2281 if (mstat & ch->m_dtr)
2282 mflag |= TIOCM_DTR;
2283 if (mstat & ch->m_rts)
2284 mflag |= TIOCM_RTS;
2285 if (mstat & ch->m_cts)
2286 mflag |= TIOCM_CTS;
2287 if (mstat & ch->dsr)
2288 mflag |= TIOCM_DSR;
2289 if (mstat & ch->m_ri)
2290 mflag |= TIOCM_RI;
2291 if (mstat & ch->dcd)
2292 mflag |= TIOCM_CD;
2293 return mflag;
2294 }
2295
2296 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2297 unsigned int set, unsigned int clear)
2298 {
2299 struct channel *ch = (struct channel *) tty->driver_data;
2300 unsigned long flags;
2301
2302 if (!ch)
2303 return -EINVAL;
2304
2305 spin_lock_irqsave(&epca_lock, flags);
2306 /*
2307 * I think this modemfake stuff is broken. It doesn't
2308 * correctly reflect the behaviour desired by the TIOCM*
2309 * ioctls. Therefore this is probably broken.
2310 */
2311 if (set & TIOCM_RTS) {
2312 ch->modemfake |= ch->m_rts;
2313 ch->modem |= ch->m_rts;
2314 }
2315 if (set & TIOCM_DTR) {
2316 ch->modemfake |= ch->m_dtr;
2317 ch->modem |= ch->m_dtr;
2318 }
2319 if (clear & TIOCM_RTS) {
2320 ch->modemfake |= ch->m_rts;
2321 ch->modem &= ~ch->m_rts;
2322 }
2323 if (clear & TIOCM_DTR) {
2324 ch->modemfake |= ch->m_dtr;
2325 ch->modem &= ~ch->m_dtr;
2326 }
2327 globalwinon(ch);
2328 /* --------------------------------------------------------------
2329 The below routine generally sets up parity, baud, flow control
2330 issues, etc.... It effect both control flags and input flags.
2331 ------------------------------------------------------------------ */
2332 epcaparam(tty,ch);
2333 memoff(ch);
2334 spin_unlock_irqrestore(&epca_lock, flags);
2335 return 0;
2336 }
2337
2338 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2339 unsigned int cmd, unsigned long arg)
2340 { /* Begin pc_ioctl */
2341
2342 digiflow_t dflow;
2343 int retval;
2344 unsigned long flags;
2345 unsigned int mflag, mstat;
2346 unsigned char startc, stopc;
2347 struct board_chan __iomem *bc;
2348 struct channel *ch = (struct channel *) tty->driver_data;
2349 void __user *argp = (void __user *)arg;
2350
2351 if (ch)
2352 bc = ch->brdchan;
2353 else
2354 return -EINVAL;
2355
2356 /* -------------------------------------------------------------------
2357 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2358 in /usr/src/linux/drivers/char for a good example. In particular
2359 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2360 ---------------------------------------------------------------------- */
2361
2362 switch (cmd)
2363 { /* Begin switch cmd */
2364
2365 case TCGETS:
2366 if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2367 return -EFAULT;
2368 return 0;
2369 case TCGETA:
2370 return get_termio(tty, argp);
2371 case TCSBRK: /* SVID version: non-zero arg --> no break */
2372 retval = tty_check_change(tty);
2373 if (retval)
2374 return retval;
2375 /* Setup an event to indicate when the transmit buffer empties */
2376 spin_lock_irqsave(&epca_lock, flags);
2377 setup_empty_event(tty,ch);
2378 spin_unlock_irqrestore(&epca_lock, flags);
2379 tty_wait_until_sent(tty, 0);
2380 if (!arg)
2381 digi_send_break(ch, HZ/4); /* 1/4 second */
2382 return 0;
2383 case TCSBRKP: /* support for POSIX tcsendbreak() */
2384 retval = tty_check_change(tty);
2385 if (retval)
2386 return retval;
2387
2388 /* Setup an event to indicate when the transmit buffer empties */
2389 spin_lock_irqsave(&epca_lock, flags);
2390 setup_empty_event(tty,ch);
2391 spin_unlock_irqrestore(&epca_lock, flags);
2392 tty_wait_until_sent(tty, 0);
2393 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2394 return 0;
2395 case TIOCGSOFTCAR:
2396 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2397 return -EFAULT;
2398 return 0;
2399 case TIOCSSOFTCAR:
2400 {
2401 unsigned int value;
2402
2403 if (get_user(value, (unsigned __user *)argp))
2404 return -EFAULT;
2405 tty->termios->c_cflag =
2406 ((tty->termios->c_cflag & ~CLOCAL) |
2407 (value ? CLOCAL : 0));
2408 return 0;
2409 }
2410 case TIOCMODG:
2411 mflag = pc_tiocmget(tty, file);
2412 if (put_user(mflag, (unsigned long __user *)argp))
2413 return -EFAULT;
2414 break;
2415 case TIOCMODS:
2416 if (get_user(mstat, (unsigned __user *)argp))
2417 return -EFAULT;
2418 return pc_tiocmset(tty, file, mstat, ~mstat);
2419 case TIOCSDTR:
2420 spin_lock_irqsave(&epca_lock, flags);
2421 ch->omodem |= ch->m_dtr;
2422 globalwinon(ch);
2423 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2424 memoff(ch);
2425 spin_unlock_irqrestore(&epca_lock, flags);
2426 break;
2427
2428 case TIOCCDTR:
2429 spin_lock_irqsave(&epca_lock, flags);
2430 ch->omodem &= ~ch->m_dtr;
2431 globalwinon(ch);
2432 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2433 memoff(ch);
2434 spin_unlock_irqrestore(&epca_lock, flags);
2435 break;
2436 case DIGI_GETA:
2437 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2438 return -EFAULT;
2439 break;
2440 case DIGI_SETAW:
2441 case DIGI_SETAF:
2442 if (cmd == DIGI_SETAW) {
2443 /* Setup an event to indicate when the transmit buffer empties */
2444 spin_lock_irqsave(&epca_lock, flags);
2445 setup_empty_event(tty,ch);
2446 spin_unlock_irqrestore(&epca_lock, flags);
2447 tty_wait_until_sent(tty, 0);
2448 } else {
2449 /* ldisc lock already held in ioctl */
2450 if (tty->ldisc.flush_buffer)
2451 tty->ldisc.flush_buffer(tty);
2452 }
2453 /* Fall Thru */
2454 case DIGI_SETA:
2455 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2456 return -EFAULT;
2457
2458 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2459 ch->dcd = ch->m_dsr;
2460 ch->dsr = ch->m_dcd;
2461 } else {
2462 ch->dcd = ch->m_dcd;
2463 ch->dsr = ch->m_dsr;
2464 }
2465
2466 spin_lock_irqsave(&epca_lock, flags);
2467 globalwinon(ch);
2468
2469 /* -----------------------------------------------------------------
2470 The below routine generally sets up parity, baud, flow control
2471 issues, etc.... It effect both control flags and input flags.
2472 ------------------------------------------------------------------- */
2473
2474 epcaparam(tty,ch);
2475 memoff(ch);
2476 spin_unlock_irqrestore(&epca_lock, flags);
2477 break;
2478
2479 case DIGI_GETFLOW:
2480 case DIGI_GETAFLOW:
2481 spin_lock_irqsave(&epca_lock, flags);
2482 globalwinon(ch);
2483 if (cmd == DIGI_GETFLOW) {
2484 dflow.startc = readb(&bc->startc);
2485 dflow.stopc = readb(&bc->stopc);
2486 } else {
2487 dflow.startc = readb(&bc->startca);
2488 dflow.stopc = readb(&bc->stopca);
2489 }
2490 memoff(ch);
2491 spin_unlock_irqrestore(&epca_lock, flags);
2492
2493 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2494 return -EFAULT;
2495 break;
2496
2497 case DIGI_SETAFLOW:
2498 case DIGI_SETFLOW:
2499 if (cmd == DIGI_SETFLOW) {
2500 startc = ch->startc;
2501 stopc = ch->stopc;
2502 } else {
2503 startc = ch->startca;
2504 stopc = ch->stopca;
2505 }
2506
2507 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2508 return -EFAULT;
2509
2510 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2511 spin_lock_irqsave(&epca_lock, flags);
2512 globalwinon(ch);
2513
2514 if (cmd == DIGI_SETFLOW) {
2515 ch->fepstartc = ch->startc = dflow.startc;
2516 ch->fepstopc = ch->stopc = dflow.stopc;
2517 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2518 } else {
2519 ch->fepstartca = ch->startca = dflow.startc;
2520 ch->fepstopca = ch->stopca = dflow.stopc;
2521 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2522 }
2523
2524 if (ch->statusflags & TXSTOPPED)
2525 pc_start(tty);
2526
2527 memoff(ch);
2528 spin_unlock_irqrestore(&epca_lock, flags);
2529 } /* End if setflow toggled */
2530 break;
2531 default:
2532 return -ENOIOCTLCMD;
2533 } /* End switch cmd */
2534 return 0;
2535 } /* End pc_ioctl */
2536
2537 /* --------------------- Begin pc_set_termios ----------------------- */
2538
2539 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2540 { /* Begin pc_set_termios */
2541
2542 struct channel *ch;
2543 unsigned long flags;
2544 /* ---------------------------------------------------------
2545 verifyChannel returns the channel from the tty struct
2546 if it is valid. This serves as a sanity check.
2547 ------------------------------------------------------------- */
2548 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2549 spin_lock_irqsave(&epca_lock, flags);
2550 globalwinon(ch);
2551 epcaparam(tty, ch);
2552 memoff(ch);
2553 spin_unlock_irqrestore(&epca_lock, flags);
2554
2555 if ((old_termios->c_cflag & CRTSCTS) &&
2556 ((tty->termios->c_cflag & CRTSCTS) == 0))
2557 tty->hw_stopped = 0;
2558
2559 if (!(old_termios->c_cflag & CLOCAL) &&
2560 (tty->termios->c_cflag & CLOCAL))
2561 wake_up_interruptible(&ch->open_wait);
2562
2563 } /* End if channel valid */
2564
2565 } /* End pc_set_termios */
2566
2567 /* --------------------- Begin do_softint ----------------------- */
2568
2569 static void do_softint(void *private_)
2570 { /* Begin do_softint */
2571 struct channel *ch = (struct channel *) private_;
2572 /* Called in response to a modem change event */
2573 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2574 struct tty_struct *tty = ch->tty;
2575
2576 if (tty && tty->driver_data) {
2577 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2578 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2579 wake_up_interruptible(&ch->open_wait);
2580 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2581 } /* End if clear_bit */
2582 }
2583 } /* End EPCA_MAGIC */
2584 } /* End do_softint */
2585
2586 /* ------------------------------------------------------------
2587 pc_stop and pc_start provide software flow control to the
2588 routine and the pc_ioctl routine.
2589 ---------------------------------------------------------------- */
2590
2591 /* --------------------- Begin pc_stop ----------------------- */
2592
2593 static void pc_stop(struct tty_struct *tty)
2594 { /* Begin pc_stop */
2595
2596 struct channel *ch;
2597 unsigned long flags;
2598 /* ---------------------------------------------------------
2599 verifyChannel returns the channel from the tty struct
2600 if it is valid. This serves as a sanity check.
2601 ------------------------------------------------------------- */
2602 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2603 spin_lock_irqsave(&epca_lock, flags);
2604 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2605 globalwinon(ch);
2606 /* STOP transmitting now !! */
2607 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2608 ch->statusflags |= TXSTOPPED;
2609 memoff(ch);
2610 } /* End if transmit stop requested */
2611 spin_unlock_irqrestore(&epca_lock, flags);
2612 } /* End if valid channel */
2613 } /* End pc_stop */
2614
2615 /* --------------------- Begin pc_start ----------------------- */
2616
2617 static void pc_start(struct tty_struct *tty)
2618 { /* Begin pc_start */
2619 struct channel *ch;
2620 /* ---------------------------------------------------------
2621 verifyChannel returns the channel from the tty struct
2622 if it is valid. This serves as a sanity check.
2623 ------------------------------------------------------------- */
2624 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2625 unsigned long flags;
2626 spin_lock_irqsave(&epca_lock, flags);
2627 /* Just in case output was resumed because of a change in Digi-flow */
2628 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2629 struct board_chan __iomem *bc;
2630 globalwinon(ch);
2631 bc = ch->brdchan;
2632 if (ch->statusflags & LOWWAIT)
2633 writeb(1, &bc->ilow);
2634 /* Okay, you can start transmitting again... */
2635 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2636 ch->statusflags &= ~TXSTOPPED;
2637 memoff(ch);
2638 } /* End transmit resume requested */
2639 spin_unlock_irqrestore(&epca_lock, flags);
2640 } /* End if channel valid */
2641 } /* End pc_start */
2642
2643 /* ------------------------------------------------------------------
2644 The below routines pc_throttle and pc_unthrottle are used
2645 to slow (And resume) the receipt of data into the kernels
2646 receive buffers. The exact occurrence of this depends on the
2647 size of the kernels receive buffer and what the 'watermarks'
2648 are set to for that buffer. See the n_ttys.c file for more
2649 details.
2650 ______________________________________________________________________ */
2651 /* --------------------- Begin throttle ----------------------- */
2652
2653 static void pc_throttle(struct tty_struct * tty)
2654 { /* Begin pc_throttle */
2655 struct channel *ch;
2656 unsigned long flags;
2657 /* ---------------------------------------------------------
2658 verifyChannel returns the channel from the tty struct
2659 if it is valid. This serves as a sanity check.
2660 ------------------------------------------------------------- */
2661 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2662 spin_lock_irqsave(&epca_lock, flags);
2663 if ((ch->statusflags & RXSTOPPED) == 0) {
2664 globalwinon(ch);
2665 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2666 ch->statusflags |= RXSTOPPED;
2667 memoff(ch);
2668 }
2669 spin_unlock_irqrestore(&epca_lock, flags);
2670 } /* End if channel valid */
2671 } /* End pc_throttle */
2672
2673 /* --------------------- Begin unthrottle ----------------------- */
2674
2675 static void pc_unthrottle(struct tty_struct *tty)
2676 { /* Begin pc_unthrottle */
2677 struct channel *ch;
2678 unsigned long flags;
2679 /* ---------------------------------------------------------
2680 verifyChannel returns the channel from the tty struct
2681 if it is valid. This serves as a sanity check.
2682 ------------------------------------------------------------- */
2683 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2684 /* Just in case output was resumed because of a change in Digi-flow */
2685 spin_lock_irqsave(&epca_lock, flags);
2686 if (ch->statusflags & RXSTOPPED) {
2687 globalwinon(ch);
2688 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2689 ch->statusflags &= ~RXSTOPPED;
2690 memoff(ch);
2691 }
2692 spin_unlock_irqrestore(&epca_lock, flags);
2693 } /* End if channel valid */
2694 } /* End pc_unthrottle */
2695
2696 /* --------------------- Begin digi_send_break ----------------------- */
2697
2698 void digi_send_break(struct channel *ch, int msec)
2699 { /* Begin digi_send_break */
2700 unsigned long flags;
2701
2702 spin_lock_irqsave(&epca_lock, flags);
2703 globalwinon(ch);
2704 /* --------------------------------------------------------------------
2705 Maybe I should send an infinite break here, schedule() for
2706 msec amount of time, and then stop the break. This way,
2707 the user can't screw up the FEP by causing digi_send_break()
2708 to be called (i.e. via an ioctl()) more than once in msec amount
2709 of time. Try this for now...
2710 ------------------------------------------------------------------------ */
2711 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2712 memoff(ch);
2713 spin_unlock_irqrestore(&epca_lock, flags);
2714 } /* End digi_send_break */
2715
2716 /* --------------------- Begin setup_empty_event ----------------------- */
2717
2718 /* Caller MUST hold the lock */
2719
2720 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2721 { /* Begin setup_empty_event */
2722
2723 struct board_chan __iomem *bc = ch->brdchan;
2724
2725 globalwinon(ch);
2726 ch->statusflags |= EMPTYWAIT;
2727 /* ------------------------------------------------------------------
2728 When set the iempty flag request a event to be generated when the
2729 transmit buffer is empty (If there is no BREAK in progress).
2730 --------------------------------------------------------------------- */
2731 writeb(1, &bc->iempty);
2732 memoff(ch);
2733 } /* End setup_empty_event */
2734
2735 /* --------------------- Begin get_termio ----------------------- */
2736
2737 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2738 { /* Begin get_termio */
2739 return kernel_termios_to_user_termio(termio, tty->termios);
2740 } /* End get_termio */
2741
2742 /* ---------------------- Begin epca_setup -------------------------- */
2743 void epca_setup(char *str, int *ints)
2744 { /* Begin epca_setup */
2745 struct board_info board;
2746 int index, loop, last;
2747 char *temp, *t2;
2748 unsigned len;
2749
2750 /* ----------------------------------------------------------------------
2751 If this routine looks a little strange it is because it is only called
2752 if a LILO append command is given to boot the kernel with parameters.
2753 In this way, we can provide the user a method of changing his board
2754 configuration without rebuilding the kernel.
2755 ----------------------------------------------------------------------- */
2756 if (!liloconfig)
2757 liloconfig = 1;
2758
2759 memset(&board, 0, sizeof(board));
2760
2761 /* Assume the data is int first, later we can change it */
2762 /* I think that array position 0 of ints holds the number of args */
2763 for (last = 0, index = 1; index <= ints[0]; index++)
2764 switch(index)
2765 { /* Begin parse switch */
2766 case 1:
2767 board.status = ints[index];
2768 /* ---------------------------------------------------------
2769 We check for 2 (As opposed to 1; because 2 is a flag
2770 instructing the driver to ignore epcaconfig.) For this
2771 reason we check for 2.
2772 ------------------------------------------------------------ */
2773 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2774 nbdevs = 0;
2775 num_cards = 0;
2776 return;
2777 } /* End ignore epcaconfig as well as lilo cmd line */
2778
2779 if (board.status > 2) {
2780 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2781 invalid_lilo_config = 1;
2782 setup_error_code |= INVALID_BOARD_STATUS;
2783 return;
2784 }
2785 last = index;
2786 break;
2787 case 2:
2788 board.type = ints[index];
2789 if (board.type >= PCIXEM) {
2790 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2791 invalid_lilo_config = 1;
2792 setup_error_code |= INVALID_BOARD_TYPE;
2793 return;
2794 }
2795 last = index;
2796 break;
2797 case 3:
2798 board.altpin = ints[index];
2799 if (board.altpin > 1) {
2800 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2801 invalid_lilo_config = 1;
2802 setup_error_code |= INVALID_ALTPIN;
2803 return;
2804 }
2805 last = index;
2806 break;
2807
2808 case 4:
2809 board.numports = ints[index];
2810 if (board.numports < 2 || board.numports > 256) {
2811 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2812 invalid_lilo_config = 1;
2813 setup_error_code |= INVALID_NUM_PORTS;
2814 return;
2815 }
2816 nbdevs += board.numports;
2817 last = index;
2818 break;
2819
2820 case 5:
2821 board.port = ints[index];
2822 if (ints[index] <= 0) {
2823 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2824 invalid_lilo_config = 1;
2825 setup_error_code |= INVALID_PORT_BASE;
2826 return;
2827 }
2828 last = index;
2829 break;
2830
2831 case 6:
2832 board.membase = ints[index];
2833 if (ints[index] <= 0) {
2834 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2835 invalid_lilo_config = 1;
2836 setup_error_code |= INVALID_MEM_BASE;
2837 return;
2838 }
2839 last = index;
2840 break;
2841
2842 default:
2843 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2844 return;
2845
2846 } /* End parse switch */
2847
2848 while (str && *str) { /* Begin while there is a string arg */
2849 /* find the next comma or terminator */
2850 temp = str;
2851 /* While string is not null, and a comma hasn't been found */
2852 while (*temp && (*temp != ','))
2853 temp++;
2854 if (!*temp)
2855 temp = NULL;
2856 else
2857 *temp++ = 0;
2858 /* Set index to the number of args + 1 */
2859 index = last + 1;
2860
2861 switch(index)
2862 {
2863 case 1:
2864 len = strlen(str);
2865 if (strncmp("Disable", str, len) == 0)
2866 board.status = 0;
2867 else if (strncmp("Enable", str, len) == 0)
2868 board.status = 1;
2869 else {
2870 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2871 invalid_lilo_config = 1;
2872 setup_error_code |= INVALID_BOARD_STATUS;
2873 return;
2874 }
2875 last = index;
2876 break;
2877
2878 case 2:
2879 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2880 if (strcmp(board_desc[loop], str) == 0)
2881 break;
2882 /* ---------------------------------------------------------------
2883 If the index incremented above refers to a legitamate board
2884 type set it here.
2885 ------------------------------------------------------------------*/
2886 if (index < EPCA_NUM_TYPES)
2887 board.type = loop;
2888 else {
2889 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2890 invalid_lilo_config = 1;
2891 setup_error_code |= INVALID_BOARD_TYPE;
2892 return;
2893 }
2894 last = index;
2895 break;
2896
2897 case 3:
2898 len = strlen(str);
2899 if (strncmp("Disable", str, len) == 0)
2900 board.altpin = 0;
2901 else if (strncmp("Enable", str, len) == 0)
2902 board.altpin = 1;
2903 else {
2904 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2905 invalid_lilo_config = 1;
2906 setup_error_code |= INVALID_ALTPIN;
2907 return;
2908 }
2909 last = index;
2910 break;
2911
2912 case 4:
2913 t2 = str;
2914 while (isdigit(*t2))
2915 t2++;
2916
2917 if (*t2) {
2918 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2919 invalid_lilo_config = 1;
2920 setup_error_code |= INVALID_NUM_PORTS;
2921 return;
2922 }
2923
2924 /* ------------------------------------------------------------
2925 There is not a man page for simple_strtoul but the code can be
2926 found in vsprintf.c. The first argument is the string to
2927 translate (To an unsigned long obviously), the second argument
2928 can be the address of any character variable or a NULL. If a
2929 variable is given, the end pointer of the string will be stored
2930 in that variable; if a NULL is given the end pointer will
2931 not be returned. The last argument is the base to use. If
2932 a 0 is indicated, the routine will attempt to determine the
2933 proper base by looking at the values prefix (A '0' for octal,
2934 a 'x' for hex, etc ... If a value is given it will use that
2935 value as the base.
2936 ---------------------------------------------------------------- */
2937 board.numports = simple_strtoul(str, NULL, 0);
2938 nbdevs += board.numports;
2939 last = index;
2940 break;
2941
2942 case 5:
2943 t2 = str;
2944 while (isxdigit(*t2))
2945 t2++;
2946
2947 if (*t2) {
2948 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2949 invalid_lilo_config = 1;
2950 setup_error_code |= INVALID_PORT_BASE;
2951 return;
2952 }
2953
2954 board.port = simple_strtoul(str, NULL, 16);
2955 last = index;
2956 break;
2957
2958 case 6:
2959 t2 = str;
2960 while (isxdigit(*t2))
2961 t2++;
2962
2963 if (*t2) {
2964 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2965 invalid_lilo_config = 1;
2966 setup_error_code |= INVALID_MEM_BASE;
2967 return;
2968 }
2969 board.membase = simple_strtoul(str, NULL, 16);
2970 last = index;
2971 break;
2972 default:
2973 printk(KERN_ERR "epca: Too many string parms\n");
2974 return;
2975 }
2976 str = temp;
2977 } /* End while there is a string arg */
2978
2979 if (last < 6) {
2980 printk(KERN_ERR "epca: Insufficient parms specified\n");
2981 return;
2982 }
2983
2984 /* I should REALLY validate the stuff here */
2985 /* Copies our local copy of board into boards */
2986 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2987 /* Does this get called once per lilo arg are what ? */
2988 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2989 num_cards, board_desc[board.type],
2990 board.numports, (int)board.port, (unsigned int) board.membase);
2991 num_cards++;
2992 } /* End epca_setup */
2993
2994
2995 /* ------------------------ Begin init_PCI --------------------------- */
2996
2997 enum epic_board_types {
2998 brd_xr = 0,
2999 brd_xem,
3000 brd_cx,
3001 brd_xrj,
3002 };
3003
3004
3005 /* indexed directly by epic_board_types enum */
3006 static struct {
3007 unsigned char board_type;
3008 unsigned bar_idx; /* PCI base address region */
3009 } epca_info_tbl[] = {
3010 { PCIXR, 0, },
3011 { PCIXEM, 0, },
3012 { PCICX, 0, },
3013 { PCIXRJ, 2, },
3014 };
3015
3016 static int __devinit epca_init_one (struct pci_dev *pdev,
3017 const struct pci_device_id *ent)
3018 {
3019 static int board_num = -1;
3020 int board_idx, info_idx = ent->driver_data;
3021 unsigned long addr;
3022
3023 if (pci_enable_device(pdev))
3024 return -EIO;
3025
3026 board_num++;
3027 board_idx = board_num + num_cards;
3028 if (board_idx >= MAXBOARDS)
3029 goto err_out;
3030
3031 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3032 if (!addr) {
3033 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3034 epca_info_tbl[info_idx].bar_idx);
3035 goto err_out;
3036 }
3037
3038 boards[board_idx].status = ENABLED;
3039 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3040 boards[board_idx].numports = 0x0;
3041 boards[board_idx].port = addr + PCI_IO_OFFSET;
3042 boards[board_idx].membase = addr;
3043
3044 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3045 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3046 0x200000, addr + PCI_IO_OFFSET);
3047 goto err_out;
3048 }
3049
3050 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3051 if (!boards[board_idx].re_map_port) {
3052 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3053 0x200000, addr + PCI_IO_OFFSET);
3054 goto err_out_free_pciio;
3055 }
3056
3057 if (!request_mem_region (addr, 0x200000, "epca")) {
3058 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3059 0x200000, addr);
3060 goto err_out_free_iounmap;
3061 }
3062
3063 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3064 if (!boards[board_idx].re_map_membase) {
3065 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3066 0x200000, addr + PCI_IO_OFFSET);
3067 goto err_out_free_memregion;
3068 }
3069
3070 /* --------------------------------------------------------------
3071 I don't know what the below does, but the hardware guys say
3072 its required on everything except PLX (In this case XRJ).
3073 ---------------------------------------------------------------- */
3074 if (info_idx != brd_xrj) {
3075 pci_write_config_byte(pdev, 0x40, 0);
3076 pci_write_config_byte(pdev, 0x46, 0);
3077 }
3078
3079 return 0;
3080
3081 err_out_free_memregion:
3082 release_mem_region (addr, 0x200000);
3083 err_out_free_iounmap:
3084 iounmap (boards[board_idx].re_map_port);
3085 err_out_free_pciio:
3086 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3087 err_out:
3088 return -ENODEV;
3089 }
3090
3091
3092 static struct pci_device_id epca_pci_tbl[] = {
3093 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3094 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3095 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3096 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3097 { 0, }
3098 };
3099
3100 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3101
3102 int __init init_PCI (void)
3103 { /* Begin init_PCI */
3104 memset (&epca_driver, 0, sizeof (epca_driver));
3105 epca_driver.name = "epca";
3106 epca_driver.id_table = epca_pci_tbl;
3107 epca_driver.probe = epca_init_one;
3108
3109 return pci_register_driver(&epca_driver);
3110 }
3111
3112 MODULE_LICENSE("GPL");
This page took 0.117493 seconds and 6 git commands to generate.