Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 short timeout */
85
86 enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 #define DEVICE_NAME "ipmi_si"
111
112 static struct platform_driver ipmi_driver = {
113 .driver = {
114 .name = DEVICE_NAME,
115 .bus = &platform_bus_type
116 }
117 };
118
119
120 /*
121 * Indexes into stats[] in smi_info below.
122 */
123 enum si_stat_indexes {
124 /*
125 * Number of times the driver requested a timer while an operation
126 * was in progress.
127 */
128 SI_STAT_short_timeouts = 0,
129
130 /*
131 * Number of times the driver requested a timer while nothing was in
132 * progress.
133 */
134 SI_STAT_long_timeouts,
135
136 /* Number of times the interface was idle while being polled. */
137 SI_STAT_idles,
138
139 /* Number of interrupts the driver handled. */
140 SI_STAT_interrupts,
141
142 /* Number of time the driver got an ATTN from the hardware. */
143 SI_STAT_attentions,
144
145 /* Number of times the driver requested flags from the hardware. */
146 SI_STAT_flag_fetches,
147
148 /* Number of times the hardware didn't follow the state machine. */
149 SI_STAT_hosed_count,
150
151 /* Number of completed messages. */
152 SI_STAT_complete_transactions,
153
154 /* Number of IPMI events received from the hardware. */
155 SI_STAT_events,
156
157 /* Number of watchdog pretimeouts. */
158 SI_STAT_watchdog_pretimeouts,
159
160 /* Number of asyncronous messages received. */
161 SI_STAT_incoming_messages,
162
163
164 /* This *must* remain last, add new values above this. */
165 SI_NUM_STATS
166 };
167
168 struct smi_info {
169 int intf_num;
170 ipmi_smi_t intf;
171 struct si_sm_data *si_sm;
172 struct si_sm_handlers *handlers;
173 enum si_type si_type;
174 spinlock_t si_lock;
175 spinlock_t msg_lock;
176 struct list_head xmit_msgs;
177 struct list_head hp_xmit_msgs;
178 struct ipmi_smi_msg *curr_msg;
179 enum si_intf_state si_state;
180
181 /*
182 * Used to handle the various types of I/O that can occur with
183 * IPMI
184 */
185 struct si_sm_io io;
186 int (*io_setup)(struct smi_info *info);
187 void (*io_cleanup)(struct smi_info *info);
188 int (*irq_setup)(struct smi_info *info);
189 void (*irq_cleanup)(struct smi_info *info);
190 unsigned int io_size;
191 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
192 void (*addr_source_cleanup)(struct smi_info *info);
193 void *addr_source_data;
194
195 /*
196 * Per-OEM handler, called from handle_flags(). Returns 1
197 * when handle_flags() needs to be re-run or 0 indicating it
198 * set si_state itself.
199 */
200 int (*oem_data_avail_handler)(struct smi_info *smi_info);
201
202 /*
203 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
204 * is set to hold the flags until we are done handling everything
205 * from the flags.
206 */
207 #define RECEIVE_MSG_AVAIL 0x01
208 #define EVENT_MSG_BUFFER_FULL 0x02
209 #define WDT_PRE_TIMEOUT_INT 0x08
210 #define OEM0_DATA_AVAIL 0x20
211 #define OEM1_DATA_AVAIL 0x40
212 #define OEM2_DATA_AVAIL 0x80
213 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
214 OEM1_DATA_AVAIL | \
215 OEM2_DATA_AVAIL)
216 unsigned char msg_flags;
217
218 /* Does the BMC have an event buffer? */
219 char has_event_buffer;
220
221 /*
222 * If set to true, this will request events the next time the
223 * state machine is idle.
224 */
225 atomic_t req_events;
226
227 /*
228 * If true, run the state machine to completion on every send
229 * call. Generally used after a panic to make sure stuff goes
230 * out.
231 */
232 int run_to_completion;
233
234 /* The I/O port of an SI interface. */
235 int port;
236
237 /*
238 * The space between start addresses of the two ports. For
239 * instance, if the first port is 0xca2 and the spacing is 4, then
240 * the second port is 0xca6.
241 */
242 unsigned int spacing;
243
244 /* zero if no irq; */
245 int irq;
246
247 /* The timer for this si. */
248 struct timer_list si_timer;
249
250 /* The time (in jiffies) the last timeout occurred at. */
251 unsigned long last_timeout_jiffies;
252
253 /* Used to gracefully stop the timer without race conditions. */
254 atomic_t stop_operation;
255
256 /*
257 * The driver will disable interrupts when it gets into a
258 * situation where it cannot handle messages due to lack of
259 * memory. Once that situation clears up, it will re-enable
260 * interrupts.
261 */
262 int interrupt_disabled;
263
264 /* From the get device id response... */
265 struct ipmi_device_id device_id;
266
267 /* Driver model stuff. */
268 struct device *dev;
269 struct platform_device *pdev;
270
271 /*
272 * True if we allocated the device, false if it came from
273 * someplace else (like PCI).
274 */
275 int dev_registered;
276
277 /* Slave address, could be reported from DMI. */
278 unsigned char slave_addr;
279
280 /* Counters and things for the proc filesystem. */
281 atomic_t stats[SI_NUM_STATS];
282
283 struct task_struct *thread;
284
285 struct list_head link;
286 };
287
288 #define smi_inc_stat(smi, stat) \
289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292
293 #define SI_MAX_PARMS 4
294
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297
298 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
299 static int num_max_busy_us;
300
301 static int unload_when_empty = 1;
302
303 static int try_smi_init(struct smi_info *smi);
304 static void cleanup_one_si(struct smi_info *to_clean);
305
306 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
307 static int register_xaction_notifier(struct notifier_block *nb)
308 {
309 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
310 }
311
312 static void deliver_recv_msg(struct smi_info *smi_info,
313 struct ipmi_smi_msg *msg)
314 {
315 /* Deliver the message to the upper layer with the lock
316 released. */
317 spin_unlock(&(smi_info->si_lock));
318 ipmi_smi_msg_received(smi_info->intf, msg);
319 spin_lock(&(smi_info->si_lock));
320 }
321
322 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
323 {
324 struct ipmi_smi_msg *msg = smi_info->curr_msg;
325
326 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
327 cCode = IPMI_ERR_UNSPECIFIED;
328 /* else use it as is */
329
330 /* Make it a reponse */
331 msg->rsp[0] = msg->data[0] | 4;
332 msg->rsp[1] = msg->data[1];
333 msg->rsp[2] = cCode;
334 msg->rsp_size = 3;
335
336 smi_info->curr_msg = NULL;
337 deliver_recv_msg(smi_info, msg);
338 }
339
340 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
341 {
342 int rv;
343 struct list_head *entry = NULL;
344 #ifdef DEBUG_TIMING
345 struct timeval t;
346 #endif
347
348 /*
349 * No need to save flags, we aleady have interrupts off and we
350 * already hold the SMI lock.
351 */
352 if (!smi_info->run_to_completion)
353 spin_lock(&(smi_info->msg_lock));
354
355 /* Pick the high priority queue first. */
356 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
357 entry = smi_info->hp_xmit_msgs.next;
358 } else if (!list_empty(&(smi_info->xmit_msgs))) {
359 entry = smi_info->xmit_msgs.next;
360 }
361
362 if (!entry) {
363 smi_info->curr_msg = NULL;
364 rv = SI_SM_IDLE;
365 } else {
366 int err;
367
368 list_del(entry);
369 smi_info->curr_msg = list_entry(entry,
370 struct ipmi_smi_msg,
371 link);
372 #ifdef DEBUG_TIMING
373 do_gettimeofday(&t);
374 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
375 #endif
376 err = atomic_notifier_call_chain(&xaction_notifier_list,
377 0, smi_info);
378 if (err & NOTIFY_STOP_MASK) {
379 rv = SI_SM_CALL_WITHOUT_DELAY;
380 goto out;
381 }
382 err = smi_info->handlers->start_transaction(
383 smi_info->si_sm,
384 smi_info->curr_msg->data,
385 smi_info->curr_msg->data_size);
386 if (err)
387 return_hosed_msg(smi_info, err);
388
389 rv = SI_SM_CALL_WITHOUT_DELAY;
390 }
391 out:
392 if (!smi_info->run_to_completion)
393 spin_unlock(&(smi_info->msg_lock));
394
395 return rv;
396 }
397
398 static void start_enable_irq(struct smi_info *smi_info)
399 {
400 unsigned char msg[2];
401
402 /*
403 * If we are enabling interrupts, we have to tell the
404 * BMC to use them.
405 */
406 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408
409 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
411 }
412
413 static void start_disable_irq(struct smi_info *smi_info)
414 {
415 unsigned char msg[2];
416
417 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
418 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
419
420 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
421 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
422 }
423
424 static void start_clear_flags(struct smi_info *smi_info)
425 {
426 unsigned char msg[3];
427
428 /* Make sure the watchdog pre-timeout flag is not set at startup. */
429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
431 msg[2] = WDT_PRE_TIMEOUT_INT;
432
433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
434 smi_info->si_state = SI_CLEARING_FLAGS;
435 }
436
437 /*
438 * When we have a situtaion where we run out of memory and cannot
439 * allocate messages, we just leave them in the BMC and run the system
440 * polled until we can allocate some memory. Once we have some
441 * memory, we will re-enable the interrupt.
442 */
443 static inline void disable_si_irq(struct smi_info *smi_info)
444 {
445 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
446 start_disable_irq(smi_info);
447 smi_info->interrupt_disabled = 1;
448 }
449 }
450
451 static inline void enable_si_irq(struct smi_info *smi_info)
452 {
453 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
454 start_enable_irq(smi_info);
455 smi_info->interrupt_disabled = 0;
456 }
457 }
458
459 static void handle_flags(struct smi_info *smi_info)
460 {
461 retry:
462 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
463 /* Watchdog pre-timeout */
464 smi_inc_stat(smi_info, watchdog_pretimeouts);
465
466 start_clear_flags(smi_info);
467 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
468 spin_unlock(&(smi_info->si_lock));
469 ipmi_smi_watchdog_pretimeout(smi_info->intf);
470 spin_lock(&(smi_info->si_lock));
471 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
472 /* Messages available. */
473 smi_info->curr_msg = ipmi_alloc_smi_msg();
474 if (!smi_info->curr_msg) {
475 disable_si_irq(smi_info);
476 smi_info->si_state = SI_NORMAL;
477 return;
478 }
479 enable_si_irq(smi_info);
480
481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
483 smi_info->curr_msg->data_size = 2;
484
485 smi_info->handlers->start_transaction(
486 smi_info->si_sm,
487 smi_info->curr_msg->data,
488 smi_info->curr_msg->data_size);
489 smi_info->si_state = SI_GETTING_MESSAGES;
490 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
491 /* Events available. */
492 smi_info->curr_msg = ipmi_alloc_smi_msg();
493 if (!smi_info->curr_msg) {
494 disable_si_irq(smi_info);
495 smi_info->si_state = SI_NORMAL;
496 return;
497 }
498 enable_si_irq(smi_info);
499
500 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
501 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
502 smi_info->curr_msg->data_size = 2;
503
504 smi_info->handlers->start_transaction(
505 smi_info->si_sm,
506 smi_info->curr_msg->data,
507 smi_info->curr_msg->data_size);
508 smi_info->si_state = SI_GETTING_EVENTS;
509 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
510 smi_info->oem_data_avail_handler) {
511 if (smi_info->oem_data_avail_handler(smi_info))
512 goto retry;
513 } else
514 smi_info->si_state = SI_NORMAL;
515 }
516
517 static void handle_transaction_done(struct smi_info *smi_info)
518 {
519 struct ipmi_smi_msg *msg;
520 #ifdef DEBUG_TIMING
521 struct timeval t;
522
523 do_gettimeofday(&t);
524 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
525 #endif
526 switch (smi_info->si_state) {
527 case SI_NORMAL:
528 if (!smi_info->curr_msg)
529 break;
530
531 smi_info->curr_msg->rsp_size
532 = smi_info->handlers->get_result(
533 smi_info->si_sm,
534 smi_info->curr_msg->rsp,
535 IPMI_MAX_MSG_LENGTH);
536
537 /*
538 * Do this here becase deliver_recv_msg() releases the
539 * lock, and a new message can be put in during the
540 * time the lock is released.
541 */
542 msg = smi_info->curr_msg;
543 smi_info->curr_msg = NULL;
544 deliver_recv_msg(smi_info, msg);
545 break;
546
547 case SI_GETTING_FLAGS:
548 {
549 unsigned char msg[4];
550 unsigned int len;
551
552 /* We got the flags from the SMI, now handle them. */
553 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
554 if (msg[2] != 0) {
555 /* Error fetching flags, just give up for now. */
556 smi_info->si_state = SI_NORMAL;
557 } else if (len < 4) {
558 /*
559 * Hmm, no flags. That's technically illegal, but
560 * don't use uninitialized data.
561 */
562 smi_info->si_state = SI_NORMAL;
563 } else {
564 smi_info->msg_flags = msg[3];
565 handle_flags(smi_info);
566 }
567 break;
568 }
569
570 case SI_CLEARING_FLAGS:
571 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
572 {
573 unsigned char msg[3];
574
575 /* We cleared the flags. */
576 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
577 if (msg[2] != 0) {
578 /* Error clearing flags */
579 printk(KERN_WARNING
580 "ipmi_si: Error clearing flags: %2.2x\n",
581 msg[2]);
582 }
583 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
584 start_enable_irq(smi_info);
585 else
586 smi_info->si_state = SI_NORMAL;
587 break;
588 }
589
590 case SI_GETTING_EVENTS:
591 {
592 smi_info->curr_msg->rsp_size
593 = smi_info->handlers->get_result(
594 smi_info->si_sm,
595 smi_info->curr_msg->rsp,
596 IPMI_MAX_MSG_LENGTH);
597
598 /*
599 * Do this here becase deliver_recv_msg() releases the
600 * lock, and a new message can be put in during the
601 * time the lock is released.
602 */
603 msg = smi_info->curr_msg;
604 smi_info->curr_msg = NULL;
605 if (msg->rsp[2] != 0) {
606 /* Error getting event, probably done. */
607 msg->done(msg);
608
609 /* Take off the event flag. */
610 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
611 handle_flags(smi_info);
612 } else {
613 smi_inc_stat(smi_info, events);
614
615 /*
616 * Do this before we deliver the message
617 * because delivering the message releases the
618 * lock and something else can mess with the
619 * state.
620 */
621 handle_flags(smi_info);
622
623 deliver_recv_msg(smi_info, msg);
624 }
625 break;
626 }
627
628 case SI_GETTING_MESSAGES:
629 {
630 smi_info->curr_msg->rsp_size
631 = smi_info->handlers->get_result(
632 smi_info->si_sm,
633 smi_info->curr_msg->rsp,
634 IPMI_MAX_MSG_LENGTH);
635
636 /*
637 * Do this here becase deliver_recv_msg() releases the
638 * lock, and a new message can be put in during the
639 * time the lock is released.
640 */
641 msg = smi_info->curr_msg;
642 smi_info->curr_msg = NULL;
643 if (msg->rsp[2] != 0) {
644 /* Error getting event, probably done. */
645 msg->done(msg);
646
647 /* Take off the msg flag. */
648 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
649 handle_flags(smi_info);
650 } else {
651 smi_inc_stat(smi_info, incoming_messages);
652
653 /*
654 * Do this before we deliver the message
655 * because delivering the message releases the
656 * lock and something else can mess with the
657 * state.
658 */
659 handle_flags(smi_info);
660
661 deliver_recv_msg(smi_info, msg);
662 }
663 break;
664 }
665
666 case SI_ENABLE_INTERRUPTS1:
667 {
668 unsigned char msg[4];
669
670 /* We got the flags from the SMI, now handle them. */
671 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
672 if (msg[2] != 0) {
673 printk(KERN_WARNING
674 "ipmi_si: Could not enable interrupts"
675 ", failed get, using polled mode.\n");
676 smi_info->si_state = SI_NORMAL;
677 } else {
678 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
679 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
680 msg[2] = (msg[3] |
681 IPMI_BMC_RCV_MSG_INTR |
682 IPMI_BMC_EVT_MSG_INTR);
683 smi_info->handlers->start_transaction(
684 smi_info->si_sm, msg, 3);
685 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
686 }
687 break;
688 }
689
690 case SI_ENABLE_INTERRUPTS2:
691 {
692 unsigned char msg[4];
693
694 /* We got the flags from the SMI, now handle them. */
695 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
696 if (msg[2] != 0) {
697 printk(KERN_WARNING
698 "ipmi_si: Could not enable interrupts"
699 ", failed set, using polled mode.\n");
700 }
701 smi_info->si_state = SI_NORMAL;
702 break;
703 }
704
705 case SI_DISABLE_INTERRUPTS1:
706 {
707 unsigned char msg[4];
708
709 /* We got the flags from the SMI, now handle them. */
710 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
711 if (msg[2] != 0) {
712 printk(KERN_WARNING
713 "ipmi_si: Could not disable interrupts"
714 ", failed get.\n");
715 smi_info->si_state = SI_NORMAL;
716 } else {
717 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
718 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
719 msg[2] = (msg[3] &
720 ~(IPMI_BMC_RCV_MSG_INTR |
721 IPMI_BMC_EVT_MSG_INTR));
722 smi_info->handlers->start_transaction(
723 smi_info->si_sm, msg, 3);
724 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
725 }
726 break;
727 }
728
729 case SI_DISABLE_INTERRUPTS2:
730 {
731 unsigned char msg[4];
732
733 /* We got the flags from the SMI, now handle them. */
734 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735 if (msg[2] != 0) {
736 printk(KERN_WARNING
737 "ipmi_si: Could not disable interrupts"
738 ", failed set.\n");
739 }
740 smi_info->si_state = SI_NORMAL;
741 break;
742 }
743 }
744 }
745
746 /*
747 * Called on timeouts and events. Timeouts should pass the elapsed
748 * time, interrupts should pass in zero. Must be called with
749 * si_lock held and interrupts disabled.
750 */
751 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
752 int time)
753 {
754 enum si_sm_result si_sm_result;
755
756 restart:
757 /*
758 * There used to be a loop here that waited a little while
759 * (around 25us) before giving up. That turned out to be
760 * pointless, the minimum delays I was seeing were in the 300us
761 * range, which is far too long to wait in an interrupt. So
762 * we just run until the state machine tells us something
763 * happened or it needs a delay.
764 */
765 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
766 time = 0;
767 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
768 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
769
770 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
771 smi_inc_stat(smi_info, complete_transactions);
772
773 handle_transaction_done(smi_info);
774 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
775 } else if (si_sm_result == SI_SM_HOSED) {
776 smi_inc_stat(smi_info, hosed_count);
777
778 /*
779 * Do the before return_hosed_msg, because that
780 * releases the lock.
781 */
782 smi_info->si_state = SI_NORMAL;
783 if (smi_info->curr_msg != NULL) {
784 /*
785 * If we were handling a user message, format
786 * a response to send to the upper layer to
787 * tell it about the error.
788 */
789 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
790 }
791 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
792 }
793
794 /*
795 * We prefer handling attn over new messages. But don't do
796 * this if there is not yet an upper layer to handle anything.
797 */
798 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
799 unsigned char msg[2];
800
801 smi_inc_stat(smi_info, attentions);
802
803 /*
804 * Got a attn, send down a get message flags to see
805 * what's causing it. It would be better to handle
806 * this in the upper layer, but due to the way
807 * interrupts work with the SMI, that's not really
808 * possible.
809 */
810 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
811 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
812
813 smi_info->handlers->start_transaction(
814 smi_info->si_sm, msg, 2);
815 smi_info->si_state = SI_GETTING_FLAGS;
816 goto restart;
817 }
818
819 /* If we are currently idle, try to start the next message. */
820 if (si_sm_result == SI_SM_IDLE) {
821 smi_inc_stat(smi_info, idles);
822
823 si_sm_result = start_next_msg(smi_info);
824 if (si_sm_result != SI_SM_IDLE)
825 goto restart;
826 }
827
828 if ((si_sm_result == SI_SM_IDLE)
829 && (atomic_read(&smi_info->req_events))) {
830 /*
831 * We are idle and the upper layer requested that I fetch
832 * events, so do so.
833 */
834 atomic_set(&smi_info->req_events, 0);
835
836 smi_info->curr_msg = ipmi_alloc_smi_msg();
837 if (!smi_info->curr_msg)
838 goto out;
839
840 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
841 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
842 smi_info->curr_msg->data_size = 2;
843
844 smi_info->handlers->start_transaction(
845 smi_info->si_sm,
846 smi_info->curr_msg->data,
847 smi_info->curr_msg->data_size);
848 smi_info->si_state = SI_GETTING_EVENTS;
849 goto restart;
850 }
851 out:
852 return si_sm_result;
853 }
854
855 static void sender(void *send_info,
856 struct ipmi_smi_msg *msg,
857 int priority)
858 {
859 struct smi_info *smi_info = send_info;
860 enum si_sm_result result;
861 unsigned long flags;
862 #ifdef DEBUG_TIMING
863 struct timeval t;
864 #endif
865
866 if (atomic_read(&smi_info->stop_operation)) {
867 msg->rsp[0] = msg->data[0] | 4;
868 msg->rsp[1] = msg->data[1];
869 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
870 msg->rsp_size = 3;
871 deliver_recv_msg(smi_info, msg);
872 return;
873 }
874
875 #ifdef DEBUG_TIMING
876 do_gettimeofday(&t);
877 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
878 #endif
879
880 if (smi_info->run_to_completion) {
881 /*
882 * If we are running to completion, then throw it in
883 * the list and run transactions until everything is
884 * clear. Priority doesn't matter here.
885 */
886
887 /*
888 * Run to completion means we are single-threaded, no
889 * need for locks.
890 */
891 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
892
893 result = smi_event_handler(smi_info, 0);
894 while (result != SI_SM_IDLE) {
895 udelay(SI_SHORT_TIMEOUT_USEC);
896 result = smi_event_handler(smi_info,
897 SI_SHORT_TIMEOUT_USEC);
898 }
899 return;
900 }
901
902 spin_lock_irqsave(&smi_info->msg_lock, flags);
903 if (priority > 0)
904 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
905 else
906 list_add_tail(&msg->link, &smi_info->xmit_msgs);
907 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
908
909 spin_lock_irqsave(&smi_info->si_lock, flags);
910 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
911 start_next_msg(smi_info);
912 spin_unlock_irqrestore(&smi_info->si_lock, flags);
913 }
914
915 static void set_run_to_completion(void *send_info, int i_run_to_completion)
916 {
917 struct smi_info *smi_info = send_info;
918 enum si_sm_result result;
919
920 smi_info->run_to_completion = i_run_to_completion;
921 if (i_run_to_completion) {
922 result = smi_event_handler(smi_info, 0);
923 while (result != SI_SM_IDLE) {
924 udelay(SI_SHORT_TIMEOUT_USEC);
925 result = smi_event_handler(smi_info,
926 SI_SHORT_TIMEOUT_USEC);
927 }
928 }
929 }
930
931 /*
932 * Use -1 in the nsec value of the busy waiting timespec to tell that
933 * we are spinning in kipmid looking for something and not delaying
934 * between checks
935 */
936 static inline void ipmi_si_set_not_busy(struct timespec *ts)
937 {
938 ts->tv_nsec = -1;
939 }
940 static inline int ipmi_si_is_busy(struct timespec *ts)
941 {
942 return ts->tv_nsec != -1;
943 }
944
945 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
946 const struct smi_info *smi_info,
947 struct timespec *busy_until)
948 {
949 unsigned int max_busy_us = 0;
950
951 if (smi_info->intf_num < num_max_busy_us)
952 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
953 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
954 ipmi_si_set_not_busy(busy_until);
955 else if (!ipmi_si_is_busy(busy_until)) {
956 getnstimeofday(busy_until);
957 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
958 } else {
959 struct timespec now;
960 getnstimeofday(&now);
961 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
962 ipmi_si_set_not_busy(busy_until);
963 return 0;
964 }
965 }
966 return 1;
967 }
968
969
970 /*
971 * A busy-waiting loop for speeding up IPMI operation.
972 *
973 * Lousy hardware makes this hard. This is only enabled for systems
974 * that are not BT and do not have interrupts. It starts spinning
975 * when an operation is complete or until max_busy tells it to stop
976 * (if that is enabled). See the paragraph on kimid_max_busy_us in
977 * Documentation/IPMI.txt for details.
978 */
979 static int ipmi_thread(void *data)
980 {
981 struct smi_info *smi_info = data;
982 unsigned long flags;
983 enum si_sm_result smi_result;
984 struct timespec busy_until;
985
986 ipmi_si_set_not_busy(&busy_until);
987 set_user_nice(current, 19);
988 while (!kthread_should_stop()) {
989 int busy_wait;
990
991 spin_lock_irqsave(&(smi_info->si_lock), flags);
992 smi_result = smi_event_handler(smi_info, 0);
993 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
994 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
995 &busy_until);
996 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
997 ; /* do nothing */
998 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
999 schedule();
1000 else
1001 schedule_timeout_interruptible(0);
1002 }
1003 return 0;
1004 }
1005
1006
1007 static void poll(void *send_info)
1008 {
1009 struct smi_info *smi_info = send_info;
1010 unsigned long flags;
1011
1012 /*
1013 * Make sure there is some delay in the poll loop so we can
1014 * drive time forward and timeout things.
1015 */
1016 udelay(10);
1017 spin_lock_irqsave(&smi_info->si_lock, flags);
1018 smi_event_handler(smi_info, 10);
1019 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1020 }
1021
1022 static void request_events(void *send_info)
1023 {
1024 struct smi_info *smi_info = send_info;
1025
1026 if (atomic_read(&smi_info->stop_operation) ||
1027 !smi_info->has_event_buffer)
1028 return;
1029
1030 atomic_set(&smi_info->req_events, 1);
1031 }
1032
1033 static int initialized;
1034
1035 static void smi_timeout(unsigned long data)
1036 {
1037 struct smi_info *smi_info = (struct smi_info *) data;
1038 enum si_sm_result smi_result;
1039 unsigned long flags;
1040 unsigned long jiffies_now;
1041 long time_diff;
1042 #ifdef DEBUG_TIMING
1043 struct timeval t;
1044 #endif
1045
1046 spin_lock_irqsave(&(smi_info->si_lock), flags);
1047 #ifdef DEBUG_TIMING
1048 do_gettimeofday(&t);
1049 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1050 #endif
1051 jiffies_now = jiffies;
1052 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1053 * SI_USEC_PER_JIFFY);
1054 smi_result = smi_event_handler(smi_info, time_diff);
1055
1056 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1057
1058 smi_info->last_timeout_jiffies = jiffies_now;
1059
1060 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1061 /* Running with interrupts, only do long timeouts. */
1062 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1063 smi_inc_stat(smi_info, long_timeouts);
1064 goto do_add_timer;
1065 }
1066
1067 /*
1068 * If the state machine asks for a short delay, then shorten
1069 * the timer timeout.
1070 */
1071 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1072 smi_inc_stat(smi_info, short_timeouts);
1073 smi_info->si_timer.expires = jiffies + 1;
1074 } else {
1075 smi_inc_stat(smi_info, long_timeouts);
1076 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1077 }
1078
1079 do_add_timer:
1080 add_timer(&(smi_info->si_timer));
1081 }
1082
1083 static irqreturn_t si_irq_handler(int irq, void *data)
1084 {
1085 struct smi_info *smi_info = data;
1086 unsigned long flags;
1087 #ifdef DEBUG_TIMING
1088 struct timeval t;
1089 #endif
1090
1091 spin_lock_irqsave(&(smi_info->si_lock), flags);
1092
1093 smi_inc_stat(smi_info, interrupts);
1094
1095 #ifdef DEBUG_TIMING
1096 do_gettimeofday(&t);
1097 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1098 #endif
1099 smi_event_handler(smi_info, 0);
1100 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1101 return IRQ_HANDLED;
1102 }
1103
1104 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1105 {
1106 struct smi_info *smi_info = data;
1107 /* We need to clear the IRQ flag for the BT interface. */
1108 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1109 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1110 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1111 return si_irq_handler(irq, data);
1112 }
1113
1114 static int smi_start_processing(void *send_info,
1115 ipmi_smi_t intf)
1116 {
1117 struct smi_info *new_smi = send_info;
1118 int enable = 0;
1119
1120 new_smi->intf = intf;
1121
1122 /* Try to claim any interrupts. */
1123 if (new_smi->irq_setup)
1124 new_smi->irq_setup(new_smi);
1125
1126 /* Set up the timer that drives the interface. */
1127 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1128 new_smi->last_timeout_jiffies = jiffies;
1129 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1130
1131 /*
1132 * Check if the user forcefully enabled the daemon.
1133 */
1134 if (new_smi->intf_num < num_force_kipmid)
1135 enable = force_kipmid[new_smi->intf_num];
1136 /*
1137 * The BT interface is efficient enough to not need a thread,
1138 * and there is no need for a thread if we have interrupts.
1139 */
1140 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1141 enable = 1;
1142
1143 if (enable) {
1144 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1145 "kipmi%d", new_smi->intf_num);
1146 if (IS_ERR(new_smi->thread)) {
1147 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1148 " kernel thread due to error %ld, only using"
1149 " timers to drive the interface\n",
1150 PTR_ERR(new_smi->thread));
1151 new_smi->thread = NULL;
1152 }
1153 }
1154
1155 return 0;
1156 }
1157
1158 static void set_maintenance_mode(void *send_info, int enable)
1159 {
1160 struct smi_info *smi_info = send_info;
1161
1162 if (!enable)
1163 atomic_set(&smi_info->req_events, 0);
1164 }
1165
1166 static struct ipmi_smi_handlers handlers = {
1167 .owner = THIS_MODULE,
1168 .start_processing = smi_start_processing,
1169 .sender = sender,
1170 .request_events = request_events,
1171 .set_maintenance_mode = set_maintenance_mode,
1172 .set_run_to_completion = set_run_to_completion,
1173 .poll = poll,
1174 };
1175
1176 /*
1177 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1178 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1179 */
1180
1181 static LIST_HEAD(smi_infos);
1182 static DEFINE_MUTEX(smi_infos_lock);
1183 static int smi_num; /* Used to sequence the SMIs */
1184
1185 #define DEFAULT_REGSPACING 1
1186 #define DEFAULT_REGSIZE 1
1187
1188 static int si_trydefaults = 1;
1189 static char *si_type[SI_MAX_PARMS];
1190 #define MAX_SI_TYPE_STR 30
1191 static char si_type_str[MAX_SI_TYPE_STR];
1192 static unsigned long addrs[SI_MAX_PARMS];
1193 static unsigned int num_addrs;
1194 static unsigned int ports[SI_MAX_PARMS];
1195 static unsigned int num_ports;
1196 static int irqs[SI_MAX_PARMS];
1197 static unsigned int num_irqs;
1198 static int regspacings[SI_MAX_PARMS];
1199 static unsigned int num_regspacings;
1200 static int regsizes[SI_MAX_PARMS];
1201 static unsigned int num_regsizes;
1202 static int regshifts[SI_MAX_PARMS];
1203 static unsigned int num_regshifts;
1204 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1205 static unsigned int num_slave_addrs;
1206
1207 #define IPMI_IO_ADDR_SPACE 0
1208 #define IPMI_MEM_ADDR_SPACE 1
1209 static char *addr_space_to_str[] = { "i/o", "mem" };
1210
1211 static int hotmod_handler(const char *val, struct kernel_param *kp);
1212
1213 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1214 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1215 " Documentation/IPMI.txt in the kernel sources for the"
1216 " gory details.");
1217
1218 module_param_named(trydefaults, si_trydefaults, bool, 0);
1219 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1220 " default scan of the KCS and SMIC interface at the standard"
1221 " address");
1222 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1223 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1224 " interface separated by commas. The types are 'kcs',"
1225 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1226 " the first interface to kcs and the second to bt");
1227 module_param_array(addrs, ulong, &num_addrs, 0);
1228 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1229 " addresses separated by commas. Only use if an interface"
1230 " is in memory. Otherwise, set it to zero or leave"
1231 " it blank.");
1232 module_param_array(ports, uint, &num_ports, 0);
1233 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1234 " addresses separated by commas. Only use if an interface"
1235 " is a port. Otherwise, set it to zero or leave"
1236 " it blank.");
1237 module_param_array(irqs, int, &num_irqs, 0);
1238 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1239 " addresses separated by commas. Only use if an interface"
1240 " has an interrupt. Otherwise, set it to zero or leave"
1241 " it blank.");
1242 module_param_array(regspacings, int, &num_regspacings, 0);
1243 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1244 " and each successive register used by the interface. For"
1245 " instance, if the start address is 0xca2 and the spacing"
1246 " is 2, then the second address is at 0xca4. Defaults"
1247 " to 1.");
1248 module_param_array(regsizes, int, &num_regsizes, 0);
1249 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1250 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1251 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1252 " the 8-bit IPMI register has to be read from a larger"
1253 " register.");
1254 module_param_array(regshifts, int, &num_regshifts, 0);
1255 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1256 " IPMI register, in bits. For instance, if the data"
1257 " is read from a 32-bit word and the IPMI data is in"
1258 " bit 8-15, then the shift would be 8");
1259 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1260 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1261 " the controller. Normally this is 0x20, but can be"
1262 " overridden by this parm. This is an array indexed"
1263 " by interface number.");
1264 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1265 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1266 " disabled(0). Normally the IPMI driver auto-detects"
1267 " this, but the value may be overridden by this parm.");
1268 module_param(unload_when_empty, int, 0);
1269 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1270 " specified or found, default is 1. Setting to 0"
1271 " is useful for hot add of devices using hotmod.");
1272 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1273 MODULE_PARM_DESC(kipmid_max_busy_us,
1274 "Max time (in microseconds) to busy-wait for IPMI data before"
1275 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1276 " if kipmid is using up a lot of CPU time.");
1277
1278
1279 static void std_irq_cleanup(struct smi_info *info)
1280 {
1281 if (info->si_type == SI_BT)
1282 /* Disable the interrupt in the BT interface. */
1283 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1284 free_irq(info->irq, info);
1285 }
1286
1287 static int std_irq_setup(struct smi_info *info)
1288 {
1289 int rv;
1290
1291 if (!info->irq)
1292 return 0;
1293
1294 if (info->si_type == SI_BT) {
1295 rv = request_irq(info->irq,
1296 si_bt_irq_handler,
1297 IRQF_SHARED | IRQF_DISABLED,
1298 DEVICE_NAME,
1299 info);
1300 if (!rv)
1301 /* Enable the interrupt in the BT interface. */
1302 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1303 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1304 } else
1305 rv = request_irq(info->irq,
1306 si_irq_handler,
1307 IRQF_SHARED | IRQF_DISABLED,
1308 DEVICE_NAME,
1309 info);
1310 if (rv) {
1311 printk(KERN_WARNING
1312 "ipmi_si: %s unable to claim interrupt %d,"
1313 " running polled\n",
1314 DEVICE_NAME, info->irq);
1315 info->irq = 0;
1316 } else {
1317 info->irq_cleanup = std_irq_cleanup;
1318 printk(" Using irq %d\n", info->irq);
1319 }
1320
1321 return rv;
1322 }
1323
1324 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1325 {
1326 unsigned int addr = io->addr_data;
1327
1328 return inb(addr + (offset * io->regspacing));
1329 }
1330
1331 static void port_outb(struct si_sm_io *io, unsigned int offset,
1332 unsigned char b)
1333 {
1334 unsigned int addr = io->addr_data;
1335
1336 outb(b, addr + (offset * io->regspacing));
1337 }
1338
1339 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1340 {
1341 unsigned int addr = io->addr_data;
1342
1343 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1344 }
1345
1346 static void port_outw(struct si_sm_io *io, unsigned int offset,
1347 unsigned char b)
1348 {
1349 unsigned int addr = io->addr_data;
1350
1351 outw(b << io->regshift, addr + (offset * io->regspacing));
1352 }
1353
1354 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1355 {
1356 unsigned int addr = io->addr_data;
1357
1358 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1359 }
1360
1361 static void port_outl(struct si_sm_io *io, unsigned int offset,
1362 unsigned char b)
1363 {
1364 unsigned int addr = io->addr_data;
1365
1366 outl(b << io->regshift, addr+(offset * io->regspacing));
1367 }
1368
1369 static void port_cleanup(struct smi_info *info)
1370 {
1371 unsigned int addr = info->io.addr_data;
1372 int idx;
1373
1374 if (addr) {
1375 for (idx = 0; idx < info->io_size; idx++)
1376 release_region(addr + idx * info->io.regspacing,
1377 info->io.regsize);
1378 }
1379 }
1380
1381 static int port_setup(struct smi_info *info)
1382 {
1383 unsigned int addr = info->io.addr_data;
1384 int idx;
1385
1386 if (!addr)
1387 return -ENODEV;
1388
1389 info->io_cleanup = port_cleanup;
1390
1391 /*
1392 * Figure out the actual inb/inw/inl/etc routine to use based
1393 * upon the register size.
1394 */
1395 switch (info->io.regsize) {
1396 case 1:
1397 info->io.inputb = port_inb;
1398 info->io.outputb = port_outb;
1399 break;
1400 case 2:
1401 info->io.inputb = port_inw;
1402 info->io.outputb = port_outw;
1403 break;
1404 case 4:
1405 info->io.inputb = port_inl;
1406 info->io.outputb = port_outl;
1407 break;
1408 default:
1409 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1410 info->io.regsize);
1411 return -EINVAL;
1412 }
1413
1414 /*
1415 * Some BIOSes reserve disjoint I/O regions in their ACPI
1416 * tables. This causes problems when trying to register the
1417 * entire I/O region. Therefore we must register each I/O
1418 * port separately.
1419 */
1420 for (idx = 0; idx < info->io_size; idx++) {
1421 if (request_region(addr + idx * info->io.regspacing,
1422 info->io.regsize, DEVICE_NAME) == NULL) {
1423 /* Undo allocations */
1424 while (idx--) {
1425 release_region(addr + idx * info->io.regspacing,
1426 info->io.regsize);
1427 }
1428 return -EIO;
1429 }
1430 }
1431 return 0;
1432 }
1433
1434 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1435 {
1436 return readb((io->addr)+(offset * io->regspacing));
1437 }
1438
1439 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1440 unsigned char b)
1441 {
1442 writeb(b, (io->addr)+(offset * io->regspacing));
1443 }
1444
1445 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1446 {
1447 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1448 & 0xff;
1449 }
1450
1451 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1452 unsigned char b)
1453 {
1454 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1455 }
1456
1457 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1458 {
1459 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1460 & 0xff;
1461 }
1462
1463 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1464 unsigned char b)
1465 {
1466 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1467 }
1468
1469 #ifdef readq
1470 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1471 {
1472 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1473 & 0xff;
1474 }
1475
1476 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1477 unsigned char b)
1478 {
1479 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1480 }
1481 #endif
1482
1483 static void mem_cleanup(struct smi_info *info)
1484 {
1485 unsigned long addr = info->io.addr_data;
1486 int mapsize;
1487
1488 if (info->io.addr) {
1489 iounmap(info->io.addr);
1490
1491 mapsize = ((info->io_size * info->io.regspacing)
1492 - (info->io.regspacing - info->io.regsize));
1493
1494 release_mem_region(addr, mapsize);
1495 }
1496 }
1497
1498 static int mem_setup(struct smi_info *info)
1499 {
1500 unsigned long addr = info->io.addr_data;
1501 int mapsize;
1502
1503 if (!addr)
1504 return -ENODEV;
1505
1506 info->io_cleanup = mem_cleanup;
1507
1508 /*
1509 * Figure out the actual readb/readw/readl/etc routine to use based
1510 * upon the register size.
1511 */
1512 switch (info->io.regsize) {
1513 case 1:
1514 info->io.inputb = intf_mem_inb;
1515 info->io.outputb = intf_mem_outb;
1516 break;
1517 case 2:
1518 info->io.inputb = intf_mem_inw;
1519 info->io.outputb = intf_mem_outw;
1520 break;
1521 case 4:
1522 info->io.inputb = intf_mem_inl;
1523 info->io.outputb = intf_mem_outl;
1524 break;
1525 #ifdef readq
1526 case 8:
1527 info->io.inputb = mem_inq;
1528 info->io.outputb = mem_outq;
1529 break;
1530 #endif
1531 default:
1532 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1533 info->io.regsize);
1534 return -EINVAL;
1535 }
1536
1537 /*
1538 * Calculate the total amount of memory to claim. This is an
1539 * unusual looking calculation, but it avoids claiming any
1540 * more memory than it has to. It will claim everything
1541 * between the first address to the end of the last full
1542 * register.
1543 */
1544 mapsize = ((info->io_size * info->io.regspacing)
1545 - (info->io.regspacing - info->io.regsize));
1546
1547 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1548 return -EIO;
1549
1550 info->io.addr = ioremap(addr, mapsize);
1551 if (info->io.addr == NULL) {
1552 release_mem_region(addr, mapsize);
1553 return -EIO;
1554 }
1555 return 0;
1556 }
1557
1558 /*
1559 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1560 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1561 * Options are:
1562 * rsp=<regspacing>
1563 * rsi=<regsize>
1564 * rsh=<regshift>
1565 * irq=<irq>
1566 * ipmb=<ipmb addr>
1567 */
1568 enum hotmod_op { HM_ADD, HM_REMOVE };
1569 struct hotmod_vals {
1570 char *name;
1571 int val;
1572 };
1573 static struct hotmod_vals hotmod_ops[] = {
1574 { "add", HM_ADD },
1575 { "remove", HM_REMOVE },
1576 { NULL }
1577 };
1578 static struct hotmod_vals hotmod_si[] = {
1579 { "kcs", SI_KCS },
1580 { "smic", SI_SMIC },
1581 { "bt", SI_BT },
1582 { NULL }
1583 };
1584 static struct hotmod_vals hotmod_as[] = {
1585 { "mem", IPMI_MEM_ADDR_SPACE },
1586 { "i/o", IPMI_IO_ADDR_SPACE },
1587 { NULL }
1588 };
1589
1590 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1591 {
1592 char *s;
1593 int i;
1594
1595 s = strchr(*curr, ',');
1596 if (!s) {
1597 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1598 return -EINVAL;
1599 }
1600 *s = '\0';
1601 s++;
1602 for (i = 0; hotmod_ops[i].name; i++) {
1603 if (strcmp(*curr, v[i].name) == 0) {
1604 *val = v[i].val;
1605 *curr = s;
1606 return 0;
1607 }
1608 }
1609
1610 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1611 return -EINVAL;
1612 }
1613
1614 static int check_hotmod_int_op(const char *curr, const char *option,
1615 const char *name, int *val)
1616 {
1617 char *n;
1618
1619 if (strcmp(curr, name) == 0) {
1620 if (!option) {
1621 printk(KERN_WARNING PFX
1622 "No option given for '%s'\n",
1623 curr);
1624 return -EINVAL;
1625 }
1626 *val = simple_strtoul(option, &n, 0);
1627 if ((*n != '\0') || (*option == '\0')) {
1628 printk(KERN_WARNING PFX
1629 "Bad option given for '%s'\n",
1630 curr);
1631 return -EINVAL;
1632 }
1633 return 1;
1634 }
1635 return 0;
1636 }
1637
1638 static int hotmod_handler(const char *val, struct kernel_param *kp)
1639 {
1640 char *str = kstrdup(val, GFP_KERNEL);
1641 int rv;
1642 char *next, *curr, *s, *n, *o;
1643 enum hotmod_op op;
1644 enum si_type si_type;
1645 int addr_space;
1646 unsigned long addr;
1647 int regspacing;
1648 int regsize;
1649 int regshift;
1650 int irq;
1651 int ipmb;
1652 int ival;
1653 int len;
1654 struct smi_info *info;
1655
1656 if (!str)
1657 return -ENOMEM;
1658
1659 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1660 len = strlen(str);
1661 ival = len - 1;
1662 while ((ival >= 0) && isspace(str[ival])) {
1663 str[ival] = '\0';
1664 ival--;
1665 }
1666
1667 for (curr = str; curr; curr = next) {
1668 regspacing = 1;
1669 regsize = 1;
1670 regshift = 0;
1671 irq = 0;
1672 ipmb = 0; /* Choose the default if not specified */
1673
1674 next = strchr(curr, ':');
1675 if (next) {
1676 *next = '\0';
1677 next++;
1678 }
1679
1680 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1681 if (rv)
1682 break;
1683 op = ival;
1684
1685 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1686 if (rv)
1687 break;
1688 si_type = ival;
1689
1690 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1691 if (rv)
1692 break;
1693
1694 s = strchr(curr, ',');
1695 if (s) {
1696 *s = '\0';
1697 s++;
1698 }
1699 addr = simple_strtoul(curr, &n, 0);
1700 if ((*n != '\0') || (*curr == '\0')) {
1701 printk(KERN_WARNING PFX "Invalid hotmod address"
1702 " '%s'\n", curr);
1703 break;
1704 }
1705
1706 while (s) {
1707 curr = s;
1708 s = strchr(curr, ',');
1709 if (s) {
1710 *s = '\0';
1711 s++;
1712 }
1713 o = strchr(curr, '=');
1714 if (o) {
1715 *o = '\0';
1716 o++;
1717 }
1718 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1719 if (rv < 0)
1720 goto out;
1721 else if (rv)
1722 continue;
1723 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1724 if (rv < 0)
1725 goto out;
1726 else if (rv)
1727 continue;
1728 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1729 if (rv < 0)
1730 goto out;
1731 else if (rv)
1732 continue;
1733 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1734 if (rv < 0)
1735 goto out;
1736 else if (rv)
1737 continue;
1738 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1739 if (rv < 0)
1740 goto out;
1741 else if (rv)
1742 continue;
1743
1744 rv = -EINVAL;
1745 printk(KERN_WARNING PFX
1746 "Invalid hotmod option '%s'\n",
1747 curr);
1748 goto out;
1749 }
1750
1751 if (op == HM_ADD) {
1752 info = kzalloc(sizeof(*info), GFP_KERNEL);
1753 if (!info) {
1754 rv = -ENOMEM;
1755 goto out;
1756 }
1757
1758 info->addr_source = "hotmod";
1759 info->si_type = si_type;
1760 info->io.addr_data = addr;
1761 info->io.addr_type = addr_space;
1762 if (addr_space == IPMI_MEM_ADDR_SPACE)
1763 info->io_setup = mem_setup;
1764 else
1765 info->io_setup = port_setup;
1766
1767 info->io.addr = NULL;
1768 info->io.regspacing = regspacing;
1769 if (!info->io.regspacing)
1770 info->io.regspacing = DEFAULT_REGSPACING;
1771 info->io.regsize = regsize;
1772 if (!info->io.regsize)
1773 info->io.regsize = DEFAULT_REGSPACING;
1774 info->io.regshift = regshift;
1775 info->irq = irq;
1776 if (info->irq)
1777 info->irq_setup = std_irq_setup;
1778 info->slave_addr = ipmb;
1779
1780 try_smi_init(info);
1781 } else {
1782 /* remove */
1783 struct smi_info *e, *tmp_e;
1784
1785 mutex_lock(&smi_infos_lock);
1786 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1787 if (e->io.addr_type != addr_space)
1788 continue;
1789 if (e->si_type != si_type)
1790 continue;
1791 if (e->io.addr_data == addr)
1792 cleanup_one_si(e);
1793 }
1794 mutex_unlock(&smi_infos_lock);
1795 }
1796 }
1797 rv = len;
1798 out:
1799 kfree(str);
1800 return rv;
1801 }
1802
1803 static __devinit void hardcode_find_bmc(void)
1804 {
1805 int i;
1806 struct smi_info *info;
1807
1808 for (i = 0; i < SI_MAX_PARMS; i++) {
1809 if (!ports[i] && !addrs[i])
1810 continue;
1811
1812 info = kzalloc(sizeof(*info), GFP_KERNEL);
1813 if (!info)
1814 return;
1815
1816 info->addr_source = "hardcoded";
1817
1818 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1819 info->si_type = SI_KCS;
1820 } else if (strcmp(si_type[i], "smic") == 0) {
1821 info->si_type = SI_SMIC;
1822 } else if (strcmp(si_type[i], "bt") == 0) {
1823 info->si_type = SI_BT;
1824 } else {
1825 printk(KERN_WARNING
1826 "ipmi_si: Interface type specified "
1827 "for interface %d, was invalid: %s\n",
1828 i, si_type[i]);
1829 kfree(info);
1830 continue;
1831 }
1832
1833 if (ports[i]) {
1834 /* An I/O port */
1835 info->io_setup = port_setup;
1836 info->io.addr_data = ports[i];
1837 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1838 } else if (addrs[i]) {
1839 /* A memory port */
1840 info->io_setup = mem_setup;
1841 info->io.addr_data = addrs[i];
1842 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1843 } else {
1844 printk(KERN_WARNING
1845 "ipmi_si: Interface type specified "
1846 "for interface %d, "
1847 "but port and address were not set or "
1848 "set to zero.\n", i);
1849 kfree(info);
1850 continue;
1851 }
1852
1853 info->io.addr = NULL;
1854 info->io.regspacing = regspacings[i];
1855 if (!info->io.regspacing)
1856 info->io.regspacing = DEFAULT_REGSPACING;
1857 info->io.regsize = regsizes[i];
1858 if (!info->io.regsize)
1859 info->io.regsize = DEFAULT_REGSPACING;
1860 info->io.regshift = regshifts[i];
1861 info->irq = irqs[i];
1862 if (info->irq)
1863 info->irq_setup = std_irq_setup;
1864 info->slave_addr = slave_addrs[i];
1865
1866 try_smi_init(info);
1867 }
1868 }
1869
1870 #ifdef CONFIG_ACPI
1871
1872 #include <linux/acpi.h>
1873
1874 /*
1875 * Once we get an ACPI failure, we don't try any more, because we go
1876 * through the tables sequentially. Once we don't find a table, there
1877 * are no more.
1878 */
1879 static int acpi_failure;
1880
1881 /* For GPE-type interrupts. */
1882 static u32 ipmi_acpi_gpe(void *context)
1883 {
1884 struct smi_info *smi_info = context;
1885 unsigned long flags;
1886 #ifdef DEBUG_TIMING
1887 struct timeval t;
1888 #endif
1889
1890 spin_lock_irqsave(&(smi_info->si_lock), flags);
1891
1892 smi_inc_stat(smi_info, interrupts);
1893
1894 #ifdef DEBUG_TIMING
1895 do_gettimeofday(&t);
1896 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1897 #endif
1898 smi_event_handler(smi_info, 0);
1899 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1900
1901 return ACPI_INTERRUPT_HANDLED;
1902 }
1903
1904 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1905 {
1906 if (!info->irq)
1907 return;
1908
1909 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1910 }
1911
1912 static int acpi_gpe_irq_setup(struct smi_info *info)
1913 {
1914 acpi_status status;
1915
1916 if (!info->irq)
1917 return 0;
1918
1919 /* FIXME - is level triggered right? */
1920 status = acpi_install_gpe_handler(NULL,
1921 info->irq,
1922 ACPI_GPE_LEVEL_TRIGGERED,
1923 &ipmi_acpi_gpe,
1924 info);
1925 if (status != AE_OK) {
1926 printk(KERN_WARNING
1927 "ipmi_si: %s unable to claim ACPI GPE %d,"
1928 " running polled\n",
1929 DEVICE_NAME, info->irq);
1930 info->irq = 0;
1931 return -EINVAL;
1932 } else {
1933 info->irq_cleanup = acpi_gpe_irq_cleanup;
1934 printk(" Using ACPI GPE %d\n", info->irq);
1935 return 0;
1936 }
1937 }
1938
1939 /*
1940 * Defined at
1941 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1942 * Docs/TechPapers/IA64/hpspmi.pdf
1943 */
1944 struct SPMITable {
1945 s8 Signature[4];
1946 u32 Length;
1947 u8 Revision;
1948 u8 Checksum;
1949 s8 OEMID[6];
1950 s8 OEMTableID[8];
1951 s8 OEMRevision[4];
1952 s8 CreatorID[4];
1953 s8 CreatorRevision[4];
1954 u8 InterfaceType;
1955 u8 IPMIlegacy;
1956 s16 SpecificationRevision;
1957
1958 /*
1959 * Bit 0 - SCI interrupt supported
1960 * Bit 1 - I/O APIC/SAPIC
1961 */
1962 u8 InterruptType;
1963
1964 /*
1965 * If bit 0 of InterruptType is set, then this is the SCI
1966 * interrupt in the GPEx_STS register.
1967 */
1968 u8 GPE;
1969
1970 s16 Reserved;
1971
1972 /*
1973 * If bit 1 of InterruptType is set, then this is the I/O
1974 * APIC/SAPIC interrupt.
1975 */
1976 u32 GlobalSystemInterrupt;
1977
1978 /* The actual register address. */
1979 struct acpi_generic_address addr;
1980
1981 u8 UID[4];
1982
1983 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1984 };
1985
1986 static __devinit int try_init_spmi(struct SPMITable *spmi)
1987 {
1988 struct smi_info *info;
1989 u8 addr_space;
1990
1991 if (spmi->IPMIlegacy != 1) {
1992 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1993 return -ENODEV;
1994 }
1995
1996 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1997 addr_space = IPMI_MEM_ADDR_SPACE;
1998 else
1999 addr_space = IPMI_IO_ADDR_SPACE;
2000
2001 info = kzalloc(sizeof(*info), GFP_KERNEL);
2002 if (!info) {
2003 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2004 return -ENOMEM;
2005 }
2006
2007 info->addr_source = "SPMI";
2008
2009 /* Figure out the interface type. */
2010 switch (spmi->InterfaceType) {
2011 case 1: /* KCS */
2012 info->si_type = SI_KCS;
2013 break;
2014 case 2: /* SMIC */
2015 info->si_type = SI_SMIC;
2016 break;
2017 case 3: /* BT */
2018 info->si_type = SI_BT;
2019 break;
2020 default:
2021 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2022 spmi->InterfaceType);
2023 kfree(info);
2024 return -EIO;
2025 }
2026
2027 if (spmi->InterruptType & 1) {
2028 /* We've got a GPE interrupt. */
2029 info->irq = spmi->GPE;
2030 info->irq_setup = acpi_gpe_irq_setup;
2031 } else if (spmi->InterruptType & 2) {
2032 /* We've got an APIC/SAPIC interrupt. */
2033 info->irq = spmi->GlobalSystemInterrupt;
2034 info->irq_setup = std_irq_setup;
2035 } else {
2036 /* Use the default interrupt setting. */
2037 info->irq = 0;
2038 info->irq_setup = NULL;
2039 }
2040
2041 if (spmi->addr.bit_width) {
2042 /* A (hopefully) properly formed register bit width. */
2043 info->io.regspacing = spmi->addr.bit_width / 8;
2044 } else {
2045 info->io.regspacing = DEFAULT_REGSPACING;
2046 }
2047 info->io.regsize = info->io.regspacing;
2048 info->io.regshift = spmi->addr.bit_offset;
2049
2050 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2051 info->io_setup = mem_setup;
2052 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2053 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2054 info->io_setup = port_setup;
2055 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2056 } else {
2057 kfree(info);
2058 printk(KERN_WARNING
2059 "ipmi_si: Unknown ACPI I/O Address type\n");
2060 return -EIO;
2061 }
2062 info->io.addr_data = spmi->addr.address;
2063
2064 try_smi_init(info);
2065
2066 return 0;
2067 }
2068
2069 static __devinit void spmi_find_bmc(void)
2070 {
2071 acpi_status status;
2072 struct SPMITable *spmi;
2073 int i;
2074
2075 if (acpi_disabled)
2076 return;
2077
2078 if (acpi_failure)
2079 return;
2080
2081 for (i = 0; ; i++) {
2082 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2083 (struct acpi_table_header **)&spmi);
2084 if (status != AE_OK)
2085 return;
2086
2087 try_init_spmi(spmi);
2088 }
2089 }
2090
2091 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2092 const struct pnp_device_id *dev_id)
2093 {
2094 struct acpi_device *acpi_dev;
2095 struct smi_info *info;
2096 acpi_handle handle;
2097 acpi_status status;
2098 unsigned long long tmp;
2099
2100 acpi_dev = pnp_acpi_device(dev);
2101 if (!acpi_dev)
2102 return -ENODEV;
2103
2104 info = kzalloc(sizeof(*info), GFP_KERNEL);
2105 if (!info)
2106 return -ENOMEM;
2107
2108 info->addr_source = "ACPI";
2109
2110 handle = acpi_dev->handle;
2111
2112 /* _IFT tells us the interface type: KCS, BT, etc */
2113 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2114 if (ACPI_FAILURE(status))
2115 goto err_free;
2116
2117 switch (tmp) {
2118 case 1:
2119 info->si_type = SI_KCS;
2120 break;
2121 case 2:
2122 info->si_type = SI_SMIC;
2123 break;
2124 case 3:
2125 info->si_type = SI_BT;
2126 break;
2127 default:
2128 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2129 goto err_free;
2130 }
2131
2132 if (pnp_port_valid(dev, 0)) {
2133 info->io_setup = port_setup;
2134 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2135 info->io.addr_data = pnp_port_start(dev, 0);
2136 } else if (pnp_mem_valid(dev, 0)) {
2137 info->io_setup = mem_setup;
2138 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2139 info->io.addr_data = pnp_mem_start(dev, 0);
2140 } else {
2141 dev_err(&dev->dev, "no I/O or memory address\n");
2142 goto err_free;
2143 }
2144
2145 info->io.regspacing = DEFAULT_REGSPACING;
2146 info->io.regsize = DEFAULT_REGSPACING;
2147 info->io.regshift = 0;
2148
2149 /* If _GPE exists, use it; otherwise use standard interrupts */
2150 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2151 if (ACPI_SUCCESS(status)) {
2152 info->irq = tmp;
2153 info->irq_setup = acpi_gpe_irq_setup;
2154 } else if (pnp_irq_valid(dev, 0)) {
2155 info->irq = pnp_irq(dev, 0);
2156 info->irq_setup = std_irq_setup;
2157 }
2158
2159 info->dev = &acpi_dev->dev;
2160 pnp_set_drvdata(dev, info);
2161
2162 return try_smi_init(info);
2163
2164 err_free:
2165 kfree(info);
2166 return -EINVAL;
2167 }
2168
2169 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2170 {
2171 struct smi_info *info = pnp_get_drvdata(dev);
2172
2173 cleanup_one_si(info);
2174 }
2175
2176 static const struct pnp_device_id pnp_dev_table[] = {
2177 {"IPI0001", 0},
2178 {"", 0},
2179 };
2180
2181 static struct pnp_driver ipmi_pnp_driver = {
2182 .name = DEVICE_NAME,
2183 .probe = ipmi_pnp_probe,
2184 .remove = __devexit_p(ipmi_pnp_remove),
2185 .id_table = pnp_dev_table,
2186 };
2187 #endif
2188
2189 #ifdef CONFIG_DMI
2190 struct dmi_ipmi_data {
2191 u8 type;
2192 u8 addr_space;
2193 unsigned long base_addr;
2194 u8 irq;
2195 u8 offset;
2196 u8 slave_addr;
2197 };
2198
2199 static int __devinit decode_dmi(const struct dmi_header *dm,
2200 struct dmi_ipmi_data *dmi)
2201 {
2202 const u8 *data = (const u8 *)dm;
2203 unsigned long base_addr;
2204 u8 reg_spacing;
2205 u8 len = dm->length;
2206
2207 dmi->type = data[4];
2208
2209 memcpy(&base_addr, data+8, sizeof(unsigned long));
2210 if (len >= 0x11) {
2211 if (base_addr & 1) {
2212 /* I/O */
2213 base_addr &= 0xFFFE;
2214 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2215 } else
2216 /* Memory */
2217 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2218
2219 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2220 is odd. */
2221 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2222
2223 dmi->irq = data[0x11];
2224
2225 /* The top two bits of byte 0x10 hold the register spacing. */
2226 reg_spacing = (data[0x10] & 0xC0) >> 6;
2227 switch (reg_spacing) {
2228 case 0x00: /* Byte boundaries */
2229 dmi->offset = 1;
2230 break;
2231 case 0x01: /* 32-bit boundaries */
2232 dmi->offset = 4;
2233 break;
2234 case 0x02: /* 16-byte boundaries */
2235 dmi->offset = 16;
2236 break;
2237 default:
2238 /* Some other interface, just ignore it. */
2239 return -EIO;
2240 }
2241 } else {
2242 /* Old DMI spec. */
2243 /*
2244 * Note that technically, the lower bit of the base
2245 * address should be 1 if the address is I/O and 0 if
2246 * the address is in memory. So many systems get that
2247 * wrong (and all that I have seen are I/O) so we just
2248 * ignore that bit and assume I/O. Systems that use
2249 * memory should use the newer spec, anyway.
2250 */
2251 dmi->base_addr = base_addr & 0xfffe;
2252 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2253 dmi->offset = 1;
2254 }
2255
2256 dmi->slave_addr = data[6];
2257
2258 return 0;
2259 }
2260
2261 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2262 {
2263 struct smi_info *info;
2264
2265 info = kzalloc(sizeof(*info), GFP_KERNEL);
2266 if (!info) {
2267 printk(KERN_ERR
2268 "ipmi_si: Could not allocate SI data\n");
2269 return;
2270 }
2271
2272 info->addr_source = "SMBIOS";
2273
2274 switch (ipmi_data->type) {
2275 case 0x01: /* KCS */
2276 info->si_type = SI_KCS;
2277 break;
2278 case 0x02: /* SMIC */
2279 info->si_type = SI_SMIC;
2280 break;
2281 case 0x03: /* BT */
2282 info->si_type = SI_BT;
2283 break;
2284 default:
2285 kfree(info);
2286 return;
2287 }
2288
2289 switch (ipmi_data->addr_space) {
2290 case IPMI_MEM_ADDR_SPACE:
2291 info->io_setup = mem_setup;
2292 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2293 break;
2294
2295 case IPMI_IO_ADDR_SPACE:
2296 info->io_setup = port_setup;
2297 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2298 break;
2299
2300 default:
2301 kfree(info);
2302 printk(KERN_WARNING
2303 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2304 ipmi_data->addr_space);
2305 return;
2306 }
2307 info->io.addr_data = ipmi_data->base_addr;
2308
2309 info->io.regspacing = ipmi_data->offset;
2310 if (!info->io.regspacing)
2311 info->io.regspacing = DEFAULT_REGSPACING;
2312 info->io.regsize = DEFAULT_REGSPACING;
2313 info->io.regshift = 0;
2314
2315 info->slave_addr = ipmi_data->slave_addr;
2316
2317 info->irq = ipmi_data->irq;
2318 if (info->irq)
2319 info->irq_setup = std_irq_setup;
2320
2321 try_smi_init(info);
2322 }
2323
2324 static void __devinit dmi_find_bmc(void)
2325 {
2326 const struct dmi_device *dev = NULL;
2327 struct dmi_ipmi_data data;
2328 int rv;
2329
2330 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2331 memset(&data, 0, sizeof(data));
2332 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2333 &data);
2334 if (!rv)
2335 try_init_dmi(&data);
2336 }
2337 }
2338 #endif /* CONFIG_DMI */
2339
2340 #ifdef CONFIG_PCI
2341
2342 #define PCI_ERMC_CLASSCODE 0x0C0700
2343 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2344 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2345 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2346 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2347 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2348
2349 #define PCI_HP_VENDOR_ID 0x103C
2350 #define PCI_MMC_DEVICE_ID 0x121A
2351 #define PCI_MMC_ADDR_CW 0x10
2352
2353 static void ipmi_pci_cleanup(struct smi_info *info)
2354 {
2355 struct pci_dev *pdev = info->addr_source_data;
2356
2357 pci_disable_device(pdev);
2358 }
2359
2360 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2361 const struct pci_device_id *ent)
2362 {
2363 int rv;
2364 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2365 struct smi_info *info;
2366
2367 info = kzalloc(sizeof(*info), GFP_KERNEL);
2368 if (!info)
2369 return -ENOMEM;
2370
2371 info->addr_source = "PCI";
2372
2373 switch (class_type) {
2374 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2375 info->si_type = SI_SMIC;
2376 break;
2377
2378 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2379 info->si_type = SI_KCS;
2380 break;
2381
2382 case PCI_ERMC_CLASSCODE_TYPE_BT:
2383 info->si_type = SI_BT;
2384 break;
2385
2386 default:
2387 kfree(info);
2388 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2389 pci_name(pdev), class_type);
2390 return -ENOMEM;
2391 }
2392
2393 rv = pci_enable_device(pdev);
2394 if (rv) {
2395 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2396 pci_name(pdev));
2397 kfree(info);
2398 return rv;
2399 }
2400
2401 info->addr_source_cleanup = ipmi_pci_cleanup;
2402 info->addr_source_data = pdev;
2403
2404 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2405 info->io_setup = port_setup;
2406 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2407 } else {
2408 info->io_setup = mem_setup;
2409 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2410 }
2411 info->io.addr_data = pci_resource_start(pdev, 0);
2412
2413 info->io.regspacing = DEFAULT_REGSPACING;
2414 info->io.regsize = DEFAULT_REGSPACING;
2415 info->io.regshift = 0;
2416
2417 info->irq = pdev->irq;
2418 if (info->irq)
2419 info->irq_setup = std_irq_setup;
2420
2421 info->dev = &pdev->dev;
2422 pci_set_drvdata(pdev, info);
2423
2424 return try_smi_init(info);
2425 }
2426
2427 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2428 {
2429 struct smi_info *info = pci_get_drvdata(pdev);
2430 cleanup_one_si(info);
2431 }
2432
2433 #ifdef CONFIG_PM
2434 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2435 {
2436 return 0;
2437 }
2438
2439 static int ipmi_pci_resume(struct pci_dev *pdev)
2440 {
2441 return 0;
2442 }
2443 #endif
2444
2445 static struct pci_device_id ipmi_pci_devices[] = {
2446 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2447 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2448 { 0, }
2449 };
2450 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2451
2452 static struct pci_driver ipmi_pci_driver = {
2453 .name = DEVICE_NAME,
2454 .id_table = ipmi_pci_devices,
2455 .probe = ipmi_pci_probe,
2456 .remove = __devexit_p(ipmi_pci_remove),
2457 #ifdef CONFIG_PM
2458 .suspend = ipmi_pci_suspend,
2459 .resume = ipmi_pci_resume,
2460 #endif
2461 };
2462 #endif /* CONFIG_PCI */
2463
2464
2465 #ifdef CONFIG_PPC_OF
2466 static int __devinit ipmi_of_probe(struct of_device *dev,
2467 const struct of_device_id *match)
2468 {
2469 struct smi_info *info;
2470 struct resource resource;
2471 const int *regsize, *regspacing, *regshift;
2472 struct device_node *np = dev->node;
2473 int ret;
2474 int proplen;
2475
2476 dev_info(&dev->dev, PFX "probing via device tree\n");
2477
2478 ret = of_address_to_resource(np, 0, &resource);
2479 if (ret) {
2480 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2481 return ret;
2482 }
2483
2484 regsize = of_get_property(np, "reg-size", &proplen);
2485 if (regsize && proplen != 4) {
2486 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2487 return -EINVAL;
2488 }
2489
2490 regspacing = of_get_property(np, "reg-spacing", &proplen);
2491 if (regspacing && proplen != 4) {
2492 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2493 return -EINVAL;
2494 }
2495
2496 regshift = of_get_property(np, "reg-shift", &proplen);
2497 if (regshift && proplen != 4) {
2498 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2499 return -EINVAL;
2500 }
2501
2502 info = kzalloc(sizeof(*info), GFP_KERNEL);
2503
2504 if (!info) {
2505 dev_err(&dev->dev,
2506 PFX "could not allocate memory for OF probe\n");
2507 return -ENOMEM;
2508 }
2509
2510 info->si_type = (enum si_type) match->data;
2511 info->addr_source = "device-tree";
2512 info->irq_setup = std_irq_setup;
2513
2514 if (resource.flags & IORESOURCE_IO) {
2515 info->io_setup = port_setup;
2516 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2517 } else {
2518 info->io_setup = mem_setup;
2519 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2520 }
2521
2522 info->io.addr_data = resource.start;
2523
2524 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2525 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2526 info->io.regshift = regshift ? *regshift : 0;
2527
2528 info->irq = irq_of_parse_and_map(dev->node, 0);
2529 info->dev = &dev->dev;
2530
2531 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2532 info->io.addr_data, info->io.regsize, info->io.regspacing,
2533 info->irq);
2534
2535 dev_set_drvdata(&dev->dev, info);
2536
2537 return try_smi_init(info);
2538 }
2539
2540 static int __devexit ipmi_of_remove(struct of_device *dev)
2541 {
2542 cleanup_one_si(dev_get_drvdata(&dev->dev));
2543 return 0;
2544 }
2545
2546 static struct of_device_id ipmi_match[] =
2547 {
2548 { .type = "ipmi", .compatible = "ipmi-kcs",
2549 .data = (void *)(unsigned long) SI_KCS },
2550 { .type = "ipmi", .compatible = "ipmi-smic",
2551 .data = (void *)(unsigned long) SI_SMIC },
2552 { .type = "ipmi", .compatible = "ipmi-bt",
2553 .data = (void *)(unsigned long) SI_BT },
2554 {},
2555 };
2556
2557 static struct of_platform_driver ipmi_of_platform_driver = {
2558 .name = "ipmi",
2559 .match_table = ipmi_match,
2560 .probe = ipmi_of_probe,
2561 .remove = __devexit_p(ipmi_of_remove),
2562 };
2563 #endif /* CONFIG_PPC_OF */
2564
2565 static int wait_for_msg_done(struct smi_info *smi_info)
2566 {
2567 enum si_sm_result smi_result;
2568
2569 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2570 for (;;) {
2571 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2572 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2573 schedule_timeout_uninterruptible(1);
2574 smi_result = smi_info->handlers->event(
2575 smi_info->si_sm, 100);
2576 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2577 smi_result = smi_info->handlers->event(
2578 smi_info->si_sm, 0);
2579 } else
2580 break;
2581 }
2582 if (smi_result == SI_SM_HOSED)
2583 /*
2584 * We couldn't get the state machine to run, so whatever's at
2585 * the port is probably not an IPMI SMI interface.
2586 */
2587 return -ENODEV;
2588
2589 return 0;
2590 }
2591
2592 static int try_get_dev_id(struct smi_info *smi_info)
2593 {
2594 unsigned char msg[2];
2595 unsigned char *resp;
2596 unsigned long resp_len;
2597 int rv = 0;
2598
2599 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2600 if (!resp)
2601 return -ENOMEM;
2602
2603 /*
2604 * Do a Get Device ID command, since it comes back with some
2605 * useful info.
2606 */
2607 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2608 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2609 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2610
2611 rv = wait_for_msg_done(smi_info);
2612 if (rv)
2613 goto out;
2614
2615 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2616 resp, IPMI_MAX_MSG_LENGTH);
2617
2618 /* Check and record info from the get device id, in case we need it. */
2619 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2620
2621 out:
2622 kfree(resp);
2623 return rv;
2624 }
2625
2626 static int try_enable_event_buffer(struct smi_info *smi_info)
2627 {
2628 unsigned char msg[3];
2629 unsigned char *resp;
2630 unsigned long resp_len;
2631 int rv = 0;
2632
2633 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2634 if (!resp)
2635 return -ENOMEM;
2636
2637 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2638 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2639 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2640
2641 rv = wait_for_msg_done(smi_info);
2642 if (rv) {
2643 printk(KERN_WARNING
2644 "ipmi_si: Error getting response from get global,"
2645 " enables command, the event buffer is not"
2646 " enabled.\n");
2647 goto out;
2648 }
2649
2650 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2651 resp, IPMI_MAX_MSG_LENGTH);
2652
2653 if (resp_len < 4 ||
2654 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2655 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2656 resp[2] != 0) {
2657 printk(KERN_WARNING
2658 "ipmi_si: Invalid return from get global"
2659 " enables command, cannot enable the event"
2660 " buffer.\n");
2661 rv = -EINVAL;
2662 goto out;
2663 }
2664
2665 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2666 /* buffer is already enabled, nothing to do. */
2667 goto out;
2668
2669 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2670 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2671 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2672 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2673
2674 rv = wait_for_msg_done(smi_info);
2675 if (rv) {
2676 printk(KERN_WARNING
2677 "ipmi_si: Error getting response from set global,"
2678 " enables command, the event buffer is not"
2679 " enabled.\n");
2680 goto out;
2681 }
2682
2683 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2684 resp, IPMI_MAX_MSG_LENGTH);
2685
2686 if (resp_len < 3 ||
2687 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2688 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2689 printk(KERN_WARNING
2690 "ipmi_si: Invalid return from get global,"
2691 "enables command, not enable the event"
2692 " buffer.\n");
2693 rv = -EINVAL;
2694 goto out;
2695 }
2696
2697 if (resp[2] != 0)
2698 /*
2699 * An error when setting the event buffer bit means
2700 * that the event buffer is not supported.
2701 */
2702 rv = -ENOENT;
2703 out:
2704 kfree(resp);
2705 return rv;
2706 }
2707
2708 static int type_file_read_proc(char *page, char **start, off_t off,
2709 int count, int *eof, void *data)
2710 {
2711 struct smi_info *smi = data;
2712
2713 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2714 }
2715
2716 static int stat_file_read_proc(char *page, char **start, off_t off,
2717 int count, int *eof, void *data)
2718 {
2719 char *out = (char *) page;
2720 struct smi_info *smi = data;
2721
2722 out += sprintf(out, "interrupts_enabled: %d\n",
2723 smi->irq && !smi->interrupt_disabled);
2724 out += sprintf(out, "short_timeouts: %u\n",
2725 smi_get_stat(smi, short_timeouts));
2726 out += sprintf(out, "long_timeouts: %u\n",
2727 smi_get_stat(smi, long_timeouts));
2728 out += sprintf(out, "idles: %u\n",
2729 smi_get_stat(smi, idles));
2730 out += sprintf(out, "interrupts: %u\n",
2731 smi_get_stat(smi, interrupts));
2732 out += sprintf(out, "attentions: %u\n",
2733 smi_get_stat(smi, attentions));
2734 out += sprintf(out, "flag_fetches: %u\n",
2735 smi_get_stat(smi, flag_fetches));
2736 out += sprintf(out, "hosed_count: %u\n",
2737 smi_get_stat(smi, hosed_count));
2738 out += sprintf(out, "complete_transactions: %u\n",
2739 smi_get_stat(smi, complete_transactions));
2740 out += sprintf(out, "events: %u\n",
2741 smi_get_stat(smi, events));
2742 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2743 smi_get_stat(smi, watchdog_pretimeouts));
2744 out += sprintf(out, "incoming_messages: %u\n",
2745 smi_get_stat(smi, incoming_messages));
2746
2747 return out - page;
2748 }
2749
2750 static int param_read_proc(char *page, char **start, off_t off,
2751 int count, int *eof, void *data)
2752 {
2753 struct smi_info *smi = data;
2754
2755 return sprintf(page,
2756 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2757 si_to_str[smi->si_type],
2758 addr_space_to_str[smi->io.addr_type],
2759 smi->io.addr_data,
2760 smi->io.regspacing,
2761 smi->io.regsize,
2762 smi->io.regshift,
2763 smi->irq,
2764 smi->slave_addr);
2765 }
2766
2767 /*
2768 * oem_data_avail_to_receive_msg_avail
2769 * @info - smi_info structure with msg_flags set
2770 *
2771 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2772 * Returns 1 indicating need to re-run handle_flags().
2773 */
2774 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2775 {
2776 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2777 RECEIVE_MSG_AVAIL);
2778 return 1;
2779 }
2780
2781 /*
2782 * setup_dell_poweredge_oem_data_handler
2783 * @info - smi_info.device_id must be populated
2784 *
2785 * Systems that match, but have firmware version < 1.40 may assert
2786 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2787 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2788 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2789 * as RECEIVE_MSG_AVAIL instead.
2790 *
2791 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2792 * assert the OEM[012] bits, and if it did, the driver would have to
2793 * change to handle that properly, we don't actually check for the
2794 * firmware version.
2795 * Device ID = 0x20 BMC on PowerEdge 8G servers
2796 * Device Revision = 0x80
2797 * Firmware Revision1 = 0x01 BMC version 1.40
2798 * Firmware Revision2 = 0x40 BCD encoded
2799 * IPMI Version = 0x51 IPMI 1.5
2800 * Manufacturer ID = A2 02 00 Dell IANA
2801 *
2802 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2803 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2804 *
2805 */
2806 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2807 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2808 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2809 #define DELL_IANA_MFR_ID 0x0002a2
2810 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2811 {
2812 struct ipmi_device_id *id = &smi_info->device_id;
2813 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2814 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2815 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2816 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2817 smi_info->oem_data_avail_handler =
2818 oem_data_avail_to_receive_msg_avail;
2819 } else if (ipmi_version_major(id) < 1 ||
2820 (ipmi_version_major(id) == 1 &&
2821 ipmi_version_minor(id) < 5)) {
2822 smi_info->oem_data_avail_handler =
2823 oem_data_avail_to_receive_msg_avail;
2824 }
2825 }
2826 }
2827
2828 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2829 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2830 {
2831 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2832
2833 /* Make it a reponse */
2834 msg->rsp[0] = msg->data[0] | 4;
2835 msg->rsp[1] = msg->data[1];
2836 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2837 msg->rsp_size = 3;
2838 smi_info->curr_msg = NULL;
2839 deliver_recv_msg(smi_info, msg);
2840 }
2841
2842 /*
2843 * dell_poweredge_bt_xaction_handler
2844 * @info - smi_info.device_id must be populated
2845 *
2846 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2847 * not respond to a Get SDR command if the length of the data
2848 * requested is exactly 0x3A, which leads to command timeouts and no
2849 * data returned. This intercepts such commands, and causes userspace
2850 * callers to try again with a different-sized buffer, which succeeds.
2851 */
2852
2853 #define STORAGE_NETFN 0x0A
2854 #define STORAGE_CMD_GET_SDR 0x23
2855 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2856 unsigned long unused,
2857 void *in)
2858 {
2859 struct smi_info *smi_info = in;
2860 unsigned char *data = smi_info->curr_msg->data;
2861 unsigned int size = smi_info->curr_msg->data_size;
2862 if (size >= 8 &&
2863 (data[0]>>2) == STORAGE_NETFN &&
2864 data[1] == STORAGE_CMD_GET_SDR &&
2865 data[7] == 0x3A) {
2866 return_hosed_msg_badsize(smi_info);
2867 return NOTIFY_STOP;
2868 }
2869 return NOTIFY_DONE;
2870 }
2871
2872 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2873 .notifier_call = dell_poweredge_bt_xaction_handler,
2874 };
2875
2876 /*
2877 * setup_dell_poweredge_bt_xaction_handler
2878 * @info - smi_info.device_id must be filled in already
2879 *
2880 * Fills in smi_info.device_id.start_transaction_pre_hook
2881 * when we know what function to use there.
2882 */
2883 static void
2884 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2885 {
2886 struct ipmi_device_id *id = &smi_info->device_id;
2887 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2888 smi_info->si_type == SI_BT)
2889 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2890 }
2891
2892 /*
2893 * setup_oem_data_handler
2894 * @info - smi_info.device_id must be filled in already
2895 *
2896 * Fills in smi_info.device_id.oem_data_available_handler
2897 * when we know what function to use there.
2898 */
2899
2900 static void setup_oem_data_handler(struct smi_info *smi_info)
2901 {
2902 setup_dell_poweredge_oem_data_handler(smi_info);
2903 }
2904
2905 static void setup_xaction_handlers(struct smi_info *smi_info)
2906 {
2907 setup_dell_poweredge_bt_xaction_handler(smi_info);
2908 }
2909
2910 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2911 {
2912 if (smi_info->intf) {
2913 /*
2914 * The timer and thread are only running if the
2915 * interface has been started up and registered.
2916 */
2917 if (smi_info->thread != NULL)
2918 kthread_stop(smi_info->thread);
2919 del_timer_sync(&smi_info->si_timer);
2920 }
2921 }
2922
2923 static __devinitdata struct ipmi_default_vals
2924 {
2925 int type;
2926 int port;
2927 } ipmi_defaults[] =
2928 {
2929 { .type = SI_KCS, .port = 0xca2 },
2930 { .type = SI_SMIC, .port = 0xca9 },
2931 { .type = SI_BT, .port = 0xe4 },
2932 { .port = 0 }
2933 };
2934
2935 static __devinit void default_find_bmc(void)
2936 {
2937 struct smi_info *info;
2938 int i;
2939
2940 for (i = 0; ; i++) {
2941 if (!ipmi_defaults[i].port)
2942 break;
2943 #ifdef CONFIG_PPC
2944 if (check_legacy_ioport(ipmi_defaults[i].port))
2945 continue;
2946 #endif
2947 info = kzalloc(sizeof(*info), GFP_KERNEL);
2948 if (!info)
2949 return;
2950
2951 info->addr_source = NULL;
2952
2953 info->si_type = ipmi_defaults[i].type;
2954 info->io_setup = port_setup;
2955 info->io.addr_data = ipmi_defaults[i].port;
2956 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2957
2958 info->io.addr = NULL;
2959 info->io.regspacing = DEFAULT_REGSPACING;
2960 info->io.regsize = DEFAULT_REGSPACING;
2961 info->io.regshift = 0;
2962
2963 if (try_smi_init(info) == 0) {
2964 /* Found one... */
2965 printk(KERN_INFO "ipmi_si: Found default %s state"
2966 " machine at %s address 0x%lx\n",
2967 si_to_str[info->si_type],
2968 addr_space_to_str[info->io.addr_type],
2969 info->io.addr_data);
2970 return;
2971 }
2972 }
2973 }
2974
2975 static int is_new_interface(struct smi_info *info)
2976 {
2977 struct smi_info *e;
2978
2979 list_for_each_entry(e, &smi_infos, link) {
2980 if (e->io.addr_type != info->io.addr_type)
2981 continue;
2982 if (e->io.addr_data == info->io.addr_data)
2983 return 0;
2984 }
2985
2986 return 1;
2987 }
2988
2989 static int try_smi_init(struct smi_info *new_smi)
2990 {
2991 int rv;
2992 int i;
2993
2994 if (new_smi->addr_source) {
2995 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2996 " machine at %s address 0x%lx, slave address 0x%x,"
2997 " irq %d\n",
2998 new_smi->addr_source,
2999 si_to_str[new_smi->si_type],
3000 addr_space_to_str[new_smi->io.addr_type],
3001 new_smi->io.addr_data,
3002 new_smi->slave_addr, new_smi->irq);
3003 }
3004
3005 mutex_lock(&smi_infos_lock);
3006 if (!is_new_interface(new_smi)) {
3007 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
3008 rv = -EBUSY;
3009 goto out_err;
3010 }
3011
3012 /* So we know not to free it unless we have allocated one. */
3013 new_smi->intf = NULL;
3014 new_smi->si_sm = NULL;
3015 new_smi->handlers = NULL;
3016
3017 switch (new_smi->si_type) {
3018 case SI_KCS:
3019 new_smi->handlers = &kcs_smi_handlers;
3020 break;
3021
3022 case SI_SMIC:
3023 new_smi->handlers = &smic_smi_handlers;
3024 break;
3025
3026 case SI_BT:
3027 new_smi->handlers = &bt_smi_handlers;
3028 break;
3029
3030 default:
3031 /* No support for anything else yet. */
3032 rv = -EIO;
3033 goto out_err;
3034 }
3035
3036 /* Allocate the state machine's data and initialize it. */
3037 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3038 if (!new_smi->si_sm) {
3039 printk(KERN_ERR "Could not allocate state machine memory\n");
3040 rv = -ENOMEM;
3041 goto out_err;
3042 }
3043 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3044 &new_smi->io);
3045
3046 /* Now that we know the I/O size, we can set up the I/O. */
3047 rv = new_smi->io_setup(new_smi);
3048 if (rv) {
3049 printk(KERN_ERR "Could not set up I/O space\n");
3050 goto out_err;
3051 }
3052
3053 spin_lock_init(&(new_smi->si_lock));
3054 spin_lock_init(&(new_smi->msg_lock));
3055
3056 /* Do low-level detection first. */
3057 if (new_smi->handlers->detect(new_smi->si_sm)) {
3058 if (new_smi->addr_source)
3059 printk(KERN_INFO "ipmi_si: Interface detection"
3060 " failed\n");
3061 rv = -ENODEV;
3062 goto out_err;
3063 }
3064
3065 /*
3066 * Attempt a get device id command. If it fails, we probably
3067 * don't have a BMC here.
3068 */
3069 rv = try_get_dev_id(new_smi);
3070 if (rv) {
3071 if (new_smi->addr_source)
3072 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3073 " at this location\n");
3074 goto out_err;
3075 }
3076
3077 setup_oem_data_handler(new_smi);
3078 setup_xaction_handlers(new_smi);
3079
3080 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3081 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3082 new_smi->curr_msg = NULL;
3083 atomic_set(&new_smi->req_events, 0);
3084 new_smi->run_to_completion = 0;
3085 for (i = 0; i < SI_NUM_STATS; i++)
3086 atomic_set(&new_smi->stats[i], 0);
3087
3088 new_smi->interrupt_disabled = 0;
3089 atomic_set(&new_smi->stop_operation, 0);
3090 new_smi->intf_num = smi_num;
3091 smi_num++;
3092
3093 rv = try_enable_event_buffer(new_smi);
3094 if (rv == 0)
3095 new_smi->has_event_buffer = 1;
3096
3097 /*
3098 * Start clearing the flags before we enable interrupts or the
3099 * timer to avoid racing with the timer.
3100 */
3101 start_clear_flags(new_smi);
3102 /* IRQ is defined to be set when non-zero. */
3103 if (new_smi->irq)
3104 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3105
3106 if (!new_smi->dev) {
3107 /*
3108 * If we don't already have a device from something
3109 * else (like PCI), then register a new one.
3110 */
3111 new_smi->pdev = platform_device_alloc("ipmi_si",
3112 new_smi->intf_num);
3113 if (!new_smi->pdev) {
3114 printk(KERN_ERR
3115 "ipmi_si_intf:"
3116 " Unable to allocate platform device\n");
3117 goto out_err;
3118 }
3119 new_smi->dev = &new_smi->pdev->dev;
3120 new_smi->dev->driver = &ipmi_driver.driver;
3121
3122 rv = platform_device_add(new_smi->pdev);
3123 if (rv) {
3124 printk(KERN_ERR
3125 "ipmi_si_intf:"
3126 " Unable to register system interface device:"
3127 " %d\n",
3128 rv);
3129 goto out_err;
3130 }
3131 new_smi->dev_registered = 1;
3132 }
3133
3134 rv = ipmi_register_smi(&handlers,
3135 new_smi,
3136 &new_smi->device_id,
3137 new_smi->dev,
3138 "bmc",
3139 new_smi->slave_addr);
3140 if (rv) {
3141 printk(KERN_ERR
3142 "ipmi_si: Unable to register device: error %d\n",
3143 rv);
3144 goto out_err_stop_timer;
3145 }
3146
3147 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3148 type_file_read_proc,
3149 new_smi);
3150 if (rv) {
3151 printk(KERN_ERR
3152 "ipmi_si: Unable to create proc entry: %d\n",
3153 rv);
3154 goto out_err_stop_timer;
3155 }
3156
3157 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3158 stat_file_read_proc,
3159 new_smi);
3160 if (rv) {
3161 printk(KERN_ERR
3162 "ipmi_si: Unable to create proc entry: %d\n",
3163 rv);
3164 goto out_err_stop_timer;
3165 }
3166
3167 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3168 param_read_proc,
3169 new_smi);
3170 if (rv) {
3171 printk(KERN_ERR
3172 "ipmi_si: Unable to create proc entry: %d\n",
3173 rv);
3174 goto out_err_stop_timer;
3175 }
3176
3177 list_add_tail(&new_smi->link, &smi_infos);
3178
3179 mutex_unlock(&smi_infos_lock);
3180
3181 printk(KERN_INFO "IPMI %s interface initialized\n",
3182 si_to_str[new_smi->si_type]);
3183
3184 return 0;
3185
3186 out_err_stop_timer:
3187 atomic_inc(&new_smi->stop_operation);
3188 wait_for_timer_and_thread(new_smi);
3189
3190 out_err:
3191 if (new_smi->intf)
3192 ipmi_unregister_smi(new_smi->intf);
3193
3194 if (new_smi->irq_cleanup)
3195 new_smi->irq_cleanup(new_smi);
3196
3197 /*
3198 * Wait until we know that we are out of any interrupt
3199 * handlers might have been running before we freed the
3200 * interrupt.
3201 */
3202 synchronize_sched();
3203
3204 if (new_smi->si_sm) {
3205 if (new_smi->handlers)
3206 new_smi->handlers->cleanup(new_smi->si_sm);
3207 kfree(new_smi->si_sm);
3208 }
3209 if (new_smi->addr_source_cleanup)
3210 new_smi->addr_source_cleanup(new_smi);
3211 if (new_smi->io_cleanup)
3212 new_smi->io_cleanup(new_smi);
3213
3214 if (new_smi->dev_registered)
3215 platform_device_unregister(new_smi->pdev);
3216
3217 kfree(new_smi);
3218
3219 mutex_unlock(&smi_infos_lock);
3220
3221 return rv;
3222 }
3223
3224 static __devinit int init_ipmi_si(void)
3225 {
3226 int i;
3227 char *str;
3228 int rv;
3229
3230 if (initialized)
3231 return 0;
3232 initialized = 1;
3233
3234 /* Register the device drivers. */
3235 rv = driver_register(&ipmi_driver.driver);
3236 if (rv) {
3237 printk(KERN_ERR
3238 "init_ipmi_si: Unable to register driver: %d\n",
3239 rv);
3240 return rv;
3241 }
3242
3243
3244 /* Parse out the si_type string into its components. */
3245 str = si_type_str;
3246 if (*str != '\0') {
3247 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3248 si_type[i] = str;
3249 str = strchr(str, ',');
3250 if (str) {
3251 *str = '\0';
3252 str++;
3253 } else {
3254 break;
3255 }
3256 }
3257 }
3258
3259 printk(KERN_INFO "IPMI System Interface driver.\n");
3260
3261 hardcode_find_bmc();
3262
3263 #ifdef CONFIG_DMI
3264 dmi_find_bmc();
3265 #endif
3266
3267 #ifdef CONFIG_ACPI
3268 spmi_find_bmc();
3269 #endif
3270 #ifdef CONFIG_ACPI
3271 pnp_register_driver(&ipmi_pnp_driver);
3272 #endif
3273
3274 #ifdef CONFIG_PCI
3275 rv = pci_register_driver(&ipmi_pci_driver);
3276 if (rv)
3277 printk(KERN_ERR
3278 "init_ipmi_si: Unable to register PCI driver: %d\n",
3279 rv);
3280 #endif
3281
3282 #ifdef CONFIG_PPC_OF
3283 of_register_platform_driver(&ipmi_of_platform_driver);
3284 #endif
3285
3286 if (si_trydefaults) {
3287 mutex_lock(&smi_infos_lock);
3288 if (list_empty(&smi_infos)) {
3289 /* No BMC was found, try defaults. */
3290 mutex_unlock(&smi_infos_lock);
3291 default_find_bmc();
3292 } else {
3293 mutex_unlock(&smi_infos_lock);
3294 }
3295 }
3296
3297 mutex_lock(&smi_infos_lock);
3298 if (unload_when_empty && list_empty(&smi_infos)) {
3299 mutex_unlock(&smi_infos_lock);
3300 #ifdef CONFIG_PCI
3301 pci_unregister_driver(&ipmi_pci_driver);
3302 #endif
3303
3304 #ifdef CONFIG_PPC_OF
3305 of_unregister_platform_driver(&ipmi_of_platform_driver);
3306 #endif
3307 driver_unregister(&ipmi_driver.driver);
3308 printk(KERN_WARNING
3309 "ipmi_si: Unable to find any System Interface(s)\n");
3310 return -ENODEV;
3311 } else {
3312 mutex_unlock(&smi_infos_lock);
3313 return 0;
3314 }
3315 }
3316 module_init(init_ipmi_si);
3317
3318 static void cleanup_one_si(struct smi_info *to_clean)
3319 {
3320 int rv;
3321 unsigned long flags;
3322
3323 if (!to_clean)
3324 return;
3325
3326 list_del(&to_clean->link);
3327
3328 /* Tell the driver that we are shutting down. */
3329 atomic_inc(&to_clean->stop_operation);
3330
3331 /*
3332 * Make sure the timer and thread are stopped and will not run
3333 * again.
3334 */
3335 wait_for_timer_and_thread(to_clean);
3336
3337 /*
3338 * Timeouts are stopped, now make sure the interrupts are off
3339 * for the device. A little tricky with locks to make sure
3340 * there are no races.
3341 */
3342 spin_lock_irqsave(&to_clean->si_lock, flags);
3343 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3344 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3345 poll(to_clean);
3346 schedule_timeout_uninterruptible(1);
3347 spin_lock_irqsave(&to_clean->si_lock, flags);
3348 }
3349 disable_si_irq(to_clean);
3350 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3351 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3352 poll(to_clean);
3353 schedule_timeout_uninterruptible(1);
3354 }
3355
3356 /* Clean up interrupts and make sure that everything is done. */
3357 if (to_clean->irq_cleanup)
3358 to_clean->irq_cleanup(to_clean);
3359 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3360 poll(to_clean);
3361 schedule_timeout_uninterruptible(1);
3362 }
3363
3364 rv = ipmi_unregister_smi(to_clean->intf);
3365 if (rv) {
3366 printk(KERN_ERR
3367 "ipmi_si: Unable to unregister device: errno=%d\n",
3368 rv);
3369 }
3370
3371 to_clean->handlers->cleanup(to_clean->si_sm);
3372
3373 kfree(to_clean->si_sm);
3374
3375 if (to_clean->addr_source_cleanup)
3376 to_clean->addr_source_cleanup(to_clean);
3377 if (to_clean->io_cleanup)
3378 to_clean->io_cleanup(to_clean);
3379
3380 if (to_clean->dev_registered)
3381 platform_device_unregister(to_clean->pdev);
3382
3383 kfree(to_clean);
3384 }
3385
3386 static __exit void cleanup_ipmi_si(void)
3387 {
3388 struct smi_info *e, *tmp_e;
3389
3390 if (!initialized)
3391 return;
3392
3393 #ifdef CONFIG_PCI
3394 pci_unregister_driver(&ipmi_pci_driver);
3395 #endif
3396 #ifdef CONFIG_ACPI
3397 pnp_unregister_driver(&ipmi_pnp_driver);
3398 #endif
3399
3400 #ifdef CONFIG_PPC_OF
3401 of_unregister_platform_driver(&ipmi_of_platform_driver);
3402 #endif
3403
3404 mutex_lock(&smi_infos_lock);
3405 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3406 cleanup_one_si(e);
3407 mutex_unlock(&smi_infos_lock);
3408
3409 driver_unregister(&ipmi_driver.driver);
3410 }
3411 module_exit(cleanup_ipmi_si);
3412
3413 MODULE_LICENSE("GPL");
3414 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3415 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3416 " system interfaces.");
This page took 0.227866 seconds and 5 git commands to generate.