55fe9020459f2c4bdcec710a90220b2ea32e54db
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC 10000
84 #define SI_USEC_PER_JIFFY (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
87 short timeout */
88
89 enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
94 SI_GETTING_MESSAGES,
95 SI_CHECKING_ENABLES,
96 SI_SETTING_ENABLES
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 #define DEVICE_NAME "ipmi_si"
111
112 static struct platform_driver ipmi_driver;
113
114 /*
115 * Indexes into stats[] in smi_info below.
116 */
117 enum si_stat_indexes {
118 /*
119 * Number of times the driver requested a timer while an operation
120 * was in progress.
121 */
122 SI_STAT_short_timeouts = 0,
123
124 /*
125 * Number of times the driver requested a timer while nothing was in
126 * progress.
127 */
128 SI_STAT_long_timeouts,
129
130 /* Number of times the interface was idle while being polled. */
131 SI_STAT_idles,
132
133 /* Number of interrupts the driver handled. */
134 SI_STAT_interrupts,
135
136 /* Number of time the driver got an ATTN from the hardware. */
137 SI_STAT_attentions,
138
139 /* Number of times the driver requested flags from the hardware. */
140 SI_STAT_flag_fetches,
141
142 /* Number of times the hardware didn't follow the state machine. */
143 SI_STAT_hosed_count,
144
145 /* Number of completed messages. */
146 SI_STAT_complete_transactions,
147
148 /* Number of IPMI events received from the hardware. */
149 SI_STAT_events,
150
151 /* Number of watchdog pretimeouts. */
152 SI_STAT_watchdog_pretimeouts,
153
154 /* Number of asynchronous messages received. */
155 SI_STAT_incoming_messages,
156
157
158 /* This *must* remain last, add new values above this. */
159 SI_NUM_STATS
160 };
161
162 struct smi_info {
163 int intf_num;
164 ipmi_smi_t intf;
165 struct si_sm_data *si_sm;
166 const struct si_sm_handlers *handlers;
167 enum si_type si_type;
168 spinlock_t si_lock;
169 struct ipmi_smi_msg *waiting_msg;
170 struct ipmi_smi_msg *curr_msg;
171 enum si_intf_state si_state;
172
173 /*
174 * Used to handle the various types of I/O that can occur with
175 * IPMI
176 */
177 struct si_sm_io io;
178 int (*io_setup)(struct smi_info *info);
179 void (*io_cleanup)(struct smi_info *info);
180 int (*irq_setup)(struct smi_info *info);
181 void (*irq_cleanup)(struct smi_info *info);
182 unsigned int io_size;
183 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184 void (*addr_source_cleanup)(struct smi_info *info);
185 void *addr_source_data;
186
187 /*
188 * Per-OEM handler, called from handle_flags(). Returns 1
189 * when handle_flags() needs to be re-run or 0 indicating it
190 * set si_state itself.
191 */
192 int (*oem_data_avail_handler)(struct smi_info *smi_info);
193
194 /*
195 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196 * is set to hold the flags until we are done handling everything
197 * from the flags.
198 */
199 #define RECEIVE_MSG_AVAIL 0x01
200 #define EVENT_MSG_BUFFER_FULL 0x02
201 #define WDT_PRE_TIMEOUT_INT 0x08
202 #define OEM0_DATA_AVAIL 0x20
203 #define OEM1_DATA_AVAIL 0x40
204 #define OEM2_DATA_AVAIL 0x80
205 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
206 OEM1_DATA_AVAIL | \
207 OEM2_DATA_AVAIL)
208 unsigned char msg_flags;
209
210 /* Does the BMC have an event buffer? */
211 bool has_event_buffer;
212
213 /*
214 * If set to true, this will request events the next time the
215 * state machine is idle.
216 */
217 atomic_t req_events;
218
219 /*
220 * If true, run the state machine to completion on every send
221 * call. Generally used after a panic to make sure stuff goes
222 * out.
223 */
224 bool run_to_completion;
225
226 /* The I/O port of an SI interface. */
227 int port;
228
229 /*
230 * The space between start addresses of the two ports. For
231 * instance, if the first port is 0xca2 and the spacing is 4, then
232 * the second port is 0xca6.
233 */
234 unsigned int spacing;
235
236 /* zero if no irq; */
237 int irq;
238
239 /* The timer for this si. */
240 struct timer_list si_timer;
241
242 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
243 bool timer_running;
244
245 /* The time (in jiffies) the last timeout occurred at. */
246 unsigned long last_timeout_jiffies;
247
248 /* Are we waiting for the events, pretimeouts, received msgs? */
249 atomic_t need_watch;
250
251 /*
252 * The driver will disable interrupts when it gets into a
253 * situation where it cannot handle messages due to lack of
254 * memory. Once that situation clears up, it will re-enable
255 * interrupts.
256 */
257 bool interrupt_disabled;
258
259 /*
260 * Does the BMC support events?
261 */
262 bool supports_event_msg_buff;
263
264 /*
265 * Can we disable interrupts the global enables receive irq
266 * bit? There are currently two forms of brokenness, some
267 * systems cannot disable the bit (which is technically within
268 * the spec but a bad idea) and some systems have the bit
269 * forced to zero even though interrupts work (which is
270 * clearly outside the spec). The next bool tells which form
271 * of brokenness is present.
272 */
273 bool cannot_disable_irq;
274
275 /*
276 * Some systems are broken and cannot set the irq enable
277 * bit, even if they support interrupts.
278 */
279 bool irq_enable_broken;
280
281 /*
282 * Did we get an attention that we did not handle?
283 */
284 bool got_attn;
285
286 /* From the get device id response... */
287 struct ipmi_device_id device_id;
288
289 /* Driver model stuff. */
290 struct device *dev;
291 struct platform_device *pdev;
292
293 /*
294 * True if we allocated the device, false if it came from
295 * someplace else (like PCI).
296 */
297 bool dev_registered;
298
299 /* Slave address, could be reported from DMI. */
300 unsigned char slave_addr;
301
302 /* Counters and things for the proc filesystem. */
303 atomic_t stats[SI_NUM_STATS];
304
305 struct task_struct *thread;
306
307 struct list_head link;
308 union ipmi_smi_info_union addr_info;
309 };
310
311 #define smi_inc_stat(smi, stat) \
312 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
313 #define smi_get_stat(smi, stat) \
314 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
315
316 #define SI_MAX_PARMS 4
317
318 static int force_kipmid[SI_MAX_PARMS];
319 static int num_force_kipmid;
320 #ifdef CONFIG_PCI
321 static bool pci_registered;
322 #endif
323 #ifdef CONFIG_PARISC
324 static bool parisc_registered;
325 #endif
326
327 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
328 static int num_max_busy_us;
329
330 static bool unload_when_empty = true;
331
332 static int add_smi(struct smi_info *smi);
333 static int try_smi_init(struct smi_info *smi);
334 static void cleanup_one_si(struct smi_info *to_clean);
335 static void cleanup_ipmi_si(void);
336
337 #ifdef DEBUG_TIMING
338 void debug_timestamp(char *msg)
339 {
340 struct timespec64 t;
341
342 getnstimeofday64(&t);
343 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
344 }
345 #else
346 #define debug_timestamp(x)
347 #endif
348
349 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
350 static int register_xaction_notifier(struct notifier_block *nb)
351 {
352 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
353 }
354
355 static void deliver_recv_msg(struct smi_info *smi_info,
356 struct ipmi_smi_msg *msg)
357 {
358 /* Deliver the message to the upper layer. */
359 if (smi_info->intf)
360 ipmi_smi_msg_received(smi_info->intf, msg);
361 else
362 ipmi_free_smi_msg(msg);
363 }
364
365 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
366 {
367 struct ipmi_smi_msg *msg = smi_info->curr_msg;
368
369 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
370 cCode = IPMI_ERR_UNSPECIFIED;
371 /* else use it as is */
372
373 /* Make it a response */
374 msg->rsp[0] = msg->data[0] | 4;
375 msg->rsp[1] = msg->data[1];
376 msg->rsp[2] = cCode;
377 msg->rsp_size = 3;
378
379 smi_info->curr_msg = NULL;
380 deliver_recv_msg(smi_info, msg);
381 }
382
383 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
384 {
385 int rv;
386
387 if (!smi_info->waiting_msg) {
388 smi_info->curr_msg = NULL;
389 rv = SI_SM_IDLE;
390 } else {
391 int err;
392
393 smi_info->curr_msg = smi_info->waiting_msg;
394 smi_info->waiting_msg = NULL;
395 debug_timestamp("Start2");
396 err = atomic_notifier_call_chain(&xaction_notifier_list,
397 0, smi_info);
398 if (err & NOTIFY_STOP_MASK) {
399 rv = SI_SM_CALL_WITHOUT_DELAY;
400 goto out;
401 }
402 err = smi_info->handlers->start_transaction(
403 smi_info->si_sm,
404 smi_info->curr_msg->data,
405 smi_info->curr_msg->data_size);
406 if (err)
407 return_hosed_msg(smi_info, err);
408
409 rv = SI_SM_CALL_WITHOUT_DELAY;
410 }
411 out:
412 return rv;
413 }
414
415 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
416 {
417 smi_info->last_timeout_jiffies = jiffies;
418 mod_timer(&smi_info->si_timer, new_val);
419 smi_info->timer_running = true;
420 }
421
422 /*
423 * Start a new message and (re)start the timer and thread.
424 */
425 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
426 unsigned int size)
427 {
428 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
429
430 if (smi_info->thread)
431 wake_up_process(smi_info->thread);
432
433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
434 }
435
436 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
437 {
438 unsigned char msg[2];
439
440 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442
443 if (start_timer)
444 start_new_msg(smi_info, msg, 2);
445 else
446 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
447 smi_info->si_state = SI_CHECKING_ENABLES;
448 }
449
450 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
451 {
452 unsigned char msg[3];
453
454 /* Make sure the watchdog pre-timeout flag is not set at startup. */
455 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
456 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
457 msg[2] = WDT_PRE_TIMEOUT_INT;
458
459 if (start_timer)
460 start_new_msg(smi_info, msg, 3);
461 else
462 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
463 smi_info->si_state = SI_CLEARING_FLAGS;
464 }
465
466 static void start_getting_msg_queue(struct smi_info *smi_info)
467 {
468 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
469 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
470 smi_info->curr_msg->data_size = 2;
471
472 start_new_msg(smi_info, smi_info->curr_msg->data,
473 smi_info->curr_msg->data_size);
474 smi_info->si_state = SI_GETTING_MESSAGES;
475 }
476
477 static void start_getting_events(struct smi_info *smi_info)
478 {
479 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
480 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
481 smi_info->curr_msg->data_size = 2;
482
483 start_new_msg(smi_info, smi_info->curr_msg->data,
484 smi_info->curr_msg->data_size);
485 smi_info->si_state = SI_GETTING_EVENTS;
486 }
487
488 /*
489 * When we have a situtaion where we run out of memory and cannot
490 * allocate messages, we just leave them in the BMC and run the system
491 * polled until we can allocate some memory. Once we have some
492 * memory, we will re-enable the interrupt.
493 *
494 * Note that we cannot just use disable_irq(), since the interrupt may
495 * be shared.
496 */
497 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
498 {
499 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
500 smi_info->interrupt_disabled = true;
501 start_check_enables(smi_info, start_timer);
502 return true;
503 }
504 return false;
505 }
506
507 static inline bool enable_si_irq(struct smi_info *smi_info)
508 {
509 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
510 smi_info->interrupt_disabled = false;
511 start_check_enables(smi_info, true);
512 return true;
513 }
514 return false;
515 }
516
517 /*
518 * Allocate a message. If unable to allocate, start the interrupt
519 * disable process and return NULL. If able to allocate but
520 * interrupts are disabled, free the message and return NULL after
521 * starting the interrupt enable process.
522 */
523 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
524 {
525 struct ipmi_smi_msg *msg;
526
527 msg = ipmi_alloc_smi_msg();
528 if (!msg) {
529 if (!disable_si_irq(smi_info, true))
530 smi_info->si_state = SI_NORMAL;
531 } else if (enable_si_irq(smi_info)) {
532 ipmi_free_smi_msg(msg);
533 msg = NULL;
534 }
535 return msg;
536 }
537
538 static void handle_flags(struct smi_info *smi_info)
539 {
540 retry:
541 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
542 /* Watchdog pre-timeout */
543 smi_inc_stat(smi_info, watchdog_pretimeouts);
544
545 start_clear_flags(smi_info, true);
546 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
547 if (smi_info->intf)
548 ipmi_smi_watchdog_pretimeout(smi_info->intf);
549 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
550 /* Messages available. */
551 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
552 if (!smi_info->curr_msg)
553 return;
554
555 start_getting_msg_queue(smi_info);
556 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
557 /* Events available. */
558 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
559 if (!smi_info->curr_msg)
560 return;
561
562 start_getting_events(smi_info);
563 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
564 smi_info->oem_data_avail_handler) {
565 if (smi_info->oem_data_avail_handler(smi_info))
566 goto retry;
567 } else
568 smi_info->si_state = SI_NORMAL;
569 }
570
571 /*
572 * Global enables we care about.
573 */
574 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
575 IPMI_BMC_EVT_MSG_INTR)
576
577 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
578 bool *irq_on)
579 {
580 u8 enables = 0;
581
582 if (smi_info->supports_event_msg_buff)
583 enables |= IPMI_BMC_EVT_MSG_BUFF;
584
585 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
586 smi_info->cannot_disable_irq) &&
587 !smi_info->irq_enable_broken)
588 enables |= IPMI_BMC_RCV_MSG_INTR;
589
590 if (smi_info->supports_event_msg_buff &&
591 smi_info->irq && !smi_info->interrupt_disabled &&
592 !smi_info->irq_enable_broken)
593 enables |= IPMI_BMC_EVT_MSG_INTR;
594
595 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
596
597 return enables;
598 }
599
600 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
601 {
602 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
603
604 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
605
606 if ((bool)irqstate == irq_on)
607 return;
608
609 if (irq_on)
610 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
611 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
612 else
613 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
614 }
615
616 static void handle_transaction_done(struct smi_info *smi_info)
617 {
618 struct ipmi_smi_msg *msg;
619
620 debug_timestamp("Done");
621 switch (smi_info->si_state) {
622 case SI_NORMAL:
623 if (!smi_info->curr_msg)
624 break;
625
626 smi_info->curr_msg->rsp_size
627 = smi_info->handlers->get_result(
628 smi_info->si_sm,
629 smi_info->curr_msg->rsp,
630 IPMI_MAX_MSG_LENGTH);
631
632 /*
633 * Do this here becase deliver_recv_msg() releases the
634 * lock, and a new message can be put in during the
635 * time the lock is released.
636 */
637 msg = smi_info->curr_msg;
638 smi_info->curr_msg = NULL;
639 deliver_recv_msg(smi_info, msg);
640 break;
641
642 case SI_GETTING_FLAGS:
643 {
644 unsigned char msg[4];
645 unsigned int len;
646
647 /* We got the flags from the SMI, now handle them. */
648 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
649 if (msg[2] != 0) {
650 /* Error fetching flags, just give up for now. */
651 smi_info->si_state = SI_NORMAL;
652 } else if (len < 4) {
653 /*
654 * Hmm, no flags. That's technically illegal, but
655 * don't use uninitialized data.
656 */
657 smi_info->si_state = SI_NORMAL;
658 } else {
659 smi_info->msg_flags = msg[3];
660 handle_flags(smi_info);
661 }
662 break;
663 }
664
665 case SI_CLEARING_FLAGS:
666 {
667 unsigned char msg[3];
668
669 /* We cleared the flags. */
670 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
671 if (msg[2] != 0) {
672 /* Error clearing flags */
673 dev_warn(smi_info->dev,
674 "Error clearing flags: %2.2x\n", msg[2]);
675 }
676 smi_info->si_state = SI_NORMAL;
677 break;
678 }
679
680 case SI_GETTING_EVENTS:
681 {
682 smi_info->curr_msg->rsp_size
683 = smi_info->handlers->get_result(
684 smi_info->si_sm,
685 smi_info->curr_msg->rsp,
686 IPMI_MAX_MSG_LENGTH);
687
688 /*
689 * Do this here becase deliver_recv_msg() releases the
690 * lock, and a new message can be put in during the
691 * time the lock is released.
692 */
693 msg = smi_info->curr_msg;
694 smi_info->curr_msg = NULL;
695 if (msg->rsp[2] != 0) {
696 /* Error getting event, probably done. */
697 msg->done(msg);
698
699 /* Take off the event flag. */
700 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
701 handle_flags(smi_info);
702 } else {
703 smi_inc_stat(smi_info, events);
704
705 /*
706 * Do this before we deliver the message
707 * because delivering the message releases the
708 * lock and something else can mess with the
709 * state.
710 */
711 handle_flags(smi_info);
712
713 deliver_recv_msg(smi_info, msg);
714 }
715 break;
716 }
717
718 case SI_GETTING_MESSAGES:
719 {
720 smi_info->curr_msg->rsp_size
721 = smi_info->handlers->get_result(
722 smi_info->si_sm,
723 smi_info->curr_msg->rsp,
724 IPMI_MAX_MSG_LENGTH);
725
726 /*
727 * Do this here becase deliver_recv_msg() releases the
728 * lock, and a new message can be put in during the
729 * time the lock is released.
730 */
731 msg = smi_info->curr_msg;
732 smi_info->curr_msg = NULL;
733 if (msg->rsp[2] != 0) {
734 /* Error getting event, probably done. */
735 msg->done(msg);
736
737 /* Take off the msg flag. */
738 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
739 handle_flags(smi_info);
740 } else {
741 smi_inc_stat(smi_info, incoming_messages);
742
743 /*
744 * Do this before we deliver the message
745 * because delivering the message releases the
746 * lock and something else can mess with the
747 * state.
748 */
749 handle_flags(smi_info);
750
751 deliver_recv_msg(smi_info, msg);
752 }
753 break;
754 }
755
756 case SI_CHECKING_ENABLES:
757 {
758 unsigned char msg[4];
759 u8 enables;
760 bool irq_on;
761
762 /* We got the flags from the SMI, now handle them. */
763 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
764 if (msg[2] != 0) {
765 dev_warn(smi_info->dev,
766 "Couldn't get irq info: %x.\n", msg[2]);
767 dev_warn(smi_info->dev,
768 "Maybe ok, but ipmi might run very slowly.\n");
769 smi_info->si_state = SI_NORMAL;
770 break;
771 }
772 enables = current_global_enables(smi_info, 0, &irq_on);
773 if (smi_info->si_type == SI_BT)
774 /* BT has its own interrupt enable bit. */
775 check_bt_irq(smi_info, irq_on);
776 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
777 /* Enables are not correct, fix them. */
778 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
779 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
780 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
781 smi_info->handlers->start_transaction(
782 smi_info->si_sm, msg, 3);
783 smi_info->si_state = SI_SETTING_ENABLES;
784 } else if (smi_info->supports_event_msg_buff) {
785 smi_info->curr_msg = ipmi_alloc_smi_msg();
786 if (!smi_info->curr_msg) {
787 smi_info->si_state = SI_NORMAL;
788 break;
789 }
790 start_getting_msg_queue(smi_info);
791 } else {
792 smi_info->si_state = SI_NORMAL;
793 }
794 break;
795 }
796
797 case SI_SETTING_ENABLES:
798 {
799 unsigned char msg[4];
800
801 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
802 if (msg[2] != 0)
803 dev_warn(smi_info->dev,
804 "Could not set the global enables: 0x%x.\n",
805 msg[2]);
806
807 if (smi_info->supports_event_msg_buff) {
808 smi_info->curr_msg = ipmi_alloc_smi_msg();
809 if (!smi_info->curr_msg) {
810 smi_info->si_state = SI_NORMAL;
811 break;
812 }
813 start_getting_msg_queue(smi_info);
814 } else {
815 smi_info->si_state = SI_NORMAL;
816 }
817 break;
818 }
819 }
820 }
821
822 /*
823 * Called on timeouts and events. Timeouts should pass the elapsed
824 * time, interrupts should pass in zero. Must be called with
825 * si_lock held and interrupts disabled.
826 */
827 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
828 int time)
829 {
830 enum si_sm_result si_sm_result;
831
832 restart:
833 /*
834 * There used to be a loop here that waited a little while
835 * (around 25us) before giving up. That turned out to be
836 * pointless, the minimum delays I was seeing were in the 300us
837 * range, which is far too long to wait in an interrupt. So
838 * we just run until the state machine tells us something
839 * happened or it needs a delay.
840 */
841 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
842 time = 0;
843 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
844 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
845
846 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
847 smi_inc_stat(smi_info, complete_transactions);
848
849 handle_transaction_done(smi_info);
850 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
851 } else if (si_sm_result == SI_SM_HOSED) {
852 smi_inc_stat(smi_info, hosed_count);
853
854 /*
855 * Do the before return_hosed_msg, because that
856 * releases the lock.
857 */
858 smi_info->si_state = SI_NORMAL;
859 if (smi_info->curr_msg != NULL) {
860 /*
861 * If we were handling a user message, format
862 * a response to send to the upper layer to
863 * tell it about the error.
864 */
865 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
866 }
867 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
868 }
869
870 /*
871 * We prefer handling attn over new messages. But don't do
872 * this if there is not yet an upper layer to handle anything.
873 */
874 if (likely(smi_info->intf) &&
875 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
876 unsigned char msg[2];
877
878 if (smi_info->si_state != SI_NORMAL) {
879 /*
880 * We got an ATTN, but we are doing something else.
881 * Handle the ATTN later.
882 */
883 smi_info->got_attn = true;
884 } else {
885 smi_info->got_attn = false;
886 smi_inc_stat(smi_info, attentions);
887
888 /*
889 * Got a attn, send down a get message flags to see
890 * what's causing it. It would be better to handle
891 * this in the upper layer, but due to the way
892 * interrupts work with the SMI, that's not really
893 * possible.
894 */
895 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
896 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
897
898 start_new_msg(smi_info, msg, 2);
899 smi_info->si_state = SI_GETTING_FLAGS;
900 goto restart;
901 }
902 }
903
904 /* If we are currently idle, try to start the next message. */
905 if (si_sm_result == SI_SM_IDLE) {
906 smi_inc_stat(smi_info, idles);
907
908 si_sm_result = start_next_msg(smi_info);
909 if (si_sm_result != SI_SM_IDLE)
910 goto restart;
911 }
912
913 if ((si_sm_result == SI_SM_IDLE)
914 && (atomic_read(&smi_info->req_events))) {
915 /*
916 * We are idle and the upper layer requested that I fetch
917 * events, so do so.
918 */
919 atomic_set(&smi_info->req_events, 0);
920
921 /*
922 * Take this opportunity to check the interrupt and
923 * message enable state for the BMC. The BMC can be
924 * asynchronously reset, and may thus get interrupts
925 * disable and messages disabled.
926 */
927 if (smi_info->supports_event_msg_buff || smi_info->irq) {
928 start_check_enables(smi_info, true);
929 } else {
930 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
931 if (!smi_info->curr_msg)
932 goto out;
933
934 start_getting_events(smi_info);
935 }
936 goto restart;
937 }
938
939 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
940 /* Ok it if fails, the timer will just go off. */
941 if (del_timer(&smi_info->si_timer))
942 smi_info->timer_running = false;
943 }
944
945 out:
946 return si_sm_result;
947 }
948
949 static void check_start_timer_thread(struct smi_info *smi_info)
950 {
951 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
952 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
953
954 if (smi_info->thread)
955 wake_up_process(smi_info->thread);
956
957 start_next_msg(smi_info);
958 smi_event_handler(smi_info, 0);
959 }
960 }
961
962 static void flush_messages(void *send_info)
963 {
964 struct smi_info *smi_info = send_info;
965 enum si_sm_result result;
966
967 /*
968 * Currently, this function is called only in run-to-completion
969 * mode. This means we are single-threaded, no need for locks.
970 */
971 result = smi_event_handler(smi_info, 0);
972 while (result != SI_SM_IDLE) {
973 udelay(SI_SHORT_TIMEOUT_USEC);
974 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
975 }
976 }
977
978 static void sender(void *send_info,
979 struct ipmi_smi_msg *msg)
980 {
981 struct smi_info *smi_info = send_info;
982 unsigned long flags;
983
984 debug_timestamp("Enqueue");
985
986 if (smi_info->run_to_completion) {
987 /*
988 * If we are running to completion, start it. Upper
989 * layer will call flush_messages to clear it out.
990 */
991 smi_info->waiting_msg = msg;
992 return;
993 }
994
995 spin_lock_irqsave(&smi_info->si_lock, flags);
996 /*
997 * The following two lines don't need to be under the lock for
998 * the lock's sake, but they do need SMP memory barriers to
999 * avoid getting things out of order. We are already claiming
1000 * the lock, anyway, so just do it under the lock to avoid the
1001 * ordering problem.
1002 */
1003 BUG_ON(smi_info->waiting_msg);
1004 smi_info->waiting_msg = msg;
1005 check_start_timer_thread(smi_info);
1006 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1007 }
1008
1009 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1010 {
1011 struct smi_info *smi_info = send_info;
1012
1013 smi_info->run_to_completion = i_run_to_completion;
1014 if (i_run_to_completion)
1015 flush_messages(smi_info);
1016 }
1017
1018 /*
1019 * Use -1 in the nsec value of the busy waiting timespec to tell that
1020 * we are spinning in kipmid looking for something and not delaying
1021 * between checks
1022 */
1023 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1024 {
1025 ts->tv_nsec = -1;
1026 }
1027 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1028 {
1029 return ts->tv_nsec != -1;
1030 }
1031
1032 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1033 const struct smi_info *smi_info,
1034 struct timespec64 *busy_until)
1035 {
1036 unsigned int max_busy_us = 0;
1037
1038 if (smi_info->intf_num < num_max_busy_us)
1039 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1040 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1041 ipmi_si_set_not_busy(busy_until);
1042 else if (!ipmi_si_is_busy(busy_until)) {
1043 getnstimeofday64(busy_until);
1044 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1045 } else {
1046 struct timespec64 now;
1047
1048 getnstimeofday64(&now);
1049 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1050 ipmi_si_set_not_busy(busy_until);
1051 return 0;
1052 }
1053 }
1054 return 1;
1055 }
1056
1057
1058 /*
1059 * A busy-waiting loop for speeding up IPMI operation.
1060 *
1061 * Lousy hardware makes this hard. This is only enabled for systems
1062 * that are not BT and do not have interrupts. It starts spinning
1063 * when an operation is complete or until max_busy tells it to stop
1064 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1065 * Documentation/IPMI.txt for details.
1066 */
1067 static int ipmi_thread(void *data)
1068 {
1069 struct smi_info *smi_info = data;
1070 unsigned long flags;
1071 enum si_sm_result smi_result;
1072 struct timespec64 busy_until;
1073
1074 ipmi_si_set_not_busy(&busy_until);
1075 set_user_nice(current, MAX_NICE);
1076 while (!kthread_should_stop()) {
1077 int busy_wait;
1078
1079 spin_lock_irqsave(&(smi_info->si_lock), flags);
1080 smi_result = smi_event_handler(smi_info, 0);
1081
1082 /*
1083 * If the driver is doing something, there is a possible
1084 * race with the timer. If the timer handler see idle,
1085 * and the thread here sees something else, the timer
1086 * handler won't restart the timer even though it is
1087 * required. So start it here if necessary.
1088 */
1089 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1090 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1091
1092 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1093 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1094 &busy_until);
1095 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1096 ; /* do nothing */
1097 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1098 schedule();
1099 else if (smi_result == SI_SM_IDLE) {
1100 if (atomic_read(&smi_info->need_watch)) {
1101 schedule_timeout_interruptible(100);
1102 } else {
1103 /* Wait to be woken up when we are needed. */
1104 __set_current_state(TASK_INTERRUPTIBLE);
1105 schedule();
1106 }
1107 } else
1108 schedule_timeout_interruptible(1);
1109 }
1110 return 0;
1111 }
1112
1113
1114 static void poll(void *send_info)
1115 {
1116 struct smi_info *smi_info = send_info;
1117 unsigned long flags = 0;
1118 bool run_to_completion = smi_info->run_to_completion;
1119
1120 /*
1121 * Make sure there is some delay in the poll loop so we can
1122 * drive time forward and timeout things.
1123 */
1124 udelay(10);
1125 if (!run_to_completion)
1126 spin_lock_irqsave(&smi_info->si_lock, flags);
1127 smi_event_handler(smi_info, 10);
1128 if (!run_to_completion)
1129 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1130 }
1131
1132 static void request_events(void *send_info)
1133 {
1134 struct smi_info *smi_info = send_info;
1135
1136 if (!smi_info->has_event_buffer)
1137 return;
1138
1139 atomic_set(&smi_info->req_events, 1);
1140 }
1141
1142 static void set_need_watch(void *send_info, bool enable)
1143 {
1144 struct smi_info *smi_info = send_info;
1145 unsigned long flags;
1146
1147 atomic_set(&smi_info->need_watch, enable);
1148 spin_lock_irqsave(&smi_info->si_lock, flags);
1149 check_start_timer_thread(smi_info);
1150 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1151 }
1152
1153 static int initialized;
1154
1155 static void smi_timeout(unsigned long data)
1156 {
1157 struct smi_info *smi_info = (struct smi_info *) data;
1158 enum si_sm_result smi_result;
1159 unsigned long flags;
1160 unsigned long jiffies_now;
1161 long time_diff;
1162 long timeout;
1163
1164 spin_lock_irqsave(&(smi_info->si_lock), flags);
1165 debug_timestamp("Timer");
1166
1167 jiffies_now = jiffies;
1168 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1169 * SI_USEC_PER_JIFFY);
1170 smi_result = smi_event_handler(smi_info, time_diff);
1171
1172 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1173 /* Running with interrupts, only do long timeouts. */
1174 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1175 smi_inc_stat(smi_info, long_timeouts);
1176 goto do_mod_timer;
1177 }
1178
1179 /*
1180 * If the state machine asks for a short delay, then shorten
1181 * the timer timeout.
1182 */
1183 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1184 smi_inc_stat(smi_info, short_timeouts);
1185 timeout = jiffies + 1;
1186 } else {
1187 smi_inc_stat(smi_info, long_timeouts);
1188 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1189 }
1190
1191 do_mod_timer:
1192 if (smi_result != SI_SM_IDLE)
1193 smi_mod_timer(smi_info, timeout);
1194 else
1195 smi_info->timer_running = false;
1196 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1197 }
1198
1199 static irqreturn_t si_irq_handler(int irq, void *data)
1200 {
1201 struct smi_info *smi_info = data;
1202 unsigned long flags;
1203
1204 spin_lock_irqsave(&(smi_info->si_lock), flags);
1205
1206 smi_inc_stat(smi_info, interrupts);
1207
1208 debug_timestamp("Interrupt");
1209
1210 smi_event_handler(smi_info, 0);
1211 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1212 return IRQ_HANDLED;
1213 }
1214
1215 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1216 {
1217 struct smi_info *smi_info = data;
1218 /* We need to clear the IRQ flag for the BT interface. */
1219 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1220 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1221 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1222 return si_irq_handler(irq, data);
1223 }
1224
1225 static int smi_start_processing(void *send_info,
1226 ipmi_smi_t intf)
1227 {
1228 struct smi_info *new_smi = send_info;
1229 int enable = 0;
1230
1231 new_smi->intf = intf;
1232
1233 /* Try to claim any interrupts. */
1234 if (new_smi->irq_setup)
1235 new_smi->irq_setup(new_smi);
1236
1237 /* Set up the timer that drives the interface. */
1238 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1239 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1240
1241 /*
1242 * Check if the user forcefully enabled the daemon.
1243 */
1244 if (new_smi->intf_num < num_force_kipmid)
1245 enable = force_kipmid[new_smi->intf_num];
1246 /*
1247 * The BT interface is efficient enough to not need a thread,
1248 * and there is no need for a thread if we have interrupts.
1249 */
1250 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1251 enable = 1;
1252
1253 if (enable) {
1254 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1255 "kipmi%d", new_smi->intf_num);
1256 if (IS_ERR(new_smi->thread)) {
1257 dev_notice(new_smi->dev, "Could not start"
1258 " kernel thread due to error %ld, only using"
1259 " timers to drive the interface\n",
1260 PTR_ERR(new_smi->thread));
1261 new_smi->thread = NULL;
1262 }
1263 }
1264
1265 return 0;
1266 }
1267
1268 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1269 {
1270 struct smi_info *smi = send_info;
1271
1272 data->addr_src = smi->addr_source;
1273 data->dev = smi->dev;
1274 data->addr_info = smi->addr_info;
1275 get_device(smi->dev);
1276
1277 return 0;
1278 }
1279
1280 static void set_maintenance_mode(void *send_info, bool enable)
1281 {
1282 struct smi_info *smi_info = send_info;
1283
1284 if (!enable)
1285 atomic_set(&smi_info->req_events, 0);
1286 }
1287
1288 static const struct ipmi_smi_handlers handlers = {
1289 .owner = THIS_MODULE,
1290 .start_processing = smi_start_processing,
1291 .get_smi_info = get_smi_info,
1292 .sender = sender,
1293 .request_events = request_events,
1294 .set_need_watch = set_need_watch,
1295 .set_maintenance_mode = set_maintenance_mode,
1296 .set_run_to_completion = set_run_to_completion,
1297 .flush_messages = flush_messages,
1298 .poll = poll,
1299 };
1300
1301 /*
1302 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1303 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1304 */
1305
1306 static LIST_HEAD(smi_infos);
1307 static DEFINE_MUTEX(smi_infos_lock);
1308 static int smi_num; /* Used to sequence the SMIs */
1309
1310 #define DEFAULT_REGSPACING 1
1311 #define DEFAULT_REGSIZE 1
1312
1313 #ifdef CONFIG_ACPI
1314 static bool si_tryacpi = true;
1315 #endif
1316 #ifdef CONFIG_DMI
1317 static bool si_trydmi = true;
1318 #endif
1319 static bool si_tryplatform = true;
1320 #ifdef CONFIG_PCI
1321 static bool si_trypci = true;
1322 #endif
1323 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1324 static char *si_type[SI_MAX_PARMS];
1325 #define MAX_SI_TYPE_STR 30
1326 static char si_type_str[MAX_SI_TYPE_STR];
1327 static unsigned long addrs[SI_MAX_PARMS];
1328 static unsigned int num_addrs;
1329 static unsigned int ports[SI_MAX_PARMS];
1330 static unsigned int num_ports;
1331 static int irqs[SI_MAX_PARMS];
1332 static unsigned int num_irqs;
1333 static int regspacings[SI_MAX_PARMS];
1334 static unsigned int num_regspacings;
1335 static int regsizes[SI_MAX_PARMS];
1336 static unsigned int num_regsizes;
1337 static int regshifts[SI_MAX_PARMS];
1338 static unsigned int num_regshifts;
1339 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1340 static unsigned int num_slave_addrs;
1341
1342 #define IPMI_IO_ADDR_SPACE 0
1343 #define IPMI_MEM_ADDR_SPACE 1
1344 static char *addr_space_to_str[] = { "i/o", "mem" };
1345
1346 static int hotmod_handler(const char *val, struct kernel_param *kp);
1347
1348 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1349 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1350 " Documentation/IPMI.txt in the kernel sources for the"
1351 " gory details.");
1352
1353 #ifdef CONFIG_ACPI
1354 module_param_named(tryacpi, si_tryacpi, bool, 0);
1355 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1356 " default scan of the interfaces identified via ACPI");
1357 #endif
1358 #ifdef CONFIG_DMI
1359 module_param_named(trydmi, si_trydmi, bool, 0);
1360 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1361 " default scan of the interfaces identified via DMI");
1362 #endif
1363 module_param_named(tryplatform, si_tryplatform, bool, 0);
1364 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1365 " default scan of the interfaces identified via platform"
1366 " interfaces like openfirmware");
1367 #ifdef CONFIG_PCI
1368 module_param_named(trypci, si_trypci, bool, 0);
1369 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1370 " default scan of the interfaces identified via pci");
1371 #endif
1372 module_param_named(trydefaults, si_trydefaults, bool, 0);
1373 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1374 " default scan of the KCS and SMIC interface at the standard"
1375 " address");
1376 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1377 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1378 " interface separated by commas. The types are 'kcs',"
1379 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1380 " the first interface to kcs and the second to bt");
1381 module_param_array(addrs, ulong, &num_addrs, 0);
1382 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1383 " addresses separated by commas. Only use if an interface"
1384 " is in memory. Otherwise, set it to zero or leave"
1385 " it blank.");
1386 module_param_array(ports, uint, &num_ports, 0);
1387 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1388 " addresses separated by commas. Only use if an interface"
1389 " is a port. Otherwise, set it to zero or leave"
1390 " it blank.");
1391 module_param_array(irqs, int, &num_irqs, 0);
1392 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1393 " addresses separated by commas. Only use if an interface"
1394 " has an interrupt. Otherwise, set it to zero or leave"
1395 " it blank.");
1396 module_param_array(regspacings, int, &num_regspacings, 0);
1397 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1398 " and each successive register used by the interface. For"
1399 " instance, if the start address is 0xca2 and the spacing"
1400 " is 2, then the second address is at 0xca4. Defaults"
1401 " to 1.");
1402 module_param_array(regsizes, int, &num_regsizes, 0);
1403 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1404 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1405 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1406 " the 8-bit IPMI register has to be read from a larger"
1407 " register.");
1408 module_param_array(regshifts, int, &num_regshifts, 0);
1409 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1410 " IPMI register, in bits. For instance, if the data"
1411 " is read from a 32-bit word and the IPMI data is in"
1412 " bit 8-15, then the shift would be 8");
1413 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1414 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1415 " the controller. Normally this is 0x20, but can be"
1416 " overridden by this parm. This is an array indexed"
1417 " by interface number.");
1418 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1419 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1420 " disabled(0). Normally the IPMI driver auto-detects"
1421 " this, but the value may be overridden by this parm.");
1422 module_param(unload_when_empty, bool, 0);
1423 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1424 " specified or found, default is 1. Setting to 0"
1425 " is useful for hot add of devices using hotmod.");
1426 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1427 MODULE_PARM_DESC(kipmid_max_busy_us,
1428 "Max time (in microseconds) to busy-wait for IPMI data before"
1429 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1430 " if kipmid is using up a lot of CPU time.");
1431
1432
1433 static void std_irq_cleanup(struct smi_info *info)
1434 {
1435 if (info->si_type == SI_BT)
1436 /* Disable the interrupt in the BT interface. */
1437 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1438 free_irq(info->irq, info);
1439 }
1440
1441 static int std_irq_setup(struct smi_info *info)
1442 {
1443 int rv;
1444
1445 if (!info->irq)
1446 return 0;
1447
1448 if (info->si_type == SI_BT) {
1449 rv = request_irq(info->irq,
1450 si_bt_irq_handler,
1451 IRQF_SHARED,
1452 DEVICE_NAME,
1453 info);
1454 if (!rv)
1455 /* Enable the interrupt in the BT interface. */
1456 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1457 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1458 } else
1459 rv = request_irq(info->irq,
1460 si_irq_handler,
1461 IRQF_SHARED,
1462 DEVICE_NAME,
1463 info);
1464 if (rv) {
1465 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1466 " running polled\n",
1467 DEVICE_NAME, info->irq);
1468 info->irq = 0;
1469 } else {
1470 info->irq_cleanup = std_irq_cleanup;
1471 dev_info(info->dev, "Using irq %d\n", info->irq);
1472 }
1473
1474 return rv;
1475 }
1476
1477 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1478 {
1479 unsigned int addr = io->addr_data;
1480
1481 return inb(addr + (offset * io->regspacing));
1482 }
1483
1484 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1485 unsigned char b)
1486 {
1487 unsigned int addr = io->addr_data;
1488
1489 outb(b, addr + (offset * io->regspacing));
1490 }
1491
1492 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1493 {
1494 unsigned int addr = io->addr_data;
1495
1496 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1497 }
1498
1499 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1500 unsigned char b)
1501 {
1502 unsigned int addr = io->addr_data;
1503
1504 outw(b << io->regshift, addr + (offset * io->regspacing));
1505 }
1506
1507 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1508 {
1509 unsigned int addr = io->addr_data;
1510
1511 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1512 }
1513
1514 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1515 unsigned char b)
1516 {
1517 unsigned int addr = io->addr_data;
1518
1519 outl(b << io->regshift, addr+(offset * io->regspacing));
1520 }
1521
1522 static void port_cleanup(struct smi_info *info)
1523 {
1524 unsigned int addr = info->io.addr_data;
1525 int idx;
1526
1527 if (addr) {
1528 for (idx = 0; idx < info->io_size; idx++)
1529 release_region(addr + idx * info->io.regspacing,
1530 info->io.regsize);
1531 }
1532 }
1533
1534 static int port_setup(struct smi_info *info)
1535 {
1536 unsigned int addr = info->io.addr_data;
1537 int idx;
1538
1539 if (!addr)
1540 return -ENODEV;
1541
1542 info->io_cleanup = port_cleanup;
1543
1544 /*
1545 * Figure out the actual inb/inw/inl/etc routine to use based
1546 * upon the register size.
1547 */
1548 switch (info->io.regsize) {
1549 case 1:
1550 info->io.inputb = port_inb;
1551 info->io.outputb = port_outb;
1552 break;
1553 case 2:
1554 info->io.inputb = port_inw;
1555 info->io.outputb = port_outw;
1556 break;
1557 case 4:
1558 info->io.inputb = port_inl;
1559 info->io.outputb = port_outl;
1560 break;
1561 default:
1562 dev_warn(info->dev, "Invalid register size: %d\n",
1563 info->io.regsize);
1564 return -EINVAL;
1565 }
1566
1567 /*
1568 * Some BIOSes reserve disjoint I/O regions in their ACPI
1569 * tables. This causes problems when trying to register the
1570 * entire I/O region. Therefore we must register each I/O
1571 * port separately.
1572 */
1573 for (idx = 0; idx < info->io_size; idx++) {
1574 if (request_region(addr + idx * info->io.regspacing,
1575 info->io.regsize, DEVICE_NAME) == NULL) {
1576 /* Undo allocations */
1577 while (idx--) {
1578 release_region(addr + idx * info->io.regspacing,
1579 info->io.regsize);
1580 }
1581 return -EIO;
1582 }
1583 }
1584 return 0;
1585 }
1586
1587 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1588 unsigned int offset)
1589 {
1590 return readb((io->addr)+(offset * io->regspacing));
1591 }
1592
1593 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1594 unsigned char b)
1595 {
1596 writeb(b, (io->addr)+(offset * io->regspacing));
1597 }
1598
1599 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1600 unsigned int offset)
1601 {
1602 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1603 & 0xff;
1604 }
1605
1606 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1607 unsigned char b)
1608 {
1609 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1610 }
1611
1612 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1613 unsigned int offset)
1614 {
1615 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1616 & 0xff;
1617 }
1618
1619 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1620 unsigned char b)
1621 {
1622 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1623 }
1624
1625 #ifdef readq
1626 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1627 {
1628 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1629 & 0xff;
1630 }
1631
1632 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1633 unsigned char b)
1634 {
1635 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1636 }
1637 #endif
1638
1639 static void mem_cleanup(struct smi_info *info)
1640 {
1641 unsigned long addr = info->io.addr_data;
1642 int mapsize;
1643
1644 if (info->io.addr) {
1645 iounmap(info->io.addr);
1646
1647 mapsize = ((info->io_size * info->io.regspacing)
1648 - (info->io.regspacing - info->io.regsize));
1649
1650 release_mem_region(addr, mapsize);
1651 }
1652 }
1653
1654 static int mem_setup(struct smi_info *info)
1655 {
1656 unsigned long addr = info->io.addr_data;
1657 int mapsize;
1658
1659 if (!addr)
1660 return -ENODEV;
1661
1662 info->io_cleanup = mem_cleanup;
1663
1664 /*
1665 * Figure out the actual readb/readw/readl/etc routine to use based
1666 * upon the register size.
1667 */
1668 switch (info->io.regsize) {
1669 case 1:
1670 info->io.inputb = intf_mem_inb;
1671 info->io.outputb = intf_mem_outb;
1672 break;
1673 case 2:
1674 info->io.inputb = intf_mem_inw;
1675 info->io.outputb = intf_mem_outw;
1676 break;
1677 case 4:
1678 info->io.inputb = intf_mem_inl;
1679 info->io.outputb = intf_mem_outl;
1680 break;
1681 #ifdef readq
1682 case 8:
1683 info->io.inputb = mem_inq;
1684 info->io.outputb = mem_outq;
1685 break;
1686 #endif
1687 default:
1688 dev_warn(info->dev, "Invalid register size: %d\n",
1689 info->io.regsize);
1690 return -EINVAL;
1691 }
1692
1693 /*
1694 * Calculate the total amount of memory to claim. This is an
1695 * unusual looking calculation, but it avoids claiming any
1696 * more memory than it has to. It will claim everything
1697 * between the first address to the end of the last full
1698 * register.
1699 */
1700 mapsize = ((info->io_size * info->io.regspacing)
1701 - (info->io.regspacing - info->io.regsize));
1702
1703 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1704 return -EIO;
1705
1706 info->io.addr = ioremap(addr, mapsize);
1707 if (info->io.addr == NULL) {
1708 release_mem_region(addr, mapsize);
1709 return -EIO;
1710 }
1711 return 0;
1712 }
1713
1714 /*
1715 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1716 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1717 * Options are:
1718 * rsp=<regspacing>
1719 * rsi=<regsize>
1720 * rsh=<regshift>
1721 * irq=<irq>
1722 * ipmb=<ipmb addr>
1723 */
1724 enum hotmod_op { HM_ADD, HM_REMOVE };
1725 struct hotmod_vals {
1726 char *name;
1727 int val;
1728 };
1729 static struct hotmod_vals hotmod_ops[] = {
1730 { "add", HM_ADD },
1731 { "remove", HM_REMOVE },
1732 { NULL }
1733 };
1734 static struct hotmod_vals hotmod_si[] = {
1735 { "kcs", SI_KCS },
1736 { "smic", SI_SMIC },
1737 { "bt", SI_BT },
1738 { NULL }
1739 };
1740 static struct hotmod_vals hotmod_as[] = {
1741 { "mem", IPMI_MEM_ADDR_SPACE },
1742 { "i/o", IPMI_IO_ADDR_SPACE },
1743 { NULL }
1744 };
1745
1746 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1747 {
1748 char *s;
1749 int i;
1750
1751 s = strchr(*curr, ',');
1752 if (!s) {
1753 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1754 return -EINVAL;
1755 }
1756 *s = '\0';
1757 s++;
1758 for (i = 0; v[i].name; i++) {
1759 if (strcmp(*curr, v[i].name) == 0) {
1760 *val = v[i].val;
1761 *curr = s;
1762 return 0;
1763 }
1764 }
1765
1766 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1767 return -EINVAL;
1768 }
1769
1770 static int check_hotmod_int_op(const char *curr, const char *option,
1771 const char *name, int *val)
1772 {
1773 char *n;
1774
1775 if (strcmp(curr, name) == 0) {
1776 if (!option) {
1777 printk(KERN_WARNING PFX
1778 "No option given for '%s'\n",
1779 curr);
1780 return -EINVAL;
1781 }
1782 *val = simple_strtoul(option, &n, 0);
1783 if ((*n != '\0') || (*option == '\0')) {
1784 printk(KERN_WARNING PFX
1785 "Bad option given for '%s'\n",
1786 curr);
1787 return -EINVAL;
1788 }
1789 return 1;
1790 }
1791 return 0;
1792 }
1793
1794 static struct smi_info *smi_info_alloc(void)
1795 {
1796 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1797
1798 if (info)
1799 spin_lock_init(&info->si_lock);
1800 return info;
1801 }
1802
1803 static int hotmod_handler(const char *val, struct kernel_param *kp)
1804 {
1805 char *str = kstrdup(val, GFP_KERNEL);
1806 int rv;
1807 char *next, *curr, *s, *n, *o;
1808 enum hotmod_op op;
1809 enum si_type si_type;
1810 int addr_space;
1811 unsigned long addr;
1812 int regspacing;
1813 int regsize;
1814 int regshift;
1815 int irq;
1816 int ipmb;
1817 int ival;
1818 int len;
1819 struct smi_info *info;
1820
1821 if (!str)
1822 return -ENOMEM;
1823
1824 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1825 len = strlen(str);
1826 ival = len - 1;
1827 while ((ival >= 0) && isspace(str[ival])) {
1828 str[ival] = '\0';
1829 ival--;
1830 }
1831
1832 for (curr = str; curr; curr = next) {
1833 regspacing = 1;
1834 regsize = 1;
1835 regshift = 0;
1836 irq = 0;
1837 ipmb = 0; /* Choose the default if not specified */
1838
1839 next = strchr(curr, ':');
1840 if (next) {
1841 *next = '\0';
1842 next++;
1843 }
1844
1845 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1846 if (rv)
1847 break;
1848 op = ival;
1849
1850 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1851 if (rv)
1852 break;
1853 si_type = ival;
1854
1855 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1856 if (rv)
1857 break;
1858
1859 s = strchr(curr, ',');
1860 if (s) {
1861 *s = '\0';
1862 s++;
1863 }
1864 addr = simple_strtoul(curr, &n, 0);
1865 if ((*n != '\0') || (*curr == '\0')) {
1866 printk(KERN_WARNING PFX "Invalid hotmod address"
1867 " '%s'\n", curr);
1868 break;
1869 }
1870
1871 while (s) {
1872 curr = s;
1873 s = strchr(curr, ',');
1874 if (s) {
1875 *s = '\0';
1876 s++;
1877 }
1878 o = strchr(curr, '=');
1879 if (o) {
1880 *o = '\0';
1881 o++;
1882 }
1883 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1884 if (rv < 0)
1885 goto out;
1886 else if (rv)
1887 continue;
1888 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1889 if (rv < 0)
1890 goto out;
1891 else if (rv)
1892 continue;
1893 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1894 if (rv < 0)
1895 goto out;
1896 else if (rv)
1897 continue;
1898 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1899 if (rv < 0)
1900 goto out;
1901 else if (rv)
1902 continue;
1903 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1904 if (rv < 0)
1905 goto out;
1906 else if (rv)
1907 continue;
1908
1909 rv = -EINVAL;
1910 printk(KERN_WARNING PFX
1911 "Invalid hotmod option '%s'\n",
1912 curr);
1913 goto out;
1914 }
1915
1916 if (op == HM_ADD) {
1917 info = smi_info_alloc();
1918 if (!info) {
1919 rv = -ENOMEM;
1920 goto out;
1921 }
1922
1923 info->addr_source = SI_HOTMOD;
1924 info->si_type = si_type;
1925 info->io.addr_data = addr;
1926 info->io.addr_type = addr_space;
1927 if (addr_space == IPMI_MEM_ADDR_SPACE)
1928 info->io_setup = mem_setup;
1929 else
1930 info->io_setup = port_setup;
1931
1932 info->io.addr = NULL;
1933 info->io.regspacing = regspacing;
1934 if (!info->io.regspacing)
1935 info->io.regspacing = DEFAULT_REGSPACING;
1936 info->io.regsize = regsize;
1937 if (!info->io.regsize)
1938 info->io.regsize = DEFAULT_REGSPACING;
1939 info->io.regshift = regshift;
1940 info->irq = irq;
1941 if (info->irq)
1942 info->irq_setup = std_irq_setup;
1943 info->slave_addr = ipmb;
1944
1945 rv = add_smi(info);
1946 if (rv) {
1947 kfree(info);
1948 goto out;
1949 }
1950 rv = try_smi_init(info);
1951 if (rv) {
1952 cleanup_one_si(info);
1953 goto out;
1954 }
1955 } else {
1956 /* remove */
1957 struct smi_info *e, *tmp_e;
1958
1959 mutex_lock(&smi_infos_lock);
1960 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1961 if (e->io.addr_type != addr_space)
1962 continue;
1963 if (e->si_type != si_type)
1964 continue;
1965 if (e->io.addr_data == addr)
1966 cleanup_one_si(e);
1967 }
1968 mutex_unlock(&smi_infos_lock);
1969 }
1970 }
1971 rv = len;
1972 out:
1973 kfree(str);
1974 return rv;
1975 }
1976
1977 static int hardcode_find_bmc(void)
1978 {
1979 int ret = -ENODEV;
1980 int i;
1981 struct smi_info *info;
1982
1983 for (i = 0; i < SI_MAX_PARMS; i++) {
1984 if (!ports[i] && !addrs[i])
1985 continue;
1986
1987 info = smi_info_alloc();
1988 if (!info)
1989 return -ENOMEM;
1990
1991 info->addr_source = SI_HARDCODED;
1992 printk(KERN_INFO PFX "probing via hardcoded address\n");
1993
1994 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1995 info->si_type = SI_KCS;
1996 } else if (strcmp(si_type[i], "smic") == 0) {
1997 info->si_type = SI_SMIC;
1998 } else if (strcmp(si_type[i], "bt") == 0) {
1999 info->si_type = SI_BT;
2000 } else {
2001 printk(KERN_WARNING PFX "Interface type specified "
2002 "for interface %d, was invalid: %s\n",
2003 i, si_type[i]);
2004 kfree(info);
2005 continue;
2006 }
2007
2008 if (ports[i]) {
2009 /* An I/O port */
2010 info->io_setup = port_setup;
2011 info->io.addr_data = ports[i];
2012 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2013 } else if (addrs[i]) {
2014 /* A memory port */
2015 info->io_setup = mem_setup;
2016 info->io.addr_data = addrs[i];
2017 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2018 } else {
2019 printk(KERN_WARNING PFX "Interface type specified "
2020 "for interface %d, but port and address were "
2021 "not set or set to zero.\n", i);
2022 kfree(info);
2023 continue;
2024 }
2025
2026 info->io.addr = NULL;
2027 info->io.regspacing = regspacings[i];
2028 if (!info->io.regspacing)
2029 info->io.regspacing = DEFAULT_REGSPACING;
2030 info->io.regsize = regsizes[i];
2031 if (!info->io.regsize)
2032 info->io.regsize = DEFAULT_REGSPACING;
2033 info->io.regshift = regshifts[i];
2034 info->irq = irqs[i];
2035 if (info->irq)
2036 info->irq_setup = std_irq_setup;
2037 info->slave_addr = slave_addrs[i];
2038
2039 if (!add_smi(info)) {
2040 if (try_smi_init(info))
2041 cleanup_one_si(info);
2042 ret = 0;
2043 } else {
2044 kfree(info);
2045 }
2046 }
2047 return ret;
2048 }
2049
2050 #ifdef CONFIG_ACPI
2051
2052 #include <linux/acpi.h>
2053
2054 /*
2055 * Once we get an ACPI failure, we don't try any more, because we go
2056 * through the tables sequentially. Once we don't find a table, there
2057 * are no more.
2058 */
2059 static int acpi_failure;
2060
2061 /* For GPE-type interrupts. */
2062 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2063 u32 gpe_number, void *context)
2064 {
2065 struct smi_info *smi_info = context;
2066 unsigned long flags;
2067
2068 spin_lock_irqsave(&(smi_info->si_lock), flags);
2069
2070 smi_inc_stat(smi_info, interrupts);
2071
2072 debug_timestamp("ACPI_GPE");
2073
2074 smi_event_handler(smi_info, 0);
2075 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2076
2077 return ACPI_INTERRUPT_HANDLED;
2078 }
2079
2080 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2081 {
2082 if (!info->irq)
2083 return;
2084
2085 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2086 }
2087
2088 static int acpi_gpe_irq_setup(struct smi_info *info)
2089 {
2090 acpi_status status;
2091
2092 if (!info->irq)
2093 return 0;
2094
2095 status = acpi_install_gpe_handler(NULL,
2096 info->irq,
2097 ACPI_GPE_LEVEL_TRIGGERED,
2098 &ipmi_acpi_gpe,
2099 info);
2100 if (status != AE_OK) {
2101 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2102 " running polled\n", DEVICE_NAME, info->irq);
2103 info->irq = 0;
2104 return -EINVAL;
2105 } else {
2106 info->irq_cleanup = acpi_gpe_irq_cleanup;
2107 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2108 return 0;
2109 }
2110 }
2111
2112 /*
2113 * Defined at
2114 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2115 */
2116 struct SPMITable {
2117 s8 Signature[4];
2118 u32 Length;
2119 u8 Revision;
2120 u8 Checksum;
2121 s8 OEMID[6];
2122 s8 OEMTableID[8];
2123 s8 OEMRevision[4];
2124 s8 CreatorID[4];
2125 s8 CreatorRevision[4];
2126 u8 InterfaceType;
2127 u8 IPMIlegacy;
2128 s16 SpecificationRevision;
2129
2130 /*
2131 * Bit 0 - SCI interrupt supported
2132 * Bit 1 - I/O APIC/SAPIC
2133 */
2134 u8 InterruptType;
2135
2136 /*
2137 * If bit 0 of InterruptType is set, then this is the SCI
2138 * interrupt in the GPEx_STS register.
2139 */
2140 u8 GPE;
2141
2142 s16 Reserved;
2143
2144 /*
2145 * If bit 1 of InterruptType is set, then this is the I/O
2146 * APIC/SAPIC interrupt.
2147 */
2148 u32 GlobalSystemInterrupt;
2149
2150 /* The actual register address. */
2151 struct acpi_generic_address addr;
2152
2153 u8 UID[4];
2154
2155 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2156 };
2157
2158 static int try_init_spmi(struct SPMITable *spmi)
2159 {
2160 struct smi_info *info;
2161 int rv;
2162
2163 if (spmi->IPMIlegacy != 1) {
2164 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2165 return -ENODEV;
2166 }
2167
2168 info = smi_info_alloc();
2169 if (!info) {
2170 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2171 return -ENOMEM;
2172 }
2173
2174 info->addr_source = SI_SPMI;
2175 printk(KERN_INFO PFX "probing via SPMI\n");
2176
2177 /* Figure out the interface type. */
2178 switch (spmi->InterfaceType) {
2179 case 1: /* KCS */
2180 info->si_type = SI_KCS;
2181 break;
2182 case 2: /* SMIC */
2183 info->si_type = SI_SMIC;
2184 break;
2185 case 3: /* BT */
2186 info->si_type = SI_BT;
2187 break;
2188 case 4: /* SSIF, just ignore */
2189 kfree(info);
2190 return -EIO;
2191 default:
2192 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2193 spmi->InterfaceType);
2194 kfree(info);
2195 return -EIO;
2196 }
2197
2198 if (spmi->InterruptType & 1) {
2199 /* We've got a GPE interrupt. */
2200 info->irq = spmi->GPE;
2201 info->irq_setup = acpi_gpe_irq_setup;
2202 } else if (spmi->InterruptType & 2) {
2203 /* We've got an APIC/SAPIC interrupt. */
2204 info->irq = spmi->GlobalSystemInterrupt;
2205 info->irq_setup = std_irq_setup;
2206 } else {
2207 /* Use the default interrupt setting. */
2208 info->irq = 0;
2209 info->irq_setup = NULL;
2210 }
2211
2212 if (spmi->addr.bit_width) {
2213 /* A (hopefully) properly formed register bit width. */
2214 info->io.regspacing = spmi->addr.bit_width / 8;
2215 } else {
2216 info->io.regspacing = DEFAULT_REGSPACING;
2217 }
2218 info->io.regsize = info->io.regspacing;
2219 info->io.regshift = spmi->addr.bit_offset;
2220
2221 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2222 info->io_setup = mem_setup;
2223 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2224 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2225 info->io_setup = port_setup;
2226 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2227 } else {
2228 kfree(info);
2229 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2230 return -EIO;
2231 }
2232 info->io.addr_data = spmi->addr.address;
2233
2234 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2235 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2236 info->io.addr_data, info->io.regsize, info->io.regspacing,
2237 info->irq);
2238
2239 rv = add_smi(info);
2240 if (rv)
2241 kfree(info);
2242
2243 return rv;
2244 }
2245
2246 static void spmi_find_bmc(void)
2247 {
2248 acpi_status status;
2249 struct SPMITable *spmi;
2250 int i;
2251
2252 if (acpi_disabled)
2253 return;
2254
2255 if (acpi_failure)
2256 return;
2257
2258 for (i = 0; ; i++) {
2259 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2260 (struct acpi_table_header **)&spmi);
2261 if (status != AE_OK)
2262 return;
2263
2264 try_init_spmi(spmi);
2265 }
2266 }
2267 #endif
2268
2269 #ifdef CONFIG_DMI
2270 struct dmi_ipmi_data {
2271 u8 type;
2272 u8 addr_space;
2273 unsigned long base_addr;
2274 u8 irq;
2275 u8 offset;
2276 u8 slave_addr;
2277 };
2278
2279 static int decode_dmi(const struct dmi_header *dm,
2280 struct dmi_ipmi_data *dmi)
2281 {
2282 const u8 *data = (const u8 *)dm;
2283 unsigned long base_addr;
2284 u8 reg_spacing;
2285 u8 len = dm->length;
2286
2287 dmi->type = data[4];
2288
2289 memcpy(&base_addr, data+8, sizeof(unsigned long));
2290 if (len >= 0x11) {
2291 if (base_addr & 1) {
2292 /* I/O */
2293 base_addr &= 0xFFFE;
2294 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2295 } else
2296 /* Memory */
2297 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2298
2299 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2300 is odd. */
2301 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2302
2303 dmi->irq = data[0x11];
2304
2305 /* The top two bits of byte 0x10 hold the register spacing. */
2306 reg_spacing = (data[0x10] & 0xC0) >> 6;
2307 switch (reg_spacing) {
2308 case 0x00: /* Byte boundaries */
2309 dmi->offset = 1;
2310 break;
2311 case 0x01: /* 32-bit boundaries */
2312 dmi->offset = 4;
2313 break;
2314 case 0x02: /* 16-byte boundaries */
2315 dmi->offset = 16;
2316 break;
2317 default:
2318 /* Some other interface, just ignore it. */
2319 return -EIO;
2320 }
2321 } else {
2322 /* Old DMI spec. */
2323 /*
2324 * Note that technically, the lower bit of the base
2325 * address should be 1 if the address is I/O and 0 if
2326 * the address is in memory. So many systems get that
2327 * wrong (and all that I have seen are I/O) so we just
2328 * ignore that bit and assume I/O. Systems that use
2329 * memory should use the newer spec, anyway.
2330 */
2331 dmi->base_addr = base_addr & 0xfffe;
2332 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2333 dmi->offset = 1;
2334 }
2335
2336 dmi->slave_addr = data[6];
2337
2338 return 0;
2339 }
2340
2341 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2342 {
2343 struct smi_info *info;
2344
2345 info = smi_info_alloc();
2346 if (!info) {
2347 printk(KERN_ERR PFX "Could not allocate SI data\n");
2348 return;
2349 }
2350
2351 info->addr_source = SI_SMBIOS;
2352 printk(KERN_INFO PFX "probing via SMBIOS\n");
2353
2354 switch (ipmi_data->type) {
2355 case 0x01: /* KCS */
2356 info->si_type = SI_KCS;
2357 break;
2358 case 0x02: /* SMIC */
2359 info->si_type = SI_SMIC;
2360 break;
2361 case 0x03: /* BT */
2362 info->si_type = SI_BT;
2363 break;
2364 default:
2365 kfree(info);
2366 return;
2367 }
2368
2369 switch (ipmi_data->addr_space) {
2370 case IPMI_MEM_ADDR_SPACE:
2371 info->io_setup = mem_setup;
2372 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2373 break;
2374
2375 case IPMI_IO_ADDR_SPACE:
2376 info->io_setup = port_setup;
2377 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2378 break;
2379
2380 default:
2381 kfree(info);
2382 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2383 ipmi_data->addr_space);
2384 return;
2385 }
2386 info->io.addr_data = ipmi_data->base_addr;
2387
2388 info->io.regspacing = ipmi_data->offset;
2389 if (!info->io.regspacing)
2390 info->io.regspacing = DEFAULT_REGSPACING;
2391 info->io.regsize = DEFAULT_REGSPACING;
2392 info->io.regshift = 0;
2393
2394 info->slave_addr = ipmi_data->slave_addr;
2395
2396 info->irq = ipmi_data->irq;
2397 if (info->irq)
2398 info->irq_setup = std_irq_setup;
2399
2400 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2401 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2402 info->io.addr_data, info->io.regsize, info->io.regspacing,
2403 info->irq);
2404
2405 if (add_smi(info))
2406 kfree(info);
2407 }
2408
2409 static void dmi_find_bmc(void)
2410 {
2411 const struct dmi_device *dev = NULL;
2412 struct dmi_ipmi_data data;
2413 int rv;
2414
2415 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2416 memset(&data, 0, sizeof(data));
2417 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2418 &data);
2419 if (!rv)
2420 try_init_dmi(&data);
2421 }
2422 }
2423 #endif /* CONFIG_DMI */
2424
2425 #ifdef CONFIG_PCI
2426
2427 #define PCI_ERMC_CLASSCODE 0x0C0700
2428 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2429 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2430 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2431 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2432 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2433
2434 #define PCI_HP_VENDOR_ID 0x103C
2435 #define PCI_MMC_DEVICE_ID 0x121A
2436 #define PCI_MMC_ADDR_CW 0x10
2437
2438 static void ipmi_pci_cleanup(struct smi_info *info)
2439 {
2440 struct pci_dev *pdev = info->addr_source_data;
2441
2442 pci_disable_device(pdev);
2443 }
2444
2445 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2446 {
2447 if (info->si_type == SI_KCS) {
2448 unsigned char status;
2449 int regspacing;
2450
2451 info->io.regsize = DEFAULT_REGSIZE;
2452 info->io.regshift = 0;
2453 info->io_size = 2;
2454 info->handlers = &kcs_smi_handlers;
2455
2456 /* detect 1, 4, 16byte spacing */
2457 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2458 info->io.regspacing = regspacing;
2459 if (info->io_setup(info)) {
2460 dev_err(info->dev,
2461 "Could not setup I/O space\n");
2462 return DEFAULT_REGSPACING;
2463 }
2464 /* write invalid cmd */
2465 info->io.outputb(&info->io, 1, 0x10);
2466 /* read status back */
2467 status = info->io.inputb(&info->io, 1);
2468 info->io_cleanup(info);
2469 if (status)
2470 return regspacing;
2471 regspacing *= 4;
2472 }
2473 }
2474 return DEFAULT_REGSPACING;
2475 }
2476
2477 static int ipmi_pci_probe(struct pci_dev *pdev,
2478 const struct pci_device_id *ent)
2479 {
2480 int rv;
2481 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2482 struct smi_info *info;
2483
2484 info = smi_info_alloc();
2485 if (!info)
2486 return -ENOMEM;
2487
2488 info->addr_source = SI_PCI;
2489 dev_info(&pdev->dev, "probing via PCI");
2490
2491 switch (class_type) {
2492 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2493 info->si_type = SI_SMIC;
2494 break;
2495
2496 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2497 info->si_type = SI_KCS;
2498 break;
2499
2500 case PCI_ERMC_CLASSCODE_TYPE_BT:
2501 info->si_type = SI_BT;
2502 break;
2503
2504 default:
2505 kfree(info);
2506 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2507 return -ENOMEM;
2508 }
2509
2510 rv = pci_enable_device(pdev);
2511 if (rv) {
2512 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2513 kfree(info);
2514 return rv;
2515 }
2516
2517 info->addr_source_cleanup = ipmi_pci_cleanup;
2518 info->addr_source_data = pdev;
2519
2520 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2521 info->io_setup = port_setup;
2522 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2523 } else {
2524 info->io_setup = mem_setup;
2525 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2526 }
2527 info->io.addr_data = pci_resource_start(pdev, 0);
2528
2529 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2530 info->io.regsize = DEFAULT_REGSIZE;
2531 info->io.regshift = 0;
2532
2533 info->irq = pdev->irq;
2534 if (info->irq)
2535 info->irq_setup = std_irq_setup;
2536
2537 info->dev = &pdev->dev;
2538 pci_set_drvdata(pdev, info);
2539
2540 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2541 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2542 info->irq);
2543
2544 rv = add_smi(info);
2545 if (rv) {
2546 kfree(info);
2547 pci_disable_device(pdev);
2548 }
2549
2550 return rv;
2551 }
2552
2553 static void ipmi_pci_remove(struct pci_dev *pdev)
2554 {
2555 struct smi_info *info = pci_get_drvdata(pdev);
2556 cleanup_one_si(info);
2557 pci_disable_device(pdev);
2558 }
2559
2560 static const struct pci_device_id ipmi_pci_devices[] = {
2561 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2562 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2563 { 0, }
2564 };
2565 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2566
2567 static struct pci_driver ipmi_pci_driver = {
2568 .name = DEVICE_NAME,
2569 .id_table = ipmi_pci_devices,
2570 .probe = ipmi_pci_probe,
2571 .remove = ipmi_pci_remove,
2572 };
2573 #endif /* CONFIG_PCI */
2574
2575 #ifdef CONFIG_OF
2576 static const struct of_device_id of_ipmi_match[] = {
2577 { .type = "ipmi", .compatible = "ipmi-kcs",
2578 .data = (void *)(unsigned long) SI_KCS },
2579 { .type = "ipmi", .compatible = "ipmi-smic",
2580 .data = (void *)(unsigned long) SI_SMIC },
2581 { .type = "ipmi", .compatible = "ipmi-bt",
2582 .data = (void *)(unsigned long) SI_BT },
2583 {},
2584 };
2585 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2586
2587 static int of_ipmi_probe(struct platform_device *dev)
2588 {
2589 const struct of_device_id *match;
2590 struct smi_info *info;
2591 struct resource resource;
2592 const __be32 *regsize, *regspacing, *regshift;
2593 struct device_node *np = dev->dev.of_node;
2594 int ret;
2595 int proplen;
2596
2597 dev_info(&dev->dev, "probing via device tree\n");
2598
2599 match = of_match_device(of_ipmi_match, &dev->dev);
2600 if (!match)
2601 return -ENODEV;
2602
2603 if (!of_device_is_available(np))
2604 return -EINVAL;
2605
2606 ret = of_address_to_resource(np, 0, &resource);
2607 if (ret) {
2608 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2609 return ret;
2610 }
2611
2612 regsize = of_get_property(np, "reg-size", &proplen);
2613 if (regsize && proplen != 4) {
2614 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2615 return -EINVAL;
2616 }
2617
2618 regspacing = of_get_property(np, "reg-spacing", &proplen);
2619 if (regspacing && proplen != 4) {
2620 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2621 return -EINVAL;
2622 }
2623
2624 regshift = of_get_property(np, "reg-shift", &proplen);
2625 if (regshift && proplen != 4) {
2626 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2627 return -EINVAL;
2628 }
2629
2630 info = smi_info_alloc();
2631
2632 if (!info) {
2633 dev_err(&dev->dev,
2634 "could not allocate memory for OF probe\n");
2635 return -ENOMEM;
2636 }
2637
2638 info->si_type = (enum si_type) match->data;
2639 info->addr_source = SI_DEVICETREE;
2640 info->irq_setup = std_irq_setup;
2641
2642 if (resource.flags & IORESOURCE_IO) {
2643 info->io_setup = port_setup;
2644 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2645 } else {
2646 info->io_setup = mem_setup;
2647 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2648 }
2649
2650 info->io.addr_data = resource.start;
2651
2652 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2653 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2654 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2655
2656 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2657 info->dev = &dev->dev;
2658
2659 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2660 info->io.addr_data, info->io.regsize, info->io.regspacing,
2661 info->irq);
2662
2663 dev_set_drvdata(&dev->dev, info);
2664
2665 ret = add_smi(info);
2666 if (ret) {
2667 kfree(info);
2668 return ret;
2669 }
2670 return 0;
2671 }
2672 #else
2673 #define of_ipmi_match NULL
2674 static int of_ipmi_probe(struct platform_device *dev)
2675 {
2676 return -ENODEV;
2677 }
2678 #endif
2679
2680 #ifdef CONFIG_ACPI
2681 static int acpi_ipmi_probe(struct platform_device *dev)
2682 {
2683 struct smi_info *info;
2684 struct resource *res, *res_second;
2685 acpi_handle handle;
2686 acpi_status status;
2687 unsigned long long tmp;
2688 int rv = -EINVAL;
2689
2690 handle = ACPI_HANDLE(&dev->dev);
2691 if (!handle)
2692 return -ENODEV;
2693
2694 info = smi_info_alloc();
2695 if (!info)
2696 return -ENOMEM;
2697
2698 info->addr_source = SI_ACPI;
2699 dev_info(&dev->dev, PFX "probing via ACPI\n");
2700
2701 info->addr_info.acpi_info.acpi_handle = handle;
2702
2703 /* _IFT tells us the interface type: KCS, BT, etc */
2704 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2705 if (ACPI_FAILURE(status)) {
2706 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2707 goto err_free;
2708 }
2709
2710 switch (tmp) {
2711 case 1:
2712 info->si_type = SI_KCS;
2713 break;
2714 case 2:
2715 info->si_type = SI_SMIC;
2716 break;
2717 case 3:
2718 info->si_type = SI_BT;
2719 break;
2720 case 4: /* SSIF, just ignore */
2721 rv = -ENODEV;
2722 goto err_free;
2723 default:
2724 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2725 goto err_free;
2726 }
2727
2728 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2729 if (res) {
2730 info->io_setup = port_setup;
2731 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2732 } else {
2733 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2734 if (res) {
2735 info->io_setup = mem_setup;
2736 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2737 }
2738 }
2739 if (!res) {
2740 dev_err(&dev->dev, "no I/O or memory address\n");
2741 goto err_free;
2742 }
2743 info->io.addr_data = res->start;
2744
2745 info->io.regspacing = DEFAULT_REGSPACING;
2746 res_second = platform_get_resource(dev,
2747 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2748 IORESOURCE_IO : IORESOURCE_MEM,
2749 1);
2750 if (res_second) {
2751 if (res_second->start > info->io.addr_data)
2752 info->io.regspacing =
2753 res_second->start - info->io.addr_data;
2754 }
2755 info->io.regsize = DEFAULT_REGSPACING;
2756 info->io.regshift = 0;
2757
2758 /* If _GPE exists, use it; otherwise use standard interrupts */
2759 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2760 if (ACPI_SUCCESS(status)) {
2761 info->irq = tmp;
2762 info->irq_setup = acpi_gpe_irq_setup;
2763 } else {
2764 int irq = platform_get_irq(dev, 0);
2765
2766 if (irq > 0) {
2767 info->irq = irq;
2768 info->irq_setup = std_irq_setup;
2769 }
2770 }
2771
2772 info->dev = &dev->dev;
2773 platform_set_drvdata(dev, info);
2774
2775 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2776 res, info->io.regsize, info->io.regspacing,
2777 info->irq);
2778
2779 rv = add_smi(info);
2780 if (rv)
2781 kfree(info);
2782
2783 return rv;
2784
2785 err_free:
2786 kfree(info);
2787 return rv;
2788 }
2789
2790 static const struct acpi_device_id acpi_ipmi_match[] = {
2791 { "IPI0001", 0 },
2792 { },
2793 };
2794 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2795 #else
2796 static int acpi_ipmi_probe(struct platform_device *dev)
2797 {
2798 return -ENODEV;
2799 }
2800 #endif
2801
2802 static int ipmi_probe(struct platform_device *dev)
2803 {
2804 if (of_ipmi_probe(dev) == 0)
2805 return 0;
2806
2807 return acpi_ipmi_probe(dev);
2808 }
2809
2810 static int ipmi_remove(struct platform_device *dev)
2811 {
2812 struct smi_info *info = dev_get_drvdata(&dev->dev);
2813
2814 cleanup_one_si(info);
2815 return 0;
2816 }
2817
2818 static struct platform_driver ipmi_driver = {
2819 .driver = {
2820 .name = DEVICE_NAME,
2821 .of_match_table = of_ipmi_match,
2822 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2823 },
2824 .probe = ipmi_probe,
2825 .remove = ipmi_remove,
2826 };
2827
2828 #ifdef CONFIG_PARISC
2829 static int ipmi_parisc_probe(struct parisc_device *dev)
2830 {
2831 struct smi_info *info;
2832 int rv;
2833
2834 info = smi_info_alloc();
2835
2836 if (!info) {
2837 dev_err(&dev->dev,
2838 "could not allocate memory for PARISC probe\n");
2839 return -ENOMEM;
2840 }
2841
2842 info->si_type = SI_KCS;
2843 info->addr_source = SI_DEVICETREE;
2844 info->io_setup = mem_setup;
2845 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2846 info->io.addr_data = dev->hpa.start;
2847 info->io.regsize = 1;
2848 info->io.regspacing = 1;
2849 info->io.regshift = 0;
2850 info->irq = 0; /* no interrupt */
2851 info->irq_setup = NULL;
2852 info->dev = &dev->dev;
2853
2854 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2855
2856 dev_set_drvdata(&dev->dev, info);
2857
2858 rv = add_smi(info);
2859 if (rv) {
2860 kfree(info);
2861 return rv;
2862 }
2863
2864 return 0;
2865 }
2866
2867 static int ipmi_parisc_remove(struct parisc_device *dev)
2868 {
2869 cleanup_one_si(dev_get_drvdata(&dev->dev));
2870 return 0;
2871 }
2872
2873 static struct parisc_device_id ipmi_parisc_tbl[] = {
2874 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2875 { 0, }
2876 };
2877
2878 static struct parisc_driver ipmi_parisc_driver = {
2879 .name = "ipmi",
2880 .id_table = ipmi_parisc_tbl,
2881 .probe = ipmi_parisc_probe,
2882 .remove = ipmi_parisc_remove,
2883 };
2884 #endif /* CONFIG_PARISC */
2885
2886 static int wait_for_msg_done(struct smi_info *smi_info)
2887 {
2888 enum si_sm_result smi_result;
2889
2890 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2891 for (;;) {
2892 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2893 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2894 schedule_timeout_uninterruptible(1);
2895 smi_result = smi_info->handlers->event(
2896 smi_info->si_sm, jiffies_to_usecs(1));
2897 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2898 smi_result = smi_info->handlers->event(
2899 smi_info->si_sm, 0);
2900 } else
2901 break;
2902 }
2903 if (smi_result == SI_SM_HOSED)
2904 /*
2905 * We couldn't get the state machine to run, so whatever's at
2906 * the port is probably not an IPMI SMI interface.
2907 */
2908 return -ENODEV;
2909
2910 return 0;
2911 }
2912
2913 static int try_get_dev_id(struct smi_info *smi_info)
2914 {
2915 unsigned char msg[2];
2916 unsigned char *resp;
2917 unsigned long resp_len;
2918 int rv = 0;
2919
2920 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2921 if (!resp)
2922 return -ENOMEM;
2923
2924 /*
2925 * Do a Get Device ID command, since it comes back with some
2926 * useful info.
2927 */
2928 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2929 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2930 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2931
2932 rv = wait_for_msg_done(smi_info);
2933 if (rv)
2934 goto out;
2935
2936 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2937 resp, IPMI_MAX_MSG_LENGTH);
2938
2939 /* Check and record info from the get device id, in case we need it. */
2940 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2941
2942 out:
2943 kfree(resp);
2944 return rv;
2945 }
2946
2947 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2948 {
2949 unsigned char msg[3];
2950 unsigned char *resp;
2951 unsigned long resp_len;
2952 int rv;
2953
2954 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2955 if (!resp)
2956 return -ENOMEM;
2957
2958 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2959 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2960 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2961
2962 rv = wait_for_msg_done(smi_info);
2963 if (rv) {
2964 dev_warn(smi_info->dev,
2965 "Error getting response from get global enables command: %d\n",
2966 rv);
2967 goto out;
2968 }
2969
2970 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2971 resp, IPMI_MAX_MSG_LENGTH);
2972
2973 if (resp_len < 4 ||
2974 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2975 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2976 resp[2] != 0) {
2977 dev_warn(smi_info->dev,
2978 "Invalid return from get global enables command: %ld %x %x %x\n",
2979 resp_len, resp[0], resp[1], resp[2]);
2980 rv = -EINVAL;
2981 goto out;
2982 } else {
2983 *enables = resp[3];
2984 }
2985
2986 out:
2987 kfree(resp);
2988 return rv;
2989 }
2990
2991 /*
2992 * Returns 1 if it gets an error from the command.
2993 */
2994 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2995 {
2996 unsigned char msg[3];
2997 unsigned char *resp;
2998 unsigned long resp_len;
2999 int rv;
3000
3001 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3002 if (!resp)
3003 return -ENOMEM;
3004
3005 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3006 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3007 msg[2] = enables;
3008 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3009
3010 rv = wait_for_msg_done(smi_info);
3011 if (rv) {
3012 dev_warn(smi_info->dev,
3013 "Error getting response from set global enables command: %d\n",
3014 rv);
3015 goto out;
3016 }
3017
3018 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3019 resp, IPMI_MAX_MSG_LENGTH);
3020
3021 if (resp_len < 3 ||
3022 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3023 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3024 dev_warn(smi_info->dev,
3025 "Invalid return from set global enables command: %ld %x %x\n",
3026 resp_len, resp[0], resp[1]);
3027 rv = -EINVAL;
3028 goto out;
3029 }
3030
3031 if (resp[2] != 0)
3032 rv = 1;
3033
3034 out:
3035 kfree(resp);
3036 return rv;
3037 }
3038
3039 /*
3040 * Some BMCs do not support clearing the receive irq bit in the global
3041 * enables (even if they don't support interrupts on the BMC). Check
3042 * for this and handle it properly.
3043 */
3044 static void check_clr_rcv_irq(struct smi_info *smi_info)
3045 {
3046 u8 enables = 0;
3047 int rv;
3048
3049 rv = get_global_enables(smi_info, &enables);
3050 if (!rv) {
3051 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3052 /* Already clear, should work ok. */
3053 return;
3054
3055 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3056 rv = set_global_enables(smi_info, enables);
3057 }
3058
3059 if (rv < 0) {
3060 dev_err(smi_info->dev,
3061 "Cannot check clearing the rcv irq: %d\n", rv);
3062 return;
3063 }
3064
3065 if (rv) {
3066 /*
3067 * An error when setting the event buffer bit means
3068 * clearing the bit is not supported.
3069 */
3070 dev_warn(smi_info->dev,
3071 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3072 smi_info->cannot_disable_irq = true;
3073 }
3074 }
3075
3076 /*
3077 * Some BMCs do not support setting the interrupt bits in the global
3078 * enables even if they support interrupts. Clearly bad, but we can
3079 * compensate.
3080 */
3081 static void check_set_rcv_irq(struct smi_info *smi_info)
3082 {
3083 u8 enables = 0;
3084 int rv;
3085
3086 if (!smi_info->irq)
3087 return;
3088
3089 rv = get_global_enables(smi_info, &enables);
3090 if (!rv) {
3091 enables |= IPMI_BMC_RCV_MSG_INTR;
3092 rv = set_global_enables(smi_info, enables);
3093 }
3094
3095 if (rv < 0) {
3096 dev_err(smi_info->dev,
3097 "Cannot check setting the rcv irq: %d\n", rv);
3098 return;
3099 }
3100
3101 if (rv) {
3102 /*
3103 * An error when setting the event buffer bit means
3104 * setting the bit is not supported.
3105 */
3106 dev_warn(smi_info->dev,
3107 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3108 smi_info->cannot_disable_irq = true;
3109 smi_info->irq_enable_broken = true;
3110 }
3111 }
3112
3113 static int try_enable_event_buffer(struct smi_info *smi_info)
3114 {
3115 unsigned char msg[3];
3116 unsigned char *resp;
3117 unsigned long resp_len;
3118 int rv = 0;
3119
3120 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3121 if (!resp)
3122 return -ENOMEM;
3123
3124 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3125 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3126 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3127
3128 rv = wait_for_msg_done(smi_info);
3129 if (rv) {
3130 printk(KERN_WARNING PFX "Error getting response from get"
3131 " global enables command, the event buffer is not"
3132 " enabled.\n");
3133 goto out;
3134 }
3135
3136 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3137 resp, IPMI_MAX_MSG_LENGTH);
3138
3139 if (resp_len < 4 ||
3140 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3141 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3142 resp[2] != 0) {
3143 printk(KERN_WARNING PFX "Invalid return from get global"
3144 " enables command, cannot enable the event buffer.\n");
3145 rv = -EINVAL;
3146 goto out;
3147 }
3148
3149 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3150 /* buffer is already enabled, nothing to do. */
3151 smi_info->supports_event_msg_buff = true;
3152 goto out;
3153 }
3154
3155 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3156 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3157 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3158 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3159
3160 rv = wait_for_msg_done(smi_info);
3161 if (rv) {
3162 printk(KERN_WARNING PFX "Error getting response from set"
3163 " global, enables command, the event buffer is not"
3164 " enabled.\n");
3165 goto out;
3166 }
3167
3168 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3169 resp, IPMI_MAX_MSG_LENGTH);
3170
3171 if (resp_len < 3 ||
3172 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3173 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3174 printk(KERN_WARNING PFX "Invalid return from get global,"
3175 "enables command, not enable the event buffer.\n");
3176 rv = -EINVAL;
3177 goto out;
3178 }
3179
3180 if (resp[2] != 0)
3181 /*
3182 * An error when setting the event buffer bit means
3183 * that the event buffer is not supported.
3184 */
3185 rv = -ENOENT;
3186 else
3187 smi_info->supports_event_msg_buff = true;
3188
3189 out:
3190 kfree(resp);
3191 return rv;
3192 }
3193
3194 static int smi_type_proc_show(struct seq_file *m, void *v)
3195 {
3196 struct smi_info *smi = m->private;
3197
3198 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3199
3200 return 0;
3201 }
3202
3203 static int smi_type_proc_open(struct inode *inode, struct file *file)
3204 {
3205 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3206 }
3207
3208 static const struct file_operations smi_type_proc_ops = {
3209 .open = smi_type_proc_open,
3210 .read = seq_read,
3211 .llseek = seq_lseek,
3212 .release = single_release,
3213 };
3214
3215 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3216 {
3217 struct smi_info *smi = m->private;
3218
3219 seq_printf(m, "interrupts_enabled: %d\n",
3220 smi->irq && !smi->interrupt_disabled);
3221 seq_printf(m, "short_timeouts: %u\n",
3222 smi_get_stat(smi, short_timeouts));
3223 seq_printf(m, "long_timeouts: %u\n",
3224 smi_get_stat(smi, long_timeouts));
3225 seq_printf(m, "idles: %u\n",
3226 smi_get_stat(smi, idles));
3227 seq_printf(m, "interrupts: %u\n",
3228 smi_get_stat(smi, interrupts));
3229 seq_printf(m, "attentions: %u\n",
3230 smi_get_stat(smi, attentions));
3231 seq_printf(m, "flag_fetches: %u\n",
3232 smi_get_stat(smi, flag_fetches));
3233 seq_printf(m, "hosed_count: %u\n",
3234 smi_get_stat(smi, hosed_count));
3235 seq_printf(m, "complete_transactions: %u\n",
3236 smi_get_stat(smi, complete_transactions));
3237 seq_printf(m, "events: %u\n",
3238 smi_get_stat(smi, events));
3239 seq_printf(m, "watchdog_pretimeouts: %u\n",
3240 smi_get_stat(smi, watchdog_pretimeouts));
3241 seq_printf(m, "incoming_messages: %u\n",
3242 smi_get_stat(smi, incoming_messages));
3243 return 0;
3244 }
3245
3246 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3247 {
3248 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3249 }
3250
3251 static const struct file_operations smi_si_stats_proc_ops = {
3252 .open = smi_si_stats_proc_open,
3253 .read = seq_read,
3254 .llseek = seq_lseek,
3255 .release = single_release,
3256 };
3257
3258 static int smi_params_proc_show(struct seq_file *m, void *v)
3259 {
3260 struct smi_info *smi = m->private;
3261
3262 seq_printf(m,
3263 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3264 si_to_str[smi->si_type],
3265 addr_space_to_str[smi->io.addr_type],
3266 smi->io.addr_data,
3267 smi->io.regspacing,
3268 smi->io.regsize,
3269 smi->io.regshift,
3270 smi->irq,
3271 smi->slave_addr);
3272
3273 return 0;
3274 }
3275
3276 static int smi_params_proc_open(struct inode *inode, struct file *file)
3277 {
3278 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3279 }
3280
3281 static const struct file_operations smi_params_proc_ops = {
3282 .open = smi_params_proc_open,
3283 .read = seq_read,
3284 .llseek = seq_lseek,
3285 .release = single_release,
3286 };
3287
3288 /*
3289 * oem_data_avail_to_receive_msg_avail
3290 * @info - smi_info structure with msg_flags set
3291 *
3292 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3293 * Returns 1 indicating need to re-run handle_flags().
3294 */
3295 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3296 {
3297 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3298 RECEIVE_MSG_AVAIL);
3299 return 1;
3300 }
3301
3302 /*
3303 * setup_dell_poweredge_oem_data_handler
3304 * @info - smi_info.device_id must be populated
3305 *
3306 * Systems that match, but have firmware version < 1.40 may assert
3307 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3308 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3309 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3310 * as RECEIVE_MSG_AVAIL instead.
3311 *
3312 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3313 * assert the OEM[012] bits, and if it did, the driver would have to
3314 * change to handle that properly, we don't actually check for the
3315 * firmware version.
3316 * Device ID = 0x20 BMC on PowerEdge 8G servers
3317 * Device Revision = 0x80
3318 * Firmware Revision1 = 0x01 BMC version 1.40
3319 * Firmware Revision2 = 0x40 BCD encoded
3320 * IPMI Version = 0x51 IPMI 1.5
3321 * Manufacturer ID = A2 02 00 Dell IANA
3322 *
3323 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3324 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3325 *
3326 */
3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3328 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3329 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3330 #define DELL_IANA_MFR_ID 0x0002a2
3331 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3332 {
3333 struct ipmi_device_id *id = &smi_info->device_id;
3334 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3335 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3336 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3337 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3338 smi_info->oem_data_avail_handler =
3339 oem_data_avail_to_receive_msg_avail;
3340 } else if (ipmi_version_major(id) < 1 ||
3341 (ipmi_version_major(id) == 1 &&
3342 ipmi_version_minor(id) < 5)) {
3343 smi_info->oem_data_avail_handler =
3344 oem_data_avail_to_receive_msg_avail;
3345 }
3346 }
3347 }
3348
3349 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3350 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3351 {
3352 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3353
3354 /* Make it a response */
3355 msg->rsp[0] = msg->data[0] | 4;
3356 msg->rsp[1] = msg->data[1];
3357 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3358 msg->rsp_size = 3;
3359 smi_info->curr_msg = NULL;
3360 deliver_recv_msg(smi_info, msg);
3361 }
3362
3363 /*
3364 * dell_poweredge_bt_xaction_handler
3365 * @info - smi_info.device_id must be populated
3366 *
3367 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3368 * not respond to a Get SDR command if the length of the data
3369 * requested is exactly 0x3A, which leads to command timeouts and no
3370 * data returned. This intercepts such commands, and causes userspace
3371 * callers to try again with a different-sized buffer, which succeeds.
3372 */
3373
3374 #define STORAGE_NETFN 0x0A
3375 #define STORAGE_CMD_GET_SDR 0x23
3376 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3377 unsigned long unused,
3378 void *in)
3379 {
3380 struct smi_info *smi_info = in;
3381 unsigned char *data = smi_info->curr_msg->data;
3382 unsigned int size = smi_info->curr_msg->data_size;
3383 if (size >= 8 &&
3384 (data[0]>>2) == STORAGE_NETFN &&
3385 data[1] == STORAGE_CMD_GET_SDR &&
3386 data[7] == 0x3A) {
3387 return_hosed_msg_badsize(smi_info);
3388 return NOTIFY_STOP;
3389 }
3390 return NOTIFY_DONE;
3391 }
3392
3393 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3394 .notifier_call = dell_poweredge_bt_xaction_handler,
3395 };
3396
3397 /*
3398 * setup_dell_poweredge_bt_xaction_handler
3399 * @info - smi_info.device_id must be filled in already
3400 *
3401 * Fills in smi_info.device_id.start_transaction_pre_hook
3402 * when we know what function to use there.
3403 */
3404 static void
3405 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3406 {
3407 struct ipmi_device_id *id = &smi_info->device_id;
3408 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3409 smi_info->si_type == SI_BT)
3410 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3411 }
3412
3413 /*
3414 * setup_oem_data_handler
3415 * @info - smi_info.device_id must be filled in already
3416 *
3417 * Fills in smi_info.device_id.oem_data_available_handler
3418 * when we know what function to use there.
3419 */
3420
3421 static void setup_oem_data_handler(struct smi_info *smi_info)
3422 {
3423 setup_dell_poweredge_oem_data_handler(smi_info);
3424 }
3425
3426 static void setup_xaction_handlers(struct smi_info *smi_info)
3427 {
3428 setup_dell_poweredge_bt_xaction_handler(smi_info);
3429 }
3430
3431 static void check_for_broken_irqs(struct smi_info *smi_info)
3432 {
3433 check_clr_rcv_irq(smi_info);
3434 check_set_rcv_irq(smi_info);
3435 }
3436
3437 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3438 {
3439 if (smi_info->thread != NULL)
3440 kthread_stop(smi_info->thread);
3441 if (smi_info->timer_running)
3442 del_timer_sync(&smi_info->si_timer);
3443 }
3444
3445 static const struct ipmi_default_vals
3446 {
3447 int type;
3448 int port;
3449 } ipmi_defaults[] =
3450 {
3451 { .type = SI_KCS, .port = 0xca2 },
3452 { .type = SI_SMIC, .port = 0xca9 },
3453 { .type = SI_BT, .port = 0xe4 },
3454 { .port = 0 }
3455 };
3456
3457 static void default_find_bmc(void)
3458 {
3459 struct smi_info *info;
3460 int i;
3461
3462 for (i = 0; ; i++) {
3463 if (!ipmi_defaults[i].port)
3464 break;
3465 #ifdef CONFIG_PPC
3466 if (check_legacy_ioport(ipmi_defaults[i].port))
3467 continue;
3468 #endif
3469 info = smi_info_alloc();
3470 if (!info)
3471 return;
3472
3473 info->addr_source = SI_DEFAULT;
3474
3475 info->si_type = ipmi_defaults[i].type;
3476 info->io_setup = port_setup;
3477 info->io.addr_data = ipmi_defaults[i].port;
3478 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3479
3480 info->io.addr = NULL;
3481 info->io.regspacing = DEFAULT_REGSPACING;
3482 info->io.regsize = DEFAULT_REGSPACING;
3483 info->io.regshift = 0;
3484
3485 if (add_smi(info) == 0) {
3486 if ((try_smi_init(info)) == 0) {
3487 /* Found one... */
3488 printk(KERN_INFO PFX "Found default %s"
3489 " state machine at %s address 0x%lx\n",
3490 si_to_str[info->si_type],
3491 addr_space_to_str[info->io.addr_type],
3492 info->io.addr_data);
3493 } else
3494 cleanup_one_si(info);
3495 } else {
3496 kfree(info);
3497 }
3498 }
3499 }
3500
3501 static int is_new_interface(struct smi_info *info)
3502 {
3503 struct smi_info *e;
3504
3505 list_for_each_entry(e, &smi_infos, link) {
3506 if (e->io.addr_type != info->io.addr_type)
3507 continue;
3508 if (e->io.addr_data == info->io.addr_data)
3509 return 0;
3510 }
3511
3512 return 1;
3513 }
3514
3515 static int add_smi(struct smi_info *new_smi)
3516 {
3517 int rv = 0;
3518
3519 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3520 ipmi_addr_src_to_str(new_smi->addr_source),
3521 si_to_str[new_smi->si_type]);
3522 mutex_lock(&smi_infos_lock);
3523 if (!is_new_interface(new_smi)) {
3524 printk(KERN_CONT " duplicate interface\n");
3525 rv = -EBUSY;
3526 goto out_err;
3527 }
3528
3529 printk(KERN_CONT "\n");
3530
3531 /* So we know not to free it unless we have allocated one. */
3532 new_smi->intf = NULL;
3533 new_smi->si_sm = NULL;
3534 new_smi->handlers = NULL;
3535
3536 list_add_tail(&new_smi->link, &smi_infos);
3537
3538 out_err:
3539 mutex_unlock(&smi_infos_lock);
3540 return rv;
3541 }
3542
3543 static int try_smi_init(struct smi_info *new_smi)
3544 {
3545 int rv = 0;
3546 int i;
3547
3548 printk(KERN_INFO PFX "Trying %s-specified %s state"
3549 " machine at %s address 0x%lx, slave address 0x%x,"
3550 " irq %d\n",
3551 ipmi_addr_src_to_str(new_smi->addr_source),
3552 si_to_str[new_smi->si_type],
3553 addr_space_to_str[new_smi->io.addr_type],
3554 new_smi->io.addr_data,
3555 new_smi->slave_addr, new_smi->irq);
3556
3557 switch (new_smi->si_type) {
3558 case SI_KCS:
3559 new_smi->handlers = &kcs_smi_handlers;
3560 break;
3561
3562 case SI_SMIC:
3563 new_smi->handlers = &smic_smi_handlers;
3564 break;
3565
3566 case SI_BT:
3567 new_smi->handlers = &bt_smi_handlers;
3568 break;
3569
3570 default:
3571 /* No support for anything else yet. */
3572 rv = -EIO;
3573 goto out_err;
3574 }
3575
3576 /* Allocate the state machine's data and initialize it. */
3577 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3578 if (!new_smi->si_sm) {
3579 printk(KERN_ERR PFX
3580 "Could not allocate state machine memory\n");
3581 rv = -ENOMEM;
3582 goto out_err;
3583 }
3584 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3585 &new_smi->io);
3586
3587 /* Now that we know the I/O size, we can set up the I/O. */
3588 rv = new_smi->io_setup(new_smi);
3589 if (rv) {
3590 printk(KERN_ERR PFX "Could not set up I/O space\n");
3591 goto out_err;
3592 }
3593
3594 /* Do low-level detection first. */
3595 if (new_smi->handlers->detect(new_smi->si_sm)) {
3596 if (new_smi->addr_source)
3597 printk(KERN_INFO PFX "Interface detection failed\n");
3598 rv = -ENODEV;
3599 goto out_err;
3600 }
3601
3602 /*
3603 * Attempt a get device id command. If it fails, we probably
3604 * don't have a BMC here.
3605 */
3606 rv = try_get_dev_id(new_smi);
3607 if (rv) {
3608 if (new_smi->addr_source)
3609 printk(KERN_INFO PFX "There appears to be no BMC"
3610 " at this location\n");
3611 goto out_err;
3612 }
3613
3614 setup_oem_data_handler(new_smi);
3615 setup_xaction_handlers(new_smi);
3616 check_for_broken_irqs(new_smi);
3617
3618 new_smi->waiting_msg = NULL;
3619 new_smi->curr_msg = NULL;
3620 atomic_set(&new_smi->req_events, 0);
3621 new_smi->run_to_completion = false;
3622 for (i = 0; i < SI_NUM_STATS; i++)
3623 atomic_set(&new_smi->stats[i], 0);
3624
3625 new_smi->interrupt_disabled = true;
3626 atomic_set(&new_smi->need_watch, 0);
3627 new_smi->intf_num = smi_num;
3628 smi_num++;
3629
3630 rv = try_enable_event_buffer(new_smi);
3631 if (rv == 0)
3632 new_smi->has_event_buffer = true;
3633
3634 /*
3635 * Start clearing the flags before we enable interrupts or the
3636 * timer to avoid racing with the timer.
3637 */
3638 start_clear_flags(new_smi, false);
3639
3640 /*
3641 * IRQ is defined to be set when non-zero. req_events will
3642 * cause a global flags check that will enable interrupts.
3643 */
3644 if (new_smi->irq) {
3645 new_smi->interrupt_disabled = false;
3646 atomic_set(&new_smi->req_events, 1);
3647 }
3648
3649 if (!new_smi->dev) {
3650 /*
3651 * If we don't already have a device from something
3652 * else (like PCI), then register a new one.
3653 */
3654 new_smi->pdev = platform_device_alloc("ipmi_si",
3655 new_smi->intf_num);
3656 if (!new_smi->pdev) {
3657 printk(KERN_ERR PFX
3658 "Unable to allocate platform device\n");
3659 goto out_err;
3660 }
3661 new_smi->dev = &new_smi->pdev->dev;
3662 new_smi->dev->driver = &ipmi_driver.driver;
3663
3664 rv = platform_device_add(new_smi->pdev);
3665 if (rv) {
3666 printk(KERN_ERR PFX
3667 "Unable to register system interface device:"
3668 " %d\n",
3669 rv);
3670 goto out_err;
3671 }
3672 new_smi->dev_registered = true;
3673 }
3674
3675 rv = ipmi_register_smi(&handlers,
3676 new_smi,
3677 &new_smi->device_id,
3678 new_smi->dev,
3679 new_smi->slave_addr);
3680 if (rv) {
3681 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3682 rv);
3683 goto out_err_stop_timer;
3684 }
3685
3686 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3687 &smi_type_proc_ops,
3688 new_smi);
3689 if (rv) {
3690 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3691 goto out_err_stop_timer;
3692 }
3693
3694 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3695 &smi_si_stats_proc_ops,
3696 new_smi);
3697 if (rv) {
3698 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3699 goto out_err_stop_timer;
3700 }
3701
3702 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3703 &smi_params_proc_ops,
3704 new_smi);
3705 if (rv) {
3706 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3707 goto out_err_stop_timer;
3708 }
3709
3710 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3711 si_to_str[new_smi->si_type]);
3712
3713 return 0;
3714
3715 out_err_stop_timer:
3716 wait_for_timer_and_thread(new_smi);
3717
3718 out_err:
3719 new_smi->interrupt_disabled = true;
3720
3721 if (new_smi->intf) {
3722 ipmi_smi_t intf = new_smi->intf;
3723 new_smi->intf = NULL;
3724 ipmi_unregister_smi(intf);
3725 }
3726
3727 if (new_smi->irq_cleanup) {
3728 new_smi->irq_cleanup(new_smi);
3729 new_smi->irq_cleanup = NULL;
3730 }
3731
3732 /*
3733 * Wait until we know that we are out of any interrupt
3734 * handlers might have been running before we freed the
3735 * interrupt.
3736 */
3737 synchronize_sched();
3738
3739 if (new_smi->si_sm) {
3740 if (new_smi->handlers)
3741 new_smi->handlers->cleanup(new_smi->si_sm);
3742 kfree(new_smi->si_sm);
3743 new_smi->si_sm = NULL;
3744 }
3745 if (new_smi->addr_source_cleanup) {
3746 new_smi->addr_source_cleanup(new_smi);
3747 new_smi->addr_source_cleanup = NULL;
3748 }
3749 if (new_smi->io_cleanup) {
3750 new_smi->io_cleanup(new_smi);
3751 new_smi->io_cleanup = NULL;
3752 }
3753
3754 if (new_smi->dev_registered) {
3755 platform_device_unregister(new_smi->pdev);
3756 new_smi->dev_registered = false;
3757 }
3758
3759 return rv;
3760 }
3761
3762 static int init_ipmi_si(void)
3763 {
3764 int i;
3765 char *str;
3766 int rv;
3767 struct smi_info *e;
3768 enum ipmi_addr_src type = SI_INVALID;
3769
3770 if (initialized)
3771 return 0;
3772 initialized = 1;
3773
3774 if (si_tryplatform) {
3775 rv = platform_driver_register(&ipmi_driver);
3776 if (rv) {
3777 printk(KERN_ERR PFX "Unable to register "
3778 "driver: %d\n", rv);
3779 return rv;
3780 }
3781 }
3782
3783 /* Parse out the si_type string into its components. */
3784 str = si_type_str;
3785 if (*str != '\0') {
3786 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3787 si_type[i] = str;
3788 str = strchr(str, ',');
3789 if (str) {
3790 *str = '\0';
3791 str++;
3792 } else {
3793 break;
3794 }
3795 }
3796 }
3797
3798 printk(KERN_INFO "IPMI System Interface driver.\n");
3799
3800 /* If the user gave us a device, they presumably want us to use it */
3801 if (!hardcode_find_bmc())
3802 return 0;
3803
3804 #ifdef CONFIG_PCI
3805 if (si_trypci) {
3806 rv = pci_register_driver(&ipmi_pci_driver);
3807 if (rv)
3808 printk(KERN_ERR PFX "Unable to register "
3809 "PCI driver: %d\n", rv);
3810 else
3811 pci_registered = true;
3812 }
3813 #endif
3814
3815 #ifdef CONFIG_DMI
3816 if (si_trydmi)
3817 dmi_find_bmc();
3818 #endif
3819
3820 #ifdef CONFIG_ACPI
3821 if (si_tryacpi)
3822 spmi_find_bmc();
3823 #endif
3824
3825 #ifdef CONFIG_PARISC
3826 register_parisc_driver(&ipmi_parisc_driver);
3827 parisc_registered = true;
3828 /* poking PC IO addresses will crash machine, don't do it */
3829 si_trydefaults = 0;
3830 #endif
3831
3832 /* We prefer devices with interrupts, but in the case of a machine
3833 with multiple BMCs we assume that there will be several instances
3834 of a given type so if we succeed in registering a type then also
3835 try to register everything else of the same type */
3836
3837 mutex_lock(&smi_infos_lock);
3838 list_for_each_entry(e, &smi_infos, link) {
3839 /* Try to register a device if it has an IRQ and we either
3840 haven't successfully registered a device yet or this
3841 device has the same type as one we successfully registered */
3842 if (e->irq && (!type || e->addr_source == type)) {
3843 if (!try_smi_init(e)) {
3844 type = e->addr_source;
3845 }
3846 }
3847 }
3848
3849 /* type will only have been set if we successfully registered an si */
3850 if (type) {
3851 mutex_unlock(&smi_infos_lock);
3852 return 0;
3853 }
3854
3855 /* Fall back to the preferred device */
3856
3857 list_for_each_entry(e, &smi_infos, link) {
3858 if (!e->irq && (!type || e->addr_source == type)) {
3859 if (!try_smi_init(e)) {
3860 type = e->addr_source;
3861 }
3862 }
3863 }
3864 mutex_unlock(&smi_infos_lock);
3865
3866 if (type)
3867 return 0;
3868
3869 if (si_trydefaults) {
3870 mutex_lock(&smi_infos_lock);
3871 if (list_empty(&smi_infos)) {
3872 /* No BMC was found, try defaults. */
3873 mutex_unlock(&smi_infos_lock);
3874 default_find_bmc();
3875 } else
3876 mutex_unlock(&smi_infos_lock);
3877 }
3878
3879 mutex_lock(&smi_infos_lock);
3880 if (unload_when_empty && list_empty(&smi_infos)) {
3881 mutex_unlock(&smi_infos_lock);
3882 cleanup_ipmi_si();
3883 printk(KERN_WARNING PFX
3884 "Unable to find any System Interface(s)\n");
3885 return -ENODEV;
3886 } else {
3887 mutex_unlock(&smi_infos_lock);
3888 return 0;
3889 }
3890 }
3891 module_init(init_ipmi_si);
3892
3893 static void cleanup_one_si(struct smi_info *to_clean)
3894 {
3895 int rv = 0;
3896
3897 if (!to_clean)
3898 return;
3899
3900 if (to_clean->intf) {
3901 ipmi_smi_t intf = to_clean->intf;
3902
3903 to_clean->intf = NULL;
3904 rv = ipmi_unregister_smi(intf);
3905 if (rv) {
3906 pr_err(PFX "Unable to unregister device: errno=%d\n",
3907 rv);
3908 }
3909 }
3910
3911 if (to_clean->dev)
3912 dev_set_drvdata(to_clean->dev, NULL);
3913
3914 list_del(&to_clean->link);
3915
3916 /*
3917 * Make sure that interrupts, the timer and the thread are
3918 * stopped and will not run again.
3919 */
3920 if (to_clean->irq_cleanup)
3921 to_clean->irq_cleanup(to_clean);
3922 wait_for_timer_and_thread(to_clean);
3923
3924 /*
3925 * Timeouts are stopped, now make sure the interrupts are off
3926 * in the BMC. Note that timers and CPU interrupts are off,
3927 * so no need for locks.
3928 */
3929 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3930 poll(to_clean);
3931 schedule_timeout_uninterruptible(1);
3932 }
3933 disable_si_irq(to_clean, false);
3934 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3935 poll(to_clean);
3936 schedule_timeout_uninterruptible(1);
3937 }
3938
3939 if (to_clean->handlers)
3940 to_clean->handlers->cleanup(to_clean->si_sm);
3941
3942 kfree(to_clean->si_sm);
3943
3944 if (to_clean->addr_source_cleanup)
3945 to_clean->addr_source_cleanup(to_clean);
3946 if (to_clean->io_cleanup)
3947 to_clean->io_cleanup(to_clean);
3948
3949 if (to_clean->dev_registered)
3950 platform_device_unregister(to_clean->pdev);
3951
3952 kfree(to_clean);
3953 }
3954
3955 static void cleanup_ipmi_si(void)
3956 {
3957 struct smi_info *e, *tmp_e;
3958
3959 if (!initialized)
3960 return;
3961
3962 #ifdef CONFIG_PCI
3963 if (pci_registered)
3964 pci_unregister_driver(&ipmi_pci_driver);
3965 #endif
3966 #ifdef CONFIG_PARISC
3967 if (parisc_registered)
3968 unregister_parisc_driver(&ipmi_parisc_driver);
3969 #endif
3970
3971 platform_driver_unregister(&ipmi_driver);
3972
3973 mutex_lock(&smi_infos_lock);
3974 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3975 cleanup_one_si(e);
3976 mutex_unlock(&smi_infos_lock);
3977 }
3978 module_exit(cleanup_ipmi_si);
3979
3980 MODULE_LICENSE("GPL");
3981 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3982 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3983 " system interfaces.");
This page took 0.116243 seconds and 4 git commands to generate.