Merge 2.6.38-rc5 into staging-next
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69
70 #ifdef CONFIG_PPC_OF
71 #include <linux/of_device.h>
72 #include <linux/of_platform.h>
73 #include <linux/of_address.h>
74 #include <linux/of_irq.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC 10000
84 #define SI_USEC_PER_JIFFY (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
87 short timeout */
88
89 enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
94 SI_CLEARING_FLAGS_THEN_SET_IRQ,
95 SI_GETTING_MESSAGES,
96 SI_ENABLE_INTERRUPTS1,
97 SI_ENABLE_INTERRUPTS2,
98 SI_DISABLE_INTERRUPTS1,
99 SI_DISABLE_INTERRUPTS2
100 /* FIXME - add watchdog stuff. */
101 };
102
103 /* Some BT-specific defines we need here. */
104 #define IPMI_BT_INTMASK_REG 2
105 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
106 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
107
108 enum si_type {
109 SI_KCS, SI_SMIC, SI_BT
110 };
111 static char *si_to_str[] = { "kcs", "smic", "bt" };
112
113 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
114 "ACPI", "SMBIOS", "PCI",
115 "device-tree", "default" };
116
117 #define DEVICE_NAME "ipmi_si"
118
119 static struct platform_driver ipmi_driver = {
120 .driver = {
121 .name = DEVICE_NAME,
122 .bus = &platform_bus_type
123 }
124 };
125
126
127 /*
128 * Indexes into stats[] in smi_info below.
129 */
130 enum si_stat_indexes {
131 /*
132 * Number of times the driver requested a timer while an operation
133 * was in progress.
134 */
135 SI_STAT_short_timeouts = 0,
136
137 /*
138 * Number of times the driver requested a timer while nothing was in
139 * progress.
140 */
141 SI_STAT_long_timeouts,
142
143 /* Number of times the interface was idle while being polled. */
144 SI_STAT_idles,
145
146 /* Number of interrupts the driver handled. */
147 SI_STAT_interrupts,
148
149 /* Number of time the driver got an ATTN from the hardware. */
150 SI_STAT_attentions,
151
152 /* Number of times the driver requested flags from the hardware. */
153 SI_STAT_flag_fetches,
154
155 /* Number of times the hardware didn't follow the state machine. */
156 SI_STAT_hosed_count,
157
158 /* Number of completed messages. */
159 SI_STAT_complete_transactions,
160
161 /* Number of IPMI events received from the hardware. */
162 SI_STAT_events,
163
164 /* Number of watchdog pretimeouts. */
165 SI_STAT_watchdog_pretimeouts,
166
167 /* Number of asyncronous messages received. */
168 SI_STAT_incoming_messages,
169
170
171 /* This *must* remain last, add new values above this. */
172 SI_NUM_STATS
173 };
174
175 struct smi_info {
176 int intf_num;
177 ipmi_smi_t intf;
178 struct si_sm_data *si_sm;
179 struct si_sm_handlers *handlers;
180 enum si_type si_type;
181 spinlock_t si_lock;
182 spinlock_t msg_lock;
183 struct list_head xmit_msgs;
184 struct list_head hp_xmit_msgs;
185 struct ipmi_smi_msg *curr_msg;
186 enum si_intf_state si_state;
187
188 /*
189 * Used to handle the various types of I/O that can occur with
190 * IPMI
191 */
192 struct si_sm_io io;
193 int (*io_setup)(struct smi_info *info);
194 void (*io_cleanup)(struct smi_info *info);
195 int (*irq_setup)(struct smi_info *info);
196 void (*irq_cleanup)(struct smi_info *info);
197 unsigned int io_size;
198 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
199 void (*addr_source_cleanup)(struct smi_info *info);
200 void *addr_source_data;
201
202 /*
203 * Per-OEM handler, called from handle_flags(). Returns 1
204 * when handle_flags() needs to be re-run or 0 indicating it
205 * set si_state itself.
206 */
207 int (*oem_data_avail_handler)(struct smi_info *smi_info);
208
209 /*
210 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
211 * is set to hold the flags until we are done handling everything
212 * from the flags.
213 */
214 #define RECEIVE_MSG_AVAIL 0x01
215 #define EVENT_MSG_BUFFER_FULL 0x02
216 #define WDT_PRE_TIMEOUT_INT 0x08
217 #define OEM0_DATA_AVAIL 0x20
218 #define OEM1_DATA_AVAIL 0x40
219 #define OEM2_DATA_AVAIL 0x80
220 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
221 OEM1_DATA_AVAIL | \
222 OEM2_DATA_AVAIL)
223 unsigned char msg_flags;
224
225 /* Does the BMC have an event buffer? */
226 char has_event_buffer;
227
228 /*
229 * If set to true, this will request events the next time the
230 * state machine is idle.
231 */
232 atomic_t req_events;
233
234 /*
235 * If true, run the state machine to completion on every send
236 * call. Generally used after a panic to make sure stuff goes
237 * out.
238 */
239 int run_to_completion;
240
241 /* The I/O port of an SI interface. */
242 int port;
243
244 /*
245 * The space between start addresses of the two ports. For
246 * instance, if the first port is 0xca2 and the spacing is 4, then
247 * the second port is 0xca6.
248 */
249 unsigned int spacing;
250
251 /* zero if no irq; */
252 int irq;
253
254 /* The timer for this si. */
255 struct timer_list si_timer;
256
257 /* The time (in jiffies) the last timeout occurred at. */
258 unsigned long last_timeout_jiffies;
259
260 /* Used to gracefully stop the timer without race conditions. */
261 atomic_t stop_operation;
262
263 /*
264 * The driver will disable interrupts when it gets into a
265 * situation where it cannot handle messages due to lack of
266 * memory. Once that situation clears up, it will re-enable
267 * interrupts.
268 */
269 int interrupt_disabled;
270
271 /* From the get device id response... */
272 struct ipmi_device_id device_id;
273
274 /* Driver model stuff. */
275 struct device *dev;
276 struct platform_device *pdev;
277
278 /*
279 * True if we allocated the device, false if it came from
280 * someplace else (like PCI).
281 */
282 int dev_registered;
283
284 /* Slave address, could be reported from DMI. */
285 unsigned char slave_addr;
286
287 /* Counters and things for the proc filesystem. */
288 atomic_t stats[SI_NUM_STATS];
289
290 struct task_struct *thread;
291
292 struct list_head link;
293 union ipmi_smi_info_union addr_info;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
314
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317
318 static int unload_when_empty = 1;
319
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323 static void cleanup_ipmi_si(void);
324
325 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
326 static int register_xaction_notifier(struct notifier_block *nb)
327 {
328 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
329 }
330
331 static void deliver_recv_msg(struct smi_info *smi_info,
332 struct ipmi_smi_msg *msg)
333 {
334 /* Deliver the message to the upper layer with the lock
335 released. */
336
337 if (smi_info->run_to_completion) {
338 ipmi_smi_msg_received(smi_info->intf, msg);
339 } else {
340 spin_unlock(&(smi_info->si_lock));
341 ipmi_smi_msg_received(smi_info->intf, msg);
342 spin_lock(&(smi_info->si_lock));
343 }
344 }
345
346 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
347 {
348 struct ipmi_smi_msg *msg = smi_info->curr_msg;
349
350 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
351 cCode = IPMI_ERR_UNSPECIFIED;
352 /* else use it as is */
353
354 /* Make it a reponse */
355 msg->rsp[0] = msg->data[0] | 4;
356 msg->rsp[1] = msg->data[1];
357 msg->rsp[2] = cCode;
358 msg->rsp_size = 3;
359
360 smi_info->curr_msg = NULL;
361 deliver_recv_msg(smi_info, msg);
362 }
363
364 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
365 {
366 int rv;
367 struct list_head *entry = NULL;
368 #ifdef DEBUG_TIMING
369 struct timeval t;
370 #endif
371
372 /*
373 * No need to save flags, we aleady have interrupts off and we
374 * already hold the SMI lock.
375 */
376 if (!smi_info->run_to_completion)
377 spin_lock(&(smi_info->msg_lock));
378
379 /* Pick the high priority queue first. */
380 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
381 entry = smi_info->hp_xmit_msgs.next;
382 } else if (!list_empty(&(smi_info->xmit_msgs))) {
383 entry = smi_info->xmit_msgs.next;
384 }
385
386 if (!entry) {
387 smi_info->curr_msg = NULL;
388 rv = SI_SM_IDLE;
389 } else {
390 int err;
391
392 list_del(entry);
393 smi_info->curr_msg = list_entry(entry,
394 struct ipmi_smi_msg,
395 link);
396 #ifdef DEBUG_TIMING
397 do_gettimeofday(&t);
398 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
399 #endif
400 err = atomic_notifier_call_chain(&xaction_notifier_list,
401 0, smi_info);
402 if (err & NOTIFY_STOP_MASK) {
403 rv = SI_SM_CALL_WITHOUT_DELAY;
404 goto out;
405 }
406 err = smi_info->handlers->start_transaction(
407 smi_info->si_sm,
408 smi_info->curr_msg->data,
409 smi_info->curr_msg->data_size);
410 if (err)
411 return_hosed_msg(smi_info, err);
412
413 rv = SI_SM_CALL_WITHOUT_DELAY;
414 }
415 out:
416 if (!smi_info->run_to_completion)
417 spin_unlock(&(smi_info->msg_lock));
418
419 return rv;
420 }
421
422 static void start_enable_irq(struct smi_info *smi_info)
423 {
424 unsigned char msg[2];
425
426 /*
427 * If we are enabling interrupts, we have to tell the
428 * BMC to use them.
429 */
430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
432
433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
435 }
436
437 static void start_disable_irq(struct smi_info *smi_info)
438 {
439 unsigned char msg[2];
440
441 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
443
444 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
445 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
446 }
447
448 static void start_clear_flags(struct smi_info *smi_info)
449 {
450 unsigned char msg[3];
451
452 /* Make sure the watchdog pre-timeout flag is not set at startup. */
453 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
454 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
455 msg[2] = WDT_PRE_TIMEOUT_INT;
456
457 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
458 smi_info->si_state = SI_CLEARING_FLAGS;
459 }
460
461 /*
462 * When we have a situtaion where we run out of memory and cannot
463 * allocate messages, we just leave them in the BMC and run the system
464 * polled until we can allocate some memory. Once we have some
465 * memory, we will re-enable the interrupt.
466 */
467 static inline void disable_si_irq(struct smi_info *smi_info)
468 {
469 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
470 start_disable_irq(smi_info);
471 smi_info->interrupt_disabled = 1;
472 if (!atomic_read(&smi_info->stop_operation))
473 mod_timer(&smi_info->si_timer,
474 jiffies + SI_TIMEOUT_JIFFIES);
475 }
476 }
477
478 static inline void enable_si_irq(struct smi_info *smi_info)
479 {
480 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
481 start_enable_irq(smi_info);
482 smi_info->interrupt_disabled = 0;
483 }
484 }
485
486 static void handle_flags(struct smi_info *smi_info)
487 {
488 retry:
489 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
490 /* Watchdog pre-timeout */
491 smi_inc_stat(smi_info, watchdog_pretimeouts);
492
493 start_clear_flags(smi_info);
494 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
495 spin_unlock(&(smi_info->si_lock));
496 ipmi_smi_watchdog_pretimeout(smi_info->intf);
497 spin_lock(&(smi_info->si_lock));
498 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
499 /* Messages available. */
500 smi_info->curr_msg = ipmi_alloc_smi_msg();
501 if (!smi_info->curr_msg) {
502 disable_si_irq(smi_info);
503 smi_info->si_state = SI_NORMAL;
504 return;
505 }
506 enable_si_irq(smi_info);
507
508 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
509 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
510 smi_info->curr_msg->data_size = 2;
511
512 smi_info->handlers->start_transaction(
513 smi_info->si_sm,
514 smi_info->curr_msg->data,
515 smi_info->curr_msg->data_size);
516 smi_info->si_state = SI_GETTING_MESSAGES;
517 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
518 /* Events available. */
519 smi_info->curr_msg = ipmi_alloc_smi_msg();
520 if (!smi_info->curr_msg) {
521 disable_si_irq(smi_info);
522 smi_info->si_state = SI_NORMAL;
523 return;
524 }
525 enable_si_irq(smi_info);
526
527 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
528 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
529 smi_info->curr_msg->data_size = 2;
530
531 smi_info->handlers->start_transaction(
532 smi_info->si_sm,
533 smi_info->curr_msg->data,
534 smi_info->curr_msg->data_size);
535 smi_info->si_state = SI_GETTING_EVENTS;
536 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
537 smi_info->oem_data_avail_handler) {
538 if (smi_info->oem_data_avail_handler(smi_info))
539 goto retry;
540 } else
541 smi_info->si_state = SI_NORMAL;
542 }
543
544 static void handle_transaction_done(struct smi_info *smi_info)
545 {
546 struct ipmi_smi_msg *msg;
547 #ifdef DEBUG_TIMING
548 struct timeval t;
549
550 do_gettimeofday(&t);
551 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
552 #endif
553 switch (smi_info->si_state) {
554 case SI_NORMAL:
555 if (!smi_info->curr_msg)
556 break;
557
558 smi_info->curr_msg->rsp_size
559 = smi_info->handlers->get_result(
560 smi_info->si_sm,
561 smi_info->curr_msg->rsp,
562 IPMI_MAX_MSG_LENGTH);
563
564 /*
565 * Do this here becase deliver_recv_msg() releases the
566 * lock, and a new message can be put in during the
567 * time the lock is released.
568 */
569 msg = smi_info->curr_msg;
570 smi_info->curr_msg = NULL;
571 deliver_recv_msg(smi_info, msg);
572 break;
573
574 case SI_GETTING_FLAGS:
575 {
576 unsigned char msg[4];
577 unsigned int len;
578
579 /* We got the flags from the SMI, now handle them. */
580 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
581 if (msg[2] != 0) {
582 /* Error fetching flags, just give up for now. */
583 smi_info->si_state = SI_NORMAL;
584 } else if (len < 4) {
585 /*
586 * Hmm, no flags. That's technically illegal, but
587 * don't use uninitialized data.
588 */
589 smi_info->si_state = SI_NORMAL;
590 } else {
591 smi_info->msg_flags = msg[3];
592 handle_flags(smi_info);
593 }
594 break;
595 }
596
597 case SI_CLEARING_FLAGS:
598 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
599 {
600 unsigned char msg[3];
601
602 /* We cleared the flags. */
603 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
604 if (msg[2] != 0) {
605 /* Error clearing flags */
606 dev_warn(smi_info->dev,
607 "Error clearing flags: %2.2x\n", msg[2]);
608 }
609 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
610 start_enable_irq(smi_info);
611 else
612 smi_info->si_state = SI_NORMAL;
613 break;
614 }
615
616 case SI_GETTING_EVENTS:
617 {
618 smi_info->curr_msg->rsp_size
619 = smi_info->handlers->get_result(
620 smi_info->si_sm,
621 smi_info->curr_msg->rsp,
622 IPMI_MAX_MSG_LENGTH);
623
624 /*
625 * Do this here becase deliver_recv_msg() releases the
626 * lock, and a new message can be put in during the
627 * time the lock is released.
628 */
629 msg = smi_info->curr_msg;
630 smi_info->curr_msg = NULL;
631 if (msg->rsp[2] != 0) {
632 /* Error getting event, probably done. */
633 msg->done(msg);
634
635 /* Take off the event flag. */
636 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
637 handle_flags(smi_info);
638 } else {
639 smi_inc_stat(smi_info, events);
640
641 /*
642 * Do this before we deliver the message
643 * because delivering the message releases the
644 * lock and something else can mess with the
645 * state.
646 */
647 handle_flags(smi_info);
648
649 deliver_recv_msg(smi_info, msg);
650 }
651 break;
652 }
653
654 case SI_GETTING_MESSAGES:
655 {
656 smi_info->curr_msg->rsp_size
657 = smi_info->handlers->get_result(
658 smi_info->si_sm,
659 smi_info->curr_msg->rsp,
660 IPMI_MAX_MSG_LENGTH);
661
662 /*
663 * Do this here becase deliver_recv_msg() releases the
664 * lock, and a new message can be put in during the
665 * time the lock is released.
666 */
667 msg = smi_info->curr_msg;
668 smi_info->curr_msg = NULL;
669 if (msg->rsp[2] != 0) {
670 /* Error getting event, probably done. */
671 msg->done(msg);
672
673 /* Take off the msg flag. */
674 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
675 handle_flags(smi_info);
676 } else {
677 smi_inc_stat(smi_info, incoming_messages);
678
679 /*
680 * Do this before we deliver the message
681 * because delivering the message releases the
682 * lock and something else can mess with the
683 * state.
684 */
685 handle_flags(smi_info);
686
687 deliver_recv_msg(smi_info, msg);
688 }
689 break;
690 }
691
692 case SI_ENABLE_INTERRUPTS1:
693 {
694 unsigned char msg[4];
695
696 /* We got the flags from the SMI, now handle them. */
697 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
698 if (msg[2] != 0) {
699 dev_warn(smi_info->dev, "Could not enable interrupts"
700 ", failed get, using polled mode.\n");
701 smi_info->si_state = SI_NORMAL;
702 } else {
703 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
704 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
705 msg[2] = (msg[3] |
706 IPMI_BMC_RCV_MSG_INTR |
707 IPMI_BMC_EVT_MSG_INTR);
708 smi_info->handlers->start_transaction(
709 smi_info->si_sm, msg, 3);
710 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
711 }
712 break;
713 }
714
715 case SI_ENABLE_INTERRUPTS2:
716 {
717 unsigned char msg[4];
718
719 /* We got the flags from the SMI, now handle them. */
720 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
721 if (msg[2] != 0)
722 dev_warn(smi_info->dev, "Could not enable interrupts"
723 ", failed set, using polled mode.\n");
724 else
725 smi_info->interrupt_disabled = 0;
726 smi_info->si_state = SI_NORMAL;
727 break;
728 }
729
730 case SI_DISABLE_INTERRUPTS1:
731 {
732 unsigned char msg[4];
733
734 /* We got the flags from the SMI, now handle them. */
735 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736 if (msg[2] != 0) {
737 dev_warn(smi_info->dev, "Could not disable interrupts"
738 ", failed get.\n");
739 smi_info->si_state = SI_NORMAL;
740 } else {
741 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
742 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
743 msg[2] = (msg[3] &
744 ~(IPMI_BMC_RCV_MSG_INTR |
745 IPMI_BMC_EVT_MSG_INTR));
746 smi_info->handlers->start_transaction(
747 smi_info->si_sm, msg, 3);
748 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
749 }
750 break;
751 }
752
753 case SI_DISABLE_INTERRUPTS2:
754 {
755 unsigned char msg[4];
756
757 /* We got the flags from the SMI, now handle them. */
758 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
759 if (msg[2] != 0) {
760 dev_warn(smi_info->dev, "Could not disable interrupts"
761 ", failed set.\n");
762 }
763 smi_info->si_state = SI_NORMAL;
764 break;
765 }
766 }
767 }
768
769 /*
770 * Called on timeouts and events. Timeouts should pass the elapsed
771 * time, interrupts should pass in zero. Must be called with
772 * si_lock held and interrupts disabled.
773 */
774 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
775 int time)
776 {
777 enum si_sm_result si_sm_result;
778
779 restart:
780 /*
781 * There used to be a loop here that waited a little while
782 * (around 25us) before giving up. That turned out to be
783 * pointless, the minimum delays I was seeing were in the 300us
784 * range, which is far too long to wait in an interrupt. So
785 * we just run until the state machine tells us something
786 * happened or it needs a delay.
787 */
788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
789 time = 0;
790 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
791 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
792
793 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
794 smi_inc_stat(smi_info, complete_transactions);
795
796 handle_transaction_done(smi_info);
797 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
798 } else if (si_sm_result == SI_SM_HOSED) {
799 smi_inc_stat(smi_info, hosed_count);
800
801 /*
802 * Do the before return_hosed_msg, because that
803 * releases the lock.
804 */
805 smi_info->si_state = SI_NORMAL;
806 if (smi_info->curr_msg != NULL) {
807 /*
808 * If we were handling a user message, format
809 * a response to send to the upper layer to
810 * tell it about the error.
811 */
812 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
813 }
814 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
815 }
816
817 /*
818 * We prefer handling attn over new messages. But don't do
819 * this if there is not yet an upper layer to handle anything.
820 */
821 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
822 unsigned char msg[2];
823
824 smi_inc_stat(smi_info, attentions);
825
826 /*
827 * Got a attn, send down a get message flags to see
828 * what's causing it. It would be better to handle
829 * this in the upper layer, but due to the way
830 * interrupts work with the SMI, that's not really
831 * possible.
832 */
833 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
834 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
835
836 smi_info->handlers->start_transaction(
837 smi_info->si_sm, msg, 2);
838 smi_info->si_state = SI_GETTING_FLAGS;
839 goto restart;
840 }
841
842 /* If we are currently idle, try to start the next message. */
843 if (si_sm_result == SI_SM_IDLE) {
844 smi_inc_stat(smi_info, idles);
845
846 si_sm_result = start_next_msg(smi_info);
847 if (si_sm_result != SI_SM_IDLE)
848 goto restart;
849 }
850
851 if ((si_sm_result == SI_SM_IDLE)
852 && (atomic_read(&smi_info->req_events))) {
853 /*
854 * We are idle and the upper layer requested that I fetch
855 * events, so do so.
856 */
857 atomic_set(&smi_info->req_events, 0);
858
859 smi_info->curr_msg = ipmi_alloc_smi_msg();
860 if (!smi_info->curr_msg)
861 goto out;
862
863 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
864 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
865 smi_info->curr_msg->data_size = 2;
866
867 smi_info->handlers->start_transaction(
868 smi_info->si_sm,
869 smi_info->curr_msg->data,
870 smi_info->curr_msg->data_size);
871 smi_info->si_state = SI_GETTING_EVENTS;
872 goto restart;
873 }
874 out:
875 return si_sm_result;
876 }
877
878 static void sender(void *send_info,
879 struct ipmi_smi_msg *msg,
880 int priority)
881 {
882 struct smi_info *smi_info = send_info;
883 enum si_sm_result result;
884 unsigned long flags;
885 #ifdef DEBUG_TIMING
886 struct timeval t;
887 #endif
888
889 if (atomic_read(&smi_info->stop_operation)) {
890 msg->rsp[0] = msg->data[0] | 4;
891 msg->rsp[1] = msg->data[1];
892 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
893 msg->rsp_size = 3;
894 deliver_recv_msg(smi_info, msg);
895 return;
896 }
897
898 #ifdef DEBUG_TIMING
899 do_gettimeofday(&t);
900 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
901 #endif
902
903 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
904
905 if (smi_info->thread)
906 wake_up_process(smi_info->thread);
907
908 if (smi_info->run_to_completion) {
909 /*
910 * If we are running to completion, then throw it in
911 * the list and run transactions until everything is
912 * clear. Priority doesn't matter here.
913 */
914
915 /*
916 * Run to completion means we are single-threaded, no
917 * need for locks.
918 */
919 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
920
921 result = smi_event_handler(smi_info, 0);
922 while (result != SI_SM_IDLE) {
923 udelay(SI_SHORT_TIMEOUT_USEC);
924 result = smi_event_handler(smi_info,
925 SI_SHORT_TIMEOUT_USEC);
926 }
927 return;
928 }
929
930 spin_lock_irqsave(&smi_info->msg_lock, flags);
931 if (priority > 0)
932 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
933 else
934 list_add_tail(&msg->link, &smi_info->xmit_msgs);
935 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
936
937 spin_lock_irqsave(&smi_info->si_lock, flags);
938 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
939 start_next_msg(smi_info);
940 spin_unlock_irqrestore(&smi_info->si_lock, flags);
941 }
942
943 static void set_run_to_completion(void *send_info, int i_run_to_completion)
944 {
945 struct smi_info *smi_info = send_info;
946 enum si_sm_result result;
947
948 smi_info->run_to_completion = i_run_to_completion;
949 if (i_run_to_completion) {
950 result = smi_event_handler(smi_info, 0);
951 while (result != SI_SM_IDLE) {
952 udelay(SI_SHORT_TIMEOUT_USEC);
953 result = smi_event_handler(smi_info,
954 SI_SHORT_TIMEOUT_USEC);
955 }
956 }
957 }
958
959 /*
960 * Use -1 in the nsec value of the busy waiting timespec to tell that
961 * we are spinning in kipmid looking for something and not delaying
962 * between checks
963 */
964 static inline void ipmi_si_set_not_busy(struct timespec *ts)
965 {
966 ts->tv_nsec = -1;
967 }
968 static inline int ipmi_si_is_busy(struct timespec *ts)
969 {
970 return ts->tv_nsec != -1;
971 }
972
973 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
974 const struct smi_info *smi_info,
975 struct timespec *busy_until)
976 {
977 unsigned int max_busy_us = 0;
978
979 if (smi_info->intf_num < num_max_busy_us)
980 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
981 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
982 ipmi_si_set_not_busy(busy_until);
983 else if (!ipmi_si_is_busy(busy_until)) {
984 getnstimeofday(busy_until);
985 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
986 } else {
987 struct timespec now;
988 getnstimeofday(&now);
989 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
990 ipmi_si_set_not_busy(busy_until);
991 return 0;
992 }
993 }
994 return 1;
995 }
996
997
998 /*
999 * A busy-waiting loop for speeding up IPMI operation.
1000 *
1001 * Lousy hardware makes this hard. This is only enabled for systems
1002 * that are not BT and do not have interrupts. It starts spinning
1003 * when an operation is complete or until max_busy tells it to stop
1004 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1005 * Documentation/IPMI.txt for details.
1006 */
1007 static int ipmi_thread(void *data)
1008 {
1009 struct smi_info *smi_info = data;
1010 unsigned long flags;
1011 enum si_sm_result smi_result;
1012 struct timespec busy_until;
1013
1014 ipmi_si_set_not_busy(&busy_until);
1015 set_user_nice(current, 19);
1016 while (!kthread_should_stop()) {
1017 int busy_wait;
1018
1019 spin_lock_irqsave(&(smi_info->si_lock), flags);
1020 smi_result = smi_event_handler(smi_info, 0);
1021 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1022 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1023 &busy_until);
1024 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1025 ; /* do nothing */
1026 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1027 schedule();
1028 else if (smi_result == SI_SM_IDLE)
1029 schedule_timeout_interruptible(100);
1030 else
1031 schedule_timeout_interruptible(1);
1032 }
1033 return 0;
1034 }
1035
1036
1037 static void poll(void *send_info)
1038 {
1039 struct smi_info *smi_info = send_info;
1040 unsigned long flags;
1041
1042 /*
1043 * Make sure there is some delay in the poll loop so we can
1044 * drive time forward and timeout things.
1045 */
1046 udelay(10);
1047 spin_lock_irqsave(&smi_info->si_lock, flags);
1048 smi_event_handler(smi_info, 10);
1049 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1050 }
1051
1052 static void request_events(void *send_info)
1053 {
1054 struct smi_info *smi_info = send_info;
1055
1056 if (atomic_read(&smi_info->stop_operation) ||
1057 !smi_info->has_event_buffer)
1058 return;
1059
1060 atomic_set(&smi_info->req_events, 1);
1061 }
1062
1063 static int initialized;
1064
1065 static void smi_timeout(unsigned long data)
1066 {
1067 struct smi_info *smi_info = (struct smi_info *) data;
1068 enum si_sm_result smi_result;
1069 unsigned long flags;
1070 unsigned long jiffies_now;
1071 long time_diff;
1072 long timeout;
1073 #ifdef DEBUG_TIMING
1074 struct timeval t;
1075 #endif
1076
1077 spin_lock_irqsave(&(smi_info->si_lock), flags);
1078 #ifdef DEBUG_TIMING
1079 do_gettimeofday(&t);
1080 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1081 #endif
1082 jiffies_now = jiffies;
1083 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1084 * SI_USEC_PER_JIFFY);
1085 smi_result = smi_event_handler(smi_info, time_diff);
1086
1087 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1088
1089 smi_info->last_timeout_jiffies = jiffies_now;
1090
1091 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1092 /* Running with interrupts, only do long timeouts. */
1093 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1094 smi_inc_stat(smi_info, long_timeouts);
1095 goto do_mod_timer;
1096 }
1097
1098 /*
1099 * If the state machine asks for a short delay, then shorten
1100 * the timer timeout.
1101 */
1102 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1103 smi_inc_stat(smi_info, short_timeouts);
1104 timeout = jiffies + 1;
1105 } else {
1106 smi_inc_stat(smi_info, long_timeouts);
1107 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1108 }
1109
1110 do_mod_timer:
1111 if (smi_result != SI_SM_IDLE)
1112 mod_timer(&(smi_info->si_timer), timeout);
1113 }
1114
1115 static irqreturn_t si_irq_handler(int irq, void *data)
1116 {
1117 struct smi_info *smi_info = data;
1118 unsigned long flags;
1119 #ifdef DEBUG_TIMING
1120 struct timeval t;
1121 #endif
1122
1123 spin_lock_irqsave(&(smi_info->si_lock), flags);
1124
1125 smi_inc_stat(smi_info, interrupts);
1126
1127 #ifdef DEBUG_TIMING
1128 do_gettimeofday(&t);
1129 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1130 #endif
1131 smi_event_handler(smi_info, 0);
1132 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1133 return IRQ_HANDLED;
1134 }
1135
1136 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1137 {
1138 struct smi_info *smi_info = data;
1139 /* We need to clear the IRQ flag for the BT interface. */
1140 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1141 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1142 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1143 return si_irq_handler(irq, data);
1144 }
1145
1146 static int smi_start_processing(void *send_info,
1147 ipmi_smi_t intf)
1148 {
1149 struct smi_info *new_smi = send_info;
1150 int enable = 0;
1151
1152 new_smi->intf = intf;
1153
1154 /* Try to claim any interrupts. */
1155 if (new_smi->irq_setup)
1156 new_smi->irq_setup(new_smi);
1157
1158 /* Set up the timer that drives the interface. */
1159 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1160 new_smi->last_timeout_jiffies = jiffies;
1161 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1162
1163 /*
1164 * Check if the user forcefully enabled the daemon.
1165 */
1166 if (new_smi->intf_num < num_force_kipmid)
1167 enable = force_kipmid[new_smi->intf_num];
1168 /*
1169 * The BT interface is efficient enough to not need a thread,
1170 * and there is no need for a thread if we have interrupts.
1171 */
1172 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1173 enable = 1;
1174
1175 if (enable) {
1176 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1177 "kipmi%d", new_smi->intf_num);
1178 if (IS_ERR(new_smi->thread)) {
1179 dev_notice(new_smi->dev, "Could not start"
1180 " kernel thread due to error %ld, only using"
1181 " timers to drive the interface\n",
1182 PTR_ERR(new_smi->thread));
1183 new_smi->thread = NULL;
1184 }
1185 }
1186
1187 return 0;
1188 }
1189
1190 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1191 {
1192 struct smi_info *smi = send_info;
1193
1194 data->addr_src = smi->addr_source;
1195 data->dev = smi->dev;
1196 data->addr_info = smi->addr_info;
1197 get_device(smi->dev);
1198
1199 return 0;
1200 }
1201
1202 static void set_maintenance_mode(void *send_info, int enable)
1203 {
1204 struct smi_info *smi_info = send_info;
1205
1206 if (!enable)
1207 atomic_set(&smi_info->req_events, 0);
1208 }
1209
1210 static struct ipmi_smi_handlers handlers = {
1211 .owner = THIS_MODULE,
1212 .start_processing = smi_start_processing,
1213 .get_smi_info = get_smi_info,
1214 .sender = sender,
1215 .request_events = request_events,
1216 .set_maintenance_mode = set_maintenance_mode,
1217 .set_run_to_completion = set_run_to_completion,
1218 .poll = poll,
1219 };
1220
1221 /*
1222 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1223 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1224 */
1225
1226 static LIST_HEAD(smi_infos);
1227 static DEFINE_MUTEX(smi_infos_lock);
1228 static int smi_num; /* Used to sequence the SMIs */
1229
1230 #define DEFAULT_REGSPACING 1
1231 #define DEFAULT_REGSIZE 1
1232
1233 static int si_trydefaults = 1;
1234 static char *si_type[SI_MAX_PARMS];
1235 #define MAX_SI_TYPE_STR 30
1236 static char si_type_str[MAX_SI_TYPE_STR];
1237 static unsigned long addrs[SI_MAX_PARMS];
1238 static unsigned int num_addrs;
1239 static unsigned int ports[SI_MAX_PARMS];
1240 static unsigned int num_ports;
1241 static int irqs[SI_MAX_PARMS];
1242 static unsigned int num_irqs;
1243 static int regspacings[SI_MAX_PARMS];
1244 static unsigned int num_regspacings;
1245 static int regsizes[SI_MAX_PARMS];
1246 static unsigned int num_regsizes;
1247 static int regshifts[SI_MAX_PARMS];
1248 static unsigned int num_regshifts;
1249 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1250 static unsigned int num_slave_addrs;
1251
1252 #define IPMI_IO_ADDR_SPACE 0
1253 #define IPMI_MEM_ADDR_SPACE 1
1254 static char *addr_space_to_str[] = { "i/o", "mem" };
1255
1256 static int hotmod_handler(const char *val, struct kernel_param *kp);
1257
1258 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1259 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1260 " Documentation/IPMI.txt in the kernel sources for the"
1261 " gory details.");
1262
1263 module_param_named(trydefaults, si_trydefaults, bool, 0);
1264 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1265 " default scan of the KCS and SMIC interface at the standard"
1266 " address");
1267 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1268 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1269 " interface separated by commas. The types are 'kcs',"
1270 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1271 " the first interface to kcs and the second to bt");
1272 module_param_array(addrs, ulong, &num_addrs, 0);
1273 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1274 " addresses separated by commas. Only use if an interface"
1275 " is in memory. Otherwise, set it to zero or leave"
1276 " it blank.");
1277 module_param_array(ports, uint, &num_ports, 0);
1278 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1279 " addresses separated by commas. Only use if an interface"
1280 " is a port. Otherwise, set it to zero or leave"
1281 " it blank.");
1282 module_param_array(irqs, int, &num_irqs, 0);
1283 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1284 " addresses separated by commas. Only use if an interface"
1285 " has an interrupt. Otherwise, set it to zero or leave"
1286 " it blank.");
1287 module_param_array(regspacings, int, &num_regspacings, 0);
1288 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1289 " and each successive register used by the interface. For"
1290 " instance, if the start address is 0xca2 and the spacing"
1291 " is 2, then the second address is at 0xca4. Defaults"
1292 " to 1.");
1293 module_param_array(regsizes, int, &num_regsizes, 0);
1294 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1295 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1296 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1297 " the 8-bit IPMI register has to be read from a larger"
1298 " register.");
1299 module_param_array(regshifts, int, &num_regshifts, 0);
1300 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1301 " IPMI register, in bits. For instance, if the data"
1302 " is read from a 32-bit word and the IPMI data is in"
1303 " bit 8-15, then the shift would be 8");
1304 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1305 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1306 " the controller. Normally this is 0x20, but can be"
1307 " overridden by this parm. This is an array indexed"
1308 " by interface number.");
1309 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1310 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1311 " disabled(0). Normally the IPMI driver auto-detects"
1312 " this, but the value may be overridden by this parm.");
1313 module_param(unload_when_empty, int, 0);
1314 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1315 " specified or found, default is 1. Setting to 0"
1316 " is useful for hot add of devices using hotmod.");
1317 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1318 MODULE_PARM_DESC(kipmid_max_busy_us,
1319 "Max time (in microseconds) to busy-wait for IPMI data before"
1320 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1321 " if kipmid is using up a lot of CPU time.");
1322
1323
1324 static void std_irq_cleanup(struct smi_info *info)
1325 {
1326 if (info->si_type == SI_BT)
1327 /* Disable the interrupt in the BT interface. */
1328 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1329 free_irq(info->irq, info);
1330 }
1331
1332 static int std_irq_setup(struct smi_info *info)
1333 {
1334 int rv;
1335
1336 if (!info->irq)
1337 return 0;
1338
1339 if (info->si_type == SI_BT) {
1340 rv = request_irq(info->irq,
1341 si_bt_irq_handler,
1342 IRQF_SHARED | IRQF_DISABLED,
1343 DEVICE_NAME,
1344 info);
1345 if (!rv)
1346 /* Enable the interrupt in the BT interface. */
1347 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1348 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1349 } else
1350 rv = request_irq(info->irq,
1351 si_irq_handler,
1352 IRQF_SHARED | IRQF_DISABLED,
1353 DEVICE_NAME,
1354 info);
1355 if (rv) {
1356 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1357 " running polled\n",
1358 DEVICE_NAME, info->irq);
1359 info->irq = 0;
1360 } else {
1361 info->irq_cleanup = std_irq_cleanup;
1362 dev_info(info->dev, "Using irq %d\n", info->irq);
1363 }
1364
1365 return rv;
1366 }
1367
1368 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1369 {
1370 unsigned int addr = io->addr_data;
1371
1372 return inb(addr + (offset * io->regspacing));
1373 }
1374
1375 static void port_outb(struct si_sm_io *io, unsigned int offset,
1376 unsigned char b)
1377 {
1378 unsigned int addr = io->addr_data;
1379
1380 outb(b, addr + (offset * io->regspacing));
1381 }
1382
1383 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1384 {
1385 unsigned int addr = io->addr_data;
1386
1387 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1388 }
1389
1390 static void port_outw(struct si_sm_io *io, unsigned int offset,
1391 unsigned char b)
1392 {
1393 unsigned int addr = io->addr_data;
1394
1395 outw(b << io->regshift, addr + (offset * io->regspacing));
1396 }
1397
1398 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1399 {
1400 unsigned int addr = io->addr_data;
1401
1402 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1403 }
1404
1405 static void port_outl(struct si_sm_io *io, unsigned int offset,
1406 unsigned char b)
1407 {
1408 unsigned int addr = io->addr_data;
1409
1410 outl(b << io->regshift, addr+(offset * io->regspacing));
1411 }
1412
1413 static void port_cleanup(struct smi_info *info)
1414 {
1415 unsigned int addr = info->io.addr_data;
1416 int idx;
1417
1418 if (addr) {
1419 for (idx = 0; idx < info->io_size; idx++)
1420 release_region(addr + idx * info->io.regspacing,
1421 info->io.regsize);
1422 }
1423 }
1424
1425 static int port_setup(struct smi_info *info)
1426 {
1427 unsigned int addr = info->io.addr_data;
1428 int idx;
1429
1430 if (!addr)
1431 return -ENODEV;
1432
1433 info->io_cleanup = port_cleanup;
1434
1435 /*
1436 * Figure out the actual inb/inw/inl/etc routine to use based
1437 * upon the register size.
1438 */
1439 switch (info->io.regsize) {
1440 case 1:
1441 info->io.inputb = port_inb;
1442 info->io.outputb = port_outb;
1443 break;
1444 case 2:
1445 info->io.inputb = port_inw;
1446 info->io.outputb = port_outw;
1447 break;
1448 case 4:
1449 info->io.inputb = port_inl;
1450 info->io.outputb = port_outl;
1451 break;
1452 default:
1453 dev_warn(info->dev, "Invalid register size: %d\n",
1454 info->io.regsize);
1455 return -EINVAL;
1456 }
1457
1458 /*
1459 * Some BIOSes reserve disjoint I/O regions in their ACPI
1460 * tables. This causes problems when trying to register the
1461 * entire I/O region. Therefore we must register each I/O
1462 * port separately.
1463 */
1464 for (idx = 0; idx < info->io_size; idx++) {
1465 if (request_region(addr + idx * info->io.regspacing,
1466 info->io.regsize, DEVICE_NAME) == NULL) {
1467 /* Undo allocations */
1468 while (idx--) {
1469 release_region(addr + idx * info->io.regspacing,
1470 info->io.regsize);
1471 }
1472 return -EIO;
1473 }
1474 }
1475 return 0;
1476 }
1477
1478 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1479 {
1480 return readb((io->addr)+(offset * io->regspacing));
1481 }
1482
1483 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1484 unsigned char b)
1485 {
1486 writeb(b, (io->addr)+(offset * io->regspacing));
1487 }
1488
1489 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1490 {
1491 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1492 & 0xff;
1493 }
1494
1495 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1496 unsigned char b)
1497 {
1498 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1499 }
1500
1501 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1502 {
1503 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1504 & 0xff;
1505 }
1506
1507 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1508 unsigned char b)
1509 {
1510 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1511 }
1512
1513 #ifdef readq
1514 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1515 {
1516 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1517 & 0xff;
1518 }
1519
1520 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1521 unsigned char b)
1522 {
1523 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1524 }
1525 #endif
1526
1527 static void mem_cleanup(struct smi_info *info)
1528 {
1529 unsigned long addr = info->io.addr_data;
1530 int mapsize;
1531
1532 if (info->io.addr) {
1533 iounmap(info->io.addr);
1534
1535 mapsize = ((info->io_size * info->io.regspacing)
1536 - (info->io.regspacing - info->io.regsize));
1537
1538 release_mem_region(addr, mapsize);
1539 }
1540 }
1541
1542 static int mem_setup(struct smi_info *info)
1543 {
1544 unsigned long addr = info->io.addr_data;
1545 int mapsize;
1546
1547 if (!addr)
1548 return -ENODEV;
1549
1550 info->io_cleanup = mem_cleanup;
1551
1552 /*
1553 * Figure out the actual readb/readw/readl/etc routine to use based
1554 * upon the register size.
1555 */
1556 switch (info->io.regsize) {
1557 case 1:
1558 info->io.inputb = intf_mem_inb;
1559 info->io.outputb = intf_mem_outb;
1560 break;
1561 case 2:
1562 info->io.inputb = intf_mem_inw;
1563 info->io.outputb = intf_mem_outw;
1564 break;
1565 case 4:
1566 info->io.inputb = intf_mem_inl;
1567 info->io.outputb = intf_mem_outl;
1568 break;
1569 #ifdef readq
1570 case 8:
1571 info->io.inputb = mem_inq;
1572 info->io.outputb = mem_outq;
1573 break;
1574 #endif
1575 default:
1576 dev_warn(info->dev, "Invalid register size: %d\n",
1577 info->io.regsize);
1578 return -EINVAL;
1579 }
1580
1581 /*
1582 * Calculate the total amount of memory to claim. This is an
1583 * unusual looking calculation, but it avoids claiming any
1584 * more memory than it has to. It will claim everything
1585 * between the first address to the end of the last full
1586 * register.
1587 */
1588 mapsize = ((info->io_size * info->io.regspacing)
1589 - (info->io.regspacing - info->io.regsize));
1590
1591 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1592 return -EIO;
1593
1594 info->io.addr = ioremap(addr, mapsize);
1595 if (info->io.addr == NULL) {
1596 release_mem_region(addr, mapsize);
1597 return -EIO;
1598 }
1599 return 0;
1600 }
1601
1602 /*
1603 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1604 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1605 * Options are:
1606 * rsp=<regspacing>
1607 * rsi=<regsize>
1608 * rsh=<regshift>
1609 * irq=<irq>
1610 * ipmb=<ipmb addr>
1611 */
1612 enum hotmod_op { HM_ADD, HM_REMOVE };
1613 struct hotmod_vals {
1614 char *name;
1615 int val;
1616 };
1617 static struct hotmod_vals hotmod_ops[] = {
1618 { "add", HM_ADD },
1619 { "remove", HM_REMOVE },
1620 { NULL }
1621 };
1622 static struct hotmod_vals hotmod_si[] = {
1623 { "kcs", SI_KCS },
1624 { "smic", SI_SMIC },
1625 { "bt", SI_BT },
1626 { NULL }
1627 };
1628 static struct hotmod_vals hotmod_as[] = {
1629 { "mem", IPMI_MEM_ADDR_SPACE },
1630 { "i/o", IPMI_IO_ADDR_SPACE },
1631 { NULL }
1632 };
1633
1634 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1635 {
1636 char *s;
1637 int i;
1638
1639 s = strchr(*curr, ',');
1640 if (!s) {
1641 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1642 return -EINVAL;
1643 }
1644 *s = '\0';
1645 s++;
1646 for (i = 0; hotmod_ops[i].name; i++) {
1647 if (strcmp(*curr, v[i].name) == 0) {
1648 *val = v[i].val;
1649 *curr = s;
1650 return 0;
1651 }
1652 }
1653
1654 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1655 return -EINVAL;
1656 }
1657
1658 static int check_hotmod_int_op(const char *curr, const char *option,
1659 const char *name, int *val)
1660 {
1661 char *n;
1662
1663 if (strcmp(curr, name) == 0) {
1664 if (!option) {
1665 printk(KERN_WARNING PFX
1666 "No option given for '%s'\n",
1667 curr);
1668 return -EINVAL;
1669 }
1670 *val = simple_strtoul(option, &n, 0);
1671 if ((*n != '\0') || (*option == '\0')) {
1672 printk(KERN_WARNING PFX
1673 "Bad option given for '%s'\n",
1674 curr);
1675 return -EINVAL;
1676 }
1677 return 1;
1678 }
1679 return 0;
1680 }
1681
1682 static struct smi_info *smi_info_alloc(void)
1683 {
1684 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1685
1686 if (info) {
1687 spin_lock_init(&info->si_lock);
1688 spin_lock_init(&info->msg_lock);
1689 }
1690 return info;
1691 }
1692
1693 static int hotmod_handler(const char *val, struct kernel_param *kp)
1694 {
1695 char *str = kstrdup(val, GFP_KERNEL);
1696 int rv;
1697 char *next, *curr, *s, *n, *o;
1698 enum hotmod_op op;
1699 enum si_type si_type;
1700 int addr_space;
1701 unsigned long addr;
1702 int regspacing;
1703 int regsize;
1704 int regshift;
1705 int irq;
1706 int ipmb;
1707 int ival;
1708 int len;
1709 struct smi_info *info;
1710
1711 if (!str)
1712 return -ENOMEM;
1713
1714 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1715 len = strlen(str);
1716 ival = len - 1;
1717 while ((ival >= 0) && isspace(str[ival])) {
1718 str[ival] = '\0';
1719 ival--;
1720 }
1721
1722 for (curr = str; curr; curr = next) {
1723 regspacing = 1;
1724 regsize = 1;
1725 regshift = 0;
1726 irq = 0;
1727 ipmb = 0; /* Choose the default if not specified */
1728
1729 next = strchr(curr, ':');
1730 if (next) {
1731 *next = '\0';
1732 next++;
1733 }
1734
1735 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1736 if (rv)
1737 break;
1738 op = ival;
1739
1740 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1741 if (rv)
1742 break;
1743 si_type = ival;
1744
1745 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1746 if (rv)
1747 break;
1748
1749 s = strchr(curr, ',');
1750 if (s) {
1751 *s = '\0';
1752 s++;
1753 }
1754 addr = simple_strtoul(curr, &n, 0);
1755 if ((*n != '\0') || (*curr == '\0')) {
1756 printk(KERN_WARNING PFX "Invalid hotmod address"
1757 " '%s'\n", curr);
1758 break;
1759 }
1760
1761 while (s) {
1762 curr = s;
1763 s = strchr(curr, ',');
1764 if (s) {
1765 *s = '\0';
1766 s++;
1767 }
1768 o = strchr(curr, '=');
1769 if (o) {
1770 *o = '\0';
1771 o++;
1772 }
1773 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1774 if (rv < 0)
1775 goto out;
1776 else if (rv)
1777 continue;
1778 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1779 if (rv < 0)
1780 goto out;
1781 else if (rv)
1782 continue;
1783 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1784 if (rv < 0)
1785 goto out;
1786 else if (rv)
1787 continue;
1788 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1789 if (rv < 0)
1790 goto out;
1791 else if (rv)
1792 continue;
1793 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1794 if (rv < 0)
1795 goto out;
1796 else if (rv)
1797 continue;
1798
1799 rv = -EINVAL;
1800 printk(KERN_WARNING PFX
1801 "Invalid hotmod option '%s'\n",
1802 curr);
1803 goto out;
1804 }
1805
1806 if (op == HM_ADD) {
1807 info = smi_info_alloc();
1808 if (!info) {
1809 rv = -ENOMEM;
1810 goto out;
1811 }
1812
1813 info->addr_source = SI_HOTMOD;
1814 info->si_type = si_type;
1815 info->io.addr_data = addr;
1816 info->io.addr_type = addr_space;
1817 if (addr_space == IPMI_MEM_ADDR_SPACE)
1818 info->io_setup = mem_setup;
1819 else
1820 info->io_setup = port_setup;
1821
1822 info->io.addr = NULL;
1823 info->io.regspacing = regspacing;
1824 if (!info->io.regspacing)
1825 info->io.regspacing = DEFAULT_REGSPACING;
1826 info->io.regsize = regsize;
1827 if (!info->io.regsize)
1828 info->io.regsize = DEFAULT_REGSPACING;
1829 info->io.regshift = regshift;
1830 info->irq = irq;
1831 if (info->irq)
1832 info->irq_setup = std_irq_setup;
1833 info->slave_addr = ipmb;
1834
1835 if (!add_smi(info)) {
1836 if (try_smi_init(info))
1837 cleanup_one_si(info);
1838 } else {
1839 kfree(info);
1840 }
1841 } else {
1842 /* remove */
1843 struct smi_info *e, *tmp_e;
1844
1845 mutex_lock(&smi_infos_lock);
1846 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1847 if (e->io.addr_type != addr_space)
1848 continue;
1849 if (e->si_type != si_type)
1850 continue;
1851 if (e->io.addr_data == addr)
1852 cleanup_one_si(e);
1853 }
1854 mutex_unlock(&smi_infos_lock);
1855 }
1856 }
1857 rv = len;
1858 out:
1859 kfree(str);
1860 return rv;
1861 }
1862
1863 static void __devinit hardcode_find_bmc(void)
1864 {
1865 int i;
1866 struct smi_info *info;
1867
1868 for (i = 0; i < SI_MAX_PARMS; i++) {
1869 if (!ports[i] && !addrs[i])
1870 continue;
1871
1872 info = smi_info_alloc();
1873 if (!info)
1874 return;
1875
1876 info->addr_source = SI_HARDCODED;
1877 printk(KERN_INFO PFX "probing via hardcoded address\n");
1878
1879 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1880 info->si_type = SI_KCS;
1881 } else if (strcmp(si_type[i], "smic") == 0) {
1882 info->si_type = SI_SMIC;
1883 } else if (strcmp(si_type[i], "bt") == 0) {
1884 info->si_type = SI_BT;
1885 } else {
1886 printk(KERN_WARNING PFX "Interface type specified "
1887 "for interface %d, was invalid: %s\n",
1888 i, si_type[i]);
1889 kfree(info);
1890 continue;
1891 }
1892
1893 if (ports[i]) {
1894 /* An I/O port */
1895 info->io_setup = port_setup;
1896 info->io.addr_data = ports[i];
1897 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1898 } else if (addrs[i]) {
1899 /* A memory port */
1900 info->io_setup = mem_setup;
1901 info->io.addr_data = addrs[i];
1902 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1903 } else {
1904 printk(KERN_WARNING PFX "Interface type specified "
1905 "for interface %d, but port and address were "
1906 "not set or set to zero.\n", i);
1907 kfree(info);
1908 continue;
1909 }
1910
1911 info->io.addr = NULL;
1912 info->io.regspacing = regspacings[i];
1913 if (!info->io.regspacing)
1914 info->io.regspacing = DEFAULT_REGSPACING;
1915 info->io.regsize = regsizes[i];
1916 if (!info->io.regsize)
1917 info->io.regsize = DEFAULT_REGSPACING;
1918 info->io.regshift = regshifts[i];
1919 info->irq = irqs[i];
1920 if (info->irq)
1921 info->irq_setup = std_irq_setup;
1922 info->slave_addr = slave_addrs[i];
1923
1924 if (!add_smi(info)) {
1925 if (try_smi_init(info))
1926 cleanup_one_si(info);
1927 } else {
1928 kfree(info);
1929 }
1930 }
1931 }
1932
1933 #ifdef CONFIG_ACPI
1934
1935 #include <linux/acpi.h>
1936
1937 /*
1938 * Once we get an ACPI failure, we don't try any more, because we go
1939 * through the tables sequentially. Once we don't find a table, there
1940 * are no more.
1941 */
1942 static int acpi_failure;
1943
1944 /* For GPE-type interrupts. */
1945 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1946 u32 gpe_number, void *context)
1947 {
1948 struct smi_info *smi_info = context;
1949 unsigned long flags;
1950 #ifdef DEBUG_TIMING
1951 struct timeval t;
1952 #endif
1953
1954 spin_lock_irqsave(&(smi_info->si_lock), flags);
1955
1956 smi_inc_stat(smi_info, interrupts);
1957
1958 #ifdef DEBUG_TIMING
1959 do_gettimeofday(&t);
1960 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1961 #endif
1962 smi_event_handler(smi_info, 0);
1963 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1964
1965 return ACPI_INTERRUPT_HANDLED;
1966 }
1967
1968 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1969 {
1970 if (!info->irq)
1971 return;
1972
1973 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1974 }
1975
1976 static int acpi_gpe_irq_setup(struct smi_info *info)
1977 {
1978 acpi_status status;
1979
1980 if (!info->irq)
1981 return 0;
1982
1983 /* FIXME - is level triggered right? */
1984 status = acpi_install_gpe_handler(NULL,
1985 info->irq,
1986 ACPI_GPE_LEVEL_TRIGGERED,
1987 &ipmi_acpi_gpe,
1988 info);
1989 if (status != AE_OK) {
1990 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1991 " running polled\n", DEVICE_NAME, info->irq);
1992 info->irq = 0;
1993 return -EINVAL;
1994 } else {
1995 info->irq_cleanup = acpi_gpe_irq_cleanup;
1996 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1997 return 0;
1998 }
1999 }
2000
2001 /*
2002 * Defined at
2003 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2004 */
2005 struct SPMITable {
2006 s8 Signature[4];
2007 u32 Length;
2008 u8 Revision;
2009 u8 Checksum;
2010 s8 OEMID[6];
2011 s8 OEMTableID[8];
2012 s8 OEMRevision[4];
2013 s8 CreatorID[4];
2014 s8 CreatorRevision[4];
2015 u8 InterfaceType;
2016 u8 IPMIlegacy;
2017 s16 SpecificationRevision;
2018
2019 /*
2020 * Bit 0 - SCI interrupt supported
2021 * Bit 1 - I/O APIC/SAPIC
2022 */
2023 u8 InterruptType;
2024
2025 /*
2026 * If bit 0 of InterruptType is set, then this is the SCI
2027 * interrupt in the GPEx_STS register.
2028 */
2029 u8 GPE;
2030
2031 s16 Reserved;
2032
2033 /*
2034 * If bit 1 of InterruptType is set, then this is the I/O
2035 * APIC/SAPIC interrupt.
2036 */
2037 u32 GlobalSystemInterrupt;
2038
2039 /* The actual register address. */
2040 struct acpi_generic_address addr;
2041
2042 u8 UID[4];
2043
2044 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2045 };
2046
2047 static int __devinit try_init_spmi(struct SPMITable *spmi)
2048 {
2049 struct smi_info *info;
2050
2051 if (spmi->IPMIlegacy != 1) {
2052 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2053 return -ENODEV;
2054 }
2055
2056 info = smi_info_alloc();
2057 if (!info) {
2058 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2059 return -ENOMEM;
2060 }
2061
2062 info->addr_source = SI_SPMI;
2063 printk(KERN_INFO PFX "probing via SPMI\n");
2064
2065 /* Figure out the interface type. */
2066 switch (spmi->InterfaceType) {
2067 case 1: /* KCS */
2068 info->si_type = SI_KCS;
2069 break;
2070 case 2: /* SMIC */
2071 info->si_type = SI_SMIC;
2072 break;
2073 case 3: /* BT */
2074 info->si_type = SI_BT;
2075 break;
2076 default:
2077 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2078 spmi->InterfaceType);
2079 kfree(info);
2080 return -EIO;
2081 }
2082
2083 if (spmi->InterruptType & 1) {
2084 /* We've got a GPE interrupt. */
2085 info->irq = spmi->GPE;
2086 info->irq_setup = acpi_gpe_irq_setup;
2087 } else if (spmi->InterruptType & 2) {
2088 /* We've got an APIC/SAPIC interrupt. */
2089 info->irq = spmi->GlobalSystemInterrupt;
2090 info->irq_setup = std_irq_setup;
2091 } else {
2092 /* Use the default interrupt setting. */
2093 info->irq = 0;
2094 info->irq_setup = NULL;
2095 }
2096
2097 if (spmi->addr.bit_width) {
2098 /* A (hopefully) properly formed register bit width. */
2099 info->io.regspacing = spmi->addr.bit_width / 8;
2100 } else {
2101 info->io.regspacing = DEFAULT_REGSPACING;
2102 }
2103 info->io.regsize = info->io.regspacing;
2104 info->io.regshift = spmi->addr.bit_offset;
2105
2106 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2107 info->io_setup = mem_setup;
2108 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2109 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2110 info->io_setup = port_setup;
2111 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2112 } else {
2113 kfree(info);
2114 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2115 return -EIO;
2116 }
2117 info->io.addr_data = spmi->addr.address;
2118
2119 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2120 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2121 info->io.addr_data, info->io.regsize, info->io.regspacing,
2122 info->irq);
2123
2124 if (add_smi(info))
2125 kfree(info);
2126
2127 return 0;
2128 }
2129
2130 static void __devinit spmi_find_bmc(void)
2131 {
2132 acpi_status status;
2133 struct SPMITable *spmi;
2134 int i;
2135
2136 if (acpi_disabled)
2137 return;
2138
2139 if (acpi_failure)
2140 return;
2141
2142 for (i = 0; ; i++) {
2143 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2144 (struct acpi_table_header **)&spmi);
2145 if (status != AE_OK)
2146 return;
2147
2148 try_init_spmi(spmi);
2149 }
2150 }
2151
2152 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2153 const struct pnp_device_id *dev_id)
2154 {
2155 struct acpi_device *acpi_dev;
2156 struct smi_info *info;
2157 struct resource *res, *res_second;
2158 acpi_handle handle;
2159 acpi_status status;
2160 unsigned long long tmp;
2161
2162 acpi_dev = pnp_acpi_device(dev);
2163 if (!acpi_dev)
2164 return -ENODEV;
2165
2166 info = smi_info_alloc();
2167 if (!info)
2168 return -ENOMEM;
2169
2170 info->addr_source = SI_ACPI;
2171 printk(KERN_INFO PFX "probing via ACPI\n");
2172
2173 handle = acpi_dev->handle;
2174 info->addr_info.acpi_info.acpi_handle = handle;
2175
2176 /* _IFT tells us the interface type: KCS, BT, etc */
2177 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2178 if (ACPI_FAILURE(status))
2179 goto err_free;
2180
2181 switch (tmp) {
2182 case 1:
2183 info->si_type = SI_KCS;
2184 break;
2185 case 2:
2186 info->si_type = SI_SMIC;
2187 break;
2188 case 3:
2189 info->si_type = SI_BT;
2190 break;
2191 default:
2192 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2193 goto err_free;
2194 }
2195
2196 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2197 if (res) {
2198 info->io_setup = port_setup;
2199 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2200 } else {
2201 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2202 if (res) {
2203 info->io_setup = mem_setup;
2204 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2205 }
2206 }
2207 if (!res) {
2208 dev_err(&dev->dev, "no I/O or memory address\n");
2209 goto err_free;
2210 }
2211 info->io.addr_data = res->start;
2212
2213 info->io.regspacing = DEFAULT_REGSPACING;
2214 res_second = pnp_get_resource(dev,
2215 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2216 IORESOURCE_IO : IORESOURCE_MEM,
2217 1);
2218 if (res_second) {
2219 if (res_second->start > info->io.addr_data)
2220 info->io.regspacing = res_second->start - info->io.addr_data;
2221 }
2222 info->io.regsize = DEFAULT_REGSPACING;
2223 info->io.regshift = 0;
2224
2225 /* If _GPE exists, use it; otherwise use standard interrupts */
2226 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2227 if (ACPI_SUCCESS(status)) {
2228 info->irq = tmp;
2229 info->irq_setup = acpi_gpe_irq_setup;
2230 } else if (pnp_irq_valid(dev, 0)) {
2231 info->irq = pnp_irq(dev, 0);
2232 info->irq_setup = std_irq_setup;
2233 }
2234
2235 info->dev = &dev->dev;
2236 pnp_set_drvdata(dev, info);
2237
2238 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2239 res, info->io.regsize, info->io.regspacing,
2240 info->irq);
2241
2242 if (add_smi(info))
2243 goto err_free;
2244
2245 return 0;
2246
2247 err_free:
2248 kfree(info);
2249 return -EINVAL;
2250 }
2251
2252 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2253 {
2254 struct smi_info *info = pnp_get_drvdata(dev);
2255
2256 cleanup_one_si(info);
2257 }
2258
2259 static const struct pnp_device_id pnp_dev_table[] = {
2260 {"IPI0001", 0},
2261 {"", 0},
2262 };
2263
2264 static struct pnp_driver ipmi_pnp_driver = {
2265 .name = DEVICE_NAME,
2266 .probe = ipmi_pnp_probe,
2267 .remove = __devexit_p(ipmi_pnp_remove),
2268 .id_table = pnp_dev_table,
2269 };
2270 #endif
2271
2272 #ifdef CONFIG_DMI
2273 struct dmi_ipmi_data {
2274 u8 type;
2275 u8 addr_space;
2276 unsigned long base_addr;
2277 u8 irq;
2278 u8 offset;
2279 u8 slave_addr;
2280 };
2281
2282 static int __devinit decode_dmi(const struct dmi_header *dm,
2283 struct dmi_ipmi_data *dmi)
2284 {
2285 const u8 *data = (const u8 *)dm;
2286 unsigned long base_addr;
2287 u8 reg_spacing;
2288 u8 len = dm->length;
2289
2290 dmi->type = data[4];
2291
2292 memcpy(&base_addr, data+8, sizeof(unsigned long));
2293 if (len >= 0x11) {
2294 if (base_addr & 1) {
2295 /* I/O */
2296 base_addr &= 0xFFFE;
2297 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2298 } else
2299 /* Memory */
2300 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2301
2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2303 is odd. */
2304 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2305
2306 dmi->irq = data[0x11];
2307
2308 /* The top two bits of byte 0x10 hold the register spacing. */
2309 reg_spacing = (data[0x10] & 0xC0) >> 6;
2310 switch (reg_spacing) {
2311 case 0x00: /* Byte boundaries */
2312 dmi->offset = 1;
2313 break;
2314 case 0x01: /* 32-bit boundaries */
2315 dmi->offset = 4;
2316 break;
2317 case 0x02: /* 16-byte boundaries */
2318 dmi->offset = 16;
2319 break;
2320 default:
2321 /* Some other interface, just ignore it. */
2322 return -EIO;
2323 }
2324 } else {
2325 /* Old DMI spec. */
2326 /*
2327 * Note that technically, the lower bit of the base
2328 * address should be 1 if the address is I/O and 0 if
2329 * the address is in memory. So many systems get that
2330 * wrong (and all that I have seen are I/O) so we just
2331 * ignore that bit and assume I/O. Systems that use
2332 * memory should use the newer spec, anyway.
2333 */
2334 dmi->base_addr = base_addr & 0xfffe;
2335 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2336 dmi->offset = 1;
2337 }
2338
2339 dmi->slave_addr = data[6];
2340
2341 return 0;
2342 }
2343
2344 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2345 {
2346 struct smi_info *info;
2347
2348 info = smi_info_alloc();
2349 if (!info) {
2350 printk(KERN_ERR PFX "Could not allocate SI data\n");
2351 return;
2352 }
2353
2354 info->addr_source = SI_SMBIOS;
2355 printk(KERN_INFO PFX "probing via SMBIOS\n");
2356
2357 switch (ipmi_data->type) {
2358 case 0x01: /* KCS */
2359 info->si_type = SI_KCS;
2360 break;
2361 case 0x02: /* SMIC */
2362 info->si_type = SI_SMIC;
2363 break;
2364 case 0x03: /* BT */
2365 info->si_type = SI_BT;
2366 break;
2367 default:
2368 kfree(info);
2369 return;
2370 }
2371
2372 switch (ipmi_data->addr_space) {
2373 case IPMI_MEM_ADDR_SPACE:
2374 info->io_setup = mem_setup;
2375 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2376 break;
2377
2378 case IPMI_IO_ADDR_SPACE:
2379 info->io_setup = port_setup;
2380 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2381 break;
2382
2383 default:
2384 kfree(info);
2385 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2386 ipmi_data->addr_space);
2387 return;
2388 }
2389 info->io.addr_data = ipmi_data->base_addr;
2390
2391 info->io.regspacing = ipmi_data->offset;
2392 if (!info->io.regspacing)
2393 info->io.regspacing = DEFAULT_REGSPACING;
2394 info->io.regsize = DEFAULT_REGSPACING;
2395 info->io.regshift = 0;
2396
2397 info->slave_addr = ipmi_data->slave_addr;
2398
2399 info->irq = ipmi_data->irq;
2400 if (info->irq)
2401 info->irq_setup = std_irq_setup;
2402
2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2405 info->io.addr_data, info->io.regsize, info->io.regspacing,
2406 info->irq);
2407
2408 if (add_smi(info))
2409 kfree(info);
2410 }
2411
2412 static void __devinit dmi_find_bmc(void)
2413 {
2414 const struct dmi_device *dev = NULL;
2415 struct dmi_ipmi_data data;
2416 int rv;
2417
2418 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2419 memset(&data, 0, sizeof(data));
2420 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2421 &data);
2422 if (!rv)
2423 try_init_dmi(&data);
2424 }
2425 }
2426 #endif /* CONFIG_DMI */
2427
2428 #ifdef CONFIG_PCI
2429
2430 #define PCI_ERMC_CLASSCODE 0x0C0700
2431 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2435 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2436
2437 #define PCI_HP_VENDOR_ID 0x103C
2438 #define PCI_MMC_DEVICE_ID 0x121A
2439 #define PCI_MMC_ADDR_CW 0x10
2440
2441 static void ipmi_pci_cleanup(struct smi_info *info)
2442 {
2443 struct pci_dev *pdev = info->addr_source_data;
2444
2445 pci_disable_device(pdev);
2446 }
2447
2448 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2449 const struct pci_device_id *ent)
2450 {
2451 int rv;
2452 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2453 struct smi_info *info;
2454
2455 info = smi_info_alloc();
2456 if (!info)
2457 return -ENOMEM;
2458
2459 info->addr_source = SI_PCI;
2460 dev_info(&pdev->dev, "probing via PCI");
2461
2462 switch (class_type) {
2463 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2464 info->si_type = SI_SMIC;
2465 break;
2466
2467 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2468 info->si_type = SI_KCS;
2469 break;
2470
2471 case PCI_ERMC_CLASSCODE_TYPE_BT:
2472 info->si_type = SI_BT;
2473 break;
2474
2475 default:
2476 kfree(info);
2477 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2478 return -ENOMEM;
2479 }
2480
2481 rv = pci_enable_device(pdev);
2482 if (rv) {
2483 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2484 kfree(info);
2485 return rv;
2486 }
2487
2488 info->addr_source_cleanup = ipmi_pci_cleanup;
2489 info->addr_source_data = pdev;
2490
2491 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2492 info->io_setup = port_setup;
2493 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2494 } else {
2495 info->io_setup = mem_setup;
2496 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2497 }
2498 info->io.addr_data = pci_resource_start(pdev, 0);
2499
2500 info->io.regspacing = DEFAULT_REGSPACING;
2501 info->io.regsize = DEFAULT_REGSPACING;
2502 info->io.regshift = 0;
2503
2504 info->irq = pdev->irq;
2505 if (info->irq)
2506 info->irq_setup = std_irq_setup;
2507
2508 info->dev = &pdev->dev;
2509 pci_set_drvdata(pdev, info);
2510
2511 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2512 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2513 info->irq);
2514
2515 if (add_smi(info))
2516 kfree(info);
2517
2518 return 0;
2519 }
2520
2521 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2522 {
2523 struct smi_info *info = pci_get_drvdata(pdev);
2524 cleanup_one_si(info);
2525 }
2526
2527 #ifdef CONFIG_PM
2528 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2529 {
2530 return 0;
2531 }
2532
2533 static int ipmi_pci_resume(struct pci_dev *pdev)
2534 {
2535 return 0;
2536 }
2537 #endif
2538
2539 static struct pci_device_id ipmi_pci_devices[] = {
2540 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2541 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2542 { 0, }
2543 };
2544 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2545
2546 static struct pci_driver ipmi_pci_driver = {
2547 .name = DEVICE_NAME,
2548 .id_table = ipmi_pci_devices,
2549 .probe = ipmi_pci_probe,
2550 .remove = __devexit_p(ipmi_pci_remove),
2551 #ifdef CONFIG_PM
2552 .suspend = ipmi_pci_suspend,
2553 .resume = ipmi_pci_resume,
2554 #endif
2555 };
2556 #endif /* CONFIG_PCI */
2557
2558
2559 #ifdef CONFIG_PPC_OF
2560 static int __devinit ipmi_of_probe(struct platform_device *dev,
2561 const struct of_device_id *match)
2562 {
2563 struct smi_info *info;
2564 struct resource resource;
2565 const __be32 *regsize, *regspacing, *regshift;
2566 struct device_node *np = dev->dev.of_node;
2567 int ret;
2568 int proplen;
2569
2570 dev_info(&dev->dev, "probing via device tree\n");
2571
2572 ret = of_address_to_resource(np, 0, &resource);
2573 if (ret) {
2574 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2575 return ret;
2576 }
2577
2578 regsize = of_get_property(np, "reg-size", &proplen);
2579 if (regsize && proplen != 4) {
2580 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2581 return -EINVAL;
2582 }
2583
2584 regspacing = of_get_property(np, "reg-spacing", &proplen);
2585 if (regspacing && proplen != 4) {
2586 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2587 return -EINVAL;
2588 }
2589
2590 regshift = of_get_property(np, "reg-shift", &proplen);
2591 if (regshift && proplen != 4) {
2592 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2593 return -EINVAL;
2594 }
2595
2596 info = smi_info_alloc();
2597
2598 if (!info) {
2599 dev_err(&dev->dev,
2600 "could not allocate memory for OF probe\n");
2601 return -ENOMEM;
2602 }
2603
2604 info->si_type = (enum si_type) match->data;
2605 info->addr_source = SI_DEVICETREE;
2606 info->irq_setup = std_irq_setup;
2607
2608 if (resource.flags & IORESOURCE_IO) {
2609 info->io_setup = port_setup;
2610 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2611 } else {
2612 info->io_setup = mem_setup;
2613 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2614 }
2615
2616 info->io.addr_data = resource.start;
2617
2618 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2619 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2620 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2621
2622 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2623 info->dev = &dev->dev;
2624
2625 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2626 info->io.addr_data, info->io.regsize, info->io.regspacing,
2627 info->irq);
2628
2629 dev_set_drvdata(&dev->dev, info);
2630
2631 if (add_smi(info)) {
2632 kfree(info);
2633 return -EBUSY;
2634 }
2635
2636 return 0;
2637 }
2638
2639 static int __devexit ipmi_of_remove(struct platform_device *dev)
2640 {
2641 cleanup_one_si(dev_get_drvdata(&dev->dev));
2642 return 0;
2643 }
2644
2645 static struct of_device_id ipmi_match[] =
2646 {
2647 { .type = "ipmi", .compatible = "ipmi-kcs",
2648 .data = (void *)(unsigned long) SI_KCS },
2649 { .type = "ipmi", .compatible = "ipmi-smic",
2650 .data = (void *)(unsigned long) SI_SMIC },
2651 { .type = "ipmi", .compatible = "ipmi-bt",
2652 .data = (void *)(unsigned long) SI_BT },
2653 {},
2654 };
2655
2656 static struct of_platform_driver ipmi_of_platform_driver = {
2657 .driver = {
2658 .name = "ipmi",
2659 .owner = THIS_MODULE,
2660 .of_match_table = ipmi_match,
2661 },
2662 .probe = ipmi_of_probe,
2663 .remove = __devexit_p(ipmi_of_remove),
2664 };
2665 #endif /* CONFIG_PPC_OF */
2666
2667 static int wait_for_msg_done(struct smi_info *smi_info)
2668 {
2669 enum si_sm_result smi_result;
2670
2671 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2672 for (;;) {
2673 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2674 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2675 schedule_timeout_uninterruptible(1);
2676 smi_result = smi_info->handlers->event(
2677 smi_info->si_sm, 100);
2678 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2679 smi_result = smi_info->handlers->event(
2680 smi_info->si_sm, 0);
2681 } else
2682 break;
2683 }
2684 if (smi_result == SI_SM_HOSED)
2685 /*
2686 * We couldn't get the state machine to run, so whatever's at
2687 * the port is probably not an IPMI SMI interface.
2688 */
2689 return -ENODEV;
2690
2691 return 0;
2692 }
2693
2694 static int try_get_dev_id(struct smi_info *smi_info)
2695 {
2696 unsigned char msg[2];
2697 unsigned char *resp;
2698 unsigned long resp_len;
2699 int rv = 0;
2700
2701 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2702 if (!resp)
2703 return -ENOMEM;
2704
2705 /*
2706 * Do a Get Device ID command, since it comes back with some
2707 * useful info.
2708 */
2709 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2710 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2711 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2712
2713 rv = wait_for_msg_done(smi_info);
2714 if (rv)
2715 goto out;
2716
2717 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2718 resp, IPMI_MAX_MSG_LENGTH);
2719
2720 /* Check and record info from the get device id, in case we need it. */
2721 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2722
2723 out:
2724 kfree(resp);
2725 return rv;
2726 }
2727
2728 static int try_enable_event_buffer(struct smi_info *smi_info)
2729 {
2730 unsigned char msg[3];
2731 unsigned char *resp;
2732 unsigned long resp_len;
2733 int rv = 0;
2734
2735 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2736 if (!resp)
2737 return -ENOMEM;
2738
2739 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2740 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2741 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2742
2743 rv = wait_for_msg_done(smi_info);
2744 if (rv) {
2745 printk(KERN_WARNING PFX "Error getting response from get"
2746 " global enables command, the event buffer is not"
2747 " enabled.\n");
2748 goto out;
2749 }
2750
2751 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2752 resp, IPMI_MAX_MSG_LENGTH);
2753
2754 if (resp_len < 4 ||
2755 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2756 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2757 resp[2] != 0) {
2758 printk(KERN_WARNING PFX "Invalid return from get global"
2759 " enables command, cannot enable the event buffer.\n");
2760 rv = -EINVAL;
2761 goto out;
2762 }
2763
2764 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2765 /* buffer is already enabled, nothing to do. */
2766 goto out;
2767
2768 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2770 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2771 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2772
2773 rv = wait_for_msg_done(smi_info);
2774 if (rv) {
2775 printk(KERN_WARNING PFX "Error getting response from set"
2776 " global, enables command, the event buffer is not"
2777 " enabled.\n");
2778 goto out;
2779 }
2780
2781 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2782 resp, IPMI_MAX_MSG_LENGTH);
2783
2784 if (resp_len < 3 ||
2785 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2786 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2787 printk(KERN_WARNING PFX "Invalid return from get global,"
2788 "enables command, not enable the event buffer.\n");
2789 rv = -EINVAL;
2790 goto out;
2791 }
2792
2793 if (resp[2] != 0)
2794 /*
2795 * An error when setting the event buffer bit means
2796 * that the event buffer is not supported.
2797 */
2798 rv = -ENOENT;
2799 out:
2800 kfree(resp);
2801 return rv;
2802 }
2803
2804 static int type_file_read_proc(char *page, char **start, off_t off,
2805 int count, int *eof, void *data)
2806 {
2807 struct smi_info *smi = data;
2808
2809 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2810 }
2811
2812 static int stat_file_read_proc(char *page, char **start, off_t off,
2813 int count, int *eof, void *data)
2814 {
2815 char *out = (char *) page;
2816 struct smi_info *smi = data;
2817
2818 out += sprintf(out, "interrupts_enabled: %d\n",
2819 smi->irq && !smi->interrupt_disabled);
2820 out += sprintf(out, "short_timeouts: %u\n",
2821 smi_get_stat(smi, short_timeouts));
2822 out += sprintf(out, "long_timeouts: %u\n",
2823 smi_get_stat(smi, long_timeouts));
2824 out += sprintf(out, "idles: %u\n",
2825 smi_get_stat(smi, idles));
2826 out += sprintf(out, "interrupts: %u\n",
2827 smi_get_stat(smi, interrupts));
2828 out += sprintf(out, "attentions: %u\n",
2829 smi_get_stat(smi, attentions));
2830 out += sprintf(out, "flag_fetches: %u\n",
2831 smi_get_stat(smi, flag_fetches));
2832 out += sprintf(out, "hosed_count: %u\n",
2833 smi_get_stat(smi, hosed_count));
2834 out += sprintf(out, "complete_transactions: %u\n",
2835 smi_get_stat(smi, complete_transactions));
2836 out += sprintf(out, "events: %u\n",
2837 smi_get_stat(smi, events));
2838 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2839 smi_get_stat(smi, watchdog_pretimeouts));
2840 out += sprintf(out, "incoming_messages: %u\n",
2841 smi_get_stat(smi, incoming_messages));
2842
2843 return out - page;
2844 }
2845
2846 static int param_read_proc(char *page, char **start, off_t off,
2847 int count, int *eof, void *data)
2848 {
2849 struct smi_info *smi = data;
2850
2851 return sprintf(page,
2852 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2853 si_to_str[smi->si_type],
2854 addr_space_to_str[smi->io.addr_type],
2855 smi->io.addr_data,
2856 smi->io.regspacing,
2857 smi->io.regsize,
2858 smi->io.regshift,
2859 smi->irq,
2860 smi->slave_addr);
2861 }
2862
2863 /*
2864 * oem_data_avail_to_receive_msg_avail
2865 * @info - smi_info structure with msg_flags set
2866 *
2867 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2868 * Returns 1 indicating need to re-run handle_flags().
2869 */
2870 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2871 {
2872 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2873 RECEIVE_MSG_AVAIL);
2874 return 1;
2875 }
2876
2877 /*
2878 * setup_dell_poweredge_oem_data_handler
2879 * @info - smi_info.device_id must be populated
2880 *
2881 * Systems that match, but have firmware version < 1.40 may assert
2882 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2883 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2884 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2885 * as RECEIVE_MSG_AVAIL instead.
2886 *
2887 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2888 * assert the OEM[012] bits, and if it did, the driver would have to
2889 * change to handle that properly, we don't actually check for the
2890 * firmware version.
2891 * Device ID = 0x20 BMC on PowerEdge 8G servers
2892 * Device Revision = 0x80
2893 * Firmware Revision1 = 0x01 BMC version 1.40
2894 * Firmware Revision2 = 0x40 BCD encoded
2895 * IPMI Version = 0x51 IPMI 1.5
2896 * Manufacturer ID = A2 02 00 Dell IANA
2897 *
2898 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2899 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2900 *
2901 */
2902 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2903 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2904 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2905 #define DELL_IANA_MFR_ID 0x0002a2
2906 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2907 {
2908 struct ipmi_device_id *id = &smi_info->device_id;
2909 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2910 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2911 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2912 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2913 smi_info->oem_data_avail_handler =
2914 oem_data_avail_to_receive_msg_avail;
2915 } else if (ipmi_version_major(id) < 1 ||
2916 (ipmi_version_major(id) == 1 &&
2917 ipmi_version_minor(id) < 5)) {
2918 smi_info->oem_data_avail_handler =
2919 oem_data_avail_to_receive_msg_avail;
2920 }
2921 }
2922 }
2923
2924 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2925 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2926 {
2927 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2928
2929 /* Make it a reponse */
2930 msg->rsp[0] = msg->data[0] | 4;
2931 msg->rsp[1] = msg->data[1];
2932 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2933 msg->rsp_size = 3;
2934 smi_info->curr_msg = NULL;
2935 deliver_recv_msg(smi_info, msg);
2936 }
2937
2938 /*
2939 * dell_poweredge_bt_xaction_handler
2940 * @info - smi_info.device_id must be populated
2941 *
2942 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2943 * not respond to a Get SDR command if the length of the data
2944 * requested is exactly 0x3A, which leads to command timeouts and no
2945 * data returned. This intercepts such commands, and causes userspace
2946 * callers to try again with a different-sized buffer, which succeeds.
2947 */
2948
2949 #define STORAGE_NETFN 0x0A
2950 #define STORAGE_CMD_GET_SDR 0x23
2951 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2952 unsigned long unused,
2953 void *in)
2954 {
2955 struct smi_info *smi_info = in;
2956 unsigned char *data = smi_info->curr_msg->data;
2957 unsigned int size = smi_info->curr_msg->data_size;
2958 if (size >= 8 &&
2959 (data[0]>>2) == STORAGE_NETFN &&
2960 data[1] == STORAGE_CMD_GET_SDR &&
2961 data[7] == 0x3A) {
2962 return_hosed_msg_badsize(smi_info);
2963 return NOTIFY_STOP;
2964 }
2965 return NOTIFY_DONE;
2966 }
2967
2968 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2969 .notifier_call = dell_poweredge_bt_xaction_handler,
2970 };
2971
2972 /*
2973 * setup_dell_poweredge_bt_xaction_handler
2974 * @info - smi_info.device_id must be filled in already
2975 *
2976 * Fills in smi_info.device_id.start_transaction_pre_hook
2977 * when we know what function to use there.
2978 */
2979 static void
2980 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2981 {
2982 struct ipmi_device_id *id = &smi_info->device_id;
2983 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2984 smi_info->si_type == SI_BT)
2985 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2986 }
2987
2988 /*
2989 * setup_oem_data_handler
2990 * @info - smi_info.device_id must be filled in already
2991 *
2992 * Fills in smi_info.device_id.oem_data_available_handler
2993 * when we know what function to use there.
2994 */
2995
2996 static void setup_oem_data_handler(struct smi_info *smi_info)
2997 {
2998 setup_dell_poweredge_oem_data_handler(smi_info);
2999 }
3000
3001 static void setup_xaction_handlers(struct smi_info *smi_info)
3002 {
3003 setup_dell_poweredge_bt_xaction_handler(smi_info);
3004 }
3005
3006 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3007 {
3008 if (smi_info->intf) {
3009 /*
3010 * The timer and thread are only running if the
3011 * interface has been started up and registered.
3012 */
3013 if (smi_info->thread != NULL)
3014 kthread_stop(smi_info->thread);
3015 del_timer_sync(&smi_info->si_timer);
3016 }
3017 }
3018
3019 static __devinitdata struct ipmi_default_vals
3020 {
3021 int type;
3022 int port;
3023 } ipmi_defaults[] =
3024 {
3025 { .type = SI_KCS, .port = 0xca2 },
3026 { .type = SI_SMIC, .port = 0xca9 },
3027 { .type = SI_BT, .port = 0xe4 },
3028 { .port = 0 }
3029 };
3030
3031 static void __devinit default_find_bmc(void)
3032 {
3033 struct smi_info *info;
3034 int i;
3035
3036 for (i = 0; ; i++) {
3037 if (!ipmi_defaults[i].port)
3038 break;
3039 #ifdef CONFIG_PPC
3040 if (check_legacy_ioport(ipmi_defaults[i].port))
3041 continue;
3042 #endif
3043 info = smi_info_alloc();
3044 if (!info)
3045 return;
3046
3047 info->addr_source = SI_DEFAULT;
3048
3049 info->si_type = ipmi_defaults[i].type;
3050 info->io_setup = port_setup;
3051 info->io.addr_data = ipmi_defaults[i].port;
3052 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3053
3054 info->io.addr = NULL;
3055 info->io.regspacing = DEFAULT_REGSPACING;
3056 info->io.regsize = DEFAULT_REGSPACING;
3057 info->io.regshift = 0;
3058
3059 if (add_smi(info) == 0) {
3060 if ((try_smi_init(info)) == 0) {
3061 /* Found one... */
3062 printk(KERN_INFO PFX "Found default %s"
3063 " state machine at %s address 0x%lx\n",
3064 si_to_str[info->si_type],
3065 addr_space_to_str[info->io.addr_type],
3066 info->io.addr_data);
3067 } else
3068 cleanup_one_si(info);
3069 } else {
3070 kfree(info);
3071 }
3072 }
3073 }
3074
3075 static int is_new_interface(struct smi_info *info)
3076 {
3077 struct smi_info *e;
3078
3079 list_for_each_entry(e, &smi_infos, link) {
3080 if (e->io.addr_type != info->io.addr_type)
3081 continue;
3082 if (e->io.addr_data == info->io.addr_data)
3083 return 0;
3084 }
3085
3086 return 1;
3087 }
3088
3089 static int add_smi(struct smi_info *new_smi)
3090 {
3091 int rv = 0;
3092
3093 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3094 ipmi_addr_src_to_str[new_smi->addr_source],
3095 si_to_str[new_smi->si_type]);
3096 mutex_lock(&smi_infos_lock);
3097 if (!is_new_interface(new_smi)) {
3098 printk(KERN_CONT " duplicate interface\n");
3099 rv = -EBUSY;
3100 goto out_err;
3101 }
3102
3103 printk(KERN_CONT "\n");
3104
3105 /* So we know not to free it unless we have allocated one. */
3106 new_smi->intf = NULL;
3107 new_smi->si_sm = NULL;
3108 new_smi->handlers = NULL;
3109
3110 list_add_tail(&new_smi->link, &smi_infos);
3111
3112 out_err:
3113 mutex_unlock(&smi_infos_lock);
3114 return rv;
3115 }
3116
3117 static int try_smi_init(struct smi_info *new_smi)
3118 {
3119 int rv = 0;
3120 int i;
3121
3122 printk(KERN_INFO PFX "Trying %s-specified %s state"
3123 " machine at %s address 0x%lx, slave address 0x%x,"
3124 " irq %d\n",
3125 ipmi_addr_src_to_str[new_smi->addr_source],
3126 si_to_str[new_smi->si_type],
3127 addr_space_to_str[new_smi->io.addr_type],
3128 new_smi->io.addr_data,
3129 new_smi->slave_addr, new_smi->irq);
3130
3131 switch (new_smi->si_type) {
3132 case SI_KCS:
3133 new_smi->handlers = &kcs_smi_handlers;
3134 break;
3135
3136 case SI_SMIC:
3137 new_smi->handlers = &smic_smi_handlers;
3138 break;
3139
3140 case SI_BT:
3141 new_smi->handlers = &bt_smi_handlers;
3142 break;
3143
3144 default:
3145 /* No support for anything else yet. */
3146 rv = -EIO;
3147 goto out_err;
3148 }
3149
3150 /* Allocate the state machine's data and initialize it. */
3151 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3152 if (!new_smi->si_sm) {
3153 printk(KERN_ERR PFX
3154 "Could not allocate state machine memory\n");
3155 rv = -ENOMEM;
3156 goto out_err;
3157 }
3158 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3159 &new_smi->io);
3160
3161 /* Now that we know the I/O size, we can set up the I/O. */
3162 rv = new_smi->io_setup(new_smi);
3163 if (rv) {
3164 printk(KERN_ERR PFX "Could not set up I/O space\n");
3165 goto out_err;
3166 }
3167
3168 /* Do low-level detection first. */
3169 if (new_smi->handlers->detect(new_smi->si_sm)) {
3170 if (new_smi->addr_source)
3171 printk(KERN_INFO PFX "Interface detection failed\n");
3172 rv = -ENODEV;
3173 goto out_err;
3174 }
3175
3176 /*
3177 * Attempt a get device id command. If it fails, we probably
3178 * don't have a BMC here.
3179 */
3180 rv = try_get_dev_id(new_smi);
3181 if (rv) {
3182 if (new_smi->addr_source)
3183 printk(KERN_INFO PFX "There appears to be no BMC"
3184 " at this location\n");
3185 goto out_err;
3186 }
3187
3188 setup_oem_data_handler(new_smi);
3189 setup_xaction_handlers(new_smi);
3190
3191 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3192 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3193 new_smi->curr_msg = NULL;
3194 atomic_set(&new_smi->req_events, 0);
3195 new_smi->run_to_completion = 0;
3196 for (i = 0; i < SI_NUM_STATS; i++)
3197 atomic_set(&new_smi->stats[i], 0);
3198
3199 new_smi->interrupt_disabled = 1;
3200 atomic_set(&new_smi->stop_operation, 0);
3201 new_smi->intf_num = smi_num;
3202 smi_num++;
3203
3204 rv = try_enable_event_buffer(new_smi);
3205 if (rv == 0)
3206 new_smi->has_event_buffer = 1;
3207
3208 /*
3209 * Start clearing the flags before we enable interrupts or the
3210 * timer to avoid racing with the timer.
3211 */
3212 start_clear_flags(new_smi);
3213 /* IRQ is defined to be set when non-zero. */
3214 if (new_smi->irq)
3215 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3216
3217 if (!new_smi->dev) {
3218 /*
3219 * If we don't already have a device from something
3220 * else (like PCI), then register a new one.
3221 */
3222 new_smi->pdev = platform_device_alloc("ipmi_si",
3223 new_smi->intf_num);
3224 if (!new_smi->pdev) {
3225 printk(KERN_ERR PFX
3226 "Unable to allocate platform device\n");
3227 goto out_err;
3228 }
3229 new_smi->dev = &new_smi->pdev->dev;
3230 new_smi->dev->driver = &ipmi_driver.driver;
3231
3232 rv = platform_device_add(new_smi->pdev);
3233 if (rv) {
3234 printk(KERN_ERR PFX
3235 "Unable to register system interface device:"
3236 " %d\n",
3237 rv);
3238 goto out_err;
3239 }
3240 new_smi->dev_registered = 1;
3241 }
3242
3243 rv = ipmi_register_smi(&handlers,
3244 new_smi,
3245 &new_smi->device_id,
3246 new_smi->dev,
3247 "bmc",
3248 new_smi->slave_addr);
3249 if (rv) {
3250 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3251 rv);
3252 goto out_err_stop_timer;
3253 }
3254
3255 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3256 type_file_read_proc,
3257 new_smi);
3258 if (rv) {
3259 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3260 goto out_err_stop_timer;
3261 }
3262
3263 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3264 stat_file_read_proc,
3265 new_smi);
3266 if (rv) {
3267 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3268 goto out_err_stop_timer;
3269 }
3270
3271 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3272 param_read_proc,
3273 new_smi);
3274 if (rv) {
3275 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3276 goto out_err_stop_timer;
3277 }
3278
3279 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3280 si_to_str[new_smi->si_type]);
3281
3282 return 0;
3283
3284 out_err_stop_timer:
3285 atomic_inc(&new_smi->stop_operation);
3286 wait_for_timer_and_thread(new_smi);
3287
3288 out_err:
3289 new_smi->interrupt_disabled = 1;
3290
3291 if (new_smi->intf) {
3292 ipmi_unregister_smi(new_smi->intf);
3293 new_smi->intf = NULL;
3294 }
3295
3296 if (new_smi->irq_cleanup) {
3297 new_smi->irq_cleanup(new_smi);
3298 new_smi->irq_cleanup = NULL;
3299 }
3300
3301 /*
3302 * Wait until we know that we are out of any interrupt
3303 * handlers might have been running before we freed the
3304 * interrupt.
3305 */
3306 synchronize_sched();
3307
3308 if (new_smi->si_sm) {
3309 if (new_smi->handlers)
3310 new_smi->handlers->cleanup(new_smi->si_sm);
3311 kfree(new_smi->si_sm);
3312 new_smi->si_sm = NULL;
3313 }
3314 if (new_smi->addr_source_cleanup) {
3315 new_smi->addr_source_cleanup(new_smi);
3316 new_smi->addr_source_cleanup = NULL;
3317 }
3318 if (new_smi->io_cleanup) {
3319 new_smi->io_cleanup(new_smi);
3320 new_smi->io_cleanup = NULL;
3321 }
3322
3323 if (new_smi->dev_registered) {
3324 platform_device_unregister(new_smi->pdev);
3325 new_smi->dev_registered = 0;
3326 }
3327
3328 return rv;
3329 }
3330
3331 static int __devinit init_ipmi_si(void)
3332 {
3333 int i;
3334 char *str;
3335 int rv;
3336 struct smi_info *e;
3337 enum ipmi_addr_src type = SI_INVALID;
3338
3339 if (initialized)
3340 return 0;
3341 initialized = 1;
3342
3343 /* Register the device drivers. */
3344 rv = driver_register(&ipmi_driver.driver);
3345 if (rv) {
3346 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3347 return rv;
3348 }
3349
3350
3351 /* Parse out the si_type string into its components. */
3352 str = si_type_str;
3353 if (*str != '\0') {
3354 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3355 si_type[i] = str;
3356 str = strchr(str, ',');
3357 if (str) {
3358 *str = '\0';
3359 str++;
3360 } else {
3361 break;
3362 }
3363 }
3364 }
3365
3366 printk(KERN_INFO "IPMI System Interface driver.\n");
3367
3368 hardcode_find_bmc();
3369
3370 /* If the user gave us a device, they presumably want us to use it */
3371 mutex_lock(&smi_infos_lock);
3372 if (!list_empty(&smi_infos)) {
3373 mutex_unlock(&smi_infos_lock);
3374 return 0;
3375 }
3376 mutex_unlock(&smi_infos_lock);
3377
3378 #ifdef CONFIG_PCI
3379 rv = pci_register_driver(&ipmi_pci_driver);
3380 if (rv)
3381 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3382 else
3383 pci_registered = 1;
3384 #endif
3385
3386 #ifdef CONFIG_ACPI
3387 pnp_register_driver(&ipmi_pnp_driver);
3388 pnp_registered = 1;
3389 #endif
3390
3391 #ifdef CONFIG_DMI
3392 dmi_find_bmc();
3393 #endif
3394
3395 #ifdef CONFIG_ACPI
3396 spmi_find_bmc();
3397 #endif
3398
3399 #ifdef CONFIG_PPC_OF
3400 of_register_platform_driver(&ipmi_of_platform_driver);
3401 of_registered = 1;
3402 #endif
3403
3404 /* We prefer devices with interrupts, but in the case of a machine
3405 with multiple BMCs we assume that there will be several instances
3406 of a given type so if we succeed in registering a type then also
3407 try to register everything else of the same type */
3408
3409 mutex_lock(&smi_infos_lock);
3410 list_for_each_entry(e, &smi_infos, link) {
3411 /* Try to register a device if it has an IRQ and we either
3412 haven't successfully registered a device yet or this
3413 device has the same type as one we successfully registered */
3414 if (e->irq && (!type || e->addr_source == type)) {
3415 if (!try_smi_init(e)) {
3416 type = e->addr_source;
3417 }
3418 }
3419 }
3420
3421 /* type will only have been set if we successfully registered an si */
3422 if (type) {
3423 mutex_unlock(&smi_infos_lock);
3424 return 0;
3425 }
3426
3427 /* Fall back to the preferred device */
3428
3429 list_for_each_entry(e, &smi_infos, link) {
3430 if (!e->irq && (!type || e->addr_source == type)) {
3431 if (!try_smi_init(e)) {
3432 type = e->addr_source;
3433 }
3434 }
3435 }
3436 mutex_unlock(&smi_infos_lock);
3437
3438 if (type)
3439 return 0;
3440
3441 if (si_trydefaults) {
3442 mutex_lock(&smi_infos_lock);
3443 if (list_empty(&smi_infos)) {
3444 /* No BMC was found, try defaults. */
3445 mutex_unlock(&smi_infos_lock);
3446 default_find_bmc();
3447 } else
3448 mutex_unlock(&smi_infos_lock);
3449 }
3450
3451 mutex_lock(&smi_infos_lock);
3452 if (unload_when_empty && list_empty(&smi_infos)) {
3453 mutex_unlock(&smi_infos_lock);
3454 cleanup_ipmi_si();
3455 printk(KERN_WARNING PFX
3456 "Unable to find any System Interface(s)\n");
3457 return -ENODEV;
3458 } else {
3459 mutex_unlock(&smi_infos_lock);
3460 return 0;
3461 }
3462 }
3463 module_init(init_ipmi_si);
3464
3465 static void cleanup_one_si(struct smi_info *to_clean)
3466 {
3467 int rv = 0;
3468 unsigned long flags;
3469
3470 if (!to_clean)
3471 return;
3472
3473 list_del(&to_clean->link);
3474
3475 /* Tell the driver that we are shutting down. */
3476 atomic_inc(&to_clean->stop_operation);
3477
3478 /*
3479 * Make sure the timer and thread are stopped and will not run
3480 * again.
3481 */
3482 wait_for_timer_and_thread(to_clean);
3483
3484 /*
3485 * Timeouts are stopped, now make sure the interrupts are off
3486 * for the device. A little tricky with locks to make sure
3487 * there are no races.
3488 */
3489 spin_lock_irqsave(&to_clean->si_lock, flags);
3490 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3491 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3492 poll(to_clean);
3493 schedule_timeout_uninterruptible(1);
3494 spin_lock_irqsave(&to_clean->si_lock, flags);
3495 }
3496 disable_si_irq(to_clean);
3497 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3498 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499 poll(to_clean);
3500 schedule_timeout_uninterruptible(1);
3501 }
3502
3503 /* Clean up interrupts and make sure that everything is done. */
3504 if (to_clean->irq_cleanup)
3505 to_clean->irq_cleanup(to_clean);
3506 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3507 poll(to_clean);
3508 schedule_timeout_uninterruptible(1);
3509 }
3510
3511 if (to_clean->intf)
3512 rv = ipmi_unregister_smi(to_clean->intf);
3513
3514 if (rv) {
3515 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3516 rv);
3517 }
3518
3519 if (to_clean->handlers)
3520 to_clean->handlers->cleanup(to_clean->si_sm);
3521
3522 kfree(to_clean->si_sm);
3523
3524 if (to_clean->addr_source_cleanup)
3525 to_clean->addr_source_cleanup(to_clean);
3526 if (to_clean->io_cleanup)
3527 to_clean->io_cleanup(to_clean);
3528
3529 if (to_clean->dev_registered)
3530 platform_device_unregister(to_clean->pdev);
3531
3532 kfree(to_clean);
3533 }
3534
3535 static void __exit cleanup_ipmi_si(void)
3536 {
3537 struct smi_info *e, *tmp_e;
3538
3539 if (!initialized)
3540 return;
3541
3542 #ifdef CONFIG_PCI
3543 if (pci_registered)
3544 pci_unregister_driver(&ipmi_pci_driver);
3545 #endif
3546 #ifdef CONFIG_ACPI
3547 if (pnp_registered)
3548 pnp_unregister_driver(&ipmi_pnp_driver);
3549 #endif
3550
3551 #ifdef CONFIG_PPC_OF
3552 if (of_registered)
3553 of_unregister_platform_driver(&ipmi_of_platform_driver);
3554 #endif
3555
3556 mutex_lock(&smi_infos_lock);
3557 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3558 cleanup_one_si(e);
3559 mutex_unlock(&smi_infos_lock);
3560
3561 driver_unregister(&ipmi_driver.driver);
3562 }
3563 module_exit(cleanup_ipmi_si);
3564
3565 MODULE_LICENSE("GPL");
3566 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3567 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3568 " system interfaces.");
This page took 0.108548 seconds and 5 git commands to generate.