SUNRPC: Prevent kernel stack corruption on long values of flush
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 short timeout */
85
86 enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119 * Indexes into stats[] in smi_info below.
120 */
121 enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
142
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
158 /* Number of asyncronous messages received. */
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164 };
165
166 struct smi_info {
167 int intf_num;
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
173 struct list_head xmit_msgs;
174 struct list_head hp_xmit_msgs;
175 struct ipmi_smi_msg *curr_msg;
176 enum si_intf_state si_state;
177
178 /*
179 * Used to handle the various types of I/O that can occur with
180 * IPMI
181 */
182 struct si_sm_io io;
183 int (*io_setup)(struct smi_info *info);
184 void (*io_cleanup)(struct smi_info *info);
185 int (*irq_setup)(struct smi_info *info);
186 void (*irq_cleanup)(struct smi_info *info);
187 unsigned int io_size;
188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 void (*addr_source_cleanup)(struct smi_info *info);
190 void *addr_source_data;
191
192 /*
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
196 */
197 int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199 /*
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
202 * from the flags.
203 */
204 #define RECEIVE_MSG_AVAIL 0x01
205 #define EVENT_MSG_BUFFER_FULL 0x02
206 #define WDT_PRE_TIMEOUT_INT 0x08
207 #define OEM0_DATA_AVAIL 0x20
208 #define OEM1_DATA_AVAIL 0x40
209 #define OEM2_DATA_AVAIL 0x80
210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
211 OEM1_DATA_AVAIL | \
212 OEM2_DATA_AVAIL)
213 unsigned char msg_flags;
214
215 /* Does the BMC have an event buffer? */
216 char has_event_buffer;
217
218 /*
219 * If set to true, this will request events the next time the
220 * state machine is idle.
221 */
222 atomic_t req_events;
223
224 /*
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
227 * out.
228 */
229 int run_to_completion;
230
231 /* The I/O port of an SI interface. */
232 int port;
233
234 /*
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
238 */
239 unsigned int spacing;
240
241 /* zero if no irq; */
242 int irq;
243
244 /* The timer for this si. */
245 struct timer_list si_timer;
246
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
250 /* Used to gracefully stop the timer without race conditions. */
251 atomic_t stop_operation;
252
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
259 int interrupt_disabled;
260
261 /* From the get device id response... */
262 struct ipmi_device_id device_id;
263
264 /* Driver model stuff. */
265 struct device *dev;
266 struct platform_device *pdev;
267
268 /*
269 * True if we allocated the device, false if it came from
270 * someplace else (like PCI).
271 */
272 int dev_registered;
273
274 /* Slave address, could be reported from DMI. */
275 unsigned char slave_addr;
276
277 /* Counters and things for the proc filesystem. */
278 atomic_t stats[SI_NUM_STATS];
279
280 struct task_struct *thread;
281
282 struct list_head link;
283 union ipmi_smi_info_union addr_info;
284 };
285
286 #define smi_inc_stat(smi, stat) \
287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
291 #define SI_MAX_PARMS 4
292
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304
305 static int unload_when_empty = 1;
306
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317
318 static void deliver_recv_msg(struct smi_info *smi_info,
319 struct ipmi_smi_msg *msg)
320 {
321 /* Deliver the message to the upper layer. */
322 ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327 struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 cCode = IPMI_ERR_UNSPECIFIED;
331 /* else use it as is */
332
333 /* Make it a response */
334 msg->rsp[0] = msg->data[0] | 4;
335 msg->rsp[1] = msg->data[1];
336 msg->rsp[2] = cCode;
337 msg->rsp_size = 3;
338
339 smi_info->curr_msg = NULL;
340 deliver_recv_msg(smi_info, msg);
341 }
342
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345 int rv;
346 struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348 struct timeval t;
349 #endif
350
351 /* Pick the high priority queue first. */
352 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 entry = smi_info->hp_xmit_msgs.next;
354 } else if (!list_empty(&(smi_info->xmit_msgs))) {
355 entry = smi_info->xmit_msgs.next;
356 }
357
358 if (!entry) {
359 smi_info->curr_msg = NULL;
360 rv = SI_SM_IDLE;
361 } else {
362 int err;
363
364 list_del(entry);
365 smi_info->curr_msg = list_entry(entry,
366 struct ipmi_smi_msg,
367 link);
368 #ifdef DEBUG_TIMING
369 do_gettimeofday(&t);
370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372 err = atomic_notifier_call_chain(&xaction_notifier_list,
373 0, smi_info);
374 if (err & NOTIFY_STOP_MASK) {
375 rv = SI_SM_CALL_WITHOUT_DELAY;
376 goto out;
377 }
378 err = smi_info->handlers->start_transaction(
379 smi_info->si_sm,
380 smi_info->curr_msg->data,
381 smi_info->curr_msg->data_size);
382 if (err)
383 return_hosed_msg(smi_info, err);
384
385 rv = SI_SM_CALL_WITHOUT_DELAY;
386 }
387 out:
388 return rv;
389 }
390
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393 unsigned char msg[2];
394
395 /*
396 * If we are enabling interrupts, we have to tell the
397 * BMC to use them.
398 */
399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408 unsigned char msg[2];
409
410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419 unsigned char msg[3];
420
421 /* Make sure the watchdog pre-timeout flag is not set at startup. */
422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 msg[2] = WDT_PRE_TIMEOUT_INT;
425
426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429
430 /*
431 * When we have a situtaion where we run out of memory and cannot
432 * allocate messages, we just leave them in the BMC and run the system
433 * polled until we can allocate some memory. Once we have some
434 * memory, we will re-enable the interrupt.
435 */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439 start_disable_irq(smi_info);
440 smi_info->interrupt_disabled = 1;
441 if (!atomic_read(&smi_info->stop_operation))
442 mod_timer(&smi_info->si_timer,
443 jiffies + SI_TIMEOUT_JIFFIES);
444 }
445 }
446
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 start_enable_irq(smi_info);
451 smi_info->interrupt_disabled = 0;
452 }
453 }
454
455 static void handle_flags(struct smi_info *smi_info)
456 {
457 retry:
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 /* Messages available. */
467 smi_info->curr_msg = ipmi_alloc_smi_msg();
468 if (!smi_info->curr_msg) {
469 disable_si_irq(smi_info);
470 smi_info->si_state = SI_NORMAL;
471 return;
472 }
473 enable_si_irq(smi_info);
474
475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 smi_info->curr_msg->data_size = 2;
478
479 smi_info->handlers->start_transaction(
480 smi_info->si_sm,
481 smi_info->curr_msg->data,
482 smi_info->curr_msg->data_size);
483 smi_info->si_state = SI_GETTING_MESSAGES;
484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 /* Events available. */
486 smi_info->curr_msg = ipmi_alloc_smi_msg();
487 if (!smi_info->curr_msg) {
488 disable_si_irq(smi_info);
489 smi_info->si_state = SI_NORMAL;
490 return;
491 }
492 enable_si_irq(smi_info);
493
494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 smi_info->curr_msg->data_size = 2;
497
498 smi_info->handlers->start_transaction(
499 smi_info->si_sm,
500 smi_info->curr_msg->data,
501 smi_info->curr_msg->data_size);
502 smi_info->si_state = SI_GETTING_EVENTS;
503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504 smi_info->oem_data_avail_handler) {
505 if (smi_info->oem_data_avail_handler(smi_info))
506 goto retry;
507 } else
508 smi_info->si_state = SI_NORMAL;
509 }
510
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513 struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515 struct timeval t;
516
517 do_gettimeofday(&t);
518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520 switch (smi_info->si_state) {
521 case SI_NORMAL:
522 if (!smi_info->curr_msg)
523 break;
524
525 smi_info->curr_msg->rsp_size
526 = smi_info->handlers->get_result(
527 smi_info->si_sm,
528 smi_info->curr_msg->rsp,
529 IPMI_MAX_MSG_LENGTH);
530
531 /*
532 * Do this here becase deliver_recv_msg() releases the
533 * lock, and a new message can be put in during the
534 * time the lock is released.
535 */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 deliver_recv_msg(smi_info, msg);
539 break;
540
541 case SI_GETTING_FLAGS:
542 {
543 unsigned char msg[4];
544 unsigned int len;
545
546 /* We got the flags from the SMI, now handle them. */
547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548 if (msg[2] != 0) {
549 /* Error fetching flags, just give up for now. */
550 smi_info->si_state = SI_NORMAL;
551 } else if (len < 4) {
552 /*
553 * Hmm, no flags. That's technically illegal, but
554 * don't use uninitialized data.
555 */
556 smi_info->si_state = SI_NORMAL;
557 } else {
558 smi_info->msg_flags = msg[3];
559 handle_flags(smi_info);
560 }
561 break;
562 }
563
564 case SI_CLEARING_FLAGS:
565 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566 {
567 unsigned char msg[3];
568
569 /* We cleared the flags. */
570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571 if (msg[2] != 0) {
572 /* Error clearing flags */
573 dev_warn(smi_info->dev,
574 "Error clearing flags: %2.2x\n", msg[2]);
575 }
576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 start_enable_irq(smi_info);
578 else
579 smi_info->si_state = SI_NORMAL;
580 break;
581 }
582
583 case SI_GETTING_EVENTS:
584 {
585 smi_info->curr_msg->rsp_size
586 = smi_info->handlers->get_result(
587 smi_info->si_sm,
588 smi_info->curr_msg->rsp,
589 IPMI_MAX_MSG_LENGTH);
590
591 /*
592 * Do this here becase deliver_recv_msg() releases the
593 * lock, and a new message can be put in during the
594 * time the lock is released.
595 */
596 msg = smi_info->curr_msg;
597 smi_info->curr_msg = NULL;
598 if (msg->rsp[2] != 0) {
599 /* Error getting event, probably done. */
600 msg->done(msg);
601
602 /* Take off the event flag. */
603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 handle_flags(smi_info);
605 } else {
606 smi_inc_stat(smi_info, events);
607
608 /*
609 * Do this before we deliver the message
610 * because delivering the message releases the
611 * lock and something else can mess with the
612 * state.
613 */
614 handle_flags(smi_info);
615
616 deliver_recv_msg(smi_info, msg);
617 }
618 break;
619 }
620
621 case SI_GETTING_MESSAGES:
622 {
623 smi_info->curr_msg->rsp_size
624 = smi_info->handlers->get_result(
625 smi_info->si_sm,
626 smi_info->curr_msg->rsp,
627 IPMI_MAX_MSG_LENGTH);
628
629 /*
630 * Do this here becase deliver_recv_msg() releases the
631 * lock, and a new message can be put in during the
632 * time the lock is released.
633 */
634 msg = smi_info->curr_msg;
635 smi_info->curr_msg = NULL;
636 if (msg->rsp[2] != 0) {
637 /* Error getting event, probably done. */
638 msg->done(msg);
639
640 /* Take off the msg flag. */
641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 handle_flags(smi_info);
643 } else {
644 smi_inc_stat(smi_info, incoming_messages);
645
646 /*
647 * Do this before we deliver the message
648 * because delivering the message releases the
649 * lock and something else can mess with the
650 * state.
651 */
652 handle_flags(smi_info);
653
654 deliver_recv_msg(smi_info, msg);
655 }
656 break;
657 }
658
659 case SI_ENABLE_INTERRUPTS1:
660 {
661 unsigned char msg[4];
662
663 /* We got the flags from the SMI, now handle them. */
664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665 if (msg[2] != 0) {
666 dev_warn(smi_info->dev, "Could not enable interrupts"
667 ", failed get, using polled mode.\n");
668 smi_info->si_state = SI_NORMAL;
669 } else {
670 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
672 msg[2] = (msg[3] |
673 IPMI_BMC_RCV_MSG_INTR |
674 IPMI_BMC_EVT_MSG_INTR);
675 smi_info->handlers->start_transaction(
676 smi_info->si_sm, msg, 3);
677 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678 }
679 break;
680 }
681
682 case SI_ENABLE_INTERRUPTS2:
683 {
684 unsigned char msg[4];
685
686 /* We got the flags from the SMI, now handle them. */
687 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688 if (msg[2] != 0)
689 dev_warn(smi_info->dev, "Could not enable interrupts"
690 ", failed set, using polled mode.\n");
691 else
692 smi_info->interrupt_disabled = 0;
693 smi_info->si_state = SI_NORMAL;
694 break;
695 }
696
697 case SI_DISABLE_INTERRUPTS1:
698 {
699 unsigned char msg[4];
700
701 /* We got the flags from the SMI, now handle them. */
702 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703 if (msg[2] != 0) {
704 dev_warn(smi_info->dev, "Could not disable interrupts"
705 ", failed get.\n");
706 smi_info->si_state = SI_NORMAL;
707 } else {
708 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710 msg[2] = (msg[3] &
711 ~(IPMI_BMC_RCV_MSG_INTR |
712 IPMI_BMC_EVT_MSG_INTR));
713 smi_info->handlers->start_transaction(
714 smi_info->si_sm, msg, 3);
715 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716 }
717 break;
718 }
719
720 case SI_DISABLE_INTERRUPTS2:
721 {
722 unsigned char msg[4];
723
724 /* We got the flags from the SMI, now handle them. */
725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 if (msg[2] != 0) {
727 dev_warn(smi_info->dev, "Could not disable interrupts"
728 ", failed set.\n");
729 }
730 smi_info->si_state = SI_NORMAL;
731 break;
732 }
733 }
734 }
735
736 /*
737 * Called on timeouts and events. Timeouts should pass the elapsed
738 * time, interrupts should pass in zero. Must be called with
739 * si_lock held and interrupts disabled.
740 */
741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742 int time)
743 {
744 enum si_sm_result si_sm_result;
745
746 restart:
747 /*
748 * There used to be a loop here that waited a little while
749 * (around 25us) before giving up. That turned out to be
750 * pointless, the minimum delays I was seeing were in the 300us
751 * range, which is far too long to wait in an interrupt. So
752 * we just run until the state machine tells us something
753 * happened or it needs a delay.
754 */
755 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756 time = 0;
757 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
758 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
759
760 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
761 smi_inc_stat(smi_info, complete_transactions);
762
763 handle_transaction_done(smi_info);
764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765 } else if (si_sm_result == SI_SM_HOSED) {
766 smi_inc_stat(smi_info, hosed_count);
767
768 /*
769 * Do the before return_hosed_msg, because that
770 * releases the lock.
771 */
772 smi_info->si_state = SI_NORMAL;
773 if (smi_info->curr_msg != NULL) {
774 /*
775 * If we were handling a user message, format
776 * a response to send to the upper layer to
777 * tell it about the error.
778 */
779 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
780 }
781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 }
783
784 /*
785 * We prefer handling attn over new messages. But don't do
786 * this if there is not yet an upper layer to handle anything.
787 */
788 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
789 unsigned char msg[2];
790
791 smi_inc_stat(smi_info, attentions);
792
793 /*
794 * Got a attn, send down a get message flags to see
795 * what's causing it. It would be better to handle
796 * this in the upper layer, but due to the way
797 * interrupts work with the SMI, that's not really
798 * possible.
799 */
800 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802
803 smi_info->handlers->start_transaction(
804 smi_info->si_sm, msg, 2);
805 smi_info->si_state = SI_GETTING_FLAGS;
806 goto restart;
807 }
808
809 /* If we are currently idle, try to start the next message. */
810 if (si_sm_result == SI_SM_IDLE) {
811 smi_inc_stat(smi_info, idles);
812
813 si_sm_result = start_next_msg(smi_info);
814 if (si_sm_result != SI_SM_IDLE)
815 goto restart;
816 }
817
818 if ((si_sm_result == SI_SM_IDLE)
819 && (atomic_read(&smi_info->req_events))) {
820 /*
821 * We are idle and the upper layer requested that I fetch
822 * events, so do so.
823 */
824 atomic_set(&smi_info->req_events, 0);
825
826 smi_info->curr_msg = ipmi_alloc_smi_msg();
827 if (!smi_info->curr_msg)
828 goto out;
829
830 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832 smi_info->curr_msg->data_size = 2;
833
834 smi_info->handlers->start_transaction(
835 smi_info->si_sm,
836 smi_info->curr_msg->data,
837 smi_info->curr_msg->data_size);
838 smi_info->si_state = SI_GETTING_EVENTS;
839 goto restart;
840 }
841 out:
842 return si_sm_result;
843 }
844
845 static void sender(void *send_info,
846 struct ipmi_smi_msg *msg,
847 int priority)
848 {
849 struct smi_info *smi_info = send_info;
850 enum si_sm_result result;
851 unsigned long flags;
852 #ifdef DEBUG_TIMING
853 struct timeval t;
854 #endif
855
856 if (atomic_read(&smi_info->stop_operation)) {
857 msg->rsp[0] = msg->data[0] | 4;
858 msg->rsp[1] = msg->data[1];
859 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860 msg->rsp_size = 3;
861 deliver_recv_msg(smi_info, msg);
862 return;
863 }
864
865 #ifdef DEBUG_TIMING
866 do_gettimeofday(&t);
867 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868 #endif
869
870 if (smi_info->run_to_completion) {
871 /*
872 * If we are running to completion, then throw it in
873 * the list and run transactions until everything is
874 * clear. Priority doesn't matter here.
875 */
876
877 /*
878 * Run to completion means we are single-threaded, no
879 * need for locks.
880 */
881 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882
883 result = smi_event_handler(smi_info, 0);
884 while (result != SI_SM_IDLE) {
885 udelay(SI_SHORT_TIMEOUT_USEC);
886 result = smi_event_handler(smi_info,
887 SI_SHORT_TIMEOUT_USEC);
888 }
889 return;
890 }
891
892 spin_lock_irqsave(&smi_info->si_lock, flags);
893 if (priority > 0)
894 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895 else
896 list_add_tail(&msg->link, &smi_info->xmit_msgs);
897
898 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
899 /*
900 * last_timeout_jiffies is updated here to avoid
901 * smi_timeout() handler passing very large time_diff
902 * value to smi_event_handler() that causes
903 * the send command to abort.
904 */
905 smi_info->last_timeout_jiffies = jiffies;
906
907 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908
909 if (smi_info->thread)
910 wake_up_process(smi_info->thread);
911
912 start_next_msg(smi_info);
913 smi_event_handler(smi_info, 0);
914 }
915 spin_unlock_irqrestore(&smi_info->si_lock, flags);
916 }
917
918 static void set_run_to_completion(void *send_info, int i_run_to_completion)
919 {
920 struct smi_info *smi_info = send_info;
921 enum si_sm_result result;
922
923 smi_info->run_to_completion = i_run_to_completion;
924 if (i_run_to_completion) {
925 result = smi_event_handler(smi_info, 0);
926 while (result != SI_SM_IDLE) {
927 udelay(SI_SHORT_TIMEOUT_USEC);
928 result = smi_event_handler(smi_info,
929 SI_SHORT_TIMEOUT_USEC);
930 }
931 }
932 }
933
934 /*
935 * Use -1 in the nsec value of the busy waiting timespec to tell that
936 * we are spinning in kipmid looking for something and not delaying
937 * between checks
938 */
939 static inline void ipmi_si_set_not_busy(struct timespec *ts)
940 {
941 ts->tv_nsec = -1;
942 }
943 static inline int ipmi_si_is_busy(struct timespec *ts)
944 {
945 return ts->tv_nsec != -1;
946 }
947
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949 const struct smi_info *smi_info,
950 struct timespec *busy_until)
951 {
952 unsigned int max_busy_us = 0;
953
954 if (smi_info->intf_num < num_max_busy_us)
955 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957 ipmi_si_set_not_busy(busy_until);
958 else if (!ipmi_si_is_busy(busy_until)) {
959 getnstimeofday(busy_until);
960 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961 } else {
962 struct timespec now;
963 getnstimeofday(&now);
964 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965 ipmi_si_set_not_busy(busy_until);
966 return 0;
967 }
968 }
969 return 1;
970 }
971
972
973 /*
974 * A busy-waiting loop for speeding up IPMI operation.
975 *
976 * Lousy hardware makes this hard. This is only enabled for systems
977 * that are not BT and do not have interrupts. It starts spinning
978 * when an operation is complete or until max_busy tells it to stop
979 * (if that is enabled). See the paragraph on kimid_max_busy_us in
980 * Documentation/IPMI.txt for details.
981 */
982 static int ipmi_thread(void *data)
983 {
984 struct smi_info *smi_info = data;
985 unsigned long flags;
986 enum si_sm_result smi_result;
987 struct timespec busy_until;
988
989 ipmi_si_set_not_busy(&busy_until);
990 set_user_nice(current, 19);
991 while (!kthread_should_stop()) {
992 int busy_wait;
993
994 spin_lock_irqsave(&(smi_info->si_lock), flags);
995 smi_result = smi_event_handler(smi_info, 0);
996 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
997 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998 &busy_until);
999 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000 ; /* do nothing */
1001 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1002 schedule();
1003 else if (smi_result == SI_SM_IDLE)
1004 schedule_timeout_interruptible(100);
1005 else
1006 schedule_timeout_interruptible(1);
1007 }
1008 return 0;
1009 }
1010
1011
1012 static void poll(void *send_info)
1013 {
1014 struct smi_info *smi_info = send_info;
1015 unsigned long flags = 0;
1016 int run_to_completion = smi_info->run_to_completion;
1017
1018 /*
1019 * Make sure there is some delay in the poll loop so we can
1020 * drive time forward and timeout things.
1021 */
1022 udelay(10);
1023 if (!run_to_completion)
1024 spin_lock_irqsave(&smi_info->si_lock, flags);
1025 smi_event_handler(smi_info, 10);
1026 if (!run_to_completion)
1027 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029
1030 static void request_events(void *send_info)
1031 {
1032 struct smi_info *smi_info = send_info;
1033
1034 if (atomic_read(&smi_info->stop_operation) ||
1035 !smi_info->has_event_buffer)
1036 return;
1037
1038 atomic_set(&smi_info->req_events, 1);
1039 }
1040
1041 static int initialized;
1042
1043 static void smi_timeout(unsigned long data)
1044 {
1045 struct smi_info *smi_info = (struct smi_info *) data;
1046 enum si_sm_result smi_result;
1047 unsigned long flags;
1048 unsigned long jiffies_now;
1049 long time_diff;
1050 long timeout;
1051 #ifdef DEBUG_TIMING
1052 struct timeval t;
1053 #endif
1054
1055 spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057 do_gettimeofday(&t);
1058 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060 jiffies_now = jiffies;
1061 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062 * SI_USEC_PER_JIFFY);
1063 smi_result = smi_event_handler(smi_info, time_diff);
1064
1065 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066
1067 smi_info->last_timeout_jiffies = jiffies_now;
1068
1069 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070 /* Running with interrupts, only do long timeouts. */
1071 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1072 smi_inc_stat(smi_info, long_timeouts);
1073 goto do_mod_timer;
1074 }
1075
1076 /*
1077 * If the state machine asks for a short delay, then shorten
1078 * the timer timeout.
1079 */
1080 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081 smi_inc_stat(smi_info, short_timeouts);
1082 timeout = jiffies + 1;
1083 } else {
1084 smi_inc_stat(smi_info, long_timeouts);
1085 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1086 }
1087
1088 do_mod_timer:
1089 if (smi_result != SI_SM_IDLE)
1090 mod_timer(&(smi_info->si_timer), timeout);
1091 }
1092
1093 static irqreturn_t si_irq_handler(int irq, void *data)
1094 {
1095 struct smi_info *smi_info = data;
1096 unsigned long flags;
1097 #ifdef DEBUG_TIMING
1098 struct timeval t;
1099 #endif
1100
1101 spin_lock_irqsave(&(smi_info->si_lock), flags);
1102
1103 smi_inc_stat(smi_info, interrupts);
1104
1105 #ifdef DEBUG_TIMING
1106 do_gettimeofday(&t);
1107 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1108 #endif
1109 smi_event_handler(smi_info, 0);
1110 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111 return IRQ_HANDLED;
1112 }
1113
1114 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1115 {
1116 struct smi_info *smi_info = data;
1117 /* We need to clear the IRQ flag for the BT interface. */
1118 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1121 return si_irq_handler(irq, data);
1122 }
1123
1124 static int smi_start_processing(void *send_info,
1125 ipmi_smi_t intf)
1126 {
1127 struct smi_info *new_smi = send_info;
1128 int enable = 0;
1129
1130 new_smi->intf = intf;
1131
1132 /* Try to claim any interrupts. */
1133 if (new_smi->irq_setup)
1134 new_smi->irq_setup(new_smi);
1135
1136 /* Set up the timer that drives the interface. */
1137 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138 new_smi->last_timeout_jiffies = jiffies;
1139 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140
1141 /*
1142 * Check if the user forcefully enabled the daemon.
1143 */
1144 if (new_smi->intf_num < num_force_kipmid)
1145 enable = force_kipmid[new_smi->intf_num];
1146 /*
1147 * The BT interface is efficient enough to not need a thread,
1148 * and there is no need for a thread if we have interrupts.
1149 */
1150 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1151 enable = 1;
1152
1153 if (enable) {
1154 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155 "kipmi%d", new_smi->intf_num);
1156 if (IS_ERR(new_smi->thread)) {
1157 dev_notice(new_smi->dev, "Could not start"
1158 " kernel thread due to error %ld, only using"
1159 " timers to drive the interface\n",
1160 PTR_ERR(new_smi->thread));
1161 new_smi->thread = NULL;
1162 }
1163 }
1164
1165 return 0;
1166 }
1167
1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169 {
1170 struct smi_info *smi = send_info;
1171
1172 data->addr_src = smi->addr_source;
1173 data->dev = smi->dev;
1174 data->addr_info = smi->addr_info;
1175 get_device(smi->dev);
1176
1177 return 0;
1178 }
1179
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182 struct smi_info *smi_info = send_info;
1183
1184 if (!enable)
1185 atomic_set(&smi_info->req_events, 0);
1186 }
1187
1188 static struct ipmi_smi_handlers handlers = {
1189 .owner = THIS_MODULE,
1190 .start_processing = smi_start_processing,
1191 .get_smi_info = get_smi_info,
1192 .sender = sender,
1193 .request_events = request_events,
1194 .set_maintenance_mode = set_maintenance_mode,
1195 .set_run_to_completion = set_run_to_completion,
1196 .poll = poll,
1197 };
1198
1199 /*
1200 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1202 */
1203
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1207
1208 #define DEFAULT_REGSPACING 1
1209 #define DEFAULT_REGSIZE 1
1210
1211 static bool si_trydefaults = 1;
1212 static char *si_type[SI_MAX_PARMS];
1213 #define MAX_SI_TYPE_STR 30
1214 static char si_type_str[MAX_SI_TYPE_STR];
1215 static unsigned long addrs[SI_MAX_PARMS];
1216 static unsigned int num_addrs;
1217 static unsigned int ports[SI_MAX_PARMS];
1218 static unsigned int num_ports;
1219 static int irqs[SI_MAX_PARMS];
1220 static unsigned int num_irqs;
1221 static int regspacings[SI_MAX_PARMS];
1222 static unsigned int num_regspacings;
1223 static int regsizes[SI_MAX_PARMS];
1224 static unsigned int num_regsizes;
1225 static int regshifts[SI_MAX_PARMS];
1226 static unsigned int num_regshifts;
1227 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1228 static unsigned int num_slave_addrs;
1229
1230 #define IPMI_IO_ADDR_SPACE 0
1231 #define IPMI_MEM_ADDR_SPACE 1
1232 static char *addr_space_to_str[] = { "i/o", "mem" };
1233
1234 static int hotmod_handler(const char *val, struct kernel_param *kp);
1235
1236 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1237 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1238 " Documentation/IPMI.txt in the kernel sources for the"
1239 " gory details.");
1240
1241 module_param_named(trydefaults, si_trydefaults, bool, 0);
1242 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1243 " default scan of the KCS and SMIC interface at the standard"
1244 " address");
1245 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1246 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1247 " interface separated by commas. The types are 'kcs',"
1248 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1249 " the first interface to kcs and the second to bt");
1250 module_param_array(addrs, ulong, &num_addrs, 0);
1251 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1252 " addresses separated by commas. Only use if an interface"
1253 " is in memory. Otherwise, set it to zero or leave"
1254 " it blank.");
1255 module_param_array(ports, uint, &num_ports, 0);
1256 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1257 " addresses separated by commas. Only use if an interface"
1258 " is a port. Otherwise, set it to zero or leave"
1259 " it blank.");
1260 module_param_array(irqs, int, &num_irqs, 0);
1261 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1262 " addresses separated by commas. Only use if an interface"
1263 " has an interrupt. Otherwise, set it to zero or leave"
1264 " it blank.");
1265 module_param_array(regspacings, int, &num_regspacings, 0);
1266 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1267 " and each successive register used by the interface. For"
1268 " instance, if the start address is 0xca2 and the spacing"
1269 " is 2, then the second address is at 0xca4. Defaults"
1270 " to 1.");
1271 module_param_array(regsizes, int, &num_regsizes, 0);
1272 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1273 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1274 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1275 " the 8-bit IPMI register has to be read from a larger"
1276 " register.");
1277 module_param_array(regshifts, int, &num_regshifts, 0);
1278 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1279 " IPMI register, in bits. For instance, if the data"
1280 " is read from a 32-bit word and the IPMI data is in"
1281 " bit 8-15, then the shift would be 8");
1282 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1283 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1284 " the controller. Normally this is 0x20, but can be"
1285 " overridden by this parm. This is an array indexed"
1286 " by interface number.");
1287 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1288 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1289 " disabled(0). Normally the IPMI driver auto-detects"
1290 " this, but the value may be overridden by this parm.");
1291 module_param(unload_when_empty, int, 0);
1292 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1293 " specified or found, default is 1. Setting to 0"
1294 " is useful for hot add of devices using hotmod.");
1295 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1296 MODULE_PARM_DESC(kipmid_max_busy_us,
1297 "Max time (in microseconds) to busy-wait for IPMI data before"
1298 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1299 " if kipmid is using up a lot of CPU time.");
1300
1301
1302 static void std_irq_cleanup(struct smi_info *info)
1303 {
1304 if (info->si_type == SI_BT)
1305 /* Disable the interrupt in the BT interface. */
1306 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1307 free_irq(info->irq, info);
1308 }
1309
1310 static int std_irq_setup(struct smi_info *info)
1311 {
1312 int rv;
1313
1314 if (!info->irq)
1315 return 0;
1316
1317 if (info->si_type == SI_BT) {
1318 rv = request_irq(info->irq,
1319 si_bt_irq_handler,
1320 IRQF_SHARED | IRQF_DISABLED,
1321 DEVICE_NAME,
1322 info);
1323 if (!rv)
1324 /* Enable the interrupt in the BT interface. */
1325 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1326 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1327 } else
1328 rv = request_irq(info->irq,
1329 si_irq_handler,
1330 IRQF_SHARED | IRQF_DISABLED,
1331 DEVICE_NAME,
1332 info);
1333 if (rv) {
1334 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1335 " running polled\n",
1336 DEVICE_NAME, info->irq);
1337 info->irq = 0;
1338 } else {
1339 info->irq_cleanup = std_irq_cleanup;
1340 dev_info(info->dev, "Using irq %d\n", info->irq);
1341 }
1342
1343 return rv;
1344 }
1345
1346 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1347 {
1348 unsigned int addr = io->addr_data;
1349
1350 return inb(addr + (offset * io->regspacing));
1351 }
1352
1353 static void port_outb(struct si_sm_io *io, unsigned int offset,
1354 unsigned char b)
1355 {
1356 unsigned int addr = io->addr_data;
1357
1358 outb(b, addr + (offset * io->regspacing));
1359 }
1360
1361 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1362 {
1363 unsigned int addr = io->addr_data;
1364
1365 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1366 }
1367
1368 static void port_outw(struct si_sm_io *io, unsigned int offset,
1369 unsigned char b)
1370 {
1371 unsigned int addr = io->addr_data;
1372
1373 outw(b << io->regshift, addr + (offset * io->regspacing));
1374 }
1375
1376 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1377 {
1378 unsigned int addr = io->addr_data;
1379
1380 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1381 }
1382
1383 static void port_outl(struct si_sm_io *io, unsigned int offset,
1384 unsigned char b)
1385 {
1386 unsigned int addr = io->addr_data;
1387
1388 outl(b << io->regshift, addr+(offset * io->regspacing));
1389 }
1390
1391 static void port_cleanup(struct smi_info *info)
1392 {
1393 unsigned int addr = info->io.addr_data;
1394 int idx;
1395
1396 if (addr) {
1397 for (idx = 0; idx < info->io_size; idx++)
1398 release_region(addr + idx * info->io.regspacing,
1399 info->io.regsize);
1400 }
1401 }
1402
1403 static int port_setup(struct smi_info *info)
1404 {
1405 unsigned int addr = info->io.addr_data;
1406 int idx;
1407
1408 if (!addr)
1409 return -ENODEV;
1410
1411 info->io_cleanup = port_cleanup;
1412
1413 /*
1414 * Figure out the actual inb/inw/inl/etc routine to use based
1415 * upon the register size.
1416 */
1417 switch (info->io.regsize) {
1418 case 1:
1419 info->io.inputb = port_inb;
1420 info->io.outputb = port_outb;
1421 break;
1422 case 2:
1423 info->io.inputb = port_inw;
1424 info->io.outputb = port_outw;
1425 break;
1426 case 4:
1427 info->io.inputb = port_inl;
1428 info->io.outputb = port_outl;
1429 break;
1430 default:
1431 dev_warn(info->dev, "Invalid register size: %d\n",
1432 info->io.regsize);
1433 return -EINVAL;
1434 }
1435
1436 /*
1437 * Some BIOSes reserve disjoint I/O regions in their ACPI
1438 * tables. This causes problems when trying to register the
1439 * entire I/O region. Therefore we must register each I/O
1440 * port separately.
1441 */
1442 for (idx = 0; idx < info->io_size; idx++) {
1443 if (request_region(addr + idx * info->io.regspacing,
1444 info->io.regsize, DEVICE_NAME) == NULL) {
1445 /* Undo allocations */
1446 while (idx--) {
1447 release_region(addr + idx * info->io.regspacing,
1448 info->io.regsize);
1449 }
1450 return -EIO;
1451 }
1452 }
1453 return 0;
1454 }
1455
1456 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1457 {
1458 return readb((io->addr)+(offset * io->regspacing));
1459 }
1460
1461 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1462 unsigned char b)
1463 {
1464 writeb(b, (io->addr)+(offset * io->regspacing));
1465 }
1466
1467 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1468 {
1469 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1470 & 0xff;
1471 }
1472
1473 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1474 unsigned char b)
1475 {
1476 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1477 }
1478
1479 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1480 {
1481 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1482 & 0xff;
1483 }
1484
1485 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1486 unsigned char b)
1487 {
1488 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1489 }
1490
1491 #ifdef readq
1492 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1493 {
1494 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1495 & 0xff;
1496 }
1497
1498 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1499 unsigned char b)
1500 {
1501 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1502 }
1503 #endif
1504
1505 static void mem_cleanup(struct smi_info *info)
1506 {
1507 unsigned long addr = info->io.addr_data;
1508 int mapsize;
1509
1510 if (info->io.addr) {
1511 iounmap(info->io.addr);
1512
1513 mapsize = ((info->io_size * info->io.regspacing)
1514 - (info->io.regspacing - info->io.regsize));
1515
1516 release_mem_region(addr, mapsize);
1517 }
1518 }
1519
1520 static int mem_setup(struct smi_info *info)
1521 {
1522 unsigned long addr = info->io.addr_data;
1523 int mapsize;
1524
1525 if (!addr)
1526 return -ENODEV;
1527
1528 info->io_cleanup = mem_cleanup;
1529
1530 /*
1531 * Figure out the actual readb/readw/readl/etc routine to use based
1532 * upon the register size.
1533 */
1534 switch (info->io.regsize) {
1535 case 1:
1536 info->io.inputb = intf_mem_inb;
1537 info->io.outputb = intf_mem_outb;
1538 break;
1539 case 2:
1540 info->io.inputb = intf_mem_inw;
1541 info->io.outputb = intf_mem_outw;
1542 break;
1543 case 4:
1544 info->io.inputb = intf_mem_inl;
1545 info->io.outputb = intf_mem_outl;
1546 break;
1547 #ifdef readq
1548 case 8:
1549 info->io.inputb = mem_inq;
1550 info->io.outputb = mem_outq;
1551 break;
1552 #endif
1553 default:
1554 dev_warn(info->dev, "Invalid register size: %d\n",
1555 info->io.regsize);
1556 return -EINVAL;
1557 }
1558
1559 /*
1560 * Calculate the total amount of memory to claim. This is an
1561 * unusual looking calculation, but it avoids claiming any
1562 * more memory than it has to. It will claim everything
1563 * between the first address to the end of the last full
1564 * register.
1565 */
1566 mapsize = ((info->io_size * info->io.regspacing)
1567 - (info->io.regspacing - info->io.regsize));
1568
1569 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1570 return -EIO;
1571
1572 info->io.addr = ioremap(addr, mapsize);
1573 if (info->io.addr == NULL) {
1574 release_mem_region(addr, mapsize);
1575 return -EIO;
1576 }
1577 return 0;
1578 }
1579
1580 /*
1581 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1582 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1583 * Options are:
1584 * rsp=<regspacing>
1585 * rsi=<regsize>
1586 * rsh=<regshift>
1587 * irq=<irq>
1588 * ipmb=<ipmb addr>
1589 */
1590 enum hotmod_op { HM_ADD, HM_REMOVE };
1591 struct hotmod_vals {
1592 char *name;
1593 int val;
1594 };
1595 static struct hotmod_vals hotmod_ops[] = {
1596 { "add", HM_ADD },
1597 { "remove", HM_REMOVE },
1598 { NULL }
1599 };
1600 static struct hotmod_vals hotmod_si[] = {
1601 { "kcs", SI_KCS },
1602 { "smic", SI_SMIC },
1603 { "bt", SI_BT },
1604 { NULL }
1605 };
1606 static struct hotmod_vals hotmod_as[] = {
1607 { "mem", IPMI_MEM_ADDR_SPACE },
1608 { "i/o", IPMI_IO_ADDR_SPACE },
1609 { NULL }
1610 };
1611
1612 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1613 {
1614 char *s;
1615 int i;
1616
1617 s = strchr(*curr, ',');
1618 if (!s) {
1619 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1620 return -EINVAL;
1621 }
1622 *s = '\0';
1623 s++;
1624 for (i = 0; hotmod_ops[i].name; i++) {
1625 if (strcmp(*curr, v[i].name) == 0) {
1626 *val = v[i].val;
1627 *curr = s;
1628 return 0;
1629 }
1630 }
1631
1632 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1633 return -EINVAL;
1634 }
1635
1636 static int check_hotmod_int_op(const char *curr, const char *option,
1637 const char *name, int *val)
1638 {
1639 char *n;
1640
1641 if (strcmp(curr, name) == 0) {
1642 if (!option) {
1643 printk(KERN_WARNING PFX
1644 "No option given for '%s'\n",
1645 curr);
1646 return -EINVAL;
1647 }
1648 *val = simple_strtoul(option, &n, 0);
1649 if ((*n != '\0') || (*option == '\0')) {
1650 printk(KERN_WARNING PFX
1651 "Bad option given for '%s'\n",
1652 curr);
1653 return -EINVAL;
1654 }
1655 return 1;
1656 }
1657 return 0;
1658 }
1659
1660 static struct smi_info *smi_info_alloc(void)
1661 {
1662 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1663
1664 if (info)
1665 spin_lock_init(&info->si_lock);
1666 return info;
1667 }
1668
1669 static int hotmod_handler(const char *val, struct kernel_param *kp)
1670 {
1671 char *str = kstrdup(val, GFP_KERNEL);
1672 int rv;
1673 char *next, *curr, *s, *n, *o;
1674 enum hotmod_op op;
1675 enum si_type si_type;
1676 int addr_space;
1677 unsigned long addr;
1678 int regspacing;
1679 int regsize;
1680 int regshift;
1681 int irq;
1682 int ipmb;
1683 int ival;
1684 int len;
1685 struct smi_info *info;
1686
1687 if (!str)
1688 return -ENOMEM;
1689
1690 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1691 len = strlen(str);
1692 ival = len - 1;
1693 while ((ival >= 0) && isspace(str[ival])) {
1694 str[ival] = '\0';
1695 ival--;
1696 }
1697
1698 for (curr = str; curr; curr = next) {
1699 regspacing = 1;
1700 regsize = 1;
1701 regshift = 0;
1702 irq = 0;
1703 ipmb = 0; /* Choose the default if not specified */
1704
1705 next = strchr(curr, ':');
1706 if (next) {
1707 *next = '\0';
1708 next++;
1709 }
1710
1711 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1712 if (rv)
1713 break;
1714 op = ival;
1715
1716 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1717 if (rv)
1718 break;
1719 si_type = ival;
1720
1721 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1722 if (rv)
1723 break;
1724
1725 s = strchr(curr, ',');
1726 if (s) {
1727 *s = '\0';
1728 s++;
1729 }
1730 addr = simple_strtoul(curr, &n, 0);
1731 if ((*n != '\0') || (*curr == '\0')) {
1732 printk(KERN_WARNING PFX "Invalid hotmod address"
1733 " '%s'\n", curr);
1734 break;
1735 }
1736
1737 while (s) {
1738 curr = s;
1739 s = strchr(curr, ',');
1740 if (s) {
1741 *s = '\0';
1742 s++;
1743 }
1744 o = strchr(curr, '=');
1745 if (o) {
1746 *o = '\0';
1747 o++;
1748 }
1749 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1750 if (rv < 0)
1751 goto out;
1752 else if (rv)
1753 continue;
1754 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1755 if (rv < 0)
1756 goto out;
1757 else if (rv)
1758 continue;
1759 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1760 if (rv < 0)
1761 goto out;
1762 else if (rv)
1763 continue;
1764 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1765 if (rv < 0)
1766 goto out;
1767 else if (rv)
1768 continue;
1769 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1770 if (rv < 0)
1771 goto out;
1772 else if (rv)
1773 continue;
1774
1775 rv = -EINVAL;
1776 printk(KERN_WARNING PFX
1777 "Invalid hotmod option '%s'\n",
1778 curr);
1779 goto out;
1780 }
1781
1782 if (op == HM_ADD) {
1783 info = smi_info_alloc();
1784 if (!info) {
1785 rv = -ENOMEM;
1786 goto out;
1787 }
1788
1789 info->addr_source = SI_HOTMOD;
1790 info->si_type = si_type;
1791 info->io.addr_data = addr;
1792 info->io.addr_type = addr_space;
1793 if (addr_space == IPMI_MEM_ADDR_SPACE)
1794 info->io_setup = mem_setup;
1795 else
1796 info->io_setup = port_setup;
1797
1798 info->io.addr = NULL;
1799 info->io.regspacing = regspacing;
1800 if (!info->io.regspacing)
1801 info->io.regspacing = DEFAULT_REGSPACING;
1802 info->io.regsize = regsize;
1803 if (!info->io.regsize)
1804 info->io.regsize = DEFAULT_REGSPACING;
1805 info->io.regshift = regshift;
1806 info->irq = irq;
1807 if (info->irq)
1808 info->irq_setup = std_irq_setup;
1809 info->slave_addr = ipmb;
1810
1811 if (!add_smi(info)) {
1812 if (try_smi_init(info))
1813 cleanup_one_si(info);
1814 } else {
1815 kfree(info);
1816 }
1817 } else {
1818 /* remove */
1819 struct smi_info *e, *tmp_e;
1820
1821 mutex_lock(&smi_infos_lock);
1822 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1823 if (e->io.addr_type != addr_space)
1824 continue;
1825 if (e->si_type != si_type)
1826 continue;
1827 if (e->io.addr_data == addr)
1828 cleanup_one_si(e);
1829 }
1830 mutex_unlock(&smi_infos_lock);
1831 }
1832 }
1833 rv = len;
1834 out:
1835 kfree(str);
1836 return rv;
1837 }
1838
1839 static int __devinit hardcode_find_bmc(void)
1840 {
1841 int ret = -ENODEV;
1842 int i;
1843 struct smi_info *info;
1844
1845 for (i = 0; i < SI_MAX_PARMS; i++) {
1846 if (!ports[i] && !addrs[i])
1847 continue;
1848
1849 info = smi_info_alloc();
1850 if (!info)
1851 return -ENOMEM;
1852
1853 info->addr_source = SI_HARDCODED;
1854 printk(KERN_INFO PFX "probing via hardcoded address\n");
1855
1856 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1857 info->si_type = SI_KCS;
1858 } else if (strcmp(si_type[i], "smic") == 0) {
1859 info->si_type = SI_SMIC;
1860 } else if (strcmp(si_type[i], "bt") == 0) {
1861 info->si_type = SI_BT;
1862 } else {
1863 printk(KERN_WARNING PFX "Interface type specified "
1864 "for interface %d, was invalid: %s\n",
1865 i, si_type[i]);
1866 kfree(info);
1867 continue;
1868 }
1869
1870 if (ports[i]) {
1871 /* An I/O port */
1872 info->io_setup = port_setup;
1873 info->io.addr_data = ports[i];
1874 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1875 } else if (addrs[i]) {
1876 /* A memory port */
1877 info->io_setup = mem_setup;
1878 info->io.addr_data = addrs[i];
1879 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1880 } else {
1881 printk(KERN_WARNING PFX "Interface type specified "
1882 "for interface %d, but port and address were "
1883 "not set or set to zero.\n", i);
1884 kfree(info);
1885 continue;
1886 }
1887
1888 info->io.addr = NULL;
1889 info->io.regspacing = regspacings[i];
1890 if (!info->io.regspacing)
1891 info->io.regspacing = DEFAULT_REGSPACING;
1892 info->io.regsize = regsizes[i];
1893 if (!info->io.regsize)
1894 info->io.regsize = DEFAULT_REGSPACING;
1895 info->io.regshift = regshifts[i];
1896 info->irq = irqs[i];
1897 if (info->irq)
1898 info->irq_setup = std_irq_setup;
1899 info->slave_addr = slave_addrs[i];
1900
1901 if (!add_smi(info)) {
1902 if (try_smi_init(info))
1903 cleanup_one_si(info);
1904 ret = 0;
1905 } else {
1906 kfree(info);
1907 }
1908 }
1909 return ret;
1910 }
1911
1912 #ifdef CONFIG_ACPI
1913
1914 #include <linux/acpi.h>
1915
1916 /*
1917 * Once we get an ACPI failure, we don't try any more, because we go
1918 * through the tables sequentially. Once we don't find a table, there
1919 * are no more.
1920 */
1921 static int acpi_failure;
1922
1923 /* For GPE-type interrupts. */
1924 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1925 u32 gpe_number, void *context)
1926 {
1927 struct smi_info *smi_info = context;
1928 unsigned long flags;
1929 #ifdef DEBUG_TIMING
1930 struct timeval t;
1931 #endif
1932
1933 spin_lock_irqsave(&(smi_info->si_lock), flags);
1934
1935 smi_inc_stat(smi_info, interrupts);
1936
1937 #ifdef DEBUG_TIMING
1938 do_gettimeofday(&t);
1939 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1940 #endif
1941 smi_event_handler(smi_info, 0);
1942 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1943
1944 return ACPI_INTERRUPT_HANDLED;
1945 }
1946
1947 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1948 {
1949 if (!info->irq)
1950 return;
1951
1952 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1953 }
1954
1955 static int acpi_gpe_irq_setup(struct smi_info *info)
1956 {
1957 acpi_status status;
1958
1959 if (!info->irq)
1960 return 0;
1961
1962 /* FIXME - is level triggered right? */
1963 status = acpi_install_gpe_handler(NULL,
1964 info->irq,
1965 ACPI_GPE_LEVEL_TRIGGERED,
1966 &ipmi_acpi_gpe,
1967 info);
1968 if (status != AE_OK) {
1969 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1970 " running polled\n", DEVICE_NAME, info->irq);
1971 info->irq = 0;
1972 return -EINVAL;
1973 } else {
1974 info->irq_cleanup = acpi_gpe_irq_cleanup;
1975 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1976 return 0;
1977 }
1978 }
1979
1980 /*
1981 * Defined at
1982 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1983 */
1984 struct SPMITable {
1985 s8 Signature[4];
1986 u32 Length;
1987 u8 Revision;
1988 u8 Checksum;
1989 s8 OEMID[6];
1990 s8 OEMTableID[8];
1991 s8 OEMRevision[4];
1992 s8 CreatorID[4];
1993 s8 CreatorRevision[4];
1994 u8 InterfaceType;
1995 u8 IPMIlegacy;
1996 s16 SpecificationRevision;
1997
1998 /*
1999 * Bit 0 - SCI interrupt supported
2000 * Bit 1 - I/O APIC/SAPIC
2001 */
2002 u8 InterruptType;
2003
2004 /*
2005 * If bit 0 of InterruptType is set, then this is the SCI
2006 * interrupt in the GPEx_STS register.
2007 */
2008 u8 GPE;
2009
2010 s16 Reserved;
2011
2012 /*
2013 * If bit 1 of InterruptType is set, then this is the I/O
2014 * APIC/SAPIC interrupt.
2015 */
2016 u32 GlobalSystemInterrupt;
2017
2018 /* The actual register address. */
2019 struct acpi_generic_address addr;
2020
2021 u8 UID[4];
2022
2023 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2024 };
2025
2026 static int __devinit try_init_spmi(struct SPMITable *spmi)
2027 {
2028 struct smi_info *info;
2029
2030 if (spmi->IPMIlegacy != 1) {
2031 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2032 return -ENODEV;
2033 }
2034
2035 info = smi_info_alloc();
2036 if (!info) {
2037 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2038 return -ENOMEM;
2039 }
2040
2041 info->addr_source = SI_SPMI;
2042 printk(KERN_INFO PFX "probing via SPMI\n");
2043
2044 /* Figure out the interface type. */
2045 switch (spmi->InterfaceType) {
2046 case 1: /* KCS */
2047 info->si_type = SI_KCS;
2048 break;
2049 case 2: /* SMIC */
2050 info->si_type = SI_SMIC;
2051 break;
2052 case 3: /* BT */
2053 info->si_type = SI_BT;
2054 break;
2055 default:
2056 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2057 spmi->InterfaceType);
2058 kfree(info);
2059 return -EIO;
2060 }
2061
2062 if (spmi->InterruptType & 1) {
2063 /* We've got a GPE interrupt. */
2064 info->irq = spmi->GPE;
2065 info->irq_setup = acpi_gpe_irq_setup;
2066 } else if (spmi->InterruptType & 2) {
2067 /* We've got an APIC/SAPIC interrupt. */
2068 info->irq = spmi->GlobalSystemInterrupt;
2069 info->irq_setup = std_irq_setup;
2070 } else {
2071 /* Use the default interrupt setting. */
2072 info->irq = 0;
2073 info->irq_setup = NULL;
2074 }
2075
2076 if (spmi->addr.bit_width) {
2077 /* A (hopefully) properly formed register bit width. */
2078 info->io.regspacing = spmi->addr.bit_width / 8;
2079 } else {
2080 info->io.regspacing = DEFAULT_REGSPACING;
2081 }
2082 info->io.regsize = info->io.regspacing;
2083 info->io.regshift = spmi->addr.bit_offset;
2084
2085 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2086 info->io_setup = mem_setup;
2087 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2088 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2089 info->io_setup = port_setup;
2090 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2091 } else {
2092 kfree(info);
2093 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2094 return -EIO;
2095 }
2096 info->io.addr_data = spmi->addr.address;
2097
2098 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2099 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2100 info->io.addr_data, info->io.regsize, info->io.regspacing,
2101 info->irq);
2102
2103 if (add_smi(info))
2104 kfree(info);
2105
2106 return 0;
2107 }
2108
2109 static void __devinit spmi_find_bmc(void)
2110 {
2111 acpi_status status;
2112 struct SPMITable *spmi;
2113 int i;
2114
2115 if (acpi_disabled)
2116 return;
2117
2118 if (acpi_failure)
2119 return;
2120
2121 for (i = 0; ; i++) {
2122 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2123 (struct acpi_table_header **)&spmi);
2124 if (status != AE_OK)
2125 return;
2126
2127 try_init_spmi(spmi);
2128 }
2129 }
2130
2131 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2132 const struct pnp_device_id *dev_id)
2133 {
2134 struct acpi_device *acpi_dev;
2135 struct smi_info *info;
2136 struct resource *res, *res_second;
2137 acpi_handle handle;
2138 acpi_status status;
2139 unsigned long long tmp;
2140
2141 acpi_dev = pnp_acpi_device(dev);
2142 if (!acpi_dev)
2143 return -ENODEV;
2144
2145 info = smi_info_alloc();
2146 if (!info)
2147 return -ENOMEM;
2148
2149 info->addr_source = SI_ACPI;
2150 printk(KERN_INFO PFX "probing via ACPI\n");
2151
2152 handle = acpi_dev->handle;
2153 info->addr_info.acpi_info.acpi_handle = handle;
2154
2155 /* _IFT tells us the interface type: KCS, BT, etc */
2156 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2157 if (ACPI_FAILURE(status))
2158 goto err_free;
2159
2160 switch (tmp) {
2161 case 1:
2162 info->si_type = SI_KCS;
2163 break;
2164 case 2:
2165 info->si_type = SI_SMIC;
2166 break;
2167 case 3:
2168 info->si_type = SI_BT;
2169 break;
2170 default:
2171 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2172 goto err_free;
2173 }
2174
2175 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2176 if (res) {
2177 info->io_setup = port_setup;
2178 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2179 } else {
2180 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2181 if (res) {
2182 info->io_setup = mem_setup;
2183 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2184 }
2185 }
2186 if (!res) {
2187 dev_err(&dev->dev, "no I/O or memory address\n");
2188 goto err_free;
2189 }
2190 info->io.addr_data = res->start;
2191
2192 info->io.regspacing = DEFAULT_REGSPACING;
2193 res_second = pnp_get_resource(dev,
2194 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2195 IORESOURCE_IO : IORESOURCE_MEM,
2196 1);
2197 if (res_second) {
2198 if (res_second->start > info->io.addr_data)
2199 info->io.regspacing = res_second->start - info->io.addr_data;
2200 }
2201 info->io.regsize = DEFAULT_REGSPACING;
2202 info->io.regshift = 0;
2203
2204 /* If _GPE exists, use it; otherwise use standard interrupts */
2205 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2206 if (ACPI_SUCCESS(status)) {
2207 info->irq = tmp;
2208 info->irq_setup = acpi_gpe_irq_setup;
2209 } else if (pnp_irq_valid(dev, 0)) {
2210 info->irq = pnp_irq(dev, 0);
2211 info->irq_setup = std_irq_setup;
2212 }
2213
2214 info->dev = &dev->dev;
2215 pnp_set_drvdata(dev, info);
2216
2217 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2218 res, info->io.regsize, info->io.regspacing,
2219 info->irq);
2220
2221 if (add_smi(info))
2222 goto err_free;
2223
2224 return 0;
2225
2226 err_free:
2227 kfree(info);
2228 return -EINVAL;
2229 }
2230
2231 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2232 {
2233 struct smi_info *info = pnp_get_drvdata(dev);
2234
2235 cleanup_one_si(info);
2236 }
2237
2238 static const struct pnp_device_id pnp_dev_table[] = {
2239 {"IPI0001", 0},
2240 {"", 0},
2241 };
2242
2243 static struct pnp_driver ipmi_pnp_driver = {
2244 .name = DEVICE_NAME,
2245 .probe = ipmi_pnp_probe,
2246 .remove = __devexit_p(ipmi_pnp_remove),
2247 .id_table = pnp_dev_table,
2248 };
2249 #endif
2250
2251 #ifdef CONFIG_DMI
2252 struct dmi_ipmi_data {
2253 u8 type;
2254 u8 addr_space;
2255 unsigned long base_addr;
2256 u8 irq;
2257 u8 offset;
2258 u8 slave_addr;
2259 };
2260
2261 static int __devinit decode_dmi(const struct dmi_header *dm,
2262 struct dmi_ipmi_data *dmi)
2263 {
2264 const u8 *data = (const u8 *)dm;
2265 unsigned long base_addr;
2266 u8 reg_spacing;
2267 u8 len = dm->length;
2268
2269 dmi->type = data[4];
2270
2271 memcpy(&base_addr, data+8, sizeof(unsigned long));
2272 if (len >= 0x11) {
2273 if (base_addr & 1) {
2274 /* I/O */
2275 base_addr &= 0xFFFE;
2276 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2277 } else
2278 /* Memory */
2279 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2280
2281 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2282 is odd. */
2283 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2284
2285 dmi->irq = data[0x11];
2286
2287 /* The top two bits of byte 0x10 hold the register spacing. */
2288 reg_spacing = (data[0x10] & 0xC0) >> 6;
2289 switch (reg_spacing) {
2290 case 0x00: /* Byte boundaries */
2291 dmi->offset = 1;
2292 break;
2293 case 0x01: /* 32-bit boundaries */
2294 dmi->offset = 4;
2295 break;
2296 case 0x02: /* 16-byte boundaries */
2297 dmi->offset = 16;
2298 break;
2299 default:
2300 /* Some other interface, just ignore it. */
2301 return -EIO;
2302 }
2303 } else {
2304 /* Old DMI spec. */
2305 /*
2306 * Note that technically, the lower bit of the base
2307 * address should be 1 if the address is I/O and 0 if
2308 * the address is in memory. So many systems get that
2309 * wrong (and all that I have seen are I/O) so we just
2310 * ignore that bit and assume I/O. Systems that use
2311 * memory should use the newer spec, anyway.
2312 */
2313 dmi->base_addr = base_addr & 0xfffe;
2314 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2315 dmi->offset = 1;
2316 }
2317
2318 dmi->slave_addr = data[6];
2319
2320 return 0;
2321 }
2322
2323 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2324 {
2325 struct smi_info *info;
2326
2327 info = smi_info_alloc();
2328 if (!info) {
2329 printk(KERN_ERR PFX "Could not allocate SI data\n");
2330 return;
2331 }
2332
2333 info->addr_source = SI_SMBIOS;
2334 printk(KERN_INFO PFX "probing via SMBIOS\n");
2335
2336 switch (ipmi_data->type) {
2337 case 0x01: /* KCS */
2338 info->si_type = SI_KCS;
2339 break;
2340 case 0x02: /* SMIC */
2341 info->si_type = SI_SMIC;
2342 break;
2343 case 0x03: /* BT */
2344 info->si_type = SI_BT;
2345 break;
2346 default:
2347 kfree(info);
2348 return;
2349 }
2350
2351 switch (ipmi_data->addr_space) {
2352 case IPMI_MEM_ADDR_SPACE:
2353 info->io_setup = mem_setup;
2354 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2355 break;
2356
2357 case IPMI_IO_ADDR_SPACE:
2358 info->io_setup = port_setup;
2359 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2360 break;
2361
2362 default:
2363 kfree(info);
2364 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2365 ipmi_data->addr_space);
2366 return;
2367 }
2368 info->io.addr_data = ipmi_data->base_addr;
2369
2370 info->io.regspacing = ipmi_data->offset;
2371 if (!info->io.regspacing)
2372 info->io.regspacing = DEFAULT_REGSPACING;
2373 info->io.regsize = DEFAULT_REGSPACING;
2374 info->io.regshift = 0;
2375
2376 info->slave_addr = ipmi_data->slave_addr;
2377
2378 info->irq = ipmi_data->irq;
2379 if (info->irq)
2380 info->irq_setup = std_irq_setup;
2381
2382 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2383 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2384 info->io.addr_data, info->io.regsize, info->io.regspacing,
2385 info->irq);
2386
2387 if (add_smi(info))
2388 kfree(info);
2389 }
2390
2391 static void __devinit dmi_find_bmc(void)
2392 {
2393 const struct dmi_device *dev = NULL;
2394 struct dmi_ipmi_data data;
2395 int rv;
2396
2397 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2398 memset(&data, 0, sizeof(data));
2399 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2400 &data);
2401 if (!rv)
2402 try_init_dmi(&data);
2403 }
2404 }
2405 #endif /* CONFIG_DMI */
2406
2407 #ifdef CONFIG_PCI
2408
2409 #define PCI_ERMC_CLASSCODE 0x0C0700
2410 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2411 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2412 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2413 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2414 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2415
2416 #define PCI_HP_VENDOR_ID 0x103C
2417 #define PCI_MMC_DEVICE_ID 0x121A
2418 #define PCI_MMC_ADDR_CW 0x10
2419
2420 static void ipmi_pci_cleanup(struct smi_info *info)
2421 {
2422 struct pci_dev *pdev = info->addr_source_data;
2423
2424 pci_disable_device(pdev);
2425 }
2426
2427 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2428 const struct pci_device_id *ent)
2429 {
2430 int rv;
2431 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2432 struct smi_info *info;
2433
2434 info = smi_info_alloc();
2435 if (!info)
2436 return -ENOMEM;
2437
2438 info->addr_source = SI_PCI;
2439 dev_info(&pdev->dev, "probing via PCI");
2440
2441 switch (class_type) {
2442 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2443 info->si_type = SI_SMIC;
2444 break;
2445
2446 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2447 info->si_type = SI_KCS;
2448 break;
2449
2450 case PCI_ERMC_CLASSCODE_TYPE_BT:
2451 info->si_type = SI_BT;
2452 break;
2453
2454 default:
2455 kfree(info);
2456 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2457 return -ENOMEM;
2458 }
2459
2460 rv = pci_enable_device(pdev);
2461 if (rv) {
2462 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2463 kfree(info);
2464 return rv;
2465 }
2466
2467 info->addr_source_cleanup = ipmi_pci_cleanup;
2468 info->addr_source_data = pdev;
2469
2470 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2471 info->io_setup = port_setup;
2472 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2473 } else {
2474 info->io_setup = mem_setup;
2475 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2476 }
2477 info->io.addr_data = pci_resource_start(pdev, 0);
2478
2479 info->io.regspacing = DEFAULT_REGSPACING;
2480 info->io.regsize = DEFAULT_REGSPACING;
2481 info->io.regshift = 0;
2482
2483 info->irq = pdev->irq;
2484 if (info->irq)
2485 info->irq_setup = std_irq_setup;
2486
2487 info->dev = &pdev->dev;
2488 pci_set_drvdata(pdev, info);
2489
2490 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2491 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2492 info->irq);
2493
2494 if (add_smi(info))
2495 kfree(info);
2496
2497 return 0;
2498 }
2499
2500 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2501 {
2502 struct smi_info *info = pci_get_drvdata(pdev);
2503 cleanup_one_si(info);
2504 }
2505
2506 static struct pci_device_id ipmi_pci_devices[] = {
2507 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2508 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2509 { 0, }
2510 };
2511 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2512
2513 static struct pci_driver ipmi_pci_driver = {
2514 .name = DEVICE_NAME,
2515 .id_table = ipmi_pci_devices,
2516 .probe = ipmi_pci_probe,
2517 .remove = __devexit_p(ipmi_pci_remove),
2518 };
2519 #endif /* CONFIG_PCI */
2520
2521 static struct of_device_id ipmi_match[];
2522 static int __devinit ipmi_probe(struct platform_device *dev)
2523 {
2524 #ifdef CONFIG_OF
2525 const struct of_device_id *match;
2526 struct smi_info *info;
2527 struct resource resource;
2528 const __be32 *regsize, *regspacing, *regshift;
2529 struct device_node *np = dev->dev.of_node;
2530 int ret;
2531 int proplen;
2532
2533 dev_info(&dev->dev, "probing via device tree\n");
2534
2535 match = of_match_device(ipmi_match, &dev->dev);
2536 if (!match)
2537 return -EINVAL;
2538
2539 ret = of_address_to_resource(np, 0, &resource);
2540 if (ret) {
2541 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2542 return ret;
2543 }
2544
2545 regsize = of_get_property(np, "reg-size", &proplen);
2546 if (regsize && proplen != 4) {
2547 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2548 return -EINVAL;
2549 }
2550
2551 regspacing = of_get_property(np, "reg-spacing", &proplen);
2552 if (regspacing && proplen != 4) {
2553 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2554 return -EINVAL;
2555 }
2556
2557 regshift = of_get_property(np, "reg-shift", &proplen);
2558 if (regshift && proplen != 4) {
2559 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2560 return -EINVAL;
2561 }
2562
2563 info = smi_info_alloc();
2564
2565 if (!info) {
2566 dev_err(&dev->dev,
2567 "could not allocate memory for OF probe\n");
2568 return -ENOMEM;
2569 }
2570
2571 info->si_type = (enum si_type) match->data;
2572 info->addr_source = SI_DEVICETREE;
2573 info->irq_setup = std_irq_setup;
2574
2575 if (resource.flags & IORESOURCE_IO) {
2576 info->io_setup = port_setup;
2577 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2578 } else {
2579 info->io_setup = mem_setup;
2580 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2581 }
2582
2583 info->io.addr_data = resource.start;
2584
2585 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2586 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2587 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2588
2589 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2590 info->dev = &dev->dev;
2591
2592 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2593 info->io.addr_data, info->io.regsize, info->io.regspacing,
2594 info->irq);
2595
2596 dev_set_drvdata(&dev->dev, info);
2597
2598 if (add_smi(info)) {
2599 kfree(info);
2600 return -EBUSY;
2601 }
2602 #endif
2603 return 0;
2604 }
2605
2606 static int __devexit ipmi_remove(struct platform_device *dev)
2607 {
2608 #ifdef CONFIG_OF
2609 cleanup_one_si(dev_get_drvdata(&dev->dev));
2610 #endif
2611 return 0;
2612 }
2613
2614 static struct of_device_id ipmi_match[] =
2615 {
2616 { .type = "ipmi", .compatible = "ipmi-kcs",
2617 .data = (void *)(unsigned long) SI_KCS },
2618 { .type = "ipmi", .compatible = "ipmi-smic",
2619 .data = (void *)(unsigned long) SI_SMIC },
2620 { .type = "ipmi", .compatible = "ipmi-bt",
2621 .data = (void *)(unsigned long) SI_BT },
2622 {},
2623 };
2624
2625 static struct platform_driver ipmi_driver = {
2626 .driver = {
2627 .name = DEVICE_NAME,
2628 .owner = THIS_MODULE,
2629 .of_match_table = ipmi_match,
2630 },
2631 .probe = ipmi_probe,
2632 .remove = __devexit_p(ipmi_remove),
2633 };
2634
2635 static int wait_for_msg_done(struct smi_info *smi_info)
2636 {
2637 enum si_sm_result smi_result;
2638
2639 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2640 for (;;) {
2641 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2642 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2643 schedule_timeout_uninterruptible(1);
2644 smi_result = smi_info->handlers->event(
2645 smi_info->si_sm, 100);
2646 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2647 smi_result = smi_info->handlers->event(
2648 smi_info->si_sm, 0);
2649 } else
2650 break;
2651 }
2652 if (smi_result == SI_SM_HOSED)
2653 /*
2654 * We couldn't get the state machine to run, so whatever's at
2655 * the port is probably not an IPMI SMI interface.
2656 */
2657 return -ENODEV;
2658
2659 return 0;
2660 }
2661
2662 static int try_get_dev_id(struct smi_info *smi_info)
2663 {
2664 unsigned char msg[2];
2665 unsigned char *resp;
2666 unsigned long resp_len;
2667 int rv = 0;
2668
2669 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2670 if (!resp)
2671 return -ENOMEM;
2672
2673 /*
2674 * Do a Get Device ID command, since it comes back with some
2675 * useful info.
2676 */
2677 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2678 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2679 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2680
2681 rv = wait_for_msg_done(smi_info);
2682 if (rv)
2683 goto out;
2684
2685 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2686 resp, IPMI_MAX_MSG_LENGTH);
2687
2688 /* Check and record info from the get device id, in case we need it. */
2689 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2690
2691 out:
2692 kfree(resp);
2693 return rv;
2694 }
2695
2696 static int try_enable_event_buffer(struct smi_info *smi_info)
2697 {
2698 unsigned char msg[3];
2699 unsigned char *resp;
2700 unsigned long resp_len;
2701 int rv = 0;
2702
2703 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2704 if (!resp)
2705 return -ENOMEM;
2706
2707 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2708 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2709 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2710
2711 rv = wait_for_msg_done(smi_info);
2712 if (rv) {
2713 printk(KERN_WARNING PFX "Error getting response from get"
2714 " global enables command, the event buffer is not"
2715 " enabled.\n");
2716 goto out;
2717 }
2718
2719 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2720 resp, IPMI_MAX_MSG_LENGTH);
2721
2722 if (resp_len < 4 ||
2723 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2724 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2725 resp[2] != 0) {
2726 printk(KERN_WARNING PFX "Invalid return from get global"
2727 " enables command, cannot enable the event buffer.\n");
2728 rv = -EINVAL;
2729 goto out;
2730 }
2731
2732 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2733 /* buffer is already enabled, nothing to do. */
2734 goto out;
2735
2736 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2737 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2738 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2739 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2740
2741 rv = wait_for_msg_done(smi_info);
2742 if (rv) {
2743 printk(KERN_WARNING PFX "Error getting response from set"
2744 " global, enables command, the event buffer is not"
2745 " enabled.\n");
2746 goto out;
2747 }
2748
2749 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2750 resp, IPMI_MAX_MSG_LENGTH);
2751
2752 if (resp_len < 3 ||
2753 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2754 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2755 printk(KERN_WARNING PFX "Invalid return from get global,"
2756 "enables command, not enable the event buffer.\n");
2757 rv = -EINVAL;
2758 goto out;
2759 }
2760
2761 if (resp[2] != 0)
2762 /*
2763 * An error when setting the event buffer bit means
2764 * that the event buffer is not supported.
2765 */
2766 rv = -ENOENT;
2767 out:
2768 kfree(resp);
2769 return rv;
2770 }
2771
2772 static int smi_type_proc_show(struct seq_file *m, void *v)
2773 {
2774 struct smi_info *smi = m->private;
2775
2776 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2777 }
2778
2779 static int smi_type_proc_open(struct inode *inode, struct file *file)
2780 {
2781 return single_open(file, smi_type_proc_show, PDE(inode)->data);
2782 }
2783
2784 static const struct file_operations smi_type_proc_ops = {
2785 .open = smi_type_proc_open,
2786 .read = seq_read,
2787 .llseek = seq_lseek,
2788 .release = single_release,
2789 };
2790
2791 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2792 {
2793 struct smi_info *smi = m->private;
2794
2795 seq_printf(m, "interrupts_enabled: %d\n",
2796 smi->irq && !smi->interrupt_disabled);
2797 seq_printf(m, "short_timeouts: %u\n",
2798 smi_get_stat(smi, short_timeouts));
2799 seq_printf(m, "long_timeouts: %u\n",
2800 smi_get_stat(smi, long_timeouts));
2801 seq_printf(m, "idles: %u\n",
2802 smi_get_stat(smi, idles));
2803 seq_printf(m, "interrupts: %u\n",
2804 smi_get_stat(smi, interrupts));
2805 seq_printf(m, "attentions: %u\n",
2806 smi_get_stat(smi, attentions));
2807 seq_printf(m, "flag_fetches: %u\n",
2808 smi_get_stat(smi, flag_fetches));
2809 seq_printf(m, "hosed_count: %u\n",
2810 smi_get_stat(smi, hosed_count));
2811 seq_printf(m, "complete_transactions: %u\n",
2812 smi_get_stat(smi, complete_transactions));
2813 seq_printf(m, "events: %u\n",
2814 smi_get_stat(smi, events));
2815 seq_printf(m, "watchdog_pretimeouts: %u\n",
2816 smi_get_stat(smi, watchdog_pretimeouts));
2817 seq_printf(m, "incoming_messages: %u\n",
2818 smi_get_stat(smi, incoming_messages));
2819 return 0;
2820 }
2821
2822 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2823 {
2824 return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2825 }
2826
2827 static const struct file_operations smi_si_stats_proc_ops = {
2828 .open = smi_si_stats_proc_open,
2829 .read = seq_read,
2830 .llseek = seq_lseek,
2831 .release = single_release,
2832 };
2833
2834 static int smi_params_proc_show(struct seq_file *m, void *v)
2835 {
2836 struct smi_info *smi = m->private;
2837
2838 return seq_printf(m,
2839 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2840 si_to_str[smi->si_type],
2841 addr_space_to_str[smi->io.addr_type],
2842 smi->io.addr_data,
2843 smi->io.regspacing,
2844 smi->io.regsize,
2845 smi->io.regshift,
2846 smi->irq,
2847 smi->slave_addr);
2848 }
2849
2850 static int smi_params_proc_open(struct inode *inode, struct file *file)
2851 {
2852 return single_open(file, smi_params_proc_show, PDE(inode)->data);
2853 }
2854
2855 static const struct file_operations smi_params_proc_ops = {
2856 .open = smi_params_proc_open,
2857 .read = seq_read,
2858 .llseek = seq_lseek,
2859 .release = single_release,
2860 };
2861
2862 /*
2863 * oem_data_avail_to_receive_msg_avail
2864 * @info - smi_info structure with msg_flags set
2865 *
2866 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2867 * Returns 1 indicating need to re-run handle_flags().
2868 */
2869 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2870 {
2871 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2872 RECEIVE_MSG_AVAIL);
2873 return 1;
2874 }
2875
2876 /*
2877 * setup_dell_poweredge_oem_data_handler
2878 * @info - smi_info.device_id must be populated
2879 *
2880 * Systems that match, but have firmware version < 1.40 may assert
2881 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2882 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2883 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2884 * as RECEIVE_MSG_AVAIL instead.
2885 *
2886 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2887 * assert the OEM[012] bits, and if it did, the driver would have to
2888 * change to handle that properly, we don't actually check for the
2889 * firmware version.
2890 * Device ID = 0x20 BMC on PowerEdge 8G servers
2891 * Device Revision = 0x80
2892 * Firmware Revision1 = 0x01 BMC version 1.40
2893 * Firmware Revision2 = 0x40 BCD encoded
2894 * IPMI Version = 0x51 IPMI 1.5
2895 * Manufacturer ID = A2 02 00 Dell IANA
2896 *
2897 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2898 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2899 *
2900 */
2901 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2902 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2903 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2904 #define DELL_IANA_MFR_ID 0x0002a2
2905 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2906 {
2907 struct ipmi_device_id *id = &smi_info->device_id;
2908 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2909 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2910 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2911 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2912 smi_info->oem_data_avail_handler =
2913 oem_data_avail_to_receive_msg_avail;
2914 } else if (ipmi_version_major(id) < 1 ||
2915 (ipmi_version_major(id) == 1 &&
2916 ipmi_version_minor(id) < 5)) {
2917 smi_info->oem_data_avail_handler =
2918 oem_data_avail_to_receive_msg_avail;
2919 }
2920 }
2921 }
2922
2923 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2924 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2925 {
2926 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2927
2928 /* Make it a response */
2929 msg->rsp[0] = msg->data[0] | 4;
2930 msg->rsp[1] = msg->data[1];
2931 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2932 msg->rsp_size = 3;
2933 smi_info->curr_msg = NULL;
2934 deliver_recv_msg(smi_info, msg);
2935 }
2936
2937 /*
2938 * dell_poweredge_bt_xaction_handler
2939 * @info - smi_info.device_id must be populated
2940 *
2941 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2942 * not respond to a Get SDR command if the length of the data
2943 * requested is exactly 0x3A, which leads to command timeouts and no
2944 * data returned. This intercepts such commands, and causes userspace
2945 * callers to try again with a different-sized buffer, which succeeds.
2946 */
2947
2948 #define STORAGE_NETFN 0x0A
2949 #define STORAGE_CMD_GET_SDR 0x23
2950 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2951 unsigned long unused,
2952 void *in)
2953 {
2954 struct smi_info *smi_info = in;
2955 unsigned char *data = smi_info->curr_msg->data;
2956 unsigned int size = smi_info->curr_msg->data_size;
2957 if (size >= 8 &&
2958 (data[0]>>2) == STORAGE_NETFN &&
2959 data[1] == STORAGE_CMD_GET_SDR &&
2960 data[7] == 0x3A) {
2961 return_hosed_msg_badsize(smi_info);
2962 return NOTIFY_STOP;
2963 }
2964 return NOTIFY_DONE;
2965 }
2966
2967 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2968 .notifier_call = dell_poweredge_bt_xaction_handler,
2969 };
2970
2971 /*
2972 * setup_dell_poweredge_bt_xaction_handler
2973 * @info - smi_info.device_id must be filled in already
2974 *
2975 * Fills in smi_info.device_id.start_transaction_pre_hook
2976 * when we know what function to use there.
2977 */
2978 static void
2979 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2980 {
2981 struct ipmi_device_id *id = &smi_info->device_id;
2982 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2983 smi_info->si_type == SI_BT)
2984 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2985 }
2986
2987 /*
2988 * setup_oem_data_handler
2989 * @info - smi_info.device_id must be filled in already
2990 *
2991 * Fills in smi_info.device_id.oem_data_available_handler
2992 * when we know what function to use there.
2993 */
2994
2995 static void setup_oem_data_handler(struct smi_info *smi_info)
2996 {
2997 setup_dell_poweredge_oem_data_handler(smi_info);
2998 }
2999
3000 static void setup_xaction_handlers(struct smi_info *smi_info)
3001 {
3002 setup_dell_poweredge_bt_xaction_handler(smi_info);
3003 }
3004
3005 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3006 {
3007 if (smi_info->intf) {
3008 /*
3009 * The timer and thread are only running if the
3010 * interface has been started up and registered.
3011 */
3012 if (smi_info->thread != NULL)
3013 kthread_stop(smi_info->thread);
3014 del_timer_sync(&smi_info->si_timer);
3015 }
3016 }
3017
3018 static __devinitdata struct ipmi_default_vals
3019 {
3020 int type;
3021 int port;
3022 } ipmi_defaults[] =
3023 {
3024 { .type = SI_KCS, .port = 0xca2 },
3025 { .type = SI_SMIC, .port = 0xca9 },
3026 { .type = SI_BT, .port = 0xe4 },
3027 { .port = 0 }
3028 };
3029
3030 static void __devinit default_find_bmc(void)
3031 {
3032 struct smi_info *info;
3033 int i;
3034
3035 for (i = 0; ; i++) {
3036 if (!ipmi_defaults[i].port)
3037 break;
3038 #ifdef CONFIG_PPC
3039 if (check_legacy_ioport(ipmi_defaults[i].port))
3040 continue;
3041 #endif
3042 info = smi_info_alloc();
3043 if (!info)
3044 return;
3045
3046 info->addr_source = SI_DEFAULT;
3047
3048 info->si_type = ipmi_defaults[i].type;
3049 info->io_setup = port_setup;
3050 info->io.addr_data = ipmi_defaults[i].port;
3051 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3052
3053 info->io.addr = NULL;
3054 info->io.regspacing = DEFAULT_REGSPACING;
3055 info->io.regsize = DEFAULT_REGSPACING;
3056 info->io.regshift = 0;
3057
3058 if (add_smi(info) == 0) {
3059 if ((try_smi_init(info)) == 0) {
3060 /* Found one... */
3061 printk(KERN_INFO PFX "Found default %s"
3062 " state machine at %s address 0x%lx\n",
3063 si_to_str[info->si_type],
3064 addr_space_to_str[info->io.addr_type],
3065 info->io.addr_data);
3066 } else
3067 cleanup_one_si(info);
3068 } else {
3069 kfree(info);
3070 }
3071 }
3072 }
3073
3074 static int is_new_interface(struct smi_info *info)
3075 {
3076 struct smi_info *e;
3077
3078 list_for_each_entry(e, &smi_infos, link) {
3079 if (e->io.addr_type != info->io.addr_type)
3080 continue;
3081 if (e->io.addr_data == info->io.addr_data)
3082 return 0;
3083 }
3084
3085 return 1;
3086 }
3087
3088 static int add_smi(struct smi_info *new_smi)
3089 {
3090 int rv = 0;
3091
3092 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3093 ipmi_addr_src_to_str[new_smi->addr_source],
3094 si_to_str[new_smi->si_type]);
3095 mutex_lock(&smi_infos_lock);
3096 if (!is_new_interface(new_smi)) {
3097 printk(KERN_CONT " duplicate interface\n");
3098 rv = -EBUSY;
3099 goto out_err;
3100 }
3101
3102 printk(KERN_CONT "\n");
3103
3104 /* So we know not to free it unless we have allocated one. */
3105 new_smi->intf = NULL;
3106 new_smi->si_sm = NULL;
3107 new_smi->handlers = NULL;
3108
3109 list_add_tail(&new_smi->link, &smi_infos);
3110
3111 out_err:
3112 mutex_unlock(&smi_infos_lock);
3113 return rv;
3114 }
3115
3116 static int try_smi_init(struct smi_info *new_smi)
3117 {
3118 int rv = 0;
3119 int i;
3120
3121 printk(KERN_INFO PFX "Trying %s-specified %s state"
3122 " machine at %s address 0x%lx, slave address 0x%x,"
3123 " irq %d\n",
3124 ipmi_addr_src_to_str[new_smi->addr_source],
3125 si_to_str[new_smi->si_type],
3126 addr_space_to_str[new_smi->io.addr_type],
3127 new_smi->io.addr_data,
3128 new_smi->slave_addr, new_smi->irq);
3129
3130 switch (new_smi->si_type) {
3131 case SI_KCS:
3132 new_smi->handlers = &kcs_smi_handlers;
3133 break;
3134
3135 case SI_SMIC:
3136 new_smi->handlers = &smic_smi_handlers;
3137 break;
3138
3139 case SI_BT:
3140 new_smi->handlers = &bt_smi_handlers;
3141 break;
3142
3143 default:
3144 /* No support for anything else yet. */
3145 rv = -EIO;
3146 goto out_err;
3147 }
3148
3149 /* Allocate the state machine's data and initialize it. */
3150 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3151 if (!new_smi->si_sm) {
3152 printk(KERN_ERR PFX
3153 "Could not allocate state machine memory\n");
3154 rv = -ENOMEM;
3155 goto out_err;
3156 }
3157 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3158 &new_smi->io);
3159
3160 /* Now that we know the I/O size, we can set up the I/O. */
3161 rv = new_smi->io_setup(new_smi);
3162 if (rv) {
3163 printk(KERN_ERR PFX "Could not set up I/O space\n");
3164 goto out_err;
3165 }
3166
3167 /* Do low-level detection first. */
3168 if (new_smi->handlers->detect(new_smi->si_sm)) {
3169 if (new_smi->addr_source)
3170 printk(KERN_INFO PFX "Interface detection failed\n");
3171 rv = -ENODEV;
3172 goto out_err;
3173 }
3174
3175 /*
3176 * Attempt a get device id command. If it fails, we probably
3177 * don't have a BMC here.
3178 */
3179 rv = try_get_dev_id(new_smi);
3180 if (rv) {
3181 if (new_smi->addr_source)
3182 printk(KERN_INFO PFX "There appears to be no BMC"
3183 " at this location\n");
3184 goto out_err;
3185 }
3186
3187 setup_oem_data_handler(new_smi);
3188 setup_xaction_handlers(new_smi);
3189
3190 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3191 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3192 new_smi->curr_msg = NULL;
3193 atomic_set(&new_smi->req_events, 0);
3194 new_smi->run_to_completion = 0;
3195 for (i = 0; i < SI_NUM_STATS; i++)
3196 atomic_set(&new_smi->stats[i], 0);
3197
3198 new_smi->interrupt_disabled = 1;
3199 atomic_set(&new_smi->stop_operation, 0);
3200 new_smi->intf_num = smi_num;
3201 smi_num++;
3202
3203 rv = try_enable_event_buffer(new_smi);
3204 if (rv == 0)
3205 new_smi->has_event_buffer = 1;
3206
3207 /*
3208 * Start clearing the flags before we enable interrupts or the
3209 * timer to avoid racing with the timer.
3210 */
3211 start_clear_flags(new_smi);
3212 /* IRQ is defined to be set when non-zero. */
3213 if (new_smi->irq)
3214 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3215
3216 if (!new_smi->dev) {
3217 /*
3218 * If we don't already have a device from something
3219 * else (like PCI), then register a new one.
3220 */
3221 new_smi->pdev = platform_device_alloc("ipmi_si",
3222 new_smi->intf_num);
3223 if (!new_smi->pdev) {
3224 printk(KERN_ERR PFX
3225 "Unable to allocate platform device\n");
3226 goto out_err;
3227 }
3228 new_smi->dev = &new_smi->pdev->dev;
3229 new_smi->dev->driver = &ipmi_driver.driver;
3230
3231 rv = platform_device_add(new_smi->pdev);
3232 if (rv) {
3233 printk(KERN_ERR PFX
3234 "Unable to register system interface device:"
3235 " %d\n",
3236 rv);
3237 goto out_err;
3238 }
3239 new_smi->dev_registered = 1;
3240 }
3241
3242 rv = ipmi_register_smi(&handlers,
3243 new_smi,
3244 &new_smi->device_id,
3245 new_smi->dev,
3246 "bmc",
3247 new_smi->slave_addr);
3248 if (rv) {
3249 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3250 rv);
3251 goto out_err_stop_timer;
3252 }
3253
3254 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3255 &smi_type_proc_ops,
3256 new_smi);
3257 if (rv) {
3258 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3259 goto out_err_stop_timer;
3260 }
3261
3262 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3263 &smi_si_stats_proc_ops,
3264 new_smi);
3265 if (rv) {
3266 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3267 goto out_err_stop_timer;
3268 }
3269
3270 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3271 &smi_params_proc_ops,
3272 new_smi);
3273 if (rv) {
3274 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3275 goto out_err_stop_timer;
3276 }
3277
3278 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3279 si_to_str[new_smi->si_type]);
3280
3281 return 0;
3282
3283 out_err_stop_timer:
3284 atomic_inc(&new_smi->stop_operation);
3285 wait_for_timer_and_thread(new_smi);
3286
3287 out_err:
3288 new_smi->interrupt_disabled = 1;
3289
3290 if (new_smi->intf) {
3291 ipmi_unregister_smi(new_smi->intf);
3292 new_smi->intf = NULL;
3293 }
3294
3295 if (new_smi->irq_cleanup) {
3296 new_smi->irq_cleanup(new_smi);
3297 new_smi->irq_cleanup = NULL;
3298 }
3299
3300 /*
3301 * Wait until we know that we are out of any interrupt
3302 * handlers might have been running before we freed the
3303 * interrupt.
3304 */
3305 synchronize_sched();
3306
3307 if (new_smi->si_sm) {
3308 if (new_smi->handlers)
3309 new_smi->handlers->cleanup(new_smi->si_sm);
3310 kfree(new_smi->si_sm);
3311 new_smi->si_sm = NULL;
3312 }
3313 if (new_smi->addr_source_cleanup) {
3314 new_smi->addr_source_cleanup(new_smi);
3315 new_smi->addr_source_cleanup = NULL;
3316 }
3317 if (new_smi->io_cleanup) {
3318 new_smi->io_cleanup(new_smi);
3319 new_smi->io_cleanup = NULL;
3320 }
3321
3322 if (new_smi->dev_registered) {
3323 platform_device_unregister(new_smi->pdev);
3324 new_smi->dev_registered = 0;
3325 }
3326
3327 return rv;
3328 }
3329
3330 static int __devinit init_ipmi_si(void)
3331 {
3332 int i;
3333 char *str;
3334 int rv;
3335 struct smi_info *e;
3336 enum ipmi_addr_src type = SI_INVALID;
3337
3338 if (initialized)
3339 return 0;
3340 initialized = 1;
3341
3342 rv = platform_driver_register(&ipmi_driver);
3343 if (rv) {
3344 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3345 return rv;
3346 }
3347
3348
3349 /* Parse out the si_type string into its components. */
3350 str = si_type_str;
3351 if (*str != '\0') {
3352 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3353 si_type[i] = str;
3354 str = strchr(str, ',');
3355 if (str) {
3356 *str = '\0';
3357 str++;
3358 } else {
3359 break;
3360 }
3361 }
3362 }
3363
3364 printk(KERN_INFO "IPMI System Interface driver.\n");
3365
3366 /* If the user gave us a device, they presumably want us to use it */
3367 if (!hardcode_find_bmc())
3368 return 0;
3369
3370 #ifdef CONFIG_PCI
3371 rv = pci_register_driver(&ipmi_pci_driver);
3372 if (rv)
3373 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3374 else
3375 pci_registered = 1;
3376 #endif
3377
3378 #ifdef CONFIG_ACPI
3379 pnp_register_driver(&ipmi_pnp_driver);
3380 pnp_registered = 1;
3381 #endif
3382
3383 #ifdef CONFIG_DMI
3384 dmi_find_bmc();
3385 #endif
3386
3387 #ifdef CONFIG_ACPI
3388 spmi_find_bmc();
3389 #endif
3390
3391 /* We prefer devices with interrupts, but in the case of a machine
3392 with multiple BMCs we assume that there will be several instances
3393 of a given type so if we succeed in registering a type then also
3394 try to register everything else of the same type */
3395
3396 mutex_lock(&smi_infos_lock);
3397 list_for_each_entry(e, &smi_infos, link) {
3398 /* Try to register a device if it has an IRQ and we either
3399 haven't successfully registered a device yet or this
3400 device has the same type as one we successfully registered */
3401 if (e->irq && (!type || e->addr_source == type)) {
3402 if (!try_smi_init(e)) {
3403 type = e->addr_source;
3404 }
3405 }
3406 }
3407
3408 /* type will only have been set if we successfully registered an si */
3409 if (type) {
3410 mutex_unlock(&smi_infos_lock);
3411 return 0;
3412 }
3413
3414 /* Fall back to the preferred device */
3415
3416 list_for_each_entry(e, &smi_infos, link) {
3417 if (!e->irq && (!type || e->addr_source == type)) {
3418 if (!try_smi_init(e)) {
3419 type = e->addr_source;
3420 }
3421 }
3422 }
3423 mutex_unlock(&smi_infos_lock);
3424
3425 if (type)
3426 return 0;
3427
3428 if (si_trydefaults) {
3429 mutex_lock(&smi_infos_lock);
3430 if (list_empty(&smi_infos)) {
3431 /* No BMC was found, try defaults. */
3432 mutex_unlock(&smi_infos_lock);
3433 default_find_bmc();
3434 } else
3435 mutex_unlock(&smi_infos_lock);
3436 }
3437
3438 mutex_lock(&smi_infos_lock);
3439 if (unload_when_empty && list_empty(&smi_infos)) {
3440 mutex_unlock(&smi_infos_lock);
3441 cleanup_ipmi_si();
3442 printk(KERN_WARNING PFX
3443 "Unable to find any System Interface(s)\n");
3444 return -ENODEV;
3445 } else {
3446 mutex_unlock(&smi_infos_lock);
3447 return 0;
3448 }
3449 }
3450 module_init(init_ipmi_si);
3451
3452 static void cleanup_one_si(struct smi_info *to_clean)
3453 {
3454 int rv = 0;
3455 unsigned long flags;
3456
3457 if (!to_clean)
3458 return;
3459
3460 list_del(&to_clean->link);
3461
3462 /* Tell the driver that we are shutting down. */
3463 atomic_inc(&to_clean->stop_operation);
3464
3465 /*
3466 * Make sure the timer and thread are stopped and will not run
3467 * again.
3468 */
3469 wait_for_timer_and_thread(to_clean);
3470
3471 /*
3472 * Timeouts are stopped, now make sure the interrupts are off
3473 * for the device. A little tricky with locks to make sure
3474 * there are no races.
3475 */
3476 spin_lock_irqsave(&to_clean->si_lock, flags);
3477 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3478 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3479 poll(to_clean);
3480 schedule_timeout_uninterruptible(1);
3481 spin_lock_irqsave(&to_clean->si_lock, flags);
3482 }
3483 disable_si_irq(to_clean);
3484 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3485 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3486 poll(to_clean);
3487 schedule_timeout_uninterruptible(1);
3488 }
3489
3490 /* Clean up interrupts and make sure that everything is done. */
3491 if (to_clean->irq_cleanup)
3492 to_clean->irq_cleanup(to_clean);
3493 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3494 poll(to_clean);
3495 schedule_timeout_uninterruptible(1);
3496 }
3497
3498 if (to_clean->intf)
3499 rv = ipmi_unregister_smi(to_clean->intf);
3500
3501 if (rv) {
3502 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3503 rv);
3504 }
3505
3506 if (to_clean->handlers)
3507 to_clean->handlers->cleanup(to_clean->si_sm);
3508
3509 kfree(to_clean->si_sm);
3510
3511 if (to_clean->addr_source_cleanup)
3512 to_clean->addr_source_cleanup(to_clean);
3513 if (to_clean->io_cleanup)
3514 to_clean->io_cleanup(to_clean);
3515
3516 if (to_clean->dev_registered)
3517 platform_device_unregister(to_clean->pdev);
3518
3519 kfree(to_clean);
3520 }
3521
3522 static void cleanup_ipmi_si(void)
3523 {
3524 struct smi_info *e, *tmp_e;
3525
3526 if (!initialized)
3527 return;
3528
3529 #ifdef CONFIG_PCI
3530 if (pci_registered)
3531 pci_unregister_driver(&ipmi_pci_driver);
3532 #endif
3533 #ifdef CONFIG_ACPI
3534 if (pnp_registered)
3535 pnp_unregister_driver(&ipmi_pnp_driver);
3536 #endif
3537
3538 platform_driver_unregister(&ipmi_driver);
3539
3540 mutex_lock(&smi_infos_lock);
3541 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3542 cleanup_one_si(e);
3543 mutex_unlock(&smi_infos_lock);
3544 }
3545 module_exit(cleanup_ipmi_si);
3546
3547 MODULE_LICENSE("GPL");
3548 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3549 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3550 " system interfaces.");
This page took 0.147869 seconds and 5 git commands to generate.