Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67
68 #ifdef CONFIG_PPC_OF
69 #include <asm/of_device.h>
70 #include <asm/of_platform.h>
71 #endif
72
73 #define PFX "ipmi_si: "
74
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
77
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC 10000
80 #define SI_USEC_PER_JIFFY (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
83 short timeout */
84
85 /* Bit for BMC global enables. */
86 #define IPMI_BMC_RCV_MSG_INTR 0x01
87 #define IPMI_BMC_EVT_MSG_INTR 0x02
88 #define IPMI_BMC_EVT_MSG_BUFF 0x04
89 #define IPMI_BMC_SYS_LOG 0x08
90
91 enum si_intf_state {
92 SI_NORMAL,
93 SI_GETTING_FLAGS,
94 SI_GETTING_EVENTS,
95 SI_CLEARING_FLAGS,
96 SI_CLEARING_FLAGS_THEN_SET_IRQ,
97 SI_GETTING_MESSAGES,
98 SI_ENABLE_INTERRUPTS1,
99 SI_ENABLE_INTERRUPTS2,
100 SI_DISABLE_INTERRUPTS1,
101 SI_DISABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
103 };
104
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG 2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
109
110 enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
114
115 #define DEVICE_NAME "ipmi_si"
116
117 static struct device_driver ipmi_driver =
118 {
119 .name = DEVICE_NAME,
120 .bus = &platform_bus_type
121 };
122
123 struct smi_info
124 {
125 int intf_num;
126 ipmi_smi_t intf;
127 struct si_sm_data *si_sm;
128 struct si_sm_handlers *handlers;
129 enum si_type si_type;
130 spinlock_t si_lock;
131 spinlock_t msg_lock;
132 struct list_head xmit_msgs;
133 struct list_head hp_xmit_msgs;
134 struct ipmi_smi_msg *curr_msg;
135 enum si_intf_state si_state;
136
137 /* Used to handle the various types of I/O that can occur with
138 IPMI */
139 struct si_sm_io io;
140 int (*io_setup)(struct smi_info *info);
141 void (*io_cleanup)(struct smi_info *info);
142 int (*irq_setup)(struct smi_info *info);
143 void (*irq_cleanup)(struct smi_info *info);
144 unsigned int io_size;
145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146 void (*addr_source_cleanup)(struct smi_info *info);
147 void *addr_source_data;
148
149 /* Per-OEM handler, called from handle_flags().
150 Returns 1 when handle_flags() needs to be re-run
151 or 0 indicating it set si_state itself.
152 */
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
154
155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156 is set to hold the flags until we are done handling everything
157 from the flags. */
158 #define RECEIVE_MSG_AVAIL 0x01
159 #define EVENT_MSG_BUFFER_FULL 0x02
160 #define WDT_PRE_TIMEOUT_INT 0x08
161 #define OEM0_DATA_AVAIL 0x20
162 #define OEM1_DATA_AVAIL 0x40
163 #define OEM2_DATA_AVAIL 0x80
164 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
165 OEM1_DATA_AVAIL | \
166 OEM2_DATA_AVAIL)
167 unsigned char msg_flags;
168
169 /* If set to true, this will request events the next time the
170 state machine is idle. */
171 atomic_t req_events;
172
173 /* If true, run the state machine to completion on every send
174 call. Generally used after a panic to make sure stuff goes
175 out. */
176 int run_to_completion;
177
178 /* The I/O port of an SI interface. */
179 int port;
180
181 /* The space between start addresses of the two ports. For
182 instance, if the first port is 0xca2 and the spacing is 4, then
183 the second port is 0xca6. */
184 unsigned int spacing;
185
186 /* zero if no irq; */
187 int irq;
188
189 /* The timer for this si. */
190 struct timer_list si_timer;
191
192 /* The time (in jiffies) the last timeout occurred at. */
193 unsigned long last_timeout_jiffies;
194
195 /* Used to gracefully stop the timer without race conditions. */
196 atomic_t stop_operation;
197
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
201 interrupts. */
202 int interrupt_disabled;
203
204 /* From the get device id response... */
205 struct ipmi_device_id device_id;
206
207 /* Driver model stuff. */
208 struct device *dev;
209 struct platform_device *pdev;
210
211 /* True if we allocated the device, false if it came from
212 * someplace else (like PCI). */
213 int dev_registered;
214
215 /* Slave address, could be reported from DMI. */
216 unsigned char slave_addr;
217
218 /* Counters and things for the proc filesystem. */
219 spinlock_t count_lock;
220 unsigned long short_timeouts;
221 unsigned long long_timeouts;
222 unsigned long timeout_restarts;
223 unsigned long idles;
224 unsigned long interrupts;
225 unsigned long attentions;
226 unsigned long flag_fetches;
227 unsigned long hosed_count;
228 unsigned long complete_transactions;
229 unsigned long events;
230 unsigned long watchdog_pretimeouts;
231 unsigned long incoming_messages;
232
233 struct task_struct *thread;
234
235 struct list_head link;
236 };
237
238 #define SI_MAX_PARMS 4
239
240 static int force_kipmid[SI_MAX_PARMS];
241 static int num_force_kipmid;
242
243 static int unload_when_empty = 1;
244
245 static int try_smi_init(struct smi_info *smi);
246 static void cleanup_one_si(struct smi_info *to_clean);
247
248 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
249 static int register_xaction_notifier(struct notifier_block * nb)
250 {
251 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
252 }
253
254 static void deliver_recv_msg(struct smi_info *smi_info,
255 struct ipmi_smi_msg *msg)
256 {
257 /* Deliver the message to the upper layer with the lock
258 released. */
259 spin_unlock(&(smi_info->si_lock));
260 ipmi_smi_msg_received(smi_info->intf, msg);
261 spin_lock(&(smi_info->si_lock));
262 }
263
264 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
265 {
266 struct ipmi_smi_msg *msg = smi_info->curr_msg;
267
268 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
269 cCode = IPMI_ERR_UNSPECIFIED;
270 /* else use it as is */
271
272 /* Make it a reponse */
273 msg->rsp[0] = msg->data[0] | 4;
274 msg->rsp[1] = msg->data[1];
275 msg->rsp[2] = cCode;
276 msg->rsp_size = 3;
277
278 smi_info->curr_msg = NULL;
279 deliver_recv_msg(smi_info, msg);
280 }
281
282 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
283 {
284 int rv;
285 struct list_head *entry = NULL;
286 #ifdef DEBUG_TIMING
287 struct timeval t;
288 #endif
289
290 /* No need to save flags, we aleady have interrupts off and we
291 already hold the SMI lock. */
292 spin_lock(&(smi_info->msg_lock));
293
294 /* Pick the high priority queue first. */
295 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
296 entry = smi_info->hp_xmit_msgs.next;
297 } else if (!list_empty(&(smi_info->xmit_msgs))) {
298 entry = smi_info->xmit_msgs.next;
299 }
300
301 if (!entry) {
302 smi_info->curr_msg = NULL;
303 rv = SI_SM_IDLE;
304 } else {
305 int err;
306
307 list_del(entry);
308 smi_info->curr_msg = list_entry(entry,
309 struct ipmi_smi_msg,
310 link);
311 #ifdef DEBUG_TIMING
312 do_gettimeofday(&t);
313 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
314 #endif
315 err = atomic_notifier_call_chain(&xaction_notifier_list,
316 0, smi_info);
317 if (err & NOTIFY_STOP_MASK) {
318 rv = SI_SM_CALL_WITHOUT_DELAY;
319 goto out;
320 }
321 err = smi_info->handlers->start_transaction(
322 smi_info->si_sm,
323 smi_info->curr_msg->data,
324 smi_info->curr_msg->data_size);
325 if (err) {
326 return_hosed_msg(smi_info, err);
327 }
328
329 rv = SI_SM_CALL_WITHOUT_DELAY;
330 }
331 out:
332 spin_unlock(&(smi_info->msg_lock));
333
334 return rv;
335 }
336
337 static void start_enable_irq(struct smi_info *smi_info)
338 {
339 unsigned char msg[2];
340
341 /* If we are enabling interrupts, we have to tell the
342 BMC to use them. */
343 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
344 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
345
346 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
347 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
348 }
349
350 static void start_disable_irq(struct smi_info *smi_info)
351 {
352 unsigned char msg[2];
353
354 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
355 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
356
357 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
358 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
359 }
360
361 static void start_clear_flags(struct smi_info *smi_info)
362 {
363 unsigned char msg[3];
364
365 /* Make sure the watchdog pre-timeout flag is not set at startup. */
366 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
367 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
368 msg[2] = WDT_PRE_TIMEOUT_INT;
369
370 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
371 smi_info->si_state = SI_CLEARING_FLAGS;
372 }
373
374 /* When we have a situtaion where we run out of memory and cannot
375 allocate messages, we just leave them in the BMC and run the system
376 polled until we can allocate some memory. Once we have some
377 memory, we will re-enable the interrupt. */
378 static inline void disable_si_irq(struct smi_info *smi_info)
379 {
380 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
381 start_disable_irq(smi_info);
382 smi_info->interrupt_disabled = 1;
383 }
384 }
385
386 static inline void enable_si_irq(struct smi_info *smi_info)
387 {
388 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
389 start_enable_irq(smi_info);
390 smi_info->interrupt_disabled = 0;
391 }
392 }
393
394 static void handle_flags(struct smi_info *smi_info)
395 {
396 retry:
397 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
398 /* Watchdog pre-timeout */
399 spin_lock(&smi_info->count_lock);
400 smi_info->watchdog_pretimeouts++;
401 spin_unlock(&smi_info->count_lock);
402
403 start_clear_flags(smi_info);
404 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
405 spin_unlock(&(smi_info->si_lock));
406 ipmi_smi_watchdog_pretimeout(smi_info->intf);
407 spin_lock(&(smi_info->si_lock));
408 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
409 /* Messages available. */
410 smi_info->curr_msg = ipmi_alloc_smi_msg();
411 if (!smi_info->curr_msg) {
412 disable_si_irq(smi_info);
413 smi_info->si_state = SI_NORMAL;
414 return;
415 }
416 enable_si_irq(smi_info);
417
418 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
420 smi_info->curr_msg->data_size = 2;
421
422 smi_info->handlers->start_transaction(
423 smi_info->si_sm,
424 smi_info->curr_msg->data,
425 smi_info->curr_msg->data_size);
426 smi_info->si_state = SI_GETTING_MESSAGES;
427 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
428 /* Events available. */
429 smi_info->curr_msg = ipmi_alloc_smi_msg();
430 if (!smi_info->curr_msg) {
431 disable_si_irq(smi_info);
432 smi_info->si_state = SI_NORMAL;
433 return;
434 }
435 enable_si_irq(smi_info);
436
437 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
438 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
439 smi_info->curr_msg->data_size = 2;
440
441 smi_info->handlers->start_transaction(
442 smi_info->si_sm,
443 smi_info->curr_msg->data,
444 smi_info->curr_msg->data_size);
445 smi_info->si_state = SI_GETTING_EVENTS;
446 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
447 smi_info->oem_data_avail_handler) {
448 if (smi_info->oem_data_avail_handler(smi_info))
449 goto retry;
450 } else {
451 smi_info->si_state = SI_NORMAL;
452 }
453 }
454
455 static void handle_transaction_done(struct smi_info *smi_info)
456 {
457 struct ipmi_smi_msg *msg;
458 #ifdef DEBUG_TIMING
459 struct timeval t;
460
461 do_gettimeofday(&t);
462 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
463 #endif
464 switch (smi_info->si_state) {
465 case SI_NORMAL:
466 if (!smi_info->curr_msg)
467 break;
468
469 smi_info->curr_msg->rsp_size
470 = smi_info->handlers->get_result(
471 smi_info->si_sm,
472 smi_info->curr_msg->rsp,
473 IPMI_MAX_MSG_LENGTH);
474
475 /* Do this here becase deliver_recv_msg() releases the
476 lock, and a new message can be put in during the
477 time the lock is released. */
478 msg = smi_info->curr_msg;
479 smi_info->curr_msg = NULL;
480 deliver_recv_msg(smi_info, msg);
481 break;
482
483 case SI_GETTING_FLAGS:
484 {
485 unsigned char msg[4];
486 unsigned int len;
487
488 /* We got the flags from the SMI, now handle them. */
489 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
490 if (msg[2] != 0) {
491 /* Error fetching flags, just give up for
492 now. */
493 smi_info->si_state = SI_NORMAL;
494 } else if (len < 4) {
495 /* Hmm, no flags. That's technically illegal, but
496 don't use uninitialized data. */
497 smi_info->si_state = SI_NORMAL;
498 } else {
499 smi_info->msg_flags = msg[3];
500 handle_flags(smi_info);
501 }
502 break;
503 }
504
505 case SI_CLEARING_FLAGS:
506 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
507 {
508 unsigned char msg[3];
509
510 /* We cleared the flags. */
511 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
512 if (msg[2] != 0) {
513 /* Error clearing flags */
514 printk(KERN_WARNING
515 "ipmi_si: Error clearing flags: %2.2x\n",
516 msg[2]);
517 }
518 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
519 start_enable_irq(smi_info);
520 else
521 smi_info->si_state = SI_NORMAL;
522 break;
523 }
524
525 case SI_GETTING_EVENTS:
526 {
527 smi_info->curr_msg->rsp_size
528 = smi_info->handlers->get_result(
529 smi_info->si_sm,
530 smi_info->curr_msg->rsp,
531 IPMI_MAX_MSG_LENGTH);
532
533 /* Do this here becase deliver_recv_msg() releases the
534 lock, and a new message can be put in during the
535 time the lock is released. */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 if (msg->rsp[2] != 0) {
539 /* Error getting event, probably done. */
540 msg->done(msg);
541
542 /* Take off the event flag. */
543 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
544 handle_flags(smi_info);
545 } else {
546 spin_lock(&smi_info->count_lock);
547 smi_info->events++;
548 spin_unlock(&smi_info->count_lock);
549
550 /* Do this before we deliver the message
551 because delivering the message releases the
552 lock and something else can mess with the
553 state. */
554 handle_flags(smi_info);
555
556 deliver_recv_msg(smi_info, msg);
557 }
558 break;
559 }
560
561 case SI_GETTING_MESSAGES:
562 {
563 smi_info->curr_msg->rsp_size
564 = smi_info->handlers->get_result(
565 smi_info->si_sm,
566 smi_info->curr_msg->rsp,
567 IPMI_MAX_MSG_LENGTH);
568
569 /* Do this here becase deliver_recv_msg() releases the
570 lock, and a new message can be put in during the
571 time the lock is released. */
572 msg = smi_info->curr_msg;
573 smi_info->curr_msg = NULL;
574 if (msg->rsp[2] != 0) {
575 /* Error getting event, probably done. */
576 msg->done(msg);
577
578 /* Take off the msg flag. */
579 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
580 handle_flags(smi_info);
581 } else {
582 spin_lock(&smi_info->count_lock);
583 smi_info->incoming_messages++;
584 spin_unlock(&smi_info->count_lock);
585
586 /* Do this before we deliver the message
587 because delivering the message releases the
588 lock and something else can mess with the
589 state. */
590 handle_flags(smi_info);
591
592 deliver_recv_msg(smi_info, msg);
593 }
594 break;
595 }
596
597 case SI_ENABLE_INTERRUPTS1:
598 {
599 unsigned char msg[4];
600
601 /* We got the flags from the SMI, now handle them. */
602 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
603 if (msg[2] != 0) {
604 printk(KERN_WARNING
605 "ipmi_si: Could not enable interrupts"
606 ", failed get, using polled mode.\n");
607 smi_info->si_state = SI_NORMAL;
608 } else {
609 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
610 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
611 msg[2] = (msg[3] |
612 IPMI_BMC_RCV_MSG_INTR |
613 IPMI_BMC_EVT_MSG_INTR);
614 smi_info->handlers->start_transaction(
615 smi_info->si_sm, msg, 3);
616 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
617 }
618 break;
619 }
620
621 case SI_ENABLE_INTERRUPTS2:
622 {
623 unsigned char msg[4];
624
625 /* We got the flags from the SMI, now handle them. */
626 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
627 if (msg[2] != 0) {
628 printk(KERN_WARNING
629 "ipmi_si: Could not enable interrupts"
630 ", failed set, using polled mode.\n");
631 }
632 smi_info->si_state = SI_NORMAL;
633 break;
634 }
635
636 case SI_DISABLE_INTERRUPTS1:
637 {
638 unsigned char msg[4];
639
640 /* We got the flags from the SMI, now handle them. */
641 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
642 if (msg[2] != 0) {
643 printk(KERN_WARNING
644 "ipmi_si: Could not disable interrupts"
645 ", failed get.\n");
646 smi_info->si_state = SI_NORMAL;
647 } else {
648 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
649 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
650 msg[2] = (msg[3] &
651 ~(IPMI_BMC_RCV_MSG_INTR |
652 IPMI_BMC_EVT_MSG_INTR));
653 smi_info->handlers->start_transaction(
654 smi_info->si_sm, msg, 3);
655 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
656 }
657 break;
658 }
659
660 case SI_DISABLE_INTERRUPTS2:
661 {
662 unsigned char msg[4];
663
664 /* We got the flags from the SMI, now handle them. */
665 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
666 if (msg[2] != 0) {
667 printk(KERN_WARNING
668 "ipmi_si: Could not disable interrupts"
669 ", failed set.\n");
670 }
671 smi_info->si_state = SI_NORMAL;
672 break;
673 }
674 }
675 }
676
677 /* Called on timeouts and events. Timeouts should pass the elapsed
678 time, interrupts should pass in zero. */
679 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
680 int time)
681 {
682 enum si_sm_result si_sm_result;
683
684 restart:
685 /* There used to be a loop here that waited a little while
686 (around 25us) before giving up. That turned out to be
687 pointless, the minimum delays I was seeing were in the 300us
688 range, which is far too long to wait in an interrupt. So
689 we just run until the state machine tells us something
690 happened or it needs a delay. */
691 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
692 time = 0;
693 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
694 {
695 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
696 }
697
698 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
699 {
700 spin_lock(&smi_info->count_lock);
701 smi_info->complete_transactions++;
702 spin_unlock(&smi_info->count_lock);
703
704 handle_transaction_done(smi_info);
705 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
706 }
707 else if (si_sm_result == SI_SM_HOSED)
708 {
709 spin_lock(&smi_info->count_lock);
710 smi_info->hosed_count++;
711 spin_unlock(&smi_info->count_lock);
712
713 /* Do the before return_hosed_msg, because that
714 releases the lock. */
715 smi_info->si_state = SI_NORMAL;
716 if (smi_info->curr_msg != NULL) {
717 /* If we were handling a user message, format
718 a response to send to the upper layer to
719 tell it about the error. */
720 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
721 }
722 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
723 }
724
725 /* We prefer handling attn over new messages. */
726 if (si_sm_result == SI_SM_ATTN)
727 {
728 unsigned char msg[2];
729
730 spin_lock(&smi_info->count_lock);
731 smi_info->attentions++;
732 spin_unlock(&smi_info->count_lock);
733
734 /* Got a attn, send down a get message flags to see
735 what's causing it. It would be better to handle
736 this in the upper layer, but due to the way
737 interrupts work with the SMI, that's not really
738 possible. */
739 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
740 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
741
742 smi_info->handlers->start_transaction(
743 smi_info->si_sm, msg, 2);
744 smi_info->si_state = SI_GETTING_FLAGS;
745 goto restart;
746 }
747
748 /* If we are currently idle, try to start the next message. */
749 if (si_sm_result == SI_SM_IDLE) {
750 spin_lock(&smi_info->count_lock);
751 smi_info->idles++;
752 spin_unlock(&smi_info->count_lock);
753
754 si_sm_result = start_next_msg(smi_info);
755 if (si_sm_result != SI_SM_IDLE)
756 goto restart;
757 }
758
759 if ((si_sm_result == SI_SM_IDLE)
760 && (atomic_read(&smi_info->req_events)))
761 {
762 /* We are idle and the upper layer requested that I fetch
763 events, so do so. */
764 atomic_set(&smi_info->req_events, 0);
765
766 smi_info->curr_msg = ipmi_alloc_smi_msg();
767 if (!smi_info->curr_msg)
768 goto out;
769
770 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
771 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
772 smi_info->curr_msg->data_size = 2;
773
774 smi_info->handlers->start_transaction(
775 smi_info->si_sm,
776 smi_info->curr_msg->data,
777 smi_info->curr_msg->data_size);
778 smi_info->si_state = SI_GETTING_EVENTS;
779 goto restart;
780 }
781 out:
782 return si_sm_result;
783 }
784
785 static void sender(void *send_info,
786 struct ipmi_smi_msg *msg,
787 int priority)
788 {
789 struct smi_info *smi_info = send_info;
790 enum si_sm_result result;
791 unsigned long flags;
792 #ifdef DEBUG_TIMING
793 struct timeval t;
794 #endif
795
796 if (atomic_read(&smi_info->stop_operation)) {
797 msg->rsp[0] = msg->data[0] | 4;
798 msg->rsp[1] = msg->data[1];
799 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
800 msg->rsp_size = 3;
801 deliver_recv_msg(smi_info, msg);
802 return;
803 }
804
805 spin_lock_irqsave(&(smi_info->msg_lock), flags);
806 #ifdef DEBUG_TIMING
807 do_gettimeofday(&t);
808 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
809 #endif
810
811 if (smi_info->run_to_completion) {
812 /* If we are running to completion, then throw it in
813 the list and run transactions until everything is
814 clear. Priority doesn't matter here. */
815 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
816
817 /* We have to release the msg lock and claim the smi
818 lock in this case, because of race conditions. */
819 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
820
821 spin_lock_irqsave(&(smi_info->si_lock), flags);
822 result = smi_event_handler(smi_info, 0);
823 while (result != SI_SM_IDLE) {
824 udelay(SI_SHORT_TIMEOUT_USEC);
825 result = smi_event_handler(smi_info,
826 SI_SHORT_TIMEOUT_USEC);
827 }
828 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
829 return;
830 } else {
831 if (priority > 0) {
832 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
833 } else {
834 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
835 }
836 }
837 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
838
839 spin_lock_irqsave(&(smi_info->si_lock), flags);
840 if ((smi_info->si_state == SI_NORMAL)
841 && (smi_info->curr_msg == NULL))
842 {
843 start_next_msg(smi_info);
844 }
845 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
846 }
847
848 static void set_run_to_completion(void *send_info, int i_run_to_completion)
849 {
850 struct smi_info *smi_info = send_info;
851 enum si_sm_result result;
852 unsigned long flags;
853
854 spin_lock_irqsave(&(smi_info->si_lock), flags);
855
856 smi_info->run_to_completion = i_run_to_completion;
857 if (i_run_to_completion) {
858 result = smi_event_handler(smi_info, 0);
859 while (result != SI_SM_IDLE) {
860 udelay(SI_SHORT_TIMEOUT_USEC);
861 result = smi_event_handler(smi_info,
862 SI_SHORT_TIMEOUT_USEC);
863 }
864 }
865
866 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
867 }
868
869 static int ipmi_thread(void *data)
870 {
871 struct smi_info *smi_info = data;
872 unsigned long flags;
873 enum si_sm_result smi_result;
874
875 set_user_nice(current, 19);
876 while (!kthread_should_stop()) {
877 spin_lock_irqsave(&(smi_info->si_lock), flags);
878 smi_result = smi_event_handler(smi_info, 0);
879 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
880 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
881 /* do nothing */
882 }
883 else if (smi_result == SI_SM_CALL_WITH_DELAY)
884 schedule();
885 else
886 schedule_timeout_interruptible(1);
887 }
888 return 0;
889 }
890
891
892 static void poll(void *send_info)
893 {
894 struct smi_info *smi_info = send_info;
895
896 /*
897 * Make sure there is some delay in the poll loop so we can
898 * drive time forward and timeout things.
899 */
900 udelay(10);
901 smi_event_handler(smi_info, 10);
902 }
903
904 static void request_events(void *send_info)
905 {
906 struct smi_info *smi_info = send_info;
907
908 if (atomic_read(&smi_info->stop_operation))
909 return;
910
911 atomic_set(&smi_info->req_events, 1);
912 }
913
914 static int initialized;
915
916 static void smi_timeout(unsigned long data)
917 {
918 struct smi_info *smi_info = (struct smi_info *) data;
919 enum si_sm_result smi_result;
920 unsigned long flags;
921 unsigned long jiffies_now;
922 long time_diff;
923 #ifdef DEBUG_TIMING
924 struct timeval t;
925 #endif
926
927 spin_lock_irqsave(&(smi_info->si_lock), flags);
928 #ifdef DEBUG_TIMING
929 do_gettimeofday(&t);
930 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
931 #endif
932 jiffies_now = jiffies;
933 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
934 * SI_USEC_PER_JIFFY);
935 smi_result = smi_event_handler(smi_info, time_diff);
936
937 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
938
939 smi_info->last_timeout_jiffies = jiffies_now;
940
941 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
942 /* Running with interrupts, only do long timeouts. */
943 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
944 spin_lock_irqsave(&smi_info->count_lock, flags);
945 smi_info->long_timeouts++;
946 spin_unlock_irqrestore(&smi_info->count_lock, flags);
947 goto do_add_timer;
948 }
949
950 /* If the state machine asks for a short delay, then shorten
951 the timer timeout. */
952 if (smi_result == SI_SM_CALL_WITH_DELAY) {
953 spin_lock_irqsave(&smi_info->count_lock, flags);
954 smi_info->short_timeouts++;
955 spin_unlock_irqrestore(&smi_info->count_lock, flags);
956 smi_info->si_timer.expires = jiffies + 1;
957 } else {
958 spin_lock_irqsave(&smi_info->count_lock, flags);
959 smi_info->long_timeouts++;
960 spin_unlock_irqrestore(&smi_info->count_lock, flags);
961 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
962 }
963
964 do_add_timer:
965 add_timer(&(smi_info->si_timer));
966 }
967
968 static irqreturn_t si_irq_handler(int irq, void *data)
969 {
970 struct smi_info *smi_info = data;
971 unsigned long flags;
972 #ifdef DEBUG_TIMING
973 struct timeval t;
974 #endif
975
976 spin_lock_irqsave(&(smi_info->si_lock), flags);
977
978 spin_lock(&smi_info->count_lock);
979 smi_info->interrupts++;
980 spin_unlock(&smi_info->count_lock);
981
982 #ifdef DEBUG_TIMING
983 do_gettimeofday(&t);
984 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
985 #endif
986 smi_event_handler(smi_info, 0);
987 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
988 return IRQ_HANDLED;
989 }
990
991 static irqreturn_t si_bt_irq_handler(int irq, void *data)
992 {
993 struct smi_info *smi_info = data;
994 /* We need to clear the IRQ flag for the BT interface. */
995 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
996 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
997 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
998 return si_irq_handler(irq, data);
999 }
1000
1001 static int smi_start_processing(void *send_info,
1002 ipmi_smi_t intf)
1003 {
1004 struct smi_info *new_smi = send_info;
1005 int enable = 0;
1006
1007 new_smi->intf = intf;
1008
1009 /* Set up the timer that drives the interface. */
1010 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1011 new_smi->last_timeout_jiffies = jiffies;
1012 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1013
1014 /*
1015 * Check if the user forcefully enabled the daemon.
1016 */
1017 if (new_smi->intf_num < num_force_kipmid)
1018 enable = force_kipmid[new_smi->intf_num];
1019 /*
1020 * The BT interface is efficient enough to not need a thread,
1021 * and there is no need for a thread if we have interrupts.
1022 */
1023 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1024 enable = 1;
1025
1026 if (enable) {
1027 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1028 "kipmi%d", new_smi->intf_num);
1029 if (IS_ERR(new_smi->thread)) {
1030 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1031 " kernel thread due to error %ld, only using"
1032 " timers to drive the interface\n",
1033 PTR_ERR(new_smi->thread));
1034 new_smi->thread = NULL;
1035 }
1036 }
1037
1038 return 0;
1039 }
1040
1041 static void set_maintenance_mode(void *send_info, int enable)
1042 {
1043 struct smi_info *smi_info = send_info;
1044
1045 if (!enable)
1046 atomic_set(&smi_info->req_events, 0);
1047 }
1048
1049 static struct ipmi_smi_handlers handlers =
1050 {
1051 .owner = THIS_MODULE,
1052 .start_processing = smi_start_processing,
1053 .sender = sender,
1054 .request_events = request_events,
1055 .set_maintenance_mode = set_maintenance_mode,
1056 .set_run_to_completion = set_run_to_completion,
1057 .poll = poll,
1058 };
1059
1060 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1061 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
1062
1063 static LIST_HEAD(smi_infos);
1064 static DEFINE_MUTEX(smi_infos_lock);
1065 static int smi_num; /* Used to sequence the SMIs */
1066
1067 #define DEFAULT_REGSPACING 1
1068 #define DEFAULT_REGSIZE 1
1069
1070 static int si_trydefaults = 1;
1071 static char *si_type[SI_MAX_PARMS];
1072 #define MAX_SI_TYPE_STR 30
1073 static char si_type_str[MAX_SI_TYPE_STR];
1074 static unsigned long addrs[SI_MAX_PARMS];
1075 static unsigned int num_addrs;
1076 static unsigned int ports[SI_MAX_PARMS];
1077 static unsigned int num_ports;
1078 static int irqs[SI_MAX_PARMS];
1079 static unsigned int num_irqs;
1080 static int regspacings[SI_MAX_PARMS];
1081 static unsigned int num_regspacings;
1082 static int regsizes[SI_MAX_PARMS];
1083 static unsigned int num_regsizes;
1084 static int regshifts[SI_MAX_PARMS];
1085 static unsigned int num_regshifts;
1086 static int slave_addrs[SI_MAX_PARMS];
1087 static unsigned int num_slave_addrs;
1088
1089 #define IPMI_IO_ADDR_SPACE 0
1090 #define IPMI_MEM_ADDR_SPACE 1
1091 static char *addr_space_to_str[] = { "i/o", "mem" };
1092
1093 static int hotmod_handler(const char *val, struct kernel_param *kp);
1094
1095 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1096 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1097 " Documentation/IPMI.txt in the kernel sources for the"
1098 " gory details.");
1099
1100 module_param_named(trydefaults, si_trydefaults, bool, 0);
1101 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1102 " default scan of the KCS and SMIC interface at the standard"
1103 " address");
1104 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1105 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1106 " interface separated by commas. The types are 'kcs',"
1107 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1108 " the first interface to kcs and the second to bt");
1109 module_param_array(addrs, ulong, &num_addrs, 0);
1110 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1111 " addresses separated by commas. Only use if an interface"
1112 " is in memory. Otherwise, set it to zero or leave"
1113 " it blank.");
1114 module_param_array(ports, uint, &num_ports, 0);
1115 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1116 " addresses separated by commas. Only use if an interface"
1117 " is a port. Otherwise, set it to zero or leave"
1118 " it blank.");
1119 module_param_array(irqs, int, &num_irqs, 0);
1120 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1121 " addresses separated by commas. Only use if an interface"
1122 " has an interrupt. Otherwise, set it to zero or leave"
1123 " it blank.");
1124 module_param_array(regspacings, int, &num_regspacings, 0);
1125 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1126 " and each successive register used by the interface. For"
1127 " instance, if the start address is 0xca2 and the spacing"
1128 " is 2, then the second address is at 0xca4. Defaults"
1129 " to 1.");
1130 module_param_array(regsizes, int, &num_regsizes, 0);
1131 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1132 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1133 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1134 " the 8-bit IPMI register has to be read from a larger"
1135 " register.");
1136 module_param_array(regshifts, int, &num_regshifts, 0);
1137 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1138 " IPMI register, in bits. For instance, if the data"
1139 " is read from a 32-bit word and the IPMI data is in"
1140 " bit 8-15, then the shift would be 8");
1141 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1142 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1143 " the controller. Normally this is 0x20, but can be"
1144 " overridden by this parm. This is an array indexed"
1145 " by interface number.");
1146 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1147 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1148 " disabled(0). Normally the IPMI driver auto-detects"
1149 " this, but the value may be overridden by this parm.");
1150 module_param(unload_when_empty, int, 0);
1151 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1152 " specified or found, default is 1. Setting to 0"
1153 " is useful for hot add of devices using hotmod.");
1154
1155
1156 static void std_irq_cleanup(struct smi_info *info)
1157 {
1158 if (info->si_type == SI_BT)
1159 /* Disable the interrupt in the BT interface. */
1160 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1161 free_irq(info->irq, info);
1162 }
1163
1164 static int std_irq_setup(struct smi_info *info)
1165 {
1166 int rv;
1167
1168 if (!info->irq)
1169 return 0;
1170
1171 if (info->si_type == SI_BT) {
1172 rv = request_irq(info->irq,
1173 si_bt_irq_handler,
1174 IRQF_SHARED | IRQF_DISABLED,
1175 DEVICE_NAME,
1176 info);
1177 if (!rv)
1178 /* Enable the interrupt in the BT interface. */
1179 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1180 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1181 } else
1182 rv = request_irq(info->irq,
1183 si_irq_handler,
1184 IRQF_SHARED | IRQF_DISABLED,
1185 DEVICE_NAME,
1186 info);
1187 if (rv) {
1188 printk(KERN_WARNING
1189 "ipmi_si: %s unable to claim interrupt %d,"
1190 " running polled\n",
1191 DEVICE_NAME, info->irq);
1192 info->irq = 0;
1193 } else {
1194 info->irq_cleanup = std_irq_cleanup;
1195 printk(" Using irq %d\n", info->irq);
1196 }
1197
1198 return rv;
1199 }
1200
1201 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1202 {
1203 unsigned int addr = io->addr_data;
1204
1205 return inb(addr + (offset * io->regspacing));
1206 }
1207
1208 static void port_outb(struct si_sm_io *io, unsigned int offset,
1209 unsigned char b)
1210 {
1211 unsigned int addr = io->addr_data;
1212
1213 outb(b, addr + (offset * io->regspacing));
1214 }
1215
1216 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1217 {
1218 unsigned int addr = io->addr_data;
1219
1220 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1221 }
1222
1223 static void port_outw(struct si_sm_io *io, unsigned int offset,
1224 unsigned char b)
1225 {
1226 unsigned int addr = io->addr_data;
1227
1228 outw(b << io->regshift, addr + (offset * io->regspacing));
1229 }
1230
1231 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1232 {
1233 unsigned int addr = io->addr_data;
1234
1235 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1236 }
1237
1238 static void port_outl(struct si_sm_io *io, unsigned int offset,
1239 unsigned char b)
1240 {
1241 unsigned int addr = io->addr_data;
1242
1243 outl(b << io->regshift, addr+(offset * io->regspacing));
1244 }
1245
1246 static void port_cleanup(struct smi_info *info)
1247 {
1248 unsigned int addr = info->io.addr_data;
1249 int idx;
1250
1251 if (addr) {
1252 for (idx = 0; idx < info->io_size; idx++) {
1253 release_region(addr + idx * info->io.regspacing,
1254 info->io.regsize);
1255 }
1256 }
1257 }
1258
1259 static int port_setup(struct smi_info *info)
1260 {
1261 unsigned int addr = info->io.addr_data;
1262 int idx;
1263
1264 if (!addr)
1265 return -ENODEV;
1266
1267 info->io_cleanup = port_cleanup;
1268
1269 /* Figure out the actual inb/inw/inl/etc routine to use based
1270 upon the register size. */
1271 switch (info->io.regsize) {
1272 case 1:
1273 info->io.inputb = port_inb;
1274 info->io.outputb = port_outb;
1275 break;
1276 case 2:
1277 info->io.inputb = port_inw;
1278 info->io.outputb = port_outw;
1279 break;
1280 case 4:
1281 info->io.inputb = port_inl;
1282 info->io.outputb = port_outl;
1283 break;
1284 default:
1285 printk("ipmi_si: Invalid register size: %d\n",
1286 info->io.regsize);
1287 return -EINVAL;
1288 }
1289
1290 /* Some BIOSes reserve disjoint I/O regions in their ACPI
1291 * tables. This causes problems when trying to register the
1292 * entire I/O region. Therefore we must register each I/O
1293 * port separately.
1294 */
1295 for (idx = 0; idx < info->io_size; idx++) {
1296 if (request_region(addr + idx * info->io.regspacing,
1297 info->io.regsize, DEVICE_NAME) == NULL) {
1298 /* Undo allocations */
1299 while (idx--) {
1300 release_region(addr + idx * info->io.regspacing,
1301 info->io.regsize);
1302 }
1303 return -EIO;
1304 }
1305 }
1306 return 0;
1307 }
1308
1309 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1310 {
1311 return readb((io->addr)+(offset * io->regspacing));
1312 }
1313
1314 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1315 unsigned char b)
1316 {
1317 writeb(b, (io->addr)+(offset * io->regspacing));
1318 }
1319
1320 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1321 {
1322 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1323 & 0xff;
1324 }
1325
1326 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1327 unsigned char b)
1328 {
1329 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1330 }
1331
1332 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1333 {
1334 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1335 & 0xff;
1336 }
1337
1338 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1339 unsigned char b)
1340 {
1341 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1342 }
1343
1344 #ifdef readq
1345 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1346 {
1347 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1348 & 0xff;
1349 }
1350
1351 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1352 unsigned char b)
1353 {
1354 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1355 }
1356 #endif
1357
1358 static void mem_cleanup(struct smi_info *info)
1359 {
1360 unsigned long addr = info->io.addr_data;
1361 int mapsize;
1362
1363 if (info->io.addr) {
1364 iounmap(info->io.addr);
1365
1366 mapsize = ((info->io_size * info->io.regspacing)
1367 - (info->io.regspacing - info->io.regsize));
1368
1369 release_mem_region(addr, mapsize);
1370 }
1371 }
1372
1373 static int mem_setup(struct smi_info *info)
1374 {
1375 unsigned long addr = info->io.addr_data;
1376 int mapsize;
1377
1378 if (!addr)
1379 return -ENODEV;
1380
1381 info->io_cleanup = mem_cleanup;
1382
1383 /* Figure out the actual readb/readw/readl/etc routine to use based
1384 upon the register size. */
1385 switch (info->io.regsize) {
1386 case 1:
1387 info->io.inputb = intf_mem_inb;
1388 info->io.outputb = intf_mem_outb;
1389 break;
1390 case 2:
1391 info->io.inputb = intf_mem_inw;
1392 info->io.outputb = intf_mem_outw;
1393 break;
1394 case 4:
1395 info->io.inputb = intf_mem_inl;
1396 info->io.outputb = intf_mem_outl;
1397 break;
1398 #ifdef readq
1399 case 8:
1400 info->io.inputb = mem_inq;
1401 info->io.outputb = mem_outq;
1402 break;
1403 #endif
1404 default:
1405 printk("ipmi_si: Invalid register size: %d\n",
1406 info->io.regsize);
1407 return -EINVAL;
1408 }
1409
1410 /* Calculate the total amount of memory to claim. This is an
1411 * unusual looking calculation, but it avoids claiming any
1412 * more memory than it has to. It will claim everything
1413 * between the first address to the end of the last full
1414 * register. */
1415 mapsize = ((info->io_size * info->io.regspacing)
1416 - (info->io.regspacing - info->io.regsize));
1417
1418 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1419 return -EIO;
1420
1421 info->io.addr = ioremap(addr, mapsize);
1422 if (info->io.addr == NULL) {
1423 release_mem_region(addr, mapsize);
1424 return -EIO;
1425 }
1426 return 0;
1427 }
1428
1429 /*
1430 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1431 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1432 * Options are:
1433 * rsp=<regspacing>
1434 * rsi=<regsize>
1435 * rsh=<regshift>
1436 * irq=<irq>
1437 * ipmb=<ipmb addr>
1438 */
1439 enum hotmod_op { HM_ADD, HM_REMOVE };
1440 struct hotmod_vals {
1441 char *name;
1442 int val;
1443 };
1444 static struct hotmod_vals hotmod_ops[] = {
1445 { "add", HM_ADD },
1446 { "remove", HM_REMOVE },
1447 { NULL }
1448 };
1449 static struct hotmod_vals hotmod_si[] = {
1450 { "kcs", SI_KCS },
1451 { "smic", SI_SMIC },
1452 { "bt", SI_BT },
1453 { NULL }
1454 };
1455 static struct hotmod_vals hotmod_as[] = {
1456 { "mem", IPMI_MEM_ADDR_SPACE },
1457 { "i/o", IPMI_IO_ADDR_SPACE },
1458 { NULL }
1459 };
1460
1461 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1462 {
1463 char *s;
1464 int i;
1465
1466 s = strchr(*curr, ',');
1467 if (!s) {
1468 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1469 return -EINVAL;
1470 }
1471 *s = '\0';
1472 s++;
1473 for (i = 0; hotmod_ops[i].name; i++) {
1474 if (strcmp(*curr, v[i].name) == 0) {
1475 *val = v[i].val;
1476 *curr = s;
1477 return 0;
1478 }
1479 }
1480
1481 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1482 return -EINVAL;
1483 }
1484
1485 static int check_hotmod_int_op(const char *curr, const char *option,
1486 const char *name, int *val)
1487 {
1488 char *n;
1489
1490 if (strcmp(curr, name) == 0) {
1491 if (!option) {
1492 printk(KERN_WARNING PFX
1493 "No option given for '%s'\n",
1494 curr);
1495 return -EINVAL;
1496 }
1497 *val = simple_strtoul(option, &n, 0);
1498 if ((*n != '\0') || (*option == '\0')) {
1499 printk(KERN_WARNING PFX
1500 "Bad option given for '%s'\n",
1501 curr);
1502 return -EINVAL;
1503 }
1504 return 1;
1505 }
1506 return 0;
1507 }
1508
1509 static int hotmod_handler(const char *val, struct kernel_param *kp)
1510 {
1511 char *str = kstrdup(val, GFP_KERNEL);
1512 int rv;
1513 char *next, *curr, *s, *n, *o;
1514 enum hotmod_op op;
1515 enum si_type si_type;
1516 int addr_space;
1517 unsigned long addr;
1518 int regspacing;
1519 int regsize;
1520 int regshift;
1521 int irq;
1522 int ipmb;
1523 int ival;
1524 int len;
1525 struct smi_info *info;
1526
1527 if (!str)
1528 return -ENOMEM;
1529
1530 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1531 len = strlen(str);
1532 ival = len - 1;
1533 while ((ival >= 0) && isspace(str[ival])) {
1534 str[ival] = '\0';
1535 ival--;
1536 }
1537
1538 for (curr = str; curr; curr = next) {
1539 regspacing = 1;
1540 regsize = 1;
1541 regshift = 0;
1542 irq = 0;
1543 ipmb = 0x20;
1544
1545 next = strchr(curr, ':');
1546 if (next) {
1547 *next = '\0';
1548 next++;
1549 }
1550
1551 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1552 if (rv)
1553 break;
1554 op = ival;
1555
1556 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1557 if (rv)
1558 break;
1559 si_type = ival;
1560
1561 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1562 if (rv)
1563 break;
1564
1565 s = strchr(curr, ',');
1566 if (s) {
1567 *s = '\0';
1568 s++;
1569 }
1570 addr = simple_strtoul(curr, &n, 0);
1571 if ((*n != '\0') || (*curr == '\0')) {
1572 printk(KERN_WARNING PFX "Invalid hotmod address"
1573 " '%s'\n", curr);
1574 break;
1575 }
1576
1577 while (s) {
1578 curr = s;
1579 s = strchr(curr, ',');
1580 if (s) {
1581 *s = '\0';
1582 s++;
1583 }
1584 o = strchr(curr, '=');
1585 if (o) {
1586 *o = '\0';
1587 o++;
1588 }
1589 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1590 if (rv < 0)
1591 goto out;
1592 else if (rv)
1593 continue;
1594 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1595 if (rv < 0)
1596 goto out;
1597 else if (rv)
1598 continue;
1599 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1600 if (rv < 0)
1601 goto out;
1602 else if (rv)
1603 continue;
1604 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1605 if (rv < 0)
1606 goto out;
1607 else if (rv)
1608 continue;
1609 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1610 if (rv < 0)
1611 goto out;
1612 else if (rv)
1613 continue;
1614
1615 rv = -EINVAL;
1616 printk(KERN_WARNING PFX
1617 "Invalid hotmod option '%s'\n",
1618 curr);
1619 goto out;
1620 }
1621
1622 if (op == HM_ADD) {
1623 info = kzalloc(sizeof(*info), GFP_KERNEL);
1624 if (!info) {
1625 rv = -ENOMEM;
1626 goto out;
1627 }
1628
1629 info->addr_source = "hotmod";
1630 info->si_type = si_type;
1631 info->io.addr_data = addr;
1632 info->io.addr_type = addr_space;
1633 if (addr_space == IPMI_MEM_ADDR_SPACE)
1634 info->io_setup = mem_setup;
1635 else
1636 info->io_setup = port_setup;
1637
1638 info->io.addr = NULL;
1639 info->io.regspacing = regspacing;
1640 if (!info->io.regspacing)
1641 info->io.regspacing = DEFAULT_REGSPACING;
1642 info->io.regsize = regsize;
1643 if (!info->io.regsize)
1644 info->io.regsize = DEFAULT_REGSPACING;
1645 info->io.regshift = regshift;
1646 info->irq = irq;
1647 if (info->irq)
1648 info->irq_setup = std_irq_setup;
1649 info->slave_addr = ipmb;
1650
1651 try_smi_init(info);
1652 } else {
1653 /* remove */
1654 struct smi_info *e, *tmp_e;
1655
1656 mutex_lock(&smi_infos_lock);
1657 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1658 if (e->io.addr_type != addr_space)
1659 continue;
1660 if (e->si_type != si_type)
1661 continue;
1662 if (e->io.addr_data == addr)
1663 cleanup_one_si(e);
1664 }
1665 mutex_unlock(&smi_infos_lock);
1666 }
1667 }
1668 rv = len;
1669 out:
1670 kfree(str);
1671 return rv;
1672 }
1673
1674 static __devinit void hardcode_find_bmc(void)
1675 {
1676 int i;
1677 struct smi_info *info;
1678
1679 for (i = 0; i < SI_MAX_PARMS; i++) {
1680 if (!ports[i] && !addrs[i])
1681 continue;
1682
1683 info = kzalloc(sizeof(*info), GFP_KERNEL);
1684 if (!info)
1685 return;
1686
1687 info->addr_source = "hardcoded";
1688
1689 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1690 info->si_type = SI_KCS;
1691 } else if (strcmp(si_type[i], "smic") == 0) {
1692 info->si_type = SI_SMIC;
1693 } else if (strcmp(si_type[i], "bt") == 0) {
1694 info->si_type = SI_BT;
1695 } else {
1696 printk(KERN_WARNING
1697 "ipmi_si: Interface type specified "
1698 "for interface %d, was invalid: %s\n",
1699 i, si_type[i]);
1700 kfree(info);
1701 continue;
1702 }
1703
1704 if (ports[i]) {
1705 /* An I/O port */
1706 info->io_setup = port_setup;
1707 info->io.addr_data = ports[i];
1708 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1709 } else if (addrs[i]) {
1710 /* A memory port */
1711 info->io_setup = mem_setup;
1712 info->io.addr_data = addrs[i];
1713 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1714 } else {
1715 printk(KERN_WARNING
1716 "ipmi_si: Interface type specified "
1717 "for interface %d, "
1718 "but port and address were not set or "
1719 "set to zero.\n", i);
1720 kfree(info);
1721 continue;
1722 }
1723
1724 info->io.addr = NULL;
1725 info->io.regspacing = regspacings[i];
1726 if (!info->io.regspacing)
1727 info->io.regspacing = DEFAULT_REGSPACING;
1728 info->io.regsize = regsizes[i];
1729 if (!info->io.regsize)
1730 info->io.regsize = DEFAULT_REGSPACING;
1731 info->io.regshift = regshifts[i];
1732 info->irq = irqs[i];
1733 if (info->irq)
1734 info->irq_setup = std_irq_setup;
1735
1736 try_smi_init(info);
1737 }
1738 }
1739
1740 #ifdef CONFIG_ACPI
1741
1742 #include <linux/acpi.h>
1743
1744 /* Once we get an ACPI failure, we don't try any more, because we go
1745 through the tables sequentially. Once we don't find a table, there
1746 are no more. */
1747 static int acpi_failure;
1748
1749 /* For GPE-type interrupts. */
1750 static u32 ipmi_acpi_gpe(void *context)
1751 {
1752 struct smi_info *smi_info = context;
1753 unsigned long flags;
1754 #ifdef DEBUG_TIMING
1755 struct timeval t;
1756 #endif
1757
1758 spin_lock_irqsave(&(smi_info->si_lock), flags);
1759
1760 spin_lock(&smi_info->count_lock);
1761 smi_info->interrupts++;
1762 spin_unlock(&smi_info->count_lock);
1763
1764 #ifdef DEBUG_TIMING
1765 do_gettimeofday(&t);
1766 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1767 #endif
1768 smi_event_handler(smi_info, 0);
1769 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1770
1771 return ACPI_INTERRUPT_HANDLED;
1772 }
1773
1774 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1775 {
1776 if (!info->irq)
1777 return;
1778
1779 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1780 }
1781
1782 static int acpi_gpe_irq_setup(struct smi_info *info)
1783 {
1784 acpi_status status;
1785
1786 if (!info->irq)
1787 return 0;
1788
1789 /* FIXME - is level triggered right? */
1790 status = acpi_install_gpe_handler(NULL,
1791 info->irq,
1792 ACPI_GPE_LEVEL_TRIGGERED,
1793 &ipmi_acpi_gpe,
1794 info);
1795 if (status != AE_OK) {
1796 printk(KERN_WARNING
1797 "ipmi_si: %s unable to claim ACPI GPE %d,"
1798 " running polled\n",
1799 DEVICE_NAME, info->irq);
1800 info->irq = 0;
1801 return -EINVAL;
1802 } else {
1803 info->irq_cleanup = acpi_gpe_irq_cleanup;
1804 printk(" Using ACPI GPE %d\n", info->irq);
1805 return 0;
1806 }
1807 }
1808
1809 /*
1810 * Defined at
1811 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1812 */
1813 struct SPMITable {
1814 s8 Signature[4];
1815 u32 Length;
1816 u8 Revision;
1817 u8 Checksum;
1818 s8 OEMID[6];
1819 s8 OEMTableID[8];
1820 s8 OEMRevision[4];
1821 s8 CreatorID[4];
1822 s8 CreatorRevision[4];
1823 u8 InterfaceType;
1824 u8 IPMIlegacy;
1825 s16 SpecificationRevision;
1826
1827 /*
1828 * Bit 0 - SCI interrupt supported
1829 * Bit 1 - I/O APIC/SAPIC
1830 */
1831 u8 InterruptType;
1832
1833 /* If bit 0 of InterruptType is set, then this is the SCI
1834 interrupt in the GPEx_STS register. */
1835 u8 GPE;
1836
1837 s16 Reserved;
1838
1839 /* If bit 1 of InterruptType is set, then this is the I/O
1840 APIC/SAPIC interrupt. */
1841 u32 GlobalSystemInterrupt;
1842
1843 /* The actual register address. */
1844 struct acpi_generic_address addr;
1845
1846 u8 UID[4];
1847
1848 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1849 };
1850
1851 static __devinit int try_init_acpi(struct SPMITable *spmi)
1852 {
1853 struct smi_info *info;
1854 u8 addr_space;
1855
1856 if (spmi->IPMIlegacy != 1) {
1857 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1858 return -ENODEV;
1859 }
1860
1861 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1862 addr_space = IPMI_MEM_ADDR_SPACE;
1863 else
1864 addr_space = IPMI_IO_ADDR_SPACE;
1865
1866 info = kzalloc(sizeof(*info), GFP_KERNEL);
1867 if (!info) {
1868 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1869 return -ENOMEM;
1870 }
1871
1872 info->addr_source = "ACPI";
1873
1874 /* Figure out the interface type. */
1875 switch (spmi->InterfaceType)
1876 {
1877 case 1: /* KCS */
1878 info->si_type = SI_KCS;
1879 break;
1880 case 2: /* SMIC */
1881 info->si_type = SI_SMIC;
1882 break;
1883 case 3: /* BT */
1884 info->si_type = SI_BT;
1885 break;
1886 default:
1887 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1888 spmi->InterfaceType);
1889 kfree(info);
1890 return -EIO;
1891 }
1892
1893 if (spmi->InterruptType & 1) {
1894 /* We've got a GPE interrupt. */
1895 info->irq = spmi->GPE;
1896 info->irq_setup = acpi_gpe_irq_setup;
1897 } else if (spmi->InterruptType & 2) {
1898 /* We've got an APIC/SAPIC interrupt. */
1899 info->irq = spmi->GlobalSystemInterrupt;
1900 info->irq_setup = std_irq_setup;
1901 } else {
1902 /* Use the default interrupt setting. */
1903 info->irq = 0;
1904 info->irq_setup = NULL;
1905 }
1906
1907 if (spmi->addr.bit_width) {
1908 /* A (hopefully) properly formed register bit width. */
1909 info->io.regspacing = spmi->addr.bit_width / 8;
1910 } else {
1911 info->io.regspacing = DEFAULT_REGSPACING;
1912 }
1913 info->io.regsize = info->io.regspacing;
1914 info->io.regshift = spmi->addr.bit_offset;
1915
1916 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1917 info->io_setup = mem_setup;
1918 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1919 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1920 info->io_setup = port_setup;
1921 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1922 } else {
1923 kfree(info);
1924 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1925 return -EIO;
1926 }
1927 info->io.addr_data = spmi->addr.address;
1928
1929 try_smi_init(info);
1930
1931 return 0;
1932 }
1933
1934 static __devinit void acpi_find_bmc(void)
1935 {
1936 acpi_status status;
1937 struct SPMITable *spmi;
1938 int i;
1939
1940 if (acpi_disabled)
1941 return;
1942
1943 if (acpi_failure)
1944 return;
1945
1946 for (i = 0; ; i++) {
1947 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
1948 (struct acpi_table_header **)&spmi);
1949 if (status != AE_OK)
1950 return;
1951
1952 try_init_acpi(spmi);
1953 }
1954 }
1955 #endif
1956
1957 #ifdef CONFIG_DMI
1958 struct dmi_ipmi_data
1959 {
1960 u8 type;
1961 u8 addr_space;
1962 unsigned long base_addr;
1963 u8 irq;
1964 u8 offset;
1965 u8 slave_addr;
1966 };
1967
1968 static int __devinit decode_dmi(const struct dmi_header *dm,
1969 struct dmi_ipmi_data *dmi)
1970 {
1971 const u8 *data = (const u8 *)dm;
1972 unsigned long base_addr;
1973 u8 reg_spacing;
1974 u8 len = dm->length;
1975
1976 dmi->type = data[4];
1977
1978 memcpy(&base_addr, data+8, sizeof(unsigned long));
1979 if (len >= 0x11) {
1980 if (base_addr & 1) {
1981 /* I/O */
1982 base_addr &= 0xFFFE;
1983 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1984 }
1985 else {
1986 /* Memory */
1987 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1988 }
1989 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1990 is odd. */
1991 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1992
1993 dmi->irq = data[0x11];
1994
1995 /* The top two bits of byte 0x10 hold the register spacing. */
1996 reg_spacing = (data[0x10] & 0xC0) >> 6;
1997 switch(reg_spacing){
1998 case 0x00: /* Byte boundaries */
1999 dmi->offset = 1;
2000 break;
2001 case 0x01: /* 32-bit boundaries */
2002 dmi->offset = 4;
2003 break;
2004 case 0x02: /* 16-byte boundaries */
2005 dmi->offset = 16;
2006 break;
2007 default:
2008 /* Some other interface, just ignore it. */
2009 return -EIO;
2010 }
2011 } else {
2012 /* Old DMI spec. */
2013 /* Note that technically, the lower bit of the base
2014 * address should be 1 if the address is I/O and 0 if
2015 * the address is in memory. So many systems get that
2016 * wrong (and all that I have seen are I/O) so we just
2017 * ignore that bit and assume I/O. Systems that use
2018 * memory should use the newer spec, anyway. */
2019 dmi->base_addr = base_addr & 0xfffe;
2020 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2021 dmi->offset = 1;
2022 }
2023
2024 dmi->slave_addr = data[6];
2025
2026 return 0;
2027 }
2028
2029 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2030 {
2031 struct smi_info *info;
2032
2033 info = kzalloc(sizeof(*info), GFP_KERNEL);
2034 if (!info) {
2035 printk(KERN_ERR
2036 "ipmi_si: Could not allocate SI data\n");
2037 return;
2038 }
2039
2040 info->addr_source = "SMBIOS";
2041
2042 switch (ipmi_data->type) {
2043 case 0x01: /* KCS */
2044 info->si_type = SI_KCS;
2045 break;
2046 case 0x02: /* SMIC */
2047 info->si_type = SI_SMIC;
2048 break;
2049 case 0x03: /* BT */
2050 info->si_type = SI_BT;
2051 break;
2052 default:
2053 kfree(info);
2054 return;
2055 }
2056
2057 switch (ipmi_data->addr_space) {
2058 case IPMI_MEM_ADDR_SPACE:
2059 info->io_setup = mem_setup;
2060 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2061 break;
2062
2063 case IPMI_IO_ADDR_SPACE:
2064 info->io_setup = port_setup;
2065 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2066 break;
2067
2068 default:
2069 kfree(info);
2070 printk(KERN_WARNING
2071 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2072 ipmi_data->addr_space);
2073 return;
2074 }
2075 info->io.addr_data = ipmi_data->base_addr;
2076
2077 info->io.regspacing = ipmi_data->offset;
2078 if (!info->io.regspacing)
2079 info->io.regspacing = DEFAULT_REGSPACING;
2080 info->io.regsize = DEFAULT_REGSPACING;
2081 info->io.regshift = 0;
2082
2083 info->slave_addr = ipmi_data->slave_addr;
2084
2085 info->irq = ipmi_data->irq;
2086 if (info->irq)
2087 info->irq_setup = std_irq_setup;
2088
2089 try_smi_init(info);
2090 }
2091
2092 static void __devinit dmi_find_bmc(void)
2093 {
2094 const struct dmi_device *dev = NULL;
2095 struct dmi_ipmi_data data;
2096 int rv;
2097
2098 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2099 memset(&data, 0, sizeof(data));
2100 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2101 &data);
2102 if (!rv)
2103 try_init_dmi(&data);
2104 }
2105 }
2106 #endif /* CONFIG_DMI */
2107
2108 #ifdef CONFIG_PCI
2109
2110 #define PCI_ERMC_CLASSCODE 0x0C0700
2111 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2112 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2113 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2114 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2115 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2116
2117 #define PCI_HP_VENDOR_ID 0x103C
2118 #define PCI_MMC_DEVICE_ID 0x121A
2119 #define PCI_MMC_ADDR_CW 0x10
2120
2121 static void ipmi_pci_cleanup(struct smi_info *info)
2122 {
2123 struct pci_dev *pdev = info->addr_source_data;
2124
2125 pci_disable_device(pdev);
2126 }
2127
2128 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2129 const struct pci_device_id *ent)
2130 {
2131 int rv;
2132 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2133 struct smi_info *info;
2134 int first_reg_offset = 0;
2135
2136 info = kzalloc(sizeof(*info), GFP_KERNEL);
2137 if (!info)
2138 return -ENOMEM;
2139
2140 info->addr_source = "PCI";
2141
2142 switch (class_type) {
2143 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2144 info->si_type = SI_SMIC;
2145 break;
2146
2147 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2148 info->si_type = SI_KCS;
2149 break;
2150
2151 case PCI_ERMC_CLASSCODE_TYPE_BT:
2152 info->si_type = SI_BT;
2153 break;
2154
2155 default:
2156 kfree(info);
2157 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2158 pci_name(pdev), class_type);
2159 return -ENOMEM;
2160 }
2161
2162 rv = pci_enable_device(pdev);
2163 if (rv) {
2164 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2165 pci_name(pdev));
2166 kfree(info);
2167 return rv;
2168 }
2169
2170 info->addr_source_cleanup = ipmi_pci_cleanup;
2171 info->addr_source_data = pdev;
2172
2173 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2174 first_reg_offset = 1;
2175
2176 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2177 info->io_setup = port_setup;
2178 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2179 } else {
2180 info->io_setup = mem_setup;
2181 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2182 }
2183 info->io.addr_data = pci_resource_start(pdev, 0);
2184
2185 info->io.regspacing = DEFAULT_REGSPACING;
2186 info->io.regsize = DEFAULT_REGSPACING;
2187 info->io.regshift = 0;
2188
2189 info->irq = pdev->irq;
2190 if (info->irq)
2191 info->irq_setup = std_irq_setup;
2192
2193 info->dev = &pdev->dev;
2194 pci_set_drvdata(pdev, info);
2195
2196 return try_smi_init(info);
2197 }
2198
2199 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2200 {
2201 struct smi_info *info = pci_get_drvdata(pdev);
2202 cleanup_one_si(info);
2203 }
2204
2205 #ifdef CONFIG_PM
2206 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2207 {
2208 return 0;
2209 }
2210
2211 static int ipmi_pci_resume(struct pci_dev *pdev)
2212 {
2213 return 0;
2214 }
2215 #endif
2216
2217 static struct pci_device_id ipmi_pci_devices[] = {
2218 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2219 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2220 { 0, }
2221 };
2222 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2223
2224 static struct pci_driver ipmi_pci_driver = {
2225 .name = DEVICE_NAME,
2226 .id_table = ipmi_pci_devices,
2227 .probe = ipmi_pci_probe,
2228 .remove = __devexit_p(ipmi_pci_remove),
2229 #ifdef CONFIG_PM
2230 .suspend = ipmi_pci_suspend,
2231 .resume = ipmi_pci_resume,
2232 #endif
2233 };
2234 #endif /* CONFIG_PCI */
2235
2236
2237 #ifdef CONFIG_PPC_OF
2238 static int __devinit ipmi_of_probe(struct of_device *dev,
2239 const struct of_device_id *match)
2240 {
2241 struct smi_info *info;
2242 struct resource resource;
2243 const int *regsize, *regspacing, *regshift;
2244 struct device_node *np = dev->node;
2245 int ret;
2246 int proplen;
2247
2248 dev_info(&dev->dev, PFX "probing via device tree\n");
2249
2250 ret = of_address_to_resource(np, 0, &resource);
2251 if (ret) {
2252 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2253 return ret;
2254 }
2255
2256 regsize = of_get_property(np, "reg-size", &proplen);
2257 if (regsize && proplen != 4) {
2258 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2259 return -EINVAL;
2260 }
2261
2262 regspacing = of_get_property(np, "reg-spacing", &proplen);
2263 if (regspacing && proplen != 4) {
2264 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2265 return -EINVAL;
2266 }
2267
2268 regshift = of_get_property(np, "reg-shift", &proplen);
2269 if (regshift && proplen != 4) {
2270 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2271 return -EINVAL;
2272 }
2273
2274 info = kzalloc(sizeof(*info), GFP_KERNEL);
2275
2276 if (!info) {
2277 dev_err(&dev->dev,
2278 PFX "could not allocate memory for OF probe\n");
2279 return -ENOMEM;
2280 }
2281
2282 info->si_type = (enum si_type) match->data;
2283 info->addr_source = "device-tree";
2284 info->io_setup = mem_setup;
2285 info->irq_setup = std_irq_setup;
2286
2287 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2288 info->io.addr_data = resource.start;
2289
2290 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2291 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2292 info->io.regshift = regshift ? *regshift : 0;
2293
2294 info->irq = irq_of_parse_and_map(dev->node, 0);
2295 info->dev = &dev->dev;
2296
2297 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2298 info->io.addr_data, info->io.regsize, info->io.regspacing,
2299 info->irq);
2300
2301 dev->dev.driver_data = (void*) info;
2302
2303 return try_smi_init(info);
2304 }
2305
2306 static int __devexit ipmi_of_remove(struct of_device *dev)
2307 {
2308 cleanup_one_si(dev->dev.driver_data);
2309 return 0;
2310 }
2311
2312 static struct of_device_id ipmi_match[] =
2313 {
2314 { .type = "ipmi", .compatible = "ipmi-kcs", .data = (void *)(unsigned long) SI_KCS },
2315 { .type = "ipmi", .compatible = "ipmi-smic", .data = (void *)(unsigned long) SI_SMIC },
2316 { .type = "ipmi", .compatible = "ipmi-bt", .data = (void *)(unsigned long) SI_BT },
2317 {},
2318 };
2319
2320 static struct of_platform_driver ipmi_of_platform_driver =
2321 {
2322 .name = "ipmi",
2323 .match_table = ipmi_match,
2324 .probe = ipmi_of_probe,
2325 .remove = __devexit_p(ipmi_of_remove),
2326 };
2327 #endif /* CONFIG_PPC_OF */
2328
2329
2330 static int try_get_dev_id(struct smi_info *smi_info)
2331 {
2332 unsigned char msg[2];
2333 unsigned char *resp;
2334 unsigned long resp_len;
2335 enum si_sm_result smi_result;
2336 int rv = 0;
2337
2338 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2339 if (!resp)
2340 return -ENOMEM;
2341
2342 /* Do a Get Device ID command, since it comes back with some
2343 useful info. */
2344 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2345 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2346 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2347
2348 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2349 for (;;)
2350 {
2351 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2352 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2353 schedule_timeout_uninterruptible(1);
2354 smi_result = smi_info->handlers->event(
2355 smi_info->si_sm, 100);
2356 }
2357 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
2358 {
2359 smi_result = smi_info->handlers->event(
2360 smi_info->si_sm, 0);
2361 }
2362 else
2363 break;
2364 }
2365 if (smi_result == SI_SM_HOSED) {
2366 /* We couldn't get the state machine to run, so whatever's at
2367 the port is probably not an IPMI SMI interface. */
2368 rv = -ENODEV;
2369 goto out;
2370 }
2371
2372 /* Otherwise, we got some data. */
2373 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2374 resp, IPMI_MAX_MSG_LENGTH);
2375 if (resp_len < 14) {
2376 /* That's odd, it should be longer. */
2377 rv = -EINVAL;
2378 goto out;
2379 }
2380
2381 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
2382 /* That's odd, it shouldn't be able to fail. */
2383 rv = -EINVAL;
2384 goto out;
2385 }
2386
2387 /* Record info from the get device id, in case we need it. */
2388 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
2389
2390 out:
2391 kfree(resp);
2392 return rv;
2393 }
2394
2395 static int type_file_read_proc(char *page, char **start, off_t off,
2396 int count, int *eof, void *data)
2397 {
2398 struct smi_info *smi = data;
2399
2400 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2401 }
2402
2403 static int stat_file_read_proc(char *page, char **start, off_t off,
2404 int count, int *eof, void *data)
2405 {
2406 char *out = (char *) page;
2407 struct smi_info *smi = data;
2408
2409 out += sprintf(out, "interrupts_enabled: %d\n",
2410 smi->irq && !smi->interrupt_disabled);
2411 out += sprintf(out, "short_timeouts: %ld\n",
2412 smi->short_timeouts);
2413 out += sprintf(out, "long_timeouts: %ld\n",
2414 smi->long_timeouts);
2415 out += sprintf(out, "timeout_restarts: %ld\n",
2416 smi->timeout_restarts);
2417 out += sprintf(out, "idles: %ld\n",
2418 smi->idles);
2419 out += sprintf(out, "interrupts: %ld\n",
2420 smi->interrupts);
2421 out += sprintf(out, "attentions: %ld\n",
2422 smi->attentions);
2423 out += sprintf(out, "flag_fetches: %ld\n",
2424 smi->flag_fetches);
2425 out += sprintf(out, "hosed_count: %ld\n",
2426 smi->hosed_count);
2427 out += sprintf(out, "complete_transactions: %ld\n",
2428 smi->complete_transactions);
2429 out += sprintf(out, "events: %ld\n",
2430 smi->events);
2431 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2432 smi->watchdog_pretimeouts);
2433 out += sprintf(out, "incoming_messages: %ld\n",
2434 smi->incoming_messages);
2435
2436 return out - page;
2437 }
2438
2439 static int param_read_proc(char *page, char **start, off_t off,
2440 int count, int *eof, void *data)
2441 {
2442 struct smi_info *smi = data;
2443
2444 return sprintf(page,
2445 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2446 si_to_str[smi->si_type],
2447 addr_space_to_str[smi->io.addr_type],
2448 smi->io.addr_data,
2449 smi->io.regspacing,
2450 smi->io.regsize,
2451 smi->io.regshift,
2452 smi->irq,
2453 smi->slave_addr);
2454 }
2455
2456 /*
2457 * oem_data_avail_to_receive_msg_avail
2458 * @info - smi_info structure with msg_flags set
2459 *
2460 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2461 * Returns 1 indicating need to re-run handle_flags().
2462 */
2463 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2464 {
2465 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2466 RECEIVE_MSG_AVAIL);
2467 return 1;
2468 }
2469
2470 /*
2471 * setup_dell_poweredge_oem_data_handler
2472 * @info - smi_info.device_id must be populated
2473 *
2474 * Systems that match, but have firmware version < 1.40 may assert
2475 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2476 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2477 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2478 * as RECEIVE_MSG_AVAIL instead.
2479 *
2480 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2481 * assert the OEM[012] bits, and if it did, the driver would have to
2482 * change to handle that properly, we don't actually check for the
2483 * firmware version.
2484 * Device ID = 0x20 BMC on PowerEdge 8G servers
2485 * Device Revision = 0x80
2486 * Firmware Revision1 = 0x01 BMC version 1.40
2487 * Firmware Revision2 = 0x40 BCD encoded
2488 * IPMI Version = 0x51 IPMI 1.5
2489 * Manufacturer ID = A2 02 00 Dell IANA
2490 *
2491 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2492 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2493 *
2494 */
2495 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2496 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2497 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2498 #define DELL_IANA_MFR_ID 0x0002a2
2499 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2500 {
2501 struct ipmi_device_id *id = &smi_info->device_id;
2502 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2503 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2504 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2505 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2506 smi_info->oem_data_avail_handler =
2507 oem_data_avail_to_receive_msg_avail;
2508 }
2509 else if (ipmi_version_major(id) < 1 ||
2510 (ipmi_version_major(id) == 1 &&
2511 ipmi_version_minor(id) < 5)) {
2512 smi_info->oem_data_avail_handler =
2513 oem_data_avail_to_receive_msg_avail;
2514 }
2515 }
2516 }
2517
2518 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2519 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2520 {
2521 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2522
2523 /* Make it a reponse */
2524 msg->rsp[0] = msg->data[0] | 4;
2525 msg->rsp[1] = msg->data[1];
2526 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2527 msg->rsp_size = 3;
2528 smi_info->curr_msg = NULL;
2529 deliver_recv_msg(smi_info, msg);
2530 }
2531
2532 /*
2533 * dell_poweredge_bt_xaction_handler
2534 * @info - smi_info.device_id must be populated
2535 *
2536 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2537 * not respond to a Get SDR command if the length of the data
2538 * requested is exactly 0x3A, which leads to command timeouts and no
2539 * data returned. This intercepts such commands, and causes userspace
2540 * callers to try again with a different-sized buffer, which succeeds.
2541 */
2542
2543 #define STORAGE_NETFN 0x0A
2544 #define STORAGE_CMD_GET_SDR 0x23
2545 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2546 unsigned long unused,
2547 void *in)
2548 {
2549 struct smi_info *smi_info = in;
2550 unsigned char *data = smi_info->curr_msg->data;
2551 unsigned int size = smi_info->curr_msg->data_size;
2552 if (size >= 8 &&
2553 (data[0]>>2) == STORAGE_NETFN &&
2554 data[1] == STORAGE_CMD_GET_SDR &&
2555 data[7] == 0x3A) {
2556 return_hosed_msg_badsize(smi_info);
2557 return NOTIFY_STOP;
2558 }
2559 return NOTIFY_DONE;
2560 }
2561
2562 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2563 .notifier_call = dell_poweredge_bt_xaction_handler,
2564 };
2565
2566 /*
2567 * setup_dell_poweredge_bt_xaction_handler
2568 * @info - smi_info.device_id must be filled in already
2569 *
2570 * Fills in smi_info.device_id.start_transaction_pre_hook
2571 * when we know what function to use there.
2572 */
2573 static void
2574 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2575 {
2576 struct ipmi_device_id *id = &smi_info->device_id;
2577 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2578 smi_info->si_type == SI_BT)
2579 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2580 }
2581
2582 /*
2583 * setup_oem_data_handler
2584 * @info - smi_info.device_id must be filled in already
2585 *
2586 * Fills in smi_info.device_id.oem_data_available_handler
2587 * when we know what function to use there.
2588 */
2589
2590 static void setup_oem_data_handler(struct smi_info *smi_info)
2591 {
2592 setup_dell_poweredge_oem_data_handler(smi_info);
2593 }
2594
2595 static void setup_xaction_handlers(struct smi_info *smi_info)
2596 {
2597 setup_dell_poweredge_bt_xaction_handler(smi_info);
2598 }
2599
2600 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2601 {
2602 if (smi_info->intf) {
2603 /* The timer and thread are only running if the
2604 interface has been started up and registered. */
2605 if (smi_info->thread != NULL)
2606 kthread_stop(smi_info->thread);
2607 del_timer_sync(&smi_info->si_timer);
2608 }
2609 }
2610
2611 static __devinitdata struct ipmi_default_vals
2612 {
2613 int type;
2614 int port;
2615 } ipmi_defaults[] =
2616 {
2617 { .type = SI_KCS, .port = 0xca2 },
2618 { .type = SI_SMIC, .port = 0xca9 },
2619 { .type = SI_BT, .port = 0xe4 },
2620 { .port = 0 }
2621 };
2622
2623 static __devinit void default_find_bmc(void)
2624 {
2625 struct smi_info *info;
2626 int i;
2627
2628 for (i = 0; ; i++) {
2629 if (!ipmi_defaults[i].port)
2630 break;
2631
2632 info = kzalloc(sizeof(*info), GFP_KERNEL);
2633 if (!info)
2634 return;
2635
2636 #ifdef CONFIG_PPC_MERGE
2637 if (check_legacy_ioport(ipmi_defaults[i].port))
2638 continue;
2639 #endif
2640
2641 info->addr_source = NULL;
2642
2643 info->si_type = ipmi_defaults[i].type;
2644 info->io_setup = port_setup;
2645 info->io.addr_data = ipmi_defaults[i].port;
2646 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2647
2648 info->io.addr = NULL;
2649 info->io.regspacing = DEFAULT_REGSPACING;
2650 info->io.regsize = DEFAULT_REGSPACING;
2651 info->io.regshift = 0;
2652
2653 if (try_smi_init(info) == 0) {
2654 /* Found one... */
2655 printk(KERN_INFO "ipmi_si: Found default %s state"
2656 " machine at %s address 0x%lx\n",
2657 si_to_str[info->si_type],
2658 addr_space_to_str[info->io.addr_type],
2659 info->io.addr_data);
2660 return;
2661 }
2662 }
2663 }
2664
2665 static int is_new_interface(struct smi_info *info)
2666 {
2667 struct smi_info *e;
2668
2669 list_for_each_entry(e, &smi_infos, link) {
2670 if (e->io.addr_type != info->io.addr_type)
2671 continue;
2672 if (e->io.addr_data == info->io.addr_data)
2673 return 0;
2674 }
2675
2676 return 1;
2677 }
2678
2679 static int try_smi_init(struct smi_info *new_smi)
2680 {
2681 int rv;
2682
2683 if (new_smi->addr_source) {
2684 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2685 " machine at %s address 0x%lx, slave address 0x%x,"
2686 " irq %d\n",
2687 new_smi->addr_source,
2688 si_to_str[new_smi->si_type],
2689 addr_space_to_str[new_smi->io.addr_type],
2690 new_smi->io.addr_data,
2691 new_smi->slave_addr, new_smi->irq);
2692 }
2693
2694 mutex_lock(&smi_infos_lock);
2695 if (!is_new_interface(new_smi)) {
2696 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2697 rv = -EBUSY;
2698 goto out_err;
2699 }
2700
2701 /* So we know not to free it unless we have allocated one. */
2702 new_smi->intf = NULL;
2703 new_smi->si_sm = NULL;
2704 new_smi->handlers = NULL;
2705
2706 switch (new_smi->si_type) {
2707 case SI_KCS:
2708 new_smi->handlers = &kcs_smi_handlers;
2709 break;
2710
2711 case SI_SMIC:
2712 new_smi->handlers = &smic_smi_handlers;
2713 break;
2714
2715 case SI_BT:
2716 new_smi->handlers = &bt_smi_handlers;
2717 break;
2718
2719 default:
2720 /* No support for anything else yet. */
2721 rv = -EIO;
2722 goto out_err;
2723 }
2724
2725 /* Allocate the state machine's data and initialize it. */
2726 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2727 if (!new_smi->si_sm) {
2728 printk(" Could not allocate state machine memory\n");
2729 rv = -ENOMEM;
2730 goto out_err;
2731 }
2732 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2733 &new_smi->io);
2734
2735 /* Now that we know the I/O size, we can set up the I/O. */
2736 rv = new_smi->io_setup(new_smi);
2737 if (rv) {
2738 printk(" Could not set up I/O space\n");
2739 goto out_err;
2740 }
2741
2742 spin_lock_init(&(new_smi->si_lock));
2743 spin_lock_init(&(new_smi->msg_lock));
2744 spin_lock_init(&(new_smi->count_lock));
2745
2746 /* Do low-level detection first. */
2747 if (new_smi->handlers->detect(new_smi->si_sm)) {
2748 if (new_smi->addr_source)
2749 printk(KERN_INFO "ipmi_si: Interface detection"
2750 " failed\n");
2751 rv = -ENODEV;
2752 goto out_err;
2753 }
2754
2755 /* Attempt a get device id command. If it fails, we probably
2756 don't have a BMC here. */
2757 rv = try_get_dev_id(new_smi);
2758 if (rv) {
2759 if (new_smi->addr_source)
2760 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2761 " at this location\n");
2762 goto out_err;
2763 }
2764
2765 setup_oem_data_handler(new_smi);
2766 setup_xaction_handlers(new_smi);
2767
2768 /* Try to claim any interrupts. */
2769 if (new_smi->irq_setup)
2770 new_smi->irq_setup(new_smi);
2771
2772 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2773 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2774 new_smi->curr_msg = NULL;
2775 atomic_set(&new_smi->req_events, 0);
2776 new_smi->run_to_completion = 0;
2777
2778 new_smi->interrupt_disabled = 0;
2779 atomic_set(&new_smi->stop_operation, 0);
2780 new_smi->intf_num = smi_num;
2781 smi_num++;
2782
2783 /* Start clearing the flags before we enable interrupts or the
2784 timer to avoid racing with the timer. */
2785 start_clear_flags(new_smi);
2786 /* IRQ is defined to be set when non-zero. */
2787 if (new_smi->irq)
2788 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2789
2790 if (!new_smi->dev) {
2791 /* If we don't already have a device from something
2792 * else (like PCI), then register a new one. */
2793 new_smi->pdev = platform_device_alloc("ipmi_si",
2794 new_smi->intf_num);
2795 if (rv) {
2796 printk(KERN_ERR
2797 "ipmi_si_intf:"
2798 " Unable to allocate platform device\n");
2799 goto out_err;
2800 }
2801 new_smi->dev = &new_smi->pdev->dev;
2802 new_smi->dev->driver = &ipmi_driver;
2803
2804 rv = platform_device_add(new_smi->pdev);
2805 if (rv) {
2806 printk(KERN_ERR
2807 "ipmi_si_intf:"
2808 " Unable to register system interface device:"
2809 " %d\n",
2810 rv);
2811 goto out_err;
2812 }
2813 new_smi->dev_registered = 1;
2814 }
2815
2816 rv = ipmi_register_smi(&handlers,
2817 new_smi,
2818 &new_smi->device_id,
2819 new_smi->dev,
2820 "bmc",
2821 new_smi->slave_addr);
2822 if (rv) {
2823 printk(KERN_ERR
2824 "ipmi_si: Unable to register device: error %d\n",
2825 rv);
2826 goto out_err_stop_timer;
2827 }
2828
2829 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2830 type_file_read_proc, NULL,
2831 new_smi, THIS_MODULE);
2832 if (rv) {
2833 printk(KERN_ERR
2834 "ipmi_si: Unable to create proc entry: %d\n",
2835 rv);
2836 goto out_err_stop_timer;
2837 }
2838
2839 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2840 stat_file_read_proc, NULL,
2841 new_smi, THIS_MODULE);
2842 if (rv) {
2843 printk(KERN_ERR
2844 "ipmi_si: Unable to create proc entry: %d\n",
2845 rv);
2846 goto out_err_stop_timer;
2847 }
2848
2849 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2850 param_read_proc, NULL,
2851 new_smi, THIS_MODULE);
2852 if (rv) {
2853 printk(KERN_ERR
2854 "ipmi_si: Unable to create proc entry: %d\n",
2855 rv);
2856 goto out_err_stop_timer;
2857 }
2858
2859 list_add_tail(&new_smi->link, &smi_infos);
2860
2861 mutex_unlock(&smi_infos_lock);
2862
2863 printk(KERN_INFO "IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
2864
2865 return 0;
2866
2867 out_err_stop_timer:
2868 atomic_inc(&new_smi->stop_operation);
2869 wait_for_timer_and_thread(new_smi);
2870
2871 out_err:
2872 if (new_smi->intf)
2873 ipmi_unregister_smi(new_smi->intf);
2874
2875 if (new_smi->irq_cleanup)
2876 new_smi->irq_cleanup(new_smi);
2877
2878 /* Wait until we know that we are out of any interrupt
2879 handlers might have been running before we freed the
2880 interrupt. */
2881 synchronize_sched();
2882
2883 if (new_smi->si_sm) {
2884 if (new_smi->handlers)
2885 new_smi->handlers->cleanup(new_smi->si_sm);
2886 kfree(new_smi->si_sm);
2887 }
2888 if (new_smi->addr_source_cleanup)
2889 new_smi->addr_source_cleanup(new_smi);
2890 if (new_smi->io_cleanup)
2891 new_smi->io_cleanup(new_smi);
2892
2893 if (new_smi->dev_registered)
2894 platform_device_unregister(new_smi->pdev);
2895
2896 kfree(new_smi);
2897
2898 mutex_unlock(&smi_infos_lock);
2899
2900 return rv;
2901 }
2902
2903 static __devinit int init_ipmi_si(void)
2904 {
2905 int i;
2906 char *str;
2907 int rv;
2908
2909 if (initialized)
2910 return 0;
2911 initialized = 1;
2912
2913 /* Register the device drivers. */
2914 rv = driver_register(&ipmi_driver);
2915 if (rv) {
2916 printk(KERN_ERR
2917 "init_ipmi_si: Unable to register driver: %d\n",
2918 rv);
2919 return rv;
2920 }
2921
2922
2923 /* Parse out the si_type string into its components. */
2924 str = si_type_str;
2925 if (*str != '\0') {
2926 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2927 si_type[i] = str;
2928 str = strchr(str, ',');
2929 if (str) {
2930 *str = '\0';
2931 str++;
2932 } else {
2933 break;
2934 }
2935 }
2936 }
2937
2938 printk(KERN_INFO "IPMI System Interface driver.\n");
2939
2940 hardcode_find_bmc();
2941
2942 #ifdef CONFIG_DMI
2943 dmi_find_bmc();
2944 #endif
2945
2946 #ifdef CONFIG_ACPI
2947 acpi_find_bmc();
2948 #endif
2949
2950 #ifdef CONFIG_PCI
2951 rv = pci_register_driver(&ipmi_pci_driver);
2952 if (rv){
2953 printk(KERN_ERR
2954 "init_ipmi_si: Unable to register PCI driver: %d\n",
2955 rv);
2956 }
2957 #endif
2958
2959 #ifdef CONFIG_PPC_OF
2960 of_register_platform_driver(&ipmi_of_platform_driver);
2961 #endif
2962
2963 if (si_trydefaults) {
2964 mutex_lock(&smi_infos_lock);
2965 if (list_empty(&smi_infos)) {
2966 /* No BMC was found, try defaults. */
2967 mutex_unlock(&smi_infos_lock);
2968 default_find_bmc();
2969 } else {
2970 mutex_unlock(&smi_infos_lock);
2971 }
2972 }
2973
2974 mutex_lock(&smi_infos_lock);
2975 if (unload_when_empty && list_empty(&smi_infos)) {
2976 mutex_unlock(&smi_infos_lock);
2977 #ifdef CONFIG_PCI
2978 pci_unregister_driver(&ipmi_pci_driver);
2979 #endif
2980
2981 #ifdef CONFIG_PPC_OF
2982 of_unregister_platform_driver(&ipmi_of_platform_driver);
2983 #endif
2984 driver_unregister(&ipmi_driver);
2985 printk("ipmi_si: Unable to find any System Interface(s)\n");
2986 return -ENODEV;
2987 } else {
2988 mutex_unlock(&smi_infos_lock);
2989 return 0;
2990 }
2991 }
2992 module_init(init_ipmi_si);
2993
2994 static void cleanup_one_si(struct smi_info *to_clean)
2995 {
2996 int rv;
2997 unsigned long flags;
2998
2999 if (!to_clean)
3000 return;
3001
3002 list_del(&to_clean->link);
3003
3004 /* Tell the driver that we are shutting down. */
3005 atomic_inc(&to_clean->stop_operation);
3006
3007 /* Make sure the timer and thread are stopped and will not run
3008 again. */
3009 wait_for_timer_and_thread(to_clean);
3010
3011 /* Timeouts are stopped, now make sure the interrupts are off
3012 for the device. A little tricky with locks to make sure
3013 there are no races. */
3014 spin_lock_irqsave(&to_clean->si_lock, flags);
3015 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3016 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3017 poll(to_clean);
3018 schedule_timeout_uninterruptible(1);
3019 spin_lock_irqsave(&to_clean->si_lock, flags);
3020 }
3021 disable_si_irq(to_clean);
3022 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3023 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3024 poll(to_clean);
3025 schedule_timeout_uninterruptible(1);
3026 }
3027
3028 /* Clean up interrupts and make sure that everything is done. */
3029 if (to_clean->irq_cleanup)
3030 to_clean->irq_cleanup(to_clean);
3031 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3032 poll(to_clean);
3033 schedule_timeout_uninterruptible(1);
3034 }
3035
3036 rv = ipmi_unregister_smi(to_clean->intf);
3037 if (rv) {
3038 printk(KERN_ERR
3039 "ipmi_si: Unable to unregister device: errno=%d\n",
3040 rv);
3041 }
3042
3043 to_clean->handlers->cleanup(to_clean->si_sm);
3044
3045 kfree(to_clean->si_sm);
3046
3047 if (to_clean->addr_source_cleanup)
3048 to_clean->addr_source_cleanup(to_clean);
3049 if (to_clean->io_cleanup)
3050 to_clean->io_cleanup(to_clean);
3051
3052 if (to_clean->dev_registered)
3053 platform_device_unregister(to_clean->pdev);
3054
3055 kfree(to_clean);
3056 }
3057
3058 static __exit void cleanup_ipmi_si(void)
3059 {
3060 struct smi_info *e, *tmp_e;
3061
3062 if (!initialized)
3063 return;
3064
3065 #ifdef CONFIG_PCI
3066 pci_unregister_driver(&ipmi_pci_driver);
3067 #endif
3068
3069 #ifdef CONFIG_PPC_OF
3070 of_unregister_platform_driver(&ipmi_of_platform_driver);
3071 #endif
3072
3073 mutex_lock(&smi_infos_lock);
3074 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3075 cleanup_one_si(e);
3076 mutex_unlock(&smi_infos_lock);
3077
3078 driver_unregister(&ipmi_driver);
3079 }
3080 module_exit(cleanup_ipmi_si);
3081
3082 MODULE_LICENSE("GPL");
3083 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3084 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
This page took 0.105189 seconds and 5 git commands to generate.