ipmi: convert OF driver to platform driver
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 short timeout */
85
86 enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119 * Indexes into stats[] in smi_info below.
120 */
121 enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
142
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
158 /* Number of asyncronous messages received. */
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164 };
165
166 struct smi_info {
167 int intf_num;
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
173 spinlock_t msg_lock;
174 struct list_head xmit_msgs;
175 struct list_head hp_xmit_msgs;
176 struct ipmi_smi_msg *curr_msg;
177 enum si_intf_state si_state;
178
179 /*
180 * Used to handle the various types of I/O that can occur with
181 * IPMI
182 */
183 struct si_sm_io io;
184 int (*io_setup)(struct smi_info *info);
185 void (*io_cleanup)(struct smi_info *info);
186 int (*irq_setup)(struct smi_info *info);
187 void (*irq_cleanup)(struct smi_info *info);
188 unsigned int io_size;
189 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
190 void (*addr_source_cleanup)(struct smi_info *info);
191 void *addr_source_data;
192
193 /*
194 * Per-OEM handler, called from handle_flags(). Returns 1
195 * when handle_flags() needs to be re-run or 0 indicating it
196 * set si_state itself.
197 */
198 int (*oem_data_avail_handler)(struct smi_info *smi_info);
199
200 /*
201 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
202 * is set to hold the flags until we are done handling everything
203 * from the flags.
204 */
205 #define RECEIVE_MSG_AVAIL 0x01
206 #define EVENT_MSG_BUFFER_FULL 0x02
207 #define WDT_PRE_TIMEOUT_INT 0x08
208 #define OEM0_DATA_AVAIL 0x20
209 #define OEM1_DATA_AVAIL 0x40
210 #define OEM2_DATA_AVAIL 0x80
211 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
212 OEM1_DATA_AVAIL | \
213 OEM2_DATA_AVAIL)
214 unsigned char msg_flags;
215
216 /* Does the BMC have an event buffer? */
217 char has_event_buffer;
218
219 /*
220 * If set to true, this will request events the next time the
221 * state machine is idle.
222 */
223 atomic_t req_events;
224
225 /*
226 * If true, run the state machine to completion on every send
227 * call. Generally used after a panic to make sure stuff goes
228 * out.
229 */
230 int run_to_completion;
231
232 /* The I/O port of an SI interface. */
233 int port;
234
235 /*
236 * The space between start addresses of the two ports. For
237 * instance, if the first port is 0xca2 and the spacing is 4, then
238 * the second port is 0xca6.
239 */
240 unsigned int spacing;
241
242 /* zero if no irq; */
243 int irq;
244
245 /* The timer for this si. */
246 struct timer_list si_timer;
247
248 /* The time (in jiffies) the last timeout occurred at. */
249 unsigned long last_timeout_jiffies;
250
251 /* Used to gracefully stop the timer without race conditions. */
252 atomic_t stop_operation;
253
254 /*
255 * The driver will disable interrupts when it gets into a
256 * situation where it cannot handle messages due to lack of
257 * memory. Once that situation clears up, it will re-enable
258 * interrupts.
259 */
260 int interrupt_disabled;
261
262 /* From the get device id response... */
263 struct ipmi_device_id device_id;
264
265 /* Driver model stuff. */
266 struct device *dev;
267 struct platform_device *pdev;
268
269 /*
270 * True if we allocated the device, false if it came from
271 * someplace else (like PCI).
272 */
273 int dev_registered;
274
275 /* Slave address, could be reported from DMI. */
276 unsigned char slave_addr;
277
278 /* Counters and things for the proc filesystem. */
279 atomic_t stats[SI_NUM_STATS];
280
281 struct task_struct *thread;
282
283 struct list_head link;
284 union ipmi_smi_info_union addr_info;
285 };
286
287 #define smi_inc_stat(smi, stat) \
288 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
289 #define smi_get_stat(smi, stat) \
290 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291
292 #define SI_MAX_PARMS 4
293
294 static int force_kipmid[SI_MAX_PARMS];
295 static int num_force_kipmid;
296 #ifdef CONFIG_PCI
297 static int pci_registered;
298 #endif
299 #ifdef CONFIG_ACPI
300 static int pnp_registered;
301 #endif
302
303 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
304 static int num_max_busy_us;
305
306 static int unload_when_empty = 1;
307
308 static int add_smi(struct smi_info *smi);
309 static int try_smi_init(struct smi_info *smi);
310 static void cleanup_one_si(struct smi_info *to_clean);
311 static void cleanup_ipmi_si(void);
312
313 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
314 static int register_xaction_notifier(struct notifier_block *nb)
315 {
316 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
317 }
318
319 static void deliver_recv_msg(struct smi_info *smi_info,
320 struct ipmi_smi_msg *msg)
321 {
322 /* Deliver the message to the upper layer with the lock
323 released. */
324
325 if (smi_info->run_to_completion) {
326 ipmi_smi_msg_received(smi_info->intf, msg);
327 } else {
328 spin_unlock(&(smi_info->si_lock));
329 ipmi_smi_msg_received(smi_info->intf, msg);
330 spin_lock(&(smi_info->si_lock));
331 }
332 }
333
334 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
335 {
336 struct ipmi_smi_msg *msg = smi_info->curr_msg;
337
338 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
339 cCode = IPMI_ERR_UNSPECIFIED;
340 /* else use it as is */
341
342 /* Make it a reponse */
343 msg->rsp[0] = msg->data[0] | 4;
344 msg->rsp[1] = msg->data[1];
345 msg->rsp[2] = cCode;
346 msg->rsp_size = 3;
347
348 smi_info->curr_msg = NULL;
349 deliver_recv_msg(smi_info, msg);
350 }
351
352 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
353 {
354 int rv;
355 struct list_head *entry = NULL;
356 #ifdef DEBUG_TIMING
357 struct timeval t;
358 #endif
359
360 /*
361 * No need to save flags, we aleady have interrupts off and we
362 * already hold the SMI lock.
363 */
364 if (!smi_info->run_to_completion)
365 spin_lock(&(smi_info->msg_lock));
366
367 /* Pick the high priority queue first. */
368 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
369 entry = smi_info->hp_xmit_msgs.next;
370 } else if (!list_empty(&(smi_info->xmit_msgs))) {
371 entry = smi_info->xmit_msgs.next;
372 }
373
374 if (!entry) {
375 smi_info->curr_msg = NULL;
376 rv = SI_SM_IDLE;
377 } else {
378 int err;
379
380 list_del(entry);
381 smi_info->curr_msg = list_entry(entry,
382 struct ipmi_smi_msg,
383 link);
384 #ifdef DEBUG_TIMING
385 do_gettimeofday(&t);
386 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
387 #endif
388 err = atomic_notifier_call_chain(&xaction_notifier_list,
389 0, smi_info);
390 if (err & NOTIFY_STOP_MASK) {
391 rv = SI_SM_CALL_WITHOUT_DELAY;
392 goto out;
393 }
394 err = smi_info->handlers->start_transaction(
395 smi_info->si_sm,
396 smi_info->curr_msg->data,
397 smi_info->curr_msg->data_size);
398 if (err)
399 return_hosed_msg(smi_info, err);
400
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 }
403 out:
404 if (!smi_info->run_to_completion)
405 spin_unlock(&(smi_info->msg_lock));
406
407 return rv;
408 }
409
410 static void start_enable_irq(struct smi_info *smi_info)
411 {
412 unsigned char msg[2];
413
414 /*
415 * If we are enabling interrupts, we have to tell the
416 * BMC to use them.
417 */
418 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
420
421 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
422 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
423 }
424
425 static void start_disable_irq(struct smi_info *smi_info)
426 {
427 unsigned char msg[2];
428
429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431
432 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
434 }
435
436 static void start_clear_flags(struct smi_info *smi_info)
437 {
438 unsigned char msg[3];
439
440 /* Make sure the watchdog pre-timeout flag is not set at startup. */
441 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
443 msg[2] = WDT_PRE_TIMEOUT_INT;
444
445 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
446 smi_info->si_state = SI_CLEARING_FLAGS;
447 }
448
449 /*
450 * When we have a situtaion where we run out of memory and cannot
451 * allocate messages, we just leave them in the BMC and run the system
452 * polled until we can allocate some memory. Once we have some
453 * memory, we will re-enable the interrupt.
454 */
455 static inline void disable_si_irq(struct smi_info *smi_info)
456 {
457 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
458 start_disable_irq(smi_info);
459 smi_info->interrupt_disabled = 1;
460 if (!atomic_read(&smi_info->stop_operation))
461 mod_timer(&smi_info->si_timer,
462 jiffies + SI_TIMEOUT_JIFFIES);
463 }
464 }
465
466 static inline void enable_si_irq(struct smi_info *smi_info)
467 {
468 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
469 start_enable_irq(smi_info);
470 smi_info->interrupt_disabled = 0;
471 }
472 }
473
474 static void handle_flags(struct smi_info *smi_info)
475 {
476 retry:
477 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
478 /* Watchdog pre-timeout */
479 smi_inc_stat(smi_info, watchdog_pretimeouts);
480
481 start_clear_flags(smi_info);
482 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
483 spin_unlock(&(smi_info->si_lock));
484 ipmi_smi_watchdog_pretimeout(smi_info->intf);
485 spin_lock(&(smi_info->si_lock));
486 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
487 /* Messages available. */
488 smi_info->curr_msg = ipmi_alloc_smi_msg();
489 if (!smi_info->curr_msg) {
490 disable_si_irq(smi_info);
491 smi_info->si_state = SI_NORMAL;
492 return;
493 }
494 enable_si_irq(smi_info);
495
496 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
497 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
498 smi_info->curr_msg->data_size = 2;
499
500 smi_info->handlers->start_transaction(
501 smi_info->si_sm,
502 smi_info->curr_msg->data,
503 smi_info->curr_msg->data_size);
504 smi_info->si_state = SI_GETTING_MESSAGES;
505 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
506 /* Events available. */
507 smi_info->curr_msg = ipmi_alloc_smi_msg();
508 if (!smi_info->curr_msg) {
509 disable_si_irq(smi_info);
510 smi_info->si_state = SI_NORMAL;
511 return;
512 }
513 enable_si_irq(smi_info);
514
515 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
516 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
517 smi_info->curr_msg->data_size = 2;
518
519 smi_info->handlers->start_transaction(
520 smi_info->si_sm,
521 smi_info->curr_msg->data,
522 smi_info->curr_msg->data_size);
523 smi_info->si_state = SI_GETTING_EVENTS;
524 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
525 smi_info->oem_data_avail_handler) {
526 if (smi_info->oem_data_avail_handler(smi_info))
527 goto retry;
528 } else
529 smi_info->si_state = SI_NORMAL;
530 }
531
532 static void handle_transaction_done(struct smi_info *smi_info)
533 {
534 struct ipmi_smi_msg *msg;
535 #ifdef DEBUG_TIMING
536 struct timeval t;
537
538 do_gettimeofday(&t);
539 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
540 #endif
541 switch (smi_info->si_state) {
542 case SI_NORMAL:
543 if (!smi_info->curr_msg)
544 break;
545
546 smi_info->curr_msg->rsp_size
547 = smi_info->handlers->get_result(
548 smi_info->si_sm,
549 smi_info->curr_msg->rsp,
550 IPMI_MAX_MSG_LENGTH);
551
552 /*
553 * Do this here becase deliver_recv_msg() releases the
554 * lock, and a new message can be put in during the
555 * time the lock is released.
556 */
557 msg = smi_info->curr_msg;
558 smi_info->curr_msg = NULL;
559 deliver_recv_msg(smi_info, msg);
560 break;
561
562 case SI_GETTING_FLAGS:
563 {
564 unsigned char msg[4];
565 unsigned int len;
566
567 /* We got the flags from the SMI, now handle them. */
568 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
569 if (msg[2] != 0) {
570 /* Error fetching flags, just give up for now. */
571 smi_info->si_state = SI_NORMAL;
572 } else if (len < 4) {
573 /*
574 * Hmm, no flags. That's technically illegal, but
575 * don't use uninitialized data.
576 */
577 smi_info->si_state = SI_NORMAL;
578 } else {
579 smi_info->msg_flags = msg[3];
580 handle_flags(smi_info);
581 }
582 break;
583 }
584
585 case SI_CLEARING_FLAGS:
586 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
587 {
588 unsigned char msg[3];
589
590 /* We cleared the flags. */
591 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
592 if (msg[2] != 0) {
593 /* Error clearing flags */
594 dev_warn(smi_info->dev,
595 "Error clearing flags: %2.2x\n", msg[2]);
596 }
597 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
598 start_enable_irq(smi_info);
599 else
600 smi_info->si_state = SI_NORMAL;
601 break;
602 }
603
604 case SI_GETTING_EVENTS:
605 {
606 smi_info->curr_msg->rsp_size
607 = smi_info->handlers->get_result(
608 smi_info->si_sm,
609 smi_info->curr_msg->rsp,
610 IPMI_MAX_MSG_LENGTH);
611
612 /*
613 * Do this here becase deliver_recv_msg() releases the
614 * lock, and a new message can be put in during the
615 * time the lock is released.
616 */
617 msg = smi_info->curr_msg;
618 smi_info->curr_msg = NULL;
619 if (msg->rsp[2] != 0) {
620 /* Error getting event, probably done. */
621 msg->done(msg);
622
623 /* Take off the event flag. */
624 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
625 handle_flags(smi_info);
626 } else {
627 smi_inc_stat(smi_info, events);
628
629 /*
630 * Do this before we deliver the message
631 * because delivering the message releases the
632 * lock and something else can mess with the
633 * state.
634 */
635 handle_flags(smi_info);
636
637 deliver_recv_msg(smi_info, msg);
638 }
639 break;
640 }
641
642 case SI_GETTING_MESSAGES:
643 {
644 smi_info->curr_msg->rsp_size
645 = smi_info->handlers->get_result(
646 smi_info->si_sm,
647 smi_info->curr_msg->rsp,
648 IPMI_MAX_MSG_LENGTH);
649
650 /*
651 * Do this here becase deliver_recv_msg() releases the
652 * lock, and a new message can be put in during the
653 * time the lock is released.
654 */
655 msg = smi_info->curr_msg;
656 smi_info->curr_msg = NULL;
657 if (msg->rsp[2] != 0) {
658 /* Error getting event, probably done. */
659 msg->done(msg);
660
661 /* Take off the msg flag. */
662 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
663 handle_flags(smi_info);
664 } else {
665 smi_inc_stat(smi_info, incoming_messages);
666
667 /*
668 * Do this before we deliver the message
669 * because delivering the message releases the
670 * lock and something else can mess with the
671 * state.
672 */
673 handle_flags(smi_info);
674
675 deliver_recv_msg(smi_info, msg);
676 }
677 break;
678 }
679
680 case SI_ENABLE_INTERRUPTS1:
681 {
682 unsigned char msg[4];
683
684 /* We got the flags from the SMI, now handle them. */
685 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
686 if (msg[2] != 0) {
687 dev_warn(smi_info->dev, "Could not enable interrupts"
688 ", failed get, using polled mode.\n");
689 smi_info->si_state = SI_NORMAL;
690 } else {
691 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
692 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
693 msg[2] = (msg[3] |
694 IPMI_BMC_RCV_MSG_INTR |
695 IPMI_BMC_EVT_MSG_INTR);
696 smi_info->handlers->start_transaction(
697 smi_info->si_sm, msg, 3);
698 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
699 }
700 break;
701 }
702
703 case SI_ENABLE_INTERRUPTS2:
704 {
705 unsigned char msg[4];
706
707 /* We got the flags from the SMI, now handle them. */
708 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
709 if (msg[2] != 0)
710 dev_warn(smi_info->dev, "Could not enable interrupts"
711 ", failed set, using polled mode.\n");
712 else
713 smi_info->interrupt_disabled = 0;
714 smi_info->si_state = SI_NORMAL;
715 break;
716 }
717
718 case SI_DISABLE_INTERRUPTS1:
719 {
720 unsigned char msg[4];
721
722 /* We got the flags from the SMI, now handle them. */
723 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
724 if (msg[2] != 0) {
725 dev_warn(smi_info->dev, "Could not disable interrupts"
726 ", failed get.\n");
727 smi_info->si_state = SI_NORMAL;
728 } else {
729 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
730 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
731 msg[2] = (msg[3] &
732 ~(IPMI_BMC_RCV_MSG_INTR |
733 IPMI_BMC_EVT_MSG_INTR));
734 smi_info->handlers->start_transaction(
735 smi_info->si_sm, msg, 3);
736 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
737 }
738 break;
739 }
740
741 case SI_DISABLE_INTERRUPTS2:
742 {
743 unsigned char msg[4];
744
745 /* We got the flags from the SMI, now handle them. */
746 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
747 if (msg[2] != 0) {
748 dev_warn(smi_info->dev, "Could not disable interrupts"
749 ", failed set.\n");
750 }
751 smi_info->si_state = SI_NORMAL;
752 break;
753 }
754 }
755 }
756
757 /*
758 * Called on timeouts and events. Timeouts should pass the elapsed
759 * time, interrupts should pass in zero. Must be called with
760 * si_lock held and interrupts disabled.
761 */
762 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
763 int time)
764 {
765 enum si_sm_result si_sm_result;
766
767 restart:
768 /*
769 * There used to be a loop here that waited a little while
770 * (around 25us) before giving up. That turned out to be
771 * pointless, the minimum delays I was seeing were in the 300us
772 * range, which is far too long to wait in an interrupt. So
773 * we just run until the state machine tells us something
774 * happened or it needs a delay.
775 */
776 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
777 time = 0;
778 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
779 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
780
781 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
782 smi_inc_stat(smi_info, complete_transactions);
783
784 handle_transaction_done(smi_info);
785 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
786 } else if (si_sm_result == SI_SM_HOSED) {
787 smi_inc_stat(smi_info, hosed_count);
788
789 /*
790 * Do the before return_hosed_msg, because that
791 * releases the lock.
792 */
793 smi_info->si_state = SI_NORMAL;
794 if (smi_info->curr_msg != NULL) {
795 /*
796 * If we were handling a user message, format
797 * a response to send to the upper layer to
798 * tell it about the error.
799 */
800 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
801 }
802 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
803 }
804
805 /*
806 * We prefer handling attn over new messages. But don't do
807 * this if there is not yet an upper layer to handle anything.
808 */
809 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
810 unsigned char msg[2];
811
812 smi_inc_stat(smi_info, attentions);
813
814 /*
815 * Got a attn, send down a get message flags to see
816 * what's causing it. It would be better to handle
817 * this in the upper layer, but due to the way
818 * interrupts work with the SMI, that's not really
819 * possible.
820 */
821 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
822 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
823
824 smi_info->handlers->start_transaction(
825 smi_info->si_sm, msg, 2);
826 smi_info->si_state = SI_GETTING_FLAGS;
827 goto restart;
828 }
829
830 /* If we are currently idle, try to start the next message. */
831 if (si_sm_result == SI_SM_IDLE) {
832 smi_inc_stat(smi_info, idles);
833
834 si_sm_result = start_next_msg(smi_info);
835 if (si_sm_result != SI_SM_IDLE)
836 goto restart;
837 }
838
839 if ((si_sm_result == SI_SM_IDLE)
840 && (atomic_read(&smi_info->req_events))) {
841 /*
842 * We are idle and the upper layer requested that I fetch
843 * events, so do so.
844 */
845 atomic_set(&smi_info->req_events, 0);
846
847 smi_info->curr_msg = ipmi_alloc_smi_msg();
848 if (!smi_info->curr_msg)
849 goto out;
850
851 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
852 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
853 smi_info->curr_msg->data_size = 2;
854
855 smi_info->handlers->start_transaction(
856 smi_info->si_sm,
857 smi_info->curr_msg->data,
858 smi_info->curr_msg->data_size);
859 smi_info->si_state = SI_GETTING_EVENTS;
860 goto restart;
861 }
862 out:
863 return si_sm_result;
864 }
865
866 static void sender(void *send_info,
867 struct ipmi_smi_msg *msg,
868 int priority)
869 {
870 struct smi_info *smi_info = send_info;
871 enum si_sm_result result;
872 unsigned long flags;
873 #ifdef DEBUG_TIMING
874 struct timeval t;
875 #endif
876
877 if (atomic_read(&smi_info->stop_operation)) {
878 msg->rsp[0] = msg->data[0] | 4;
879 msg->rsp[1] = msg->data[1];
880 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
881 msg->rsp_size = 3;
882 deliver_recv_msg(smi_info, msg);
883 return;
884 }
885
886 #ifdef DEBUG_TIMING
887 do_gettimeofday(&t);
888 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
889 #endif
890
891 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
892
893 if (smi_info->thread)
894 wake_up_process(smi_info->thread);
895
896 if (smi_info->run_to_completion) {
897 /*
898 * If we are running to completion, then throw it in
899 * the list and run transactions until everything is
900 * clear. Priority doesn't matter here.
901 */
902
903 /*
904 * Run to completion means we are single-threaded, no
905 * need for locks.
906 */
907 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
908
909 result = smi_event_handler(smi_info, 0);
910 while (result != SI_SM_IDLE) {
911 udelay(SI_SHORT_TIMEOUT_USEC);
912 result = smi_event_handler(smi_info,
913 SI_SHORT_TIMEOUT_USEC);
914 }
915 return;
916 }
917
918 spin_lock_irqsave(&smi_info->msg_lock, flags);
919 if (priority > 0)
920 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
921 else
922 list_add_tail(&msg->link, &smi_info->xmit_msgs);
923 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
924
925 spin_lock_irqsave(&smi_info->si_lock, flags);
926 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
927 start_next_msg(smi_info);
928 spin_unlock_irqrestore(&smi_info->si_lock, flags);
929 }
930
931 static void set_run_to_completion(void *send_info, int i_run_to_completion)
932 {
933 struct smi_info *smi_info = send_info;
934 enum si_sm_result result;
935
936 smi_info->run_to_completion = i_run_to_completion;
937 if (i_run_to_completion) {
938 result = smi_event_handler(smi_info, 0);
939 while (result != SI_SM_IDLE) {
940 udelay(SI_SHORT_TIMEOUT_USEC);
941 result = smi_event_handler(smi_info,
942 SI_SHORT_TIMEOUT_USEC);
943 }
944 }
945 }
946
947 /*
948 * Use -1 in the nsec value of the busy waiting timespec to tell that
949 * we are spinning in kipmid looking for something and not delaying
950 * between checks
951 */
952 static inline void ipmi_si_set_not_busy(struct timespec *ts)
953 {
954 ts->tv_nsec = -1;
955 }
956 static inline int ipmi_si_is_busy(struct timespec *ts)
957 {
958 return ts->tv_nsec != -1;
959 }
960
961 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
962 const struct smi_info *smi_info,
963 struct timespec *busy_until)
964 {
965 unsigned int max_busy_us = 0;
966
967 if (smi_info->intf_num < num_max_busy_us)
968 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
969 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
970 ipmi_si_set_not_busy(busy_until);
971 else if (!ipmi_si_is_busy(busy_until)) {
972 getnstimeofday(busy_until);
973 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
974 } else {
975 struct timespec now;
976 getnstimeofday(&now);
977 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
978 ipmi_si_set_not_busy(busy_until);
979 return 0;
980 }
981 }
982 return 1;
983 }
984
985
986 /*
987 * A busy-waiting loop for speeding up IPMI operation.
988 *
989 * Lousy hardware makes this hard. This is only enabled for systems
990 * that are not BT and do not have interrupts. It starts spinning
991 * when an operation is complete or until max_busy tells it to stop
992 * (if that is enabled). See the paragraph on kimid_max_busy_us in
993 * Documentation/IPMI.txt for details.
994 */
995 static int ipmi_thread(void *data)
996 {
997 struct smi_info *smi_info = data;
998 unsigned long flags;
999 enum si_sm_result smi_result;
1000 struct timespec busy_until;
1001
1002 ipmi_si_set_not_busy(&busy_until);
1003 set_user_nice(current, 19);
1004 while (!kthread_should_stop()) {
1005 int busy_wait;
1006
1007 spin_lock_irqsave(&(smi_info->si_lock), flags);
1008 smi_result = smi_event_handler(smi_info, 0);
1009 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1010 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1011 &busy_until);
1012 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1013 ; /* do nothing */
1014 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1015 schedule();
1016 else if (smi_result == SI_SM_IDLE)
1017 schedule_timeout_interruptible(100);
1018 else
1019 schedule_timeout_interruptible(1);
1020 }
1021 return 0;
1022 }
1023
1024
1025 static void poll(void *send_info)
1026 {
1027 struct smi_info *smi_info = send_info;
1028 unsigned long flags;
1029
1030 /*
1031 * Make sure there is some delay in the poll loop so we can
1032 * drive time forward and timeout things.
1033 */
1034 udelay(10);
1035 spin_lock_irqsave(&smi_info->si_lock, flags);
1036 smi_event_handler(smi_info, 10);
1037 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1038 }
1039
1040 static void request_events(void *send_info)
1041 {
1042 struct smi_info *smi_info = send_info;
1043
1044 if (atomic_read(&smi_info->stop_operation) ||
1045 !smi_info->has_event_buffer)
1046 return;
1047
1048 atomic_set(&smi_info->req_events, 1);
1049 }
1050
1051 static int initialized;
1052
1053 static void smi_timeout(unsigned long data)
1054 {
1055 struct smi_info *smi_info = (struct smi_info *) data;
1056 enum si_sm_result smi_result;
1057 unsigned long flags;
1058 unsigned long jiffies_now;
1059 long time_diff;
1060 long timeout;
1061 #ifdef DEBUG_TIMING
1062 struct timeval t;
1063 #endif
1064
1065 spin_lock_irqsave(&(smi_info->si_lock), flags);
1066 #ifdef DEBUG_TIMING
1067 do_gettimeofday(&t);
1068 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1069 #endif
1070 jiffies_now = jiffies;
1071 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1072 * SI_USEC_PER_JIFFY);
1073 smi_result = smi_event_handler(smi_info, time_diff);
1074
1075 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1076
1077 smi_info->last_timeout_jiffies = jiffies_now;
1078
1079 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1080 /* Running with interrupts, only do long timeouts. */
1081 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1082 smi_inc_stat(smi_info, long_timeouts);
1083 goto do_mod_timer;
1084 }
1085
1086 /*
1087 * If the state machine asks for a short delay, then shorten
1088 * the timer timeout.
1089 */
1090 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1091 smi_inc_stat(smi_info, short_timeouts);
1092 timeout = jiffies + 1;
1093 } else {
1094 smi_inc_stat(smi_info, long_timeouts);
1095 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1096 }
1097
1098 do_mod_timer:
1099 if (smi_result != SI_SM_IDLE)
1100 mod_timer(&(smi_info->si_timer), timeout);
1101 }
1102
1103 static irqreturn_t si_irq_handler(int irq, void *data)
1104 {
1105 struct smi_info *smi_info = data;
1106 unsigned long flags;
1107 #ifdef DEBUG_TIMING
1108 struct timeval t;
1109 #endif
1110
1111 spin_lock_irqsave(&(smi_info->si_lock), flags);
1112
1113 smi_inc_stat(smi_info, interrupts);
1114
1115 #ifdef DEBUG_TIMING
1116 do_gettimeofday(&t);
1117 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1118 #endif
1119 smi_event_handler(smi_info, 0);
1120 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1121 return IRQ_HANDLED;
1122 }
1123
1124 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1125 {
1126 struct smi_info *smi_info = data;
1127 /* We need to clear the IRQ flag for the BT interface. */
1128 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1129 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1130 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1131 return si_irq_handler(irq, data);
1132 }
1133
1134 static int smi_start_processing(void *send_info,
1135 ipmi_smi_t intf)
1136 {
1137 struct smi_info *new_smi = send_info;
1138 int enable = 0;
1139
1140 new_smi->intf = intf;
1141
1142 /* Try to claim any interrupts. */
1143 if (new_smi->irq_setup)
1144 new_smi->irq_setup(new_smi);
1145
1146 /* Set up the timer that drives the interface. */
1147 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1148 new_smi->last_timeout_jiffies = jiffies;
1149 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1150
1151 /*
1152 * Check if the user forcefully enabled the daemon.
1153 */
1154 if (new_smi->intf_num < num_force_kipmid)
1155 enable = force_kipmid[new_smi->intf_num];
1156 /*
1157 * The BT interface is efficient enough to not need a thread,
1158 * and there is no need for a thread if we have interrupts.
1159 */
1160 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1161 enable = 1;
1162
1163 if (enable) {
1164 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1165 "kipmi%d", new_smi->intf_num);
1166 if (IS_ERR(new_smi->thread)) {
1167 dev_notice(new_smi->dev, "Could not start"
1168 " kernel thread due to error %ld, only using"
1169 " timers to drive the interface\n",
1170 PTR_ERR(new_smi->thread));
1171 new_smi->thread = NULL;
1172 }
1173 }
1174
1175 return 0;
1176 }
1177
1178 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1179 {
1180 struct smi_info *smi = send_info;
1181
1182 data->addr_src = smi->addr_source;
1183 data->dev = smi->dev;
1184 data->addr_info = smi->addr_info;
1185 get_device(smi->dev);
1186
1187 return 0;
1188 }
1189
1190 static void set_maintenance_mode(void *send_info, int enable)
1191 {
1192 struct smi_info *smi_info = send_info;
1193
1194 if (!enable)
1195 atomic_set(&smi_info->req_events, 0);
1196 }
1197
1198 static struct ipmi_smi_handlers handlers = {
1199 .owner = THIS_MODULE,
1200 .start_processing = smi_start_processing,
1201 .get_smi_info = get_smi_info,
1202 .sender = sender,
1203 .request_events = request_events,
1204 .set_maintenance_mode = set_maintenance_mode,
1205 .set_run_to_completion = set_run_to_completion,
1206 .poll = poll,
1207 };
1208
1209 /*
1210 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1211 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1212 */
1213
1214 static LIST_HEAD(smi_infos);
1215 static DEFINE_MUTEX(smi_infos_lock);
1216 static int smi_num; /* Used to sequence the SMIs */
1217
1218 #define DEFAULT_REGSPACING 1
1219 #define DEFAULT_REGSIZE 1
1220
1221 static int si_trydefaults = 1;
1222 static char *si_type[SI_MAX_PARMS];
1223 #define MAX_SI_TYPE_STR 30
1224 static char si_type_str[MAX_SI_TYPE_STR];
1225 static unsigned long addrs[SI_MAX_PARMS];
1226 static unsigned int num_addrs;
1227 static unsigned int ports[SI_MAX_PARMS];
1228 static unsigned int num_ports;
1229 static int irqs[SI_MAX_PARMS];
1230 static unsigned int num_irqs;
1231 static int regspacings[SI_MAX_PARMS];
1232 static unsigned int num_regspacings;
1233 static int regsizes[SI_MAX_PARMS];
1234 static unsigned int num_regsizes;
1235 static int regshifts[SI_MAX_PARMS];
1236 static unsigned int num_regshifts;
1237 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1238 static unsigned int num_slave_addrs;
1239
1240 #define IPMI_IO_ADDR_SPACE 0
1241 #define IPMI_MEM_ADDR_SPACE 1
1242 static char *addr_space_to_str[] = { "i/o", "mem" };
1243
1244 static int hotmod_handler(const char *val, struct kernel_param *kp);
1245
1246 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1247 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1248 " Documentation/IPMI.txt in the kernel sources for the"
1249 " gory details.");
1250
1251 module_param_named(trydefaults, si_trydefaults, bool, 0);
1252 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1253 " default scan of the KCS and SMIC interface at the standard"
1254 " address");
1255 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1256 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1257 " interface separated by commas. The types are 'kcs',"
1258 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1259 " the first interface to kcs and the second to bt");
1260 module_param_array(addrs, ulong, &num_addrs, 0);
1261 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1262 " addresses separated by commas. Only use if an interface"
1263 " is in memory. Otherwise, set it to zero or leave"
1264 " it blank.");
1265 module_param_array(ports, uint, &num_ports, 0);
1266 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1267 " addresses separated by commas. Only use if an interface"
1268 " is a port. Otherwise, set it to zero or leave"
1269 " it blank.");
1270 module_param_array(irqs, int, &num_irqs, 0);
1271 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1272 " addresses separated by commas. Only use if an interface"
1273 " has an interrupt. Otherwise, set it to zero or leave"
1274 " it blank.");
1275 module_param_array(regspacings, int, &num_regspacings, 0);
1276 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1277 " and each successive register used by the interface. For"
1278 " instance, if the start address is 0xca2 and the spacing"
1279 " is 2, then the second address is at 0xca4. Defaults"
1280 " to 1.");
1281 module_param_array(regsizes, int, &num_regsizes, 0);
1282 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1283 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1284 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1285 " the 8-bit IPMI register has to be read from a larger"
1286 " register.");
1287 module_param_array(regshifts, int, &num_regshifts, 0);
1288 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1289 " IPMI register, in bits. For instance, if the data"
1290 " is read from a 32-bit word and the IPMI data is in"
1291 " bit 8-15, then the shift would be 8");
1292 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1293 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1294 " the controller. Normally this is 0x20, but can be"
1295 " overridden by this parm. This is an array indexed"
1296 " by interface number.");
1297 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1298 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1299 " disabled(0). Normally the IPMI driver auto-detects"
1300 " this, but the value may be overridden by this parm.");
1301 module_param(unload_when_empty, int, 0);
1302 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1303 " specified or found, default is 1. Setting to 0"
1304 " is useful for hot add of devices using hotmod.");
1305 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1306 MODULE_PARM_DESC(kipmid_max_busy_us,
1307 "Max time (in microseconds) to busy-wait for IPMI data before"
1308 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1309 " if kipmid is using up a lot of CPU time.");
1310
1311
1312 static void std_irq_cleanup(struct smi_info *info)
1313 {
1314 if (info->si_type == SI_BT)
1315 /* Disable the interrupt in the BT interface. */
1316 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1317 free_irq(info->irq, info);
1318 }
1319
1320 static int std_irq_setup(struct smi_info *info)
1321 {
1322 int rv;
1323
1324 if (!info->irq)
1325 return 0;
1326
1327 if (info->si_type == SI_BT) {
1328 rv = request_irq(info->irq,
1329 si_bt_irq_handler,
1330 IRQF_SHARED | IRQF_DISABLED,
1331 DEVICE_NAME,
1332 info);
1333 if (!rv)
1334 /* Enable the interrupt in the BT interface. */
1335 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1336 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1337 } else
1338 rv = request_irq(info->irq,
1339 si_irq_handler,
1340 IRQF_SHARED | IRQF_DISABLED,
1341 DEVICE_NAME,
1342 info);
1343 if (rv) {
1344 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1345 " running polled\n",
1346 DEVICE_NAME, info->irq);
1347 info->irq = 0;
1348 } else {
1349 info->irq_cleanup = std_irq_cleanup;
1350 dev_info(info->dev, "Using irq %d\n", info->irq);
1351 }
1352
1353 return rv;
1354 }
1355
1356 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1357 {
1358 unsigned int addr = io->addr_data;
1359
1360 return inb(addr + (offset * io->regspacing));
1361 }
1362
1363 static void port_outb(struct si_sm_io *io, unsigned int offset,
1364 unsigned char b)
1365 {
1366 unsigned int addr = io->addr_data;
1367
1368 outb(b, addr + (offset * io->regspacing));
1369 }
1370
1371 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1372 {
1373 unsigned int addr = io->addr_data;
1374
1375 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1376 }
1377
1378 static void port_outw(struct si_sm_io *io, unsigned int offset,
1379 unsigned char b)
1380 {
1381 unsigned int addr = io->addr_data;
1382
1383 outw(b << io->regshift, addr + (offset * io->regspacing));
1384 }
1385
1386 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1387 {
1388 unsigned int addr = io->addr_data;
1389
1390 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1391 }
1392
1393 static void port_outl(struct si_sm_io *io, unsigned int offset,
1394 unsigned char b)
1395 {
1396 unsigned int addr = io->addr_data;
1397
1398 outl(b << io->regshift, addr+(offset * io->regspacing));
1399 }
1400
1401 static void port_cleanup(struct smi_info *info)
1402 {
1403 unsigned int addr = info->io.addr_data;
1404 int idx;
1405
1406 if (addr) {
1407 for (idx = 0; idx < info->io_size; idx++)
1408 release_region(addr + idx * info->io.regspacing,
1409 info->io.regsize);
1410 }
1411 }
1412
1413 static int port_setup(struct smi_info *info)
1414 {
1415 unsigned int addr = info->io.addr_data;
1416 int idx;
1417
1418 if (!addr)
1419 return -ENODEV;
1420
1421 info->io_cleanup = port_cleanup;
1422
1423 /*
1424 * Figure out the actual inb/inw/inl/etc routine to use based
1425 * upon the register size.
1426 */
1427 switch (info->io.regsize) {
1428 case 1:
1429 info->io.inputb = port_inb;
1430 info->io.outputb = port_outb;
1431 break;
1432 case 2:
1433 info->io.inputb = port_inw;
1434 info->io.outputb = port_outw;
1435 break;
1436 case 4:
1437 info->io.inputb = port_inl;
1438 info->io.outputb = port_outl;
1439 break;
1440 default:
1441 dev_warn(info->dev, "Invalid register size: %d\n",
1442 info->io.regsize);
1443 return -EINVAL;
1444 }
1445
1446 /*
1447 * Some BIOSes reserve disjoint I/O regions in their ACPI
1448 * tables. This causes problems when trying to register the
1449 * entire I/O region. Therefore we must register each I/O
1450 * port separately.
1451 */
1452 for (idx = 0; idx < info->io_size; idx++) {
1453 if (request_region(addr + idx * info->io.regspacing,
1454 info->io.regsize, DEVICE_NAME) == NULL) {
1455 /* Undo allocations */
1456 while (idx--) {
1457 release_region(addr + idx * info->io.regspacing,
1458 info->io.regsize);
1459 }
1460 return -EIO;
1461 }
1462 }
1463 return 0;
1464 }
1465
1466 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1467 {
1468 return readb((io->addr)+(offset * io->regspacing));
1469 }
1470
1471 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1472 unsigned char b)
1473 {
1474 writeb(b, (io->addr)+(offset * io->regspacing));
1475 }
1476
1477 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1478 {
1479 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1480 & 0xff;
1481 }
1482
1483 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1484 unsigned char b)
1485 {
1486 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1487 }
1488
1489 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1490 {
1491 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1492 & 0xff;
1493 }
1494
1495 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1496 unsigned char b)
1497 {
1498 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1499 }
1500
1501 #ifdef readq
1502 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1503 {
1504 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1505 & 0xff;
1506 }
1507
1508 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1509 unsigned char b)
1510 {
1511 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1512 }
1513 #endif
1514
1515 static void mem_cleanup(struct smi_info *info)
1516 {
1517 unsigned long addr = info->io.addr_data;
1518 int mapsize;
1519
1520 if (info->io.addr) {
1521 iounmap(info->io.addr);
1522
1523 mapsize = ((info->io_size * info->io.regspacing)
1524 - (info->io.regspacing - info->io.regsize));
1525
1526 release_mem_region(addr, mapsize);
1527 }
1528 }
1529
1530 static int mem_setup(struct smi_info *info)
1531 {
1532 unsigned long addr = info->io.addr_data;
1533 int mapsize;
1534
1535 if (!addr)
1536 return -ENODEV;
1537
1538 info->io_cleanup = mem_cleanup;
1539
1540 /*
1541 * Figure out the actual readb/readw/readl/etc routine to use based
1542 * upon the register size.
1543 */
1544 switch (info->io.regsize) {
1545 case 1:
1546 info->io.inputb = intf_mem_inb;
1547 info->io.outputb = intf_mem_outb;
1548 break;
1549 case 2:
1550 info->io.inputb = intf_mem_inw;
1551 info->io.outputb = intf_mem_outw;
1552 break;
1553 case 4:
1554 info->io.inputb = intf_mem_inl;
1555 info->io.outputb = intf_mem_outl;
1556 break;
1557 #ifdef readq
1558 case 8:
1559 info->io.inputb = mem_inq;
1560 info->io.outputb = mem_outq;
1561 break;
1562 #endif
1563 default:
1564 dev_warn(info->dev, "Invalid register size: %d\n",
1565 info->io.regsize);
1566 return -EINVAL;
1567 }
1568
1569 /*
1570 * Calculate the total amount of memory to claim. This is an
1571 * unusual looking calculation, but it avoids claiming any
1572 * more memory than it has to. It will claim everything
1573 * between the first address to the end of the last full
1574 * register.
1575 */
1576 mapsize = ((info->io_size * info->io.regspacing)
1577 - (info->io.regspacing - info->io.regsize));
1578
1579 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1580 return -EIO;
1581
1582 info->io.addr = ioremap(addr, mapsize);
1583 if (info->io.addr == NULL) {
1584 release_mem_region(addr, mapsize);
1585 return -EIO;
1586 }
1587 return 0;
1588 }
1589
1590 /*
1591 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1592 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1593 * Options are:
1594 * rsp=<regspacing>
1595 * rsi=<regsize>
1596 * rsh=<regshift>
1597 * irq=<irq>
1598 * ipmb=<ipmb addr>
1599 */
1600 enum hotmod_op { HM_ADD, HM_REMOVE };
1601 struct hotmod_vals {
1602 char *name;
1603 int val;
1604 };
1605 static struct hotmod_vals hotmod_ops[] = {
1606 { "add", HM_ADD },
1607 { "remove", HM_REMOVE },
1608 { NULL }
1609 };
1610 static struct hotmod_vals hotmod_si[] = {
1611 { "kcs", SI_KCS },
1612 { "smic", SI_SMIC },
1613 { "bt", SI_BT },
1614 { NULL }
1615 };
1616 static struct hotmod_vals hotmod_as[] = {
1617 { "mem", IPMI_MEM_ADDR_SPACE },
1618 { "i/o", IPMI_IO_ADDR_SPACE },
1619 { NULL }
1620 };
1621
1622 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1623 {
1624 char *s;
1625 int i;
1626
1627 s = strchr(*curr, ',');
1628 if (!s) {
1629 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1630 return -EINVAL;
1631 }
1632 *s = '\0';
1633 s++;
1634 for (i = 0; hotmod_ops[i].name; i++) {
1635 if (strcmp(*curr, v[i].name) == 0) {
1636 *val = v[i].val;
1637 *curr = s;
1638 return 0;
1639 }
1640 }
1641
1642 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1643 return -EINVAL;
1644 }
1645
1646 static int check_hotmod_int_op(const char *curr, const char *option,
1647 const char *name, int *val)
1648 {
1649 char *n;
1650
1651 if (strcmp(curr, name) == 0) {
1652 if (!option) {
1653 printk(KERN_WARNING PFX
1654 "No option given for '%s'\n",
1655 curr);
1656 return -EINVAL;
1657 }
1658 *val = simple_strtoul(option, &n, 0);
1659 if ((*n != '\0') || (*option == '\0')) {
1660 printk(KERN_WARNING PFX
1661 "Bad option given for '%s'\n",
1662 curr);
1663 return -EINVAL;
1664 }
1665 return 1;
1666 }
1667 return 0;
1668 }
1669
1670 static struct smi_info *smi_info_alloc(void)
1671 {
1672 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1673
1674 if (info) {
1675 spin_lock_init(&info->si_lock);
1676 spin_lock_init(&info->msg_lock);
1677 }
1678 return info;
1679 }
1680
1681 static int hotmod_handler(const char *val, struct kernel_param *kp)
1682 {
1683 char *str = kstrdup(val, GFP_KERNEL);
1684 int rv;
1685 char *next, *curr, *s, *n, *o;
1686 enum hotmod_op op;
1687 enum si_type si_type;
1688 int addr_space;
1689 unsigned long addr;
1690 int regspacing;
1691 int regsize;
1692 int regshift;
1693 int irq;
1694 int ipmb;
1695 int ival;
1696 int len;
1697 struct smi_info *info;
1698
1699 if (!str)
1700 return -ENOMEM;
1701
1702 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1703 len = strlen(str);
1704 ival = len - 1;
1705 while ((ival >= 0) && isspace(str[ival])) {
1706 str[ival] = '\0';
1707 ival--;
1708 }
1709
1710 for (curr = str; curr; curr = next) {
1711 regspacing = 1;
1712 regsize = 1;
1713 regshift = 0;
1714 irq = 0;
1715 ipmb = 0; /* Choose the default if not specified */
1716
1717 next = strchr(curr, ':');
1718 if (next) {
1719 *next = '\0';
1720 next++;
1721 }
1722
1723 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1724 if (rv)
1725 break;
1726 op = ival;
1727
1728 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1729 if (rv)
1730 break;
1731 si_type = ival;
1732
1733 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1734 if (rv)
1735 break;
1736
1737 s = strchr(curr, ',');
1738 if (s) {
1739 *s = '\0';
1740 s++;
1741 }
1742 addr = simple_strtoul(curr, &n, 0);
1743 if ((*n != '\0') || (*curr == '\0')) {
1744 printk(KERN_WARNING PFX "Invalid hotmod address"
1745 " '%s'\n", curr);
1746 break;
1747 }
1748
1749 while (s) {
1750 curr = s;
1751 s = strchr(curr, ',');
1752 if (s) {
1753 *s = '\0';
1754 s++;
1755 }
1756 o = strchr(curr, '=');
1757 if (o) {
1758 *o = '\0';
1759 o++;
1760 }
1761 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1762 if (rv < 0)
1763 goto out;
1764 else if (rv)
1765 continue;
1766 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1767 if (rv < 0)
1768 goto out;
1769 else if (rv)
1770 continue;
1771 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1772 if (rv < 0)
1773 goto out;
1774 else if (rv)
1775 continue;
1776 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1777 if (rv < 0)
1778 goto out;
1779 else if (rv)
1780 continue;
1781 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1782 if (rv < 0)
1783 goto out;
1784 else if (rv)
1785 continue;
1786
1787 rv = -EINVAL;
1788 printk(KERN_WARNING PFX
1789 "Invalid hotmod option '%s'\n",
1790 curr);
1791 goto out;
1792 }
1793
1794 if (op == HM_ADD) {
1795 info = smi_info_alloc();
1796 if (!info) {
1797 rv = -ENOMEM;
1798 goto out;
1799 }
1800
1801 info->addr_source = SI_HOTMOD;
1802 info->si_type = si_type;
1803 info->io.addr_data = addr;
1804 info->io.addr_type = addr_space;
1805 if (addr_space == IPMI_MEM_ADDR_SPACE)
1806 info->io_setup = mem_setup;
1807 else
1808 info->io_setup = port_setup;
1809
1810 info->io.addr = NULL;
1811 info->io.regspacing = regspacing;
1812 if (!info->io.regspacing)
1813 info->io.regspacing = DEFAULT_REGSPACING;
1814 info->io.regsize = regsize;
1815 if (!info->io.regsize)
1816 info->io.regsize = DEFAULT_REGSPACING;
1817 info->io.regshift = regshift;
1818 info->irq = irq;
1819 if (info->irq)
1820 info->irq_setup = std_irq_setup;
1821 info->slave_addr = ipmb;
1822
1823 if (!add_smi(info)) {
1824 if (try_smi_init(info))
1825 cleanup_one_si(info);
1826 } else {
1827 kfree(info);
1828 }
1829 } else {
1830 /* remove */
1831 struct smi_info *e, *tmp_e;
1832
1833 mutex_lock(&smi_infos_lock);
1834 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1835 if (e->io.addr_type != addr_space)
1836 continue;
1837 if (e->si_type != si_type)
1838 continue;
1839 if (e->io.addr_data == addr)
1840 cleanup_one_si(e);
1841 }
1842 mutex_unlock(&smi_infos_lock);
1843 }
1844 }
1845 rv = len;
1846 out:
1847 kfree(str);
1848 return rv;
1849 }
1850
1851 static int __devinit hardcode_find_bmc(void)
1852 {
1853 int ret = -ENODEV;
1854 int i;
1855 struct smi_info *info;
1856
1857 for (i = 0; i < SI_MAX_PARMS; i++) {
1858 if (!ports[i] && !addrs[i])
1859 continue;
1860
1861 info = smi_info_alloc();
1862 if (!info)
1863 return -ENOMEM;
1864
1865 info->addr_source = SI_HARDCODED;
1866 printk(KERN_INFO PFX "probing via hardcoded address\n");
1867
1868 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1869 info->si_type = SI_KCS;
1870 } else if (strcmp(si_type[i], "smic") == 0) {
1871 info->si_type = SI_SMIC;
1872 } else if (strcmp(si_type[i], "bt") == 0) {
1873 info->si_type = SI_BT;
1874 } else {
1875 printk(KERN_WARNING PFX "Interface type specified "
1876 "for interface %d, was invalid: %s\n",
1877 i, si_type[i]);
1878 kfree(info);
1879 continue;
1880 }
1881
1882 if (ports[i]) {
1883 /* An I/O port */
1884 info->io_setup = port_setup;
1885 info->io.addr_data = ports[i];
1886 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1887 } else if (addrs[i]) {
1888 /* A memory port */
1889 info->io_setup = mem_setup;
1890 info->io.addr_data = addrs[i];
1891 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1892 } else {
1893 printk(KERN_WARNING PFX "Interface type specified "
1894 "for interface %d, but port and address were "
1895 "not set or set to zero.\n", i);
1896 kfree(info);
1897 continue;
1898 }
1899
1900 info->io.addr = NULL;
1901 info->io.regspacing = regspacings[i];
1902 if (!info->io.regspacing)
1903 info->io.regspacing = DEFAULT_REGSPACING;
1904 info->io.regsize = regsizes[i];
1905 if (!info->io.regsize)
1906 info->io.regsize = DEFAULT_REGSPACING;
1907 info->io.regshift = regshifts[i];
1908 info->irq = irqs[i];
1909 if (info->irq)
1910 info->irq_setup = std_irq_setup;
1911 info->slave_addr = slave_addrs[i];
1912
1913 if (!add_smi(info)) {
1914 if (try_smi_init(info))
1915 cleanup_one_si(info);
1916 ret = 0;
1917 } else {
1918 kfree(info);
1919 }
1920 }
1921 return ret;
1922 }
1923
1924 #ifdef CONFIG_ACPI
1925
1926 #include <linux/acpi.h>
1927
1928 /*
1929 * Once we get an ACPI failure, we don't try any more, because we go
1930 * through the tables sequentially. Once we don't find a table, there
1931 * are no more.
1932 */
1933 static int acpi_failure;
1934
1935 /* For GPE-type interrupts. */
1936 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1937 u32 gpe_number, void *context)
1938 {
1939 struct smi_info *smi_info = context;
1940 unsigned long flags;
1941 #ifdef DEBUG_TIMING
1942 struct timeval t;
1943 #endif
1944
1945 spin_lock_irqsave(&(smi_info->si_lock), flags);
1946
1947 smi_inc_stat(smi_info, interrupts);
1948
1949 #ifdef DEBUG_TIMING
1950 do_gettimeofday(&t);
1951 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1952 #endif
1953 smi_event_handler(smi_info, 0);
1954 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1955
1956 return ACPI_INTERRUPT_HANDLED;
1957 }
1958
1959 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1960 {
1961 if (!info->irq)
1962 return;
1963
1964 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1965 }
1966
1967 static int acpi_gpe_irq_setup(struct smi_info *info)
1968 {
1969 acpi_status status;
1970
1971 if (!info->irq)
1972 return 0;
1973
1974 /* FIXME - is level triggered right? */
1975 status = acpi_install_gpe_handler(NULL,
1976 info->irq,
1977 ACPI_GPE_LEVEL_TRIGGERED,
1978 &ipmi_acpi_gpe,
1979 info);
1980 if (status != AE_OK) {
1981 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1982 " running polled\n", DEVICE_NAME, info->irq);
1983 info->irq = 0;
1984 return -EINVAL;
1985 } else {
1986 info->irq_cleanup = acpi_gpe_irq_cleanup;
1987 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1988 return 0;
1989 }
1990 }
1991
1992 /*
1993 * Defined at
1994 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1995 */
1996 struct SPMITable {
1997 s8 Signature[4];
1998 u32 Length;
1999 u8 Revision;
2000 u8 Checksum;
2001 s8 OEMID[6];
2002 s8 OEMTableID[8];
2003 s8 OEMRevision[4];
2004 s8 CreatorID[4];
2005 s8 CreatorRevision[4];
2006 u8 InterfaceType;
2007 u8 IPMIlegacy;
2008 s16 SpecificationRevision;
2009
2010 /*
2011 * Bit 0 - SCI interrupt supported
2012 * Bit 1 - I/O APIC/SAPIC
2013 */
2014 u8 InterruptType;
2015
2016 /*
2017 * If bit 0 of InterruptType is set, then this is the SCI
2018 * interrupt in the GPEx_STS register.
2019 */
2020 u8 GPE;
2021
2022 s16 Reserved;
2023
2024 /*
2025 * If bit 1 of InterruptType is set, then this is the I/O
2026 * APIC/SAPIC interrupt.
2027 */
2028 u32 GlobalSystemInterrupt;
2029
2030 /* The actual register address. */
2031 struct acpi_generic_address addr;
2032
2033 u8 UID[4];
2034
2035 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2036 };
2037
2038 static int __devinit try_init_spmi(struct SPMITable *spmi)
2039 {
2040 struct smi_info *info;
2041
2042 if (spmi->IPMIlegacy != 1) {
2043 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2044 return -ENODEV;
2045 }
2046
2047 info = smi_info_alloc();
2048 if (!info) {
2049 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2050 return -ENOMEM;
2051 }
2052
2053 info->addr_source = SI_SPMI;
2054 printk(KERN_INFO PFX "probing via SPMI\n");
2055
2056 /* Figure out the interface type. */
2057 switch (spmi->InterfaceType) {
2058 case 1: /* KCS */
2059 info->si_type = SI_KCS;
2060 break;
2061 case 2: /* SMIC */
2062 info->si_type = SI_SMIC;
2063 break;
2064 case 3: /* BT */
2065 info->si_type = SI_BT;
2066 break;
2067 default:
2068 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2069 spmi->InterfaceType);
2070 kfree(info);
2071 return -EIO;
2072 }
2073
2074 if (spmi->InterruptType & 1) {
2075 /* We've got a GPE interrupt. */
2076 info->irq = spmi->GPE;
2077 info->irq_setup = acpi_gpe_irq_setup;
2078 } else if (spmi->InterruptType & 2) {
2079 /* We've got an APIC/SAPIC interrupt. */
2080 info->irq = spmi->GlobalSystemInterrupt;
2081 info->irq_setup = std_irq_setup;
2082 } else {
2083 /* Use the default interrupt setting. */
2084 info->irq = 0;
2085 info->irq_setup = NULL;
2086 }
2087
2088 if (spmi->addr.bit_width) {
2089 /* A (hopefully) properly formed register bit width. */
2090 info->io.regspacing = spmi->addr.bit_width / 8;
2091 } else {
2092 info->io.regspacing = DEFAULT_REGSPACING;
2093 }
2094 info->io.regsize = info->io.regspacing;
2095 info->io.regshift = spmi->addr.bit_offset;
2096
2097 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2098 info->io_setup = mem_setup;
2099 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2100 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2101 info->io_setup = port_setup;
2102 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2103 } else {
2104 kfree(info);
2105 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2106 return -EIO;
2107 }
2108 info->io.addr_data = spmi->addr.address;
2109
2110 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2111 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2112 info->io.addr_data, info->io.regsize, info->io.regspacing,
2113 info->irq);
2114
2115 if (add_smi(info))
2116 kfree(info);
2117
2118 return 0;
2119 }
2120
2121 static void __devinit spmi_find_bmc(void)
2122 {
2123 acpi_status status;
2124 struct SPMITable *spmi;
2125 int i;
2126
2127 if (acpi_disabled)
2128 return;
2129
2130 if (acpi_failure)
2131 return;
2132
2133 for (i = 0; ; i++) {
2134 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2135 (struct acpi_table_header **)&spmi);
2136 if (status != AE_OK)
2137 return;
2138
2139 try_init_spmi(spmi);
2140 }
2141 }
2142
2143 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2144 const struct pnp_device_id *dev_id)
2145 {
2146 struct acpi_device *acpi_dev;
2147 struct smi_info *info;
2148 struct resource *res, *res_second;
2149 acpi_handle handle;
2150 acpi_status status;
2151 unsigned long long tmp;
2152
2153 acpi_dev = pnp_acpi_device(dev);
2154 if (!acpi_dev)
2155 return -ENODEV;
2156
2157 info = smi_info_alloc();
2158 if (!info)
2159 return -ENOMEM;
2160
2161 info->addr_source = SI_ACPI;
2162 printk(KERN_INFO PFX "probing via ACPI\n");
2163
2164 handle = acpi_dev->handle;
2165 info->addr_info.acpi_info.acpi_handle = handle;
2166
2167 /* _IFT tells us the interface type: KCS, BT, etc */
2168 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2169 if (ACPI_FAILURE(status))
2170 goto err_free;
2171
2172 switch (tmp) {
2173 case 1:
2174 info->si_type = SI_KCS;
2175 break;
2176 case 2:
2177 info->si_type = SI_SMIC;
2178 break;
2179 case 3:
2180 info->si_type = SI_BT;
2181 break;
2182 default:
2183 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2184 goto err_free;
2185 }
2186
2187 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2188 if (res) {
2189 info->io_setup = port_setup;
2190 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2191 } else {
2192 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2193 if (res) {
2194 info->io_setup = mem_setup;
2195 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2196 }
2197 }
2198 if (!res) {
2199 dev_err(&dev->dev, "no I/O or memory address\n");
2200 goto err_free;
2201 }
2202 info->io.addr_data = res->start;
2203
2204 info->io.regspacing = DEFAULT_REGSPACING;
2205 res_second = pnp_get_resource(dev,
2206 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2207 IORESOURCE_IO : IORESOURCE_MEM,
2208 1);
2209 if (res_second) {
2210 if (res_second->start > info->io.addr_data)
2211 info->io.regspacing = res_second->start - info->io.addr_data;
2212 }
2213 info->io.regsize = DEFAULT_REGSPACING;
2214 info->io.regshift = 0;
2215
2216 /* If _GPE exists, use it; otherwise use standard interrupts */
2217 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2218 if (ACPI_SUCCESS(status)) {
2219 info->irq = tmp;
2220 info->irq_setup = acpi_gpe_irq_setup;
2221 } else if (pnp_irq_valid(dev, 0)) {
2222 info->irq = pnp_irq(dev, 0);
2223 info->irq_setup = std_irq_setup;
2224 }
2225
2226 info->dev = &dev->dev;
2227 pnp_set_drvdata(dev, info);
2228
2229 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2230 res, info->io.regsize, info->io.regspacing,
2231 info->irq);
2232
2233 if (add_smi(info))
2234 goto err_free;
2235
2236 return 0;
2237
2238 err_free:
2239 kfree(info);
2240 return -EINVAL;
2241 }
2242
2243 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2244 {
2245 struct smi_info *info = pnp_get_drvdata(dev);
2246
2247 cleanup_one_si(info);
2248 }
2249
2250 static const struct pnp_device_id pnp_dev_table[] = {
2251 {"IPI0001", 0},
2252 {"", 0},
2253 };
2254
2255 static struct pnp_driver ipmi_pnp_driver = {
2256 .name = DEVICE_NAME,
2257 .probe = ipmi_pnp_probe,
2258 .remove = __devexit_p(ipmi_pnp_remove),
2259 .id_table = pnp_dev_table,
2260 };
2261 #endif
2262
2263 #ifdef CONFIG_DMI
2264 struct dmi_ipmi_data {
2265 u8 type;
2266 u8 addr_space;
2267 unsigned long base_addr;
2268 u8 irq;
2269 u8 offset;
2270 u8 slave_addr;
2271 };
2272
2273 static int __devinit decode_dmi(const struct dmi_header *dm,
2274 struct dmi_ipmi_data *dmi)
2275 {
2276 const u8 *data = (const u8 *)dm;
2277 unsigned long base_addr;
2278 u8 reg_spacing;
2279 u8 len = dm->length;
2280
2281 dmi->type = data[4];
2282
2283 memcpy(&base_addr, data+8, sizeof(unsigned long));
2284 if (len >= 0x11) {
2285 if (base_addr & 1) {
2286 /* I/O */
2287 base_addr &= 0xFFFE;
2288 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2289 } else
2290 /* Memory */
2291 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2292
2293 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2294 is odd. */
2295 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2296
2297 dmi->irq = data[0x11];
2298
2299 /* The top two bits of byte 0x10 hold the register spacing. */
2300 reg_spacing = (data[0x10] & 0xC0) >> 6;
2301 switch (reg_spacing) {
2302 case 0x00: /* Byte boundaries */
2303 dmi->offset = 1;
2304 break;
2305 case 0x01: /* 32-bit boundaries */
2306 dmi->offset = 4;
2307 break;
2308 case 0x02: /* 16-byte boundaries */
2309 dmi->offset = 16;
2310 break;
2311 default:
2312 /* Some other interface, just ignore it. */
2313 return -EIO;
2314 }
2315 } else {
2316 /* Old DMI spec. */
2317 /*
2318 * Note that technically, the lower bit of the base
2319 * address should be 1 if the address is I/O and 0 if
2320 * the address is in memory. So many systems get that
2321 * wrong (and all that I have seen are I/O) so we just
2322 * ignore that bit and assume I/O. Systems that use
2323 * memory should use the newer spec, anyway.
2324 */
2325 dmi->base_addr = base_addr & 0xfffe;
2326 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2327 dmi->offset = 1;
2328 }
2329
2330 dmi->slave_addr = data[6];
2331
2332 return 0;
2333 }
2334
2335 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2336 {
2337 struct smi_info *info;
2338
2339 info = smi_info_alloc();
2340 if (!info) {
2341 printk(KERN_ERR PFX "Could not allocate SI data\n");
2342 return;
2343 }
2344
2345 info->addr_source = SI_SMBIOS;
2346 printk(KERN_INFO PFX "probing via SMBIOS\n");
2347
2348 switch (ipmi_data->type) {
2349 case 0x01: /* KCS */
2350 info->si_type = SI_KCS;
2351 break;
2352 case 0x02: /* SMIC */
2353 info->si_type = SI_SMIC;
2354 break;
2355 case 0x03: /* BT */
2356 info->si_type = SI_BT;
2357 break;
2358 default:
2359 kfree(info);
2360 return;
2361 }
2362
2363 switch (ipmi_data->addr_space) {
2364 case IPMI_MEM_ADDR_SPACE:
2365 info->io_setup = mem_setup;
2366 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2367 break;
2368
2369 case IPMI_IO_ADDR_SPACE:
2370 info->io_setup = port_setup;
2371 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2372 break;
2373
2374 default:
2375 kfree(info);
2376 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2377 ipmi_data->addr_space);
2378 return;
2379 }
2380 info->io.addr_data = ipmi_data->base_addr;
2381
2382 info->io.regspacing = ipmi_data->offset;
2383 if (!info->io.regspacing)
2384 info->io.regspacing = DEFAULT_REGSPACING;
2385 info->io.regsize = DEFAULT_REGSPACING;
2386 info->io.regshift = 0;
2387
2388 info->slave_addr = ipmi_data->slave_addr;
2389
2390 info->irq = ipmi_data->irq;
2391 if (info->irq)
2392 info->irq_setup = std_irq_setup;
2393
2394 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2395 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2396 info->io.addr_data, info->io.regsize, info->io.regspacing,
2397 info->irq);
2398
2399 if (add_smi(info))
2400 kfree(info);
2401 }
2402
2403 static void __devinit dmi_find_bmc(void)
2404 {
2405 const struct dmi_device *dev = NULL;
2406 struct dmi_ipmi_data data;
2407 int rv;
2408
2409 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2410 memset(&data, 0, sizeof(data));
2411 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2412 &data);
2413 if (!rv)
2414 try_init_dmi(&data);
2415 }
2416 }
2417 #endif /* CONFIG_DMI */
2418
2419 #ifdef CONFIG_PCI
2420
2421 #define PCI_ERMC_CLASSCODE 0x0C0700
2422 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2423 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2424 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2425 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2426 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2427
2428 #define PCI_HP_VENDOR_ID 0x103C
2429 #define PCI_MMC_DEVICE_ID 0x121A
2430 #define PCI_MMC_ADDR_CW 0x10
2431
2432 static void ipmi_pci_cleanup(struct smi_info *info)
2433 {
2434 struct pci_dev *pdev = info->addr_source_data;
2435
2436 pci_disable_device(pdev);
2437 }
2438
2439 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2440 const struct pci_device_id *ent)
2441 {
2442 int rv;
2443 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2444 struct smi_info *info;
2445
2446 info = smi_info_alloc();
2447 if (!info)
2448 return -ENOMEM;
2449
2450 info->addr_source = SI_PCI;
2451 dev_info(&pdev->dev, "probing via PCI");
2452
2453 switch (class_type) {
2454 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2455 info->si_type = SI_SMIC;
2456 break;
2457
2458 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2459 info->si_type = SI_KCS;
2460 break;
2461
2462 case PCI_ERMC_CLASSCODE_TYPE_BT:
2463 info->si_type = SI_BT;
2464 break;
2465
2466 default:
2467 kfree(info);
2468 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2469 return -ENOMEM;
2470 }
2471
2472 rv = pci_enable_device(pdev);
2473 if (rv) {
2474 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2475 kfree(info);
2476 return rv;
2477 }
2478
2479 info->addr_source_cleanup = ipmi_pci_cleanup;
2480 info->addr_source_data = pdev;
2481
2482 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2483 info->io_setup = port_setup;
2484 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2485 } else {
2486 info->io_setup = mem_setup;
2487 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2488 }
2489 info->io.addr_data = pci_resource_start(pdev, 0);
2490
2491 info->io.regspacing = DEFAULT_REGSPACING;
2492 info->io.regsize = DEFAULT_REGSPACING;
2493 info->io.regshift = 0;
2494
2495 info->irq = pdev->irq;
2496 if (info->irq)
2497 info->irq_setup = std_irq_setup;
2498
2499 info->dev = &pdev->dev;
2500 pci_set_drvdata(pdev, info);
2501
2502 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2503 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2504 info->irq);
2505
2506 if (add_smi(info))
2507 kfree(info);
2508
2509 return 0;
2510 }
2511
2512 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2513 {
2514 struct smi_info *info = pci_get_drvdata(pdev);
2515 cleanup_one_si(info);
2516 }
2517
2518 #ifdef CONFIG_PM
2519 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2520 {
2521 return 0;
2522 }
2523
2524 static int ipmi_pci_resume(struct pci_dev *pdev)
2525 {
2526 return 0;
2527 }
2528 #endif
2529
2530 static struct pci_device_id ipmi_pci_devices[] = {
2531 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2532 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2533 { 0, }
2534 };
2535 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2536
2537 static struct pci_driver ipmi_pci_driver = {
2538 .name = DEVICE_NAME,
2539 .id_table = ipmi_pci_devices,
2540 .probe = ipmi_pci_probe,
2541 .remove = __devexit_p(ipmi_pci_remove),
2542 #ifdef CONFIG_PM
2543 .suspend = ipmi_pci_suspend,
2544 .resume = ipmi_pci_resume,
2545 #endif
2546 };
2547 #endif /* CONFIG_PCI */
2548
2549 static int __devinit ipmi_probe(struct platform_device *dev)
2550 {
2551 #ifdef CONFIG_OF
2552 struct smi_info *info;
2553 struct resource resource;
2554 const __be32 *regsize, *regspacing, *regshift;
2555 struct device_node *np = dev->dev.of_node;
2556 int ret;
2557 int proplen;
2558
2559 dev_info(&dev->dev, "probing via device tree\n");
2560
2561 if (!dev->dev.of_match)
2562 return -EINVAL;
2563
2564 ret = of_address_to_resource(np, 0, &resource);
2565 if (ret) {
2566 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2567 return ret;
2568 }
2569
2570 regsize = of_get_property(np, "reg-size", &proplen);
2571 if (regsize && proplen != 4) {
2572 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2573 return -EINVAL;
2574 }
2575
2576 regspacing = of_get_property(np, "reg-spacing", &proplen);
2577 if (regspacing && proplen != 4) {
2578 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2579 return -EINVAL;
2580 }
2581
2582 regshift = of_get_property(np, "reg-shift", &proplen);
2583 if (regshift && proplen != 4) {
2584 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2585 return -EINVAL;
2586 }
2587
2588 info = smi_info_alloc();
2589
2590 if (!info) {
2591 dev_err(&dev->dev,
2592 "could not allocate memory for OF probe\n");
2593 return -ENOMEM;
2594 }
2595
2596 info->si_type = (enum si_type) dev->dev.of_match->data;
2597 info->addr_source = SI_DEVICETREE;
2598 info->irq_setup = std_irq_setup;
2599
2600 if (resource.flags & IORESOURCE_IO) {
2601 info->io_setup = port_setup;
2602 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2603 } else {
2604 info->io_setup = mem_setup;
2605 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2606 }
2607
2608 info->io.addr_data = resource.start;
2609
2610 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2611 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2612 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2613
2614 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2615 info->dev = &dev->dev;
2616
2617 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2618 info->io.addr_data, info->io.regsize, info->io.regspacing,
2619 info->irq);
2620
2621 dev_set_drvdata(&dev->dev, info);
2622
2623 if (add_smi(info)) {
2624 kfree(info);
2625 return -EBUSY;
2626 }
2627 #endif
2628 return 0;
2629 }
2630
2631 static int __devexit ipmi_remove(struct platform_device *dev)
2632 {
2633 #ifdef CONFIG_OF
2634 cleanup_one_si(dev_get_drvdata(&dev->dev));
2635 #endif
2636 return 0;
2637 }
2638
2639 static struct of_device_id ipmi_match[] =
2640 {
2641 { .type = "ipmi", .compatible = "ipmi-kcs",
2642 .data = (void *)(unsigned long) SI_KCS },
2643 { .type = "ipmi", .compatible = "ipmi-smic",
2644 .data = (void *)(unsigned long) SI_SMIC },
2645 { .type = "ipmi", .compatible = "ipmi-bt",
2646 .data = (void *)(unsigned long) SI_BT },
2647 {},
2648 };
2649
2650 static struct platform_driver ipmi_driver = {
2651 .driver = {
2652 .name = DEVICE_NAME,
2653 .owner = THIS_MODULE,
2654 .of_match_table = ipmi_match,
2655 },
2656 .probe = ipmi_probe,
2657 .remove = __devexit_p(ipmi_remove),
2658 };
2659
2660 static int wait_for_msg_done(struct smi_info *smi_info)
2661 {
2662 enum si_sm_result smi_result;
2663
2664 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2665 for (;;) {
2666 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2667 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2668 schedule_timeout_uninterruptible(1);
2669 smi_result = smi_info->handlers->event(
2670 smi_info->si_sm, 100);
2671 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2672 smi_result = smi_info->handlers->event(
2673 smi_info->si_sm, 0);
2674 } else
2675 break;
2676 }
2677 if (smi_result == SI_SM_HOSED)
2678 /*
2679 * We couldn't get the state machine to run, so whatever's at
2680 * the port is probably not an IPMI SMI interface.
2681 */
2682 return -ENODEV;
2683
2684 return 0;
2685 }
2686
2687 static int try_get_dev_id(struct smi_info *smi_info)
2688 {
2689 unsigned char msg[2];
2690 unsigned char *resp;
2691 unsigned long resp_len;
2692 int rv = 0;
2693
2694 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2695 if (!resp)
2696 return -ENOMEM;
2697
2698 /*
2699 * Do a Get Device ID command, since it comes back with some
2700 * useful info.
2701 */
2702 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2703 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2704 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2705
2706 rv = wait_for_msg_done(smi_info);
2707 if (rv)
2708 goto out;
2709
2710 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2711 resp, IPMI_MAX_MSG_LENGTH);
2712
2713 /* Check and record info from the get device id, in case we need it. */
2714 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2715
2716 out:
2717 kfree(resp);
2718 return rv;
2719 }
2720
2721 static int try_enable_event_buffer(struct smi_info *smi_info)
2722 {
2723 unsigned char msg[3];
2724 unsigned char *resp;
2725 unsigned long resp_len;
2726 int rv = 0;
2727
2728 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2729 if (!resp)
2730 return -ENOMEM;
2731
2732 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2733 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2734 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2735
2736 rv = wait_for_msg_done(smi_info);
2737 if (rv) {
2738 printk(KERN_WARNING PFX "Error getting response from get"
2739 " global enables command, the event buffer is not"
2740 " enabled.\n");
2741 goto out;
2742 }
2743
2744 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2745 resp, IPMI_MAX_MSG_LENGTH);
2746
2747 if (resp_len < 4 ||
2748 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2749 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2750 resp[2] != 0) {
2751 printk(KERN_WARNING PFX "Invalid return from get global"
2752 " enables command, cannot enable the event buffer.\n");
2753 rv = -EINVAL;
2754 goto out;
2755 }
2756
2757 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2758 /* buffer is already enabled, nothing to do. */
2759 goto out;
2760
2761 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2762 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2763 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2764 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2765
2766 rv = wait_for_msg_done(smi_info);
2767 if (rv) {
2768 printk(KERN_WARNING PFX "Error getting response from set"
2769 " global, enables command, the event buffer is not"
2770 " enabled.\n");
2771 goto out;
2772 }
2773
2774 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2775 resp, IPMI_MAX_MSG_LENGTH);
2776
2777 if (resp_len < 3 ||
2778 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2779 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2780 printk(KERN_WARNING PFX "Invalid return from get global,"
2781 "enables command, not enable the event buffer.\n");
2782 rv = -EINVAL;
2783 goto out;
2784 }
2785
2786 if (resp[2] != 0)
2787 /*
2788 * An error when setting the event buffer bit means
2789 * that the event buffer is not supported.
2790 */
2791 rv = -ENOENT;
2792 out:
2793 kfree(resp);
2794 return rv;
2795 }
2796
2797 static int type_file_read_proc(char *page, char **start, off_t off,
2798 int count, int *eof, void *data)
2799 {
2800 struct smi_info *smi = data;
2801
2802 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2803 }
2804
2805 static int stat_file_read_proc(char *page, char **start, off_t off,
2806 int count, int *eof, void *data)
2807 {
2808 char *out = (char *) page;
2809 struct smi_info *smi = data;
2810
2811 out += sprintf(out, "interrupts_enabled: %d\n",
2812 smi->irq && !smi->interrupt_disabled);
2813 out += sprintf(out, "short_timeouts: %u\n",
2814 smi_get_stat(smi, short_timeouts));
2815 out += sprintf(out, "long_timeouts: %u\n",
2816 smi_get_stat(smi, long_timeouts));
2817 out += sprintf(out, "idles: %u\n",
2818 smi_get_stat(smi, idles));
2819 out += sprintf(out, "interrupts: %u\n",
2820 smi_get_stat(smi, interrupts));
2821 out += sprintf(out, "attentions: %u\n",
2822 smi_get_stat(smi, attentions));
2823 out += sprintf(out, "flag_fetches: %u\n",
2824 smi_get_stat(smi, flag_fetches));
2825 out += sprintf(out, "hosed_count: %u\n",
2826 smi_get_stat(smi, hosed_count));
2827 out += sprintf(out, "complete_transactions: %u\n",
2828 smi_get_stat(smi, complete_transactions));
2829 out += sprintf(out, "events: %u\n",
2830 smi_get_stat(smi, events));
2831 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2832 smi_get_stat(smi, watchdog_pretimeouts));
2833 out += sprintf(out, "incoming_messages: %u\n",
2834 smi_get_stat(smi, incoming_messages));
2835
2836 return out - page;
2837 }
2838
2839 static int param_read_proc(char *page, char **start, off_t off,
2840 int count, int *eof, void *data)
2841 {
2842 struct smi_info *smi = data;
2843
2844 return sprintf(page,
2845 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2846 si_to_str[smi->si_type],
2847 addr_space_to_str[smi->io.addr_type],
2848 smi->io.addr_data,
2849 smi->io.regspacing,
2850 smi->io.regsize,
2851 smi->io.regshift,
2852 smi->irq,
2853 smi->slave_addr);
2854 }
2855
2856 /*
2857 * oem_data_avail_to_receive_msg_avail
2858 * @info - smi_info structure with msg_flags set
2859 *
2860 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2861 * Returns 1 indicating need to re-run handle_flags().
2862 */
2863 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2864 {
2865 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2866 RECEIVE_MSG_AVAIL);
2867 return 1;
2868 }
2869
2870 /*
2871 * setup_dell_poweredge_oem_data_handler
2872 * @info - smi_info.device_id must be populated
2873 *
2874 * Systems that match, but have firmware version < 1.40 may assert
2875 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2876 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2877 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2878 * as RECEIVE_MSG_AVAIL instead.
2879 *
2880 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2881 * assert the OEM[012] bits, and if it did, the driver would have to
2882 * change to handle that properly, we don't actually check for the
2883 * firmware version.
2884 * Device ID = 0x20 BMC on PowerEdge 8G servers
2885 * Device Revision = 0x80
2886 * Firmware Revision1 = 0x01 BMC version 1.40
2887 * Firmware Revision2 = 0x40 BCD encoded
2888 * IPMI Version = 0x51 IPMI 1.5
2889 * Manufacturer ID = A2 02 00 Dell IANA
2890 *
2891 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2892 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2893 *
2894 */
2895 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2896 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2897 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2898 #define DELL_IANA_MFR_ID 0x0002a2
2899 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2900 {
2901 struct ipmi_device_id *id = &smi_info->device_id;
2902 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2903 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2904 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2905 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2906 smi_info->oem_data_avail_handler =
2907 oem_data_avail_to_receive_msg_avail;
2908 } else if (ipmi_version_major(id) < 1 ||
2909 (ipmi_version_major(id) == 1 &&
2910 ipmi_version_minor(id) < 5)) {
2911 smi_info->oem_data_avail_handler =
2912 oem_data_avail_to_receive_msg_avail;
2913 }
2914 }
2915 }
2916
2917 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2918 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2919 {
2920 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2921
2922 /* Make it a reponse */
2923 msg->rsp[0] = msg->data[0] | 4;
2924 msg->rsp[1] = msg->data[1];
2925 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2926 msg->rsp_size = 3;
2927 smi_info->curr_msg = NULL;
2928 deliver_recv_msg(smi_info, msg);
2929 }
2930
2931 /*
2932 * dell_poweredge_bt_xaction_handler
2933 * @info - smi_info.device_id must be populated
2934 *
2935 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2936 * not respond to a Get SDR command if the length of the data
2937 * requested is exactly 0x3A, which leads to command timeouts and no
2938 * data returned. This intercepts such commands, and causes userspace
2939 * callers to try again with a different-sized buffer, which succeeds.
2940 */
2941
2942 #define STORAGE_NETFN 0x0A
2943 #define STORAGE_CMD_GET_SDR 0x23
2944 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2945 unsigned long unused,
2946 void *in)
2947 {
2948 struct smi_info *smi_info = in;
2949 unsigned char *data = smi_info->curr_msg->data;
2950 unsigned int size = smi_info->curr_msg->data_size;
2951 if (size >= 8 &&
2952 (data[0]>>2) == STORAGE_NETFN &&
2953 data[1] == STORAGE_CMD_GET_SDR &&
2954 data[7] == 0x3A) {
2955 return_hosed_msg_badsize(smi_info);
2956 return NOTIFY_STOP;
2957 }
2958 return NOTIFY_DONE;
2959 }
2960
2961 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2962 .notifier_call = dell_poweredge_bt_xaction_handler,
2963 };
2964
2965 /*
2966 * setup_dell_poweredge_bt_xaction_handler
2967 * @info - smi_info.device_id must be filled in already
2968 *
2969 * Fills in smi_info.device_id.start_transaction_pre_hook
2970 * when we know what function to use there.
2971 */
2972 static void
2973 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2974 {
2975 struct ipmi_device_id *id = &smi_info->device_id;
2976 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2977 smi_info->si_type == SI_BT)
2978 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2979 }
2980
2981 /*
2982 * setup_oem_data_handler
2983 * @info - smi_info.device_id must be filled in already
2984 *
2985 * Fills in smi_info.device_id.oem_data_available_handler
2986 * when we know what function to use there.
2987 */
2988
2989 static void setup_oem_data_handler(struct smi_info *smi_info)
2990 {
2991 setup_dell_poweredge_oem_data_handler(smi_info);
2992 }
2993
2994 static void setup_xaction_handlers(struct smi_info *smi_info)
2995 {
2996 setup_dell_poweredge_bt_xaction_handler(smi_info);
2997 }
2998
2999 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3000 {
3001 if (smi_info->intf) {
3002 /*
3003 * The timer and thread are only running if the
3004 * interface has been started up and registered.
3005 */
3006 if (smi_info->thread != NULL)
3007 kthread_stop(smi_info->thread);
3008 del_timer_sync(&smi_info->si_timer);
3009 }
3010 }
3011
3012 static __devinitdata struct ipmi_default_vals
3013 {
3014 int type;
3015 int port;
3016 } ipmi_defaults[] =
3017 {
3018 { .type = SI_KCS, .port = 0xca2 },
3019 { .type = SI_SMIC, .port = 0xca9 },
3020 { .type = SI_BT, .port = 0xe4 },
3021 { .port = 0 }
3022 };
3023
3024 static void __devinit default_find_bmc(void)
3025 {
3026 struct smi_info *info;
3027 int i;
3028
3029 for (i = 0; ; i++) {
3030 if (!ipmi_defaults[i].port)
3031 break;
3032 #ifdef CONFIG_PPC
3033 if (check_legacy_ioport(ipmi_defaults[i].port))
3034 continue;
3035 #endif
3036 info = smi_info_alloc();
3037 if (!info)
3038 return;
3039
3040 info->addr_source = SI_DEFAULT;
3041
3042 info->si_type = ipmi_defaults[i].type;
3043 info->io_setup = port_setup;
3044 info->io.addr_data = ipmi_defaults[i].port;
3045 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3046
3047 info->io.addr = NULL;
3048 info->io.regspacing = DEFAULT_REGSPACING;
3049 info->io.regsize = DEFAULT_REGSPACING;
3050 info->io.regshift = 0;
3051
3052 if (add_smi(info) == 0) {
3053 if ((try_smi_init(info)) == 0) {
3054 /* Found one... */
3055 printk(KERN_INFO PFX "Found default %s"
3056 " state machine at %s address 0x%lx\n",
3057 si_to_str[info->si_type],
3058 addr_space_to_str[info->io.addr_type],
3059 info->io.addr_data);
3060 } else
3061 cleanup_one_si(info);
3062 } else {
3063 kfree(info);
3064 }
3065 }
3066 }
3067
3068 static int is_new_interface(struct smi_info *info)
3069 {
3070 struct smi_info *e;
3071
3072 list_for_each_entry(e, &smi_infos, link) {
3073 if (e->io.addr_type != info->io.addr_type)
3074 continue;
3075 if (e->io.addr_data == info->io.addr_data)
3076 return 0;
3077 }
3078
3079 return 1;
3080 }
3081
3082 static int add_smi(struct smi_info *new_smi)
3083 {
3084 int rv = 0;
3085
3086 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3087 ipmi_addr_src_to_str[new_smi->addr_source],
3088 si_to_str[new_smi->si_type]);
3089 mutex_lock(&smi_infos_lock);
3090 if (!is_new_interface(new_smi)) {
3091 printk(KERN_CONT " duplicate interface\n");
3092 rv = -EBUSY;
3093 goto out_err;
3094 }
3095
3096 printk(KERN_CONT "\n");
3097
3098 /* So we know not to free it unless we have allocated one. */
3099 new_smi->intf = NULL;
3100 new_smi->si_sm = NULL;
3101 new_smi->handlers = NULL;
3102
3103 list_add_tail(&new_smi->link, &smi_infos);
3104
3105 out_err:
3106 mutex_unlock(&smi_infos_lock);
3107 return rv;
3108 }
3109
3110 static int try_smi_init(struct smi_info *new_smi)
3111 {
3112 int rv = 0;
3113 int i;
3114
3115 printk(KERN_INFO PFX "Trying %s-specified %s state"
3116 " machine at %s address 0x%lx, slave address 0x%x,"
3117 " irq %d\n",
3118 ipmi_addr_src_to_str[new_smi->addr_source],
3119 si_to_str[new_smi->si_type],
3120 addr_space_to_str[new_smi->io.addr_type],
3121 new_smi->io.addr_data,
3122 new_smi->slave_addr, new_smi->irq);
3123
3124 switch (new_smi->si_type) {
3125 case SI_KCS:
3126 new_smi->handlers = &kcs_smi_handlers;
3127 break;
3128
3129 case SI_SMIC:
3130 new_smi->handlers = &smic_smi_handlers;
3131 break;
3132
3133 case SI_BT:
3134 new_smi->handlers = &bt_smi_handlers;
3135 break;
3136
3137 default:
3138 /* No support for anything else yet. */
3139 rv = -EIO;
3140 goto out_err;
3141 }
3142
3143 /* Allocate the state machine's data and initialize it. */
3144 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3145 if (!new_smi->si_sm) {
3146 printk(KERN_ERR PFX
3147 "Could not allocate state machine memory\n");
3148 rv = -ENOMEM;
3149 goto out_err;
3150 }
3151 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3152 &new_smi->io);
3153
3154 /* Now that we know the I/O size, we can set up the I/O. */
3155 rv = new_smi->io_setup(new_smi);
3156 if (rv) {
3157 printk(KERN_ERR PFX "Could not set up I/O space\n");
3158 goto out_err;
3159 }
3160
3161 /* Do low-level detection first. */
3162 if (new_smi->handlers->detect(new_smi->si_sm)) {
3163 if (new_smi->addr_source)
3164 printk(KERN_INFO PFX "Interface detection failed\n");
3165 rv = -ENODEV;
3166 goto out_err;
3167 }
3168
3169 /*
3170 * Attempt a get device id command. If it fails, we probably
3171 * don't have a BMC here.
3172 */
3173 rv = try_get_dev_id(new_smi);
3174 if (rv) {
3175 if (new_smi->addr_source)
3176 printk(KERN_INFO PFX "There appears to be no BMC"
3177 " at this location\n");
3178 goto out_err;
3179 }
3180
3181 setup_oem_data_handler(new_smi);
3182 setup_xaction_handlers(new_smi);
3183
3184 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3185 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3186 new_smi->curr_msg = NULL;
3187 atomic_set(&new_smi->req_events, 0);
3188 new_smi->run_to_completion = 0;
3189 for (i = 0; i < SI_NUM_STATS; i++)
3190 atomic_set(&new_smi->stats[i], 0);
3191
3192 new_smi->interrupt_disabled = 1;
3193 atomic_set(&new_smi->stop_operation, 0);
3194 new_smi->intf_num = smi_num;
3195 smi_num++;
3196
3197 rv = try_enable_event_buffer(new_smi);
3198 if (rv == 0)
3199 new_smi->has_event_buffer = 1;
3200
3201 /*
3202 * Start clearing the flags before we enable interrupts or the
3203 * timer to avoid racing with the timer.
3204 */
3205 start_clear_flags(new_smi);
3206 /* IRQ is defined to be set when non-zero. */
3207 if (new_smi->irq)
3208 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3209
3210 if (!new_smi->dev) {
3211 /*
3212 * If we don't already have a device from something
3213 * else (like PCI), then register a new one.
3214 */
3215 new_smi->pdev = platform_device_alloc("ipmi_si",
3216 new_smi->intf_num);
3217 if (!new_smi->pdev) {
3218 printk(KERN_ERR PFX
3219 "Unable to allocate platform device\n");
3220 goto out_err;
3221 }
3222 new_smi->dev = &new_smi->pdev->dev;
3223 new_smi->dev->driver = &ipmi_driver.driver;
3224
3225 rv = platform_device_add(new_smi->pdev);
3226 if (rv) {
3227 printk(KERN_ERR PFX
3228 "Unable to register system interface device:"
3229 " %d\n",
3230 rv);
3231 goto out_err;
3232 }
3233 new_smi->dev_registered = 1;
3234 }
3235
3236 rv = ipmi_register_smi(&handlers,
3237 new_smi,
3238 &new_smi->device_id,
3239 new_smi->dev,
3240 "bmc",
3241 new_smi->slave_addr);
3242 if (rv) {
3243 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3244 rv);
3245 goto out_err_stop_timer;
3246 }
3247
3248 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3249 type_file_read_proc,
3250 new_smi);
3251 if (rv) {
3252 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3253 goto out_err_stop_timer;
3254 }
3255
3256 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3257 stat_file_read_proc,
3258 new_smi);
3259 if (rv) {
3260 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3261 goto out_err_stop_timer;
3262 }
3263
3264 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3265 param_read_proc,
3266 new_smi);
3267 if (rv) {
3268 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3269 goto out_err_stop_timer;
3270 }
3271
3272 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3273 si_to_str[new_smi->si_type]);
3274
3275 return 0;
3276
3277 out_err_stop_timer:
3278 atomic_inc(&new_smi->stop_operation);
3279 wait_for_timer_and_thread(new_smi);
3280
3281 out_err:
3282 new_smi->interrupt_disabled = 1;
3283
3284 if (new_smi->intf) {
3285 ipmi_unregister_smi(new_smi->intf);
3286 new_smi->intf = NULL;
3287 }
3288
3289 if (new_smi->irq_cleanup) {
3290 new_smi->irq_cleanup(new_smi);
3291 new_smi->irq_cleanup = NULL;
3292 }
3293
3294 /*
3295 * Wait until we know that we are out of any interrupt
3296 * handlers might have been running before we freed the
3297 * interrupt.
3298 */
3299 synchronize_sched();
3300
3301 if (new_smi->si_sm) {
3302 if (new_smi->handlers)
3303 new_smi->handlers->cleanup(new_smi->si_sm);
3304 kfree(new_smi->si_sm);
3305 new_smi->si_sm = NULL;
3306 }
3307 if (new_smi->addr_source_cleanup) {
3308 new_smi->addr_source_cleanup(new_smi);
3309 new_smi->addr_source_cleanup = NULL;
3310 }
3311 if (new_smi->io_cleanup) {
3312 new_smi->io_cleanup(new_smi);
3313 new_smi->io_cleanup = NULL;
3314 }
3315
3316 if (new_smi->dev_registered) {
3317 platform_device_unregister(new_smi->pdev);
3318 new_smi->dev_registered = 0;
3319 }
3320
3321 return rv;
3322 }
3323
3324 static int __devinit init_ipmi_si(void)
3325 {
3326 int i;
3327 char *str;
3328 int rv;
3329 struct smi_info *e;
3330 enum ipmi_addr_src type = SI_INVALID;
3331
3332 if (initialized)
3333 return 0;
3334 initialized = 1;
3335
3336 rv = platform_driver_register(&ipmi_driver);
3337 if (rv) {
3338 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3339 return rv;
3340 }
3341
3342
3343 /* Parse out the si_type string into its components. */
3344 str = si_type_str;
3345 if (*str != '\0') {
3346 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3347 si_type[i] = str;
3348 str = strchr(str, ',');
3349 if (str) {
3350 *str = '\0';
3351 str++;
3352 } else {
3353 break;
3354 }
3355 }
3356 }
3357
3358 printk(KERN_INFO "IPMI System Interface driver.\n");
3359
3360 /* If the user gave us a device, they presumably want us to use it */
3361 if (!hardcode_find_bmc())
3362 return 0;
3363
3364 #ifdef CONFIG_PCI
3365 rv = pci_register_driver(&ipmi_pci_driver);
3366 if (rv)
3367 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3368 else
3369 pci_registered = 1;
3370 #endif
3371
3372 #ifdef CONFIG_ACPI
3373 pnp_register_driver(&ipmi_pnp_driver);
3374 pnp_registered = 1;
3375 #endif
3376
3377 #ifdef CONFIG_DMI
3378 dmi_find_bmc();
3379 #endif
3380
3381 #ifdef CONFIG_ACPI
3382 spmi_find_bmc();
3383 #endif
3384
3385 /* We prefer devices with interrupts, but in the case of a machine
3386 with multiple BMCs we assume that there will be several instances
3387 of a given type so if we succeed in registering a type then also
3388 try to register everything else of the same type */
3389
3390 mutex_lock(&smi_infos_lock);
3391 list_for_each_entry(e, &smi_infos, link) {
3392 /* Try to register a device if it has an IRQ and we either
3393 haven't successfully registered a device yet or this
3394 device has the same type as one we successfully registered */
3395 if (e->irq && (!type || e->addr_source == type)) {
3396 if (!try_smi_init(e)) {
3397 type = e->addr_source;
3398 }
3399 }
3400 }
3401
3402 /* type will only have been set if we successfully registered an si */
3403 if (type) {
3404 mutex_unlock(&smi_infos_lock);
3405 return 0;
3406 }
3407
3408 /* Fall back to the preferred device */
3409
3410 list_for_each_entry(e, &smi_infos, link) {
3411 if (!e->irq && (!type || e->addr_source == type)) {
3412 if (!try_smi_init(e)) {
3413 type = e->addr_source;
3414 }
3415 }
3416 }
3417 mutex_unlock(&smi_infos_lock);
3418
3419 if (type)
3420 return 0;
3421
3422 if (si_trydefaults) {
3423 mutex_lock(&smi_infos_lock);
3424 if (list_empty(&smi_infos)) {
3425 /* No BMC was found, try defaults. */
3426 mutex_unlock(&smi_infos_lock);
3427 default_find_bmc();
3428 } else
3429 mutex_unlock(&smi_infos_lock);
3430 }
3431
3432 mutex_lock(&smi_infos_lock);
3433 if (unload_when_empty && list_empty(&smi_infos)) {
3434 mutex_unlock(&smi_infos_lock);
3435 cleanup_ipmi_si();
3436 printk(KERN_WARNING PFX
3437 "Unable to find any System Interface(s)\n");
3438 return -ENODEV;
3439 } else {
3440 mutex_unlock(&smi_infos_lock);
3441 return 0;
3442 }
3443 }
3444 module_init(init_ipmi_si);
3445
3446 static void cleanup_one_si(struct smi_info *to_clean)
3447 {
3448 int rv = 0;
3449 unsigned long flags;
3450
3451 if (!to_clean)
3452 return;
3453
3454 list_del(&to_clean->link);
3455
3456 /* Tell the driver that we are shutting down. */
3457 atomic_inc(&to_clean->stop_operation);
3458
3459 /*
3460 * Make sure the timer and thread are stopped and will not run
3461 * again.
3462 */
3463 wait_for_timer_and_thread(to_clean);
3464
3465 /*
3466 * Timeouts are stopped, now make sure the interrupts are off
3467 * for the device. A little tricky with locks to make sure
3468 * there are no races.
3469 */
3470 spin_lock_irqsave(&to_clean->si_lock, flags);
3471 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3472 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3473 poll(to_clean);
3474 schedule_timeout_uninterruptible(1);
3475 spin_lock_irqsave(&to_clean->si_lock, flags);
3476 }
3477 disable_si_irq(to_clean);
3478 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3479 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3480 poll(to_clean);
3481 schedule_timeout_uninterruptible(1);
3482 }
3483
3484 /* Clean up interrupts and make sure that everything is done. */
3485 if (to_clean->irq_cleanup)
3486 to_clean->irq_cleanup(to_clean);
3487 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3488 poll(to_clean);
3489 schedule_timeout_uninterruptible(1);
3490 }
3491
3492 if (to_clean->intf)
3493 rv = ipmi_unregister_smi(to_clean->intf);
3494
3495 if (rv) {
3496 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3497 rv);
3498 }
3499
3500 if (to_clean->handlers)
3501 to_clean->handlers->cleanup(to_clean->si_sm);
3502
3503 kfree(to_clean->si_sm);
3504
3505 if (to_clean->addr_source_cleanup)
3506 to_clean->addr_source_cleanup(to_clean);
3507 if (to_clean->io_cleanup)
3508 to_clean->io_cleanup(to_clean);
3509
3510 if (to_clean->dev_registered)
3511 platform_device_unregister(to_clean->pdev);
3512
3513 kfree(to_clean);
3514 }
3515
3516 static void __exit cleanup_ipmi_si(void)
3517 {
3518 struct smi_info *e, *tmp_e;
3519
3520 if (!initialized)
3521 return;
3522
3523 #ifdef CONFIG_PCI
3524 if (pci_registered)
3525 pci_unregister_driver(&ipmi_pci_driver);
3526 #endif
3527 #ifdef CONFIG_ACPI
3528 if (pnp_registered)
3529 pnp_unregister_driver(&ipmi_pnp_driver);
3530 #endif
3531
3532 platform_driver_unregister(&ipmi_driver);
3533
3534 mutex_lock(&smi_infos_lock);
3535 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3536 cleanup_one_si(e);
3537 mutex_unlock(&smi_infos_lock);
3538 }
3539 module_exit(cleanup_ipmi_si);
3540
3541 MODULE_LICENSE("GPL");
3542 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3543 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3544 " system interfaces.");
This page took 0.107835 seconds and 5 git commands to generate.