Merge tag 'mac80211-next-for-davem-2015-01-19' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
89
90 enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_GETTING_MESSAGES,
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
98 /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 #define DEVICE_NAME "ipmi_si"
112
113 static struct platform_driver ipmi_driver;
114
115 /*
116 * Indexes into stats[] in smi_info below.
117 */
118 enum si_stat_indexes {
119 /*
120 * Number of times the driver requested a timer while an operation
121 * was in progress.
122 */
123 SI_STAT_short_timeouts = 0,
124
125 /*
126 * Number of times the driver requested a timer while nothing was in
127 * progress.
128 */
129 SI_STAT_long_timeouts,
130
131 /* Number of times the interface was idle while being polled. */
132 SI_STAT_idles,
133
134 /* Number of interrupts the driver handled. */
135 SI_STAT_interrupts,
136
137 /* Number of time the driver got an ATTN from the hardware. */
138 SI_STAT_attentions,
139
140 /* Number of times the driver requested flags from the hardware. */
141 SI_STAT_flag_fetches,
142
143 /* Number of times the hardware didn't follow the state machine. */
144 SI_STAT_hosed_count,
145
146 /* Number of completed messages. */
147 SI_STAT_complete_transactions,
148
149 /* Number of IPMI events received from the hardware. */
150 SI_STAT_events,
151
152 /* Number of watchdog pretimeouts. */
153 SI_STAT_watchdog_pretimeouts,
154
155 /* Number of asynchronous messages received. */
156 SI_STAT_incoming_messages,
157
158
159 /* This *must* remain last, add new values above this. */
160 SI_NUM_STATS
161 };
162
163 struct smi_info {
164 int intf_num;
165 ipmi_smi_t intf;
166 struct si_sm_data *si_sm;
167 struct si_sm_handlers *handlers;
168 enum si_type si_type;
169 spinlock_t si_lock;
170 struct ipmi_smi_msg *waiting_msg;
171 struct ipmi_smi_msg *curr_msg;
172 enum si_intf_state si_state;
173
174 /*
175 * Used to handle the various types of I/O that can occur with
176 * IPMI
177 */
178 struct si_sm_io io;
179 int (*io_setup)(struct smi_info *info);
180 void (*io_cleanup)(struct smi_info *info);
181 int (*irq_setup)(struct smi_info *info);
182 void (*irq_cleanup)(struct smi_info *info);
183 unsigned int io_size;
184 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 void (*addr_source_cleanup)(struct smi_info *info);
186 void *addr_source_data;
187
188 /*
189 * Per-OEM handler, called from handle_flags(). Returns 1
190 * when handle_flags() needs to be re-run or 0 indicating it
191 * set si_state itself.
192 */
193 int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195 /*
196 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 * is set to hold the flags until we are done handling everything
198 * from the flags.
199 */
200 #define RECEIVE_MSG_AVAIL 0x01
201 #define EVENT_MSG_BUFFER_FULL 0x02
202 #define WDT_PRE_TIMEOUT_INT 0x08
203 #define OEM0_DATA_AVAIL 0x20
204 #define OEM1_DATA_AVAIL 0x40
205 #define OEM2_DATA_AVAIL 0x80
206 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
207 OEM1_DATA_AVAIL | \
208 OEM2_DATA_AVAIL)
209 unsigned char msg_flags;
210
211 /* Does the BMC have an event buffer? */
212 bool has_event_buffer;
213
214 /*
215 * If set to true, this will request events the next time the
216 * state machine is idle.
217 */
218 atomic_t req_events;
219
220 /*
221 * If true, run the state machine to completion on every send
222 * call. Generally used after a panic to make sure stuff goes
223 * out.
224 */
225 bool run_to_completion;
226
227 /* The I/O port of an SI interface. */
228 int port;
229
230 /*
231 * The space between start addresses of the two ports. For
232 * instance, if the first port is 0xca2 and the spacing is 4, then
233 * the second port is 0xca6.
234 */
235 unsigned int spacing;
236
237 /* zero if no irq; */
238 int irq;
239
240 /* The timer for this si. */
241 struct timer_list si_timer;
242
243 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 bool timer_running;
245
246 /* The time (in jiffies) the last timeout occurred at. */
247 unsigned long last_timeout_jiffies;
248
249 /* Are we waiting for the events, pretimeouts, received msgs? */
250 atomic_t need_watch;
251
252 /*
253 * The driver will disable interrupts when it gets into a
254 * situation where it cannot handle messages due to lack of
255 * memory. Once that situation clears up, it will re-enable
256 * interrupts.
257 */
258 bool interrupt_disabled;
259
260 /*
261 * Does the BMC support events?
262 */
263 bool supports_event_msg_buff;
264
265 /*
266 * Did we get an attention that we did not handle?
267 */
268 bool got_attn;
269
270 /* From the get device id response... */
271 struct ipmi_device_id device_id;
272
273 /* Driver model stuff. */
274 struct device *dev;
275 struct platform_device *pdev;
276
277 /*
278 * True if we allocated the device, false if it came from
279 * someplace else (like PCI).
280 */
281 bool dev_registered;
282
283 /* Slave address, could be reported from DMI. */
284 unsigned char slave_addr;
285
286 /* Counters and things for the proc filesystem. */
287 atomic_t stats[SI_NUM_STATS];
288
289 struct task_struct *thread;
290
291 struct list_head link;
292 union ipmi_smi_info_union addr_info;
293 };
294
295 #define smi_inc_stat(smi, stat) \
296 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
297 #define smi_get_stat(smi, stat) \
298 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
299
300 #define SI_MAX_PARMS 4
301
302 static int force_kipmid[SI_MAX_PARMS];
303 static int num_force_kipmid;
304 #ifdef CONFIG_PCI
305 static bool pci_registered;
306 #endif
307 #ifdef CONFIG_ACPI
308 static bool pnp_registered;
309 #endif
310 #ifdef CONFIG_PARISC
311 static bool parisc_registered;
312 #endif
313
314 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
315 static int num_max_busy_us;
316
317 static bool unload_when_empty = true;
318
319 static int add_smi(struct smi_info *smi);
320 static int try_smi_init(struct smi_info *smi);
321 static void cleanup_one_si(struct smi_info *to_clean);
322 static void cleanup_ipmi_si(void);
323
324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
325 static int register_xaction_notifier(struct notifier_block *nb)
326 {
327 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
328 }
329
330 static void deliver_recv_msg(struct smi_info *smi_info,
331 struct ipmi_smi_msg *msg)
332 {
333 /* Deliver the message to the upper layer. */
334 if (smi_info->intf)
335 ipmi_smi_msg_received(smi_info->intf, msg);
336 else
337 ipmi_free_smi_msg(msg);
338 }
339
340 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
341 {
342 struct ipmi_smi_msg *msg = smi_info->curr_msg;
343
344 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
345 cCode = IPMI_ERR_UNSPECIFIED;
346 /* else use it as is */
347
348 /* Make it a response */
349 msg->rsp[0] = msg->data[0] | 4;
350 msg->rsp[1] = msg->data[1];
351 msg->rsp[2] = cCode;
352 msg->rsp_size = 3;
353
354 smi_info->curr_msg = NULL;
355 deliver_recv_msg(smi_info, msg);
356 }
357
358 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
359 {
360 int rv;
361 #ifdef DEBUG_TIMING
362 struct timeval t;
363 #endif
364
365 if (!smi_info->waiting_msg) {
366 smi_info->curr_msg = NULL;
367 rv = SI_SM_IDLE;
368 } else {
369 int err;
370
371 smi_info->curr_msg = smi_info->waiting_msg;
372 smi_info->waiting_msg = NULL;
373 #ifdef DEBUG_TIMING
374 do_gettimeofday(&t);
375 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
376 #endif
377 err = atomic_notifier_call_chain(&xaction_notifier_list,
378 0, smi_info);
379 if (err & NOTIFY_STOP_MASK) {
380 rv = SI_SM_CALL_WITHOUT_DELAY;
381 goto out;
382 }
383 err = smi_info->handlers->start_transaction(
384 smi_info->si_sm,
385 smi_info->curr_msg->data,
386 smi_info->curr_msg->data_size);
387 if (err)
388 return_hosed_msg(smi_info, err);
389
390 rv = SI_SM_CALL_WITHOUT_DELAY;
391 }
392 out:
393 return rv;
394 }
395
396 static void start_check_enables(struct smi_info *smi_info)
397 {
398 unsigned char msg[2];
399
400 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
401 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
402
403 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
404 smi_info->si_state = SI_CHECKING_ENABLES;
405 }
406
407 static void start_clear_flags(struct smi_info *smi_info)
408 {
409 unsigned char msg[3];
410
411 /* Make sure the watchdog pre-timeout flag is not set at startup. */
412 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
413 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
414 msg[2] = WDT_PRE_TIMEOUT_INT;
415
416 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
417 smi_info->si_state = SI_CLEARING_FLAGS;
418 }
419
420 static void start_getting_msg_queue(struct smi_info *smi_info)
421 {
422 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
424 smi_info->curr_msg->data_size = 2;
425
426 smi_info->handlers->start_transaction(
427 smi_info->si_sm,
428 smi_info->curr_msg->data,
429 smi_info->curr_msg->data_size);
430 smi_info->si_state = SI_GETTING_MESSAGES;
431 }
432
433 static void start_getting_events(struct smi_info *smi_info)
434 {
435 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
436 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
437 smi_info->curr_msg->data_size = 2;
438
439 smi_info->handlers->start_transaction(
440 smi_info->si_sm,
441 smi_info->curr_msg->data,
442 smi_info->curr_msg->data_size);
443 smi_info->si_state = SI_GETTING_EVENTS;
444 }
445
446 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
447 {
448 smi_info->last_timeout_jiffies = jiffies;
449 mod_timer(&smi_info->si_timer, new_val);
450 smi_info->timer_running = true;
451 }
452
453 /*
454 * When we have a situtaion where we run out of memory and cannot
455 * allocate messages, we just leave them in the BMC and run the system
456 * polled until we can allocate some memory. Once we have some
457 * memory, we will re-enable the interrupt.
458 */
459 static inline bool disable_si_irq(struct smi_info *smi_info)
460 {
461 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
462 smi_info->interrupt_disabled = true;
463 start_check_enables(smi_info);
464 return true;
465 }
466 return false;
467 }
468
469 static inline bool enable_si_irq(struct smi_info *smi_info)
470 {
471 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
472 smi_info->interrupt_disabled = false;
473 start_check_enables(smi_info);
474 return true;
475 }
476 return false;
477 }
478
479 /*
480 * Allocate a message. If unable to allocate, start the interrupt
481 * disable process and return NULL. If able to allocate but
482 * interrupts are disabled, free the message and return NULL after
483 * starting the interrupt enable process.
484 */
485 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
486 {
487 struct ipmi_smi_msg *msg;
488
489 msg = ipmi_alloc_smi_msg();
490 if (!msg) {
491 if (!disable_si_irq(smi_info))
492 smi_info->si_state = SI_NORMAL;
493 } else if (enable_si_irq(smi_info)) {
494 ipmi_free_smi_msg(msg);
495 msg = NULL;
496 }
497 return msg;
498 }
499
500 static void handle_flags(struct smi_info *smi_info)
501 {
502 retry:
503 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
504 /* Watchdog pre-timeout */
505 smi_inc_stat(smi_info, watchdog_pretimeouts);
506
507 start_clear_flags(smi_info);
508 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
509 if (smi_info->intf)
510 ipmi_smi_watchdog_pretimeout(smi_info->intf);
511 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
512 /* Messages available. */
513 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
514 if (!smi_info->curr_msg)
515 return;
516
517 start_getting_msg_queue(smi_info);
518 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
519 /* Events available. */
520 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
521 if (!smi_info->curr_msg)
522 return;
523
524 start_getting_events(smi_info);
525 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
526 smi_info->oem_data_avail_handler) {
527 if (smi_info->oem_data_avail_handler(smi_info))
528 goto retry;
529 } else
530 smi_info->si_state = SI_NORMAL;
531 }
532
533 /*
534 * Global enables we care about.
535 */
536 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
537 IPMI_BMC_EVT_MSG_INTR)
538
539 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
540 bool *irq_on)
541 {
542 u8 enables = 0;
543
544 if (smi_info->supports_event_msg_buff)
545 enables |= IPMI_BMC_EVT_MSG_BUFF;
546 else
547 enables &= ~IPMI_BMC_EVT_MSG_BUFF;
548
549 if (smi_info->irq && !smi_info->interrupt_disabled)
550 enables |= IPMI_BMC_RCV_MSG_INTR;
551 else
552 enables &= ~IPMI_BMC_RCV_MSG_INTR;
553
554 if (smi_info->supports_event_msg_buff &&
555 smi_info->irq && !smi_info->interrupt_disabled)
556
557 enables |= IPMI_BMC_EVT_MSG_INTR;
558 else
559 enables &= ~IPMI_BMC_EVT_MSG_INTR;
560
561 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
562
563 return enables;
564 }
565
566 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
567 {
568 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
569
570 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
571
572 if ((bool)irqstate == irq_on)
573 return;
574
575 if (irq_on)
576 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
577 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
578 else
579 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
580 }
581
582 static void handle_transaction_done(struct smi_info *smi_info)
583 {
584 struct ipmi_smi_msg *msg;
585 #ifdef DEBUG_TIMING
586 struct timeval t;
587
588 do_gettimeofday(&t);
589 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
590 #endif
591 switch (smi_info->si_state) {
592 case SI_NORMAL:
593 if (!smi_info->curr_msg)
594 break;
595
596 smi_info->curr_msg->rsp_size
597 = smi_info->handlers->get_result(
598 smi_info->si_sm,
599 smi_info->curr_msg->rsp,
600 IPMI_MAX_MSG_LENGTH);
601
602 /*
603 * Do this here becase deliver_recv_msg() releases the
604 * lock, and a new message can be put in during the
605 * time the lock is released.
606 */
607 msg = smi_info->curr_msg;
608 smi_info->curr_msg = NULL;
609 deliver_recv_msg(smi_info, msg);
610 break;
611
612 case SI_GETTING_FLAGS:
613 {
614 unsigned char msg[4];
615 unsigned int len;
616
617 /* We got the flags from the SMI, now handle them. */
618 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
619 if (msg[2] != 0) {
620 /* Error fetching flags, just give up for now. */
621 smi_info->si_state = SI_NORMAL;
622 } else if (len < 4) {
623 /*
624 * Hmm, no flags. That's technically illegal, but
625 * don't use uninitialized data.
626 */
627 smi_info->si_state = SI_NORMAL;
628 } else {
629 smi_info->msg_flags = msg[3];
630 handle_flags(smi_info);
631 }
632 break;
633 }
634
635 case SI_CLEARING_FLAGS:
636 {
637 unsigned char msg[3];
638
639 /* We cleared the flags. */
640 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
641 if (msg[2] != 0) {
642 /* Error clearing flags */
643 dev_warn(smi_info->dev,
644 "Error clearing flags: %2.2x\n", msg[2]);
645 }
646 smi_info->si_state = SI_NORMAL;
647 break;
648 }
649
650 case SI_GETTING_EVENTS:
651 {
652 smi_info->curr_msg->rsp_size
653 = smi_info->handlers->get_result(
654 smi_info->si_sm,
655 smi_info->curr_msg->rsp,
656 IPMI_MAX_MSG_LENGTH);
657
658 /*
659 * Do this here becase deliver_recv_msg() releases the
660 * lock, and a new message can be put in during the
661 * time the lock is released.
662 */
663 msg = smi_info->curr_msg;
664 smi_info->curr_msg = NULL;
665 if (msg->rsp[2] != 0) {
666 /* Error getting event, probably done. */
667 msg->done(msg);
668
669 /* Take off the event flag. */
670 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
671 handle_flags(smi_info);
672 } else {
673 smi_inc_stat(smi_info, events);
674
675 /*
676 * Do this before we deliver the message
677 * because delivering the message releases the
678 * lock and something else can mess with the
679 * state.
680 */
681 handle_flags(smi_info);
682
683 deliver_recv_msg(smi_info, msg);
684 }
685 break;
686 }
687
688 case SI_GETTING_MESSAGES:
689 {
690 smi_info->curr_msg->rsp_size
691 = smi_info->handlers->get_result(
692 smi_info->si_sm,
693 smi_info->curr_msg->rsp,
694 IPMI_MAX_MSG_LENGTH);
695
696 /*
697 * Do this here becase deliver_recv_msg() releases the
698 * lock, and a new message can be put in during the
699 * time the lock is released.
700 */
701 msg = smi_info->curr_msg;
702 smi_info->curr_msg = NULL;
703 if (msg->rsp[2] != 0) {
704 /* Error getting event, probably done. */
705 msg->done(msg);
706
707 /* Take off the msg flag. */
708 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
709 handle_flags(smi_info);
710 } else {
711 smi_inc_stat(smi_info, incoming_messages);
712
713 /*
714 * Do this before we deliver the message
715 * because delivering the message releases the
716 * lock and something else can mess with the
717 * state.
718 */
719 handle_flags(smi_info);
720
721 deliver_recv_msg(smi_info, msg);
722 }
723 break;
724 }
725
726 case SI_CHECKING_ENABLES:
727 {
728 unsigned char msg[4];
729 u8 enables;
730 bool irq_on;
731
732 /* We got the flags from the SMI, now handle them. */
733 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
734 if (msg[2] != 0) {
735 dev_warn(smi_info->dev,
736 "Couldn't get irq info: %x.\n", msg[2]);
737 dev_warn(smi_info->dev,
738 "Maybe ok, but ipmi might run very slowly.\n");
739 smi_info->si_state = SI_NORMAL;
740 break;
741 }
742 enables = current_global_enables(smi_info, 0, &irq_on);
743 if (smi_info->si_type == SI_BT)
744 /* BT has its own interrupt enable bit. */
745 check_bt_irq(smi_info, irq_on);
746 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
747 /* Enables are not correct, fix them. */
748 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
749 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
750 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
751 smi_info->handlers->start_transaction(
752 smi_info->si_sm, msg, 3);
753 smi_info->si_state = SI_SETTING_ENABLES;
754 } else if (smi_info->supports_event_msg_buff) {
755 smi_info->curr_msg = ipmi_alloc_smi_msg();
756 if (!smi_info->curr_msg) {
757 smi_info->si_state = SI_NORMAL;
758 break;
759 }
760 start_getting_msg_queue(smi_info);
761 } else {
762 smi_info->si_state = SI_NORMAL;
763 }
764 break;
765 }
766
767 case SI_SETTING_ENABLES:
768 {
769 unsigned char msg[4];
770
771 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
772 if (msg[2] != 0)
773 dev_warn(smi_info->dev,
774 "Could not set the global enables: 0x%x.\n",
775 msg[2]);
776
777 if (smi_info->supports_event_msg_buff) {
778 smi_info->curr_msg = ipmi_alloc_smi_msg();
779 if (!smi_info->curr_msg) {
780 smi_info->si_state = SI_NORMAL;
781 break;
782 }
783 start_getting_msg_queue(smi_info);
784 } else {
785 smi_info->si_state = SI_NORMAL;
786 }
787 break;
788 }
789 }
790 }
791
792 /*
793 * Called on timeouts and events. Timeouts should pass the elapsed
794 * time, interrupts should pass in zero. Must be called with
795 * si_lock held and interrupts disabled.
796 */
797 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
798 int time)
799 {
800 enum si_sm_result si_sm_result;
801
802 restart:
803 /*
804 * There used to be a loop here that waited a little while
805 * (around 25us) before giving up. That turned out to be
806 * pointless, the minimum delays I was seeing were in the 300us
807 * range, which is far too long to wait in an interrupt. So
808 * we just run until the state machine tells us something
809 * happened or it needs a delay.
810 */
811 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
812 time = 0;
813 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
814 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
815
816 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
817 smi_inc_stat(smi_info, complete_transactions);
818
819 handle_transaction_done(smi_info);
820 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
821 } else if (si_sm_result == SI_SM_HOSED) {
822 smi_inc_stat(smi_info, hosed_count);
823
824 /*
825 * Do the before return_hosed_msg, because that
826 * releases the lock.
827 */
828 smi_info->si_state = SI_NORMAL;
829 if (smi_info->curr_msg != NULL) {
830 /*
831 * If we were handling a user message, format
832 * a response to send to the upper layer to
833 * tell it about the error.
834 */
835 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
836 }
837 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
838 }
839
840 /*
841 * We prefer handling attn over new messages. But don't do
842 * this if there is not yet an upper layer to handle anything.
843 */
844 if (likely(smi_info->intf) &&
845 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
846 unsigned char msg[2];
847
848 if (smi_info->si_state != SI_NORMAL) {
849 /*
850 * We got an ATTN, but we are doing something else.
851 * Handle the ATTN later.
852 */
853 smi_info->got_attn = true;
854 } else {
855 smi_info->got_attn = false;
856 smi_inc_stat(smi_info, attentions);
857
858 /*
859 * Got a attn, send down a get message flags to see
860 * what's causing it. It would be better to handle
861 * this in the upper layer, but due to the way
862 * interrupts work with the SMI, that's not really
863 * possible.
864 */
865 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
866 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
867
868 smi_info->handlers->start_transaction(
869 smi_info->si_sm, msg, 2);
870 smi_info->si_state = SI_GETTING_FLAGS;
871 goto restart;
872 }
873 }
874
875 /* If we are currently idle, try to start the next message. */
876 if (si_sm_result == SI_SM_IDLE) {
877 smi_inc_stat(smi_info, idles);
878
879 si_sm_result = start_next_msg(smi_info);
880 if (si_sm_result != SI_SM_IDLE)
881 goto restart;
882 }
883
884 if ((si_sm_result == SI_SM_IDLE)
885 && (atomic_read(&smi_info->req_events))) {
886 /*
887 * We are idle and the upper layer requested that I fetch
888 * events, so do so.
889 */
890 atomic_set(&smi_info->req_events, 0);
891
892 /*
893 * Take this opportunity to check the interrupt and
894 * message enable state for the BMC. The BMC can be
895 * asynchronously reset, and may thus get interrupts
896 * disable and messages disabled.
897 */
898 if (smi_info->supports_event_msg_buff || smi_info->irq) {
899 start_check_enables(smi_info);
900 } else {
901 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
902 if (!smi_info->curr_msg)
903 goto out;
904
905 start_getting_events(smi_info);
906 }
907 goto restart;
908 }
909 out:
910 return si_sm_result;
911 }
912
913 static void check_start_timer_thread(struct smi_info *smi_info)
914 {
915 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
916 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
917
918 if (smi_info->thread)
919 wake_up_process(smi_info->thread);
920
921 start_next_msg(smi_info);
922 smi_event_handler(smi_info, 0);
923 }
924 }
925
926 static void sender(void *send_info,
927 struct ipmi_smi_msg *msg)
928 {
929 struct smi_info *smi_info = send_info;
930 enum si_sm_result result;
931 unsigned long flags;
932 #ifdef DEBUG_TIMING
933 struct timeval t;
934 #endif
935
936 BUG_ON(smi_info->waiting_msg);
937 smi_info->waiting_msg = msg;
938
939 #ifdef DEBUG_TIMING
940 do_gettimeofday(&t);
941 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
942 #endif
943
944 if (smi_info->run_to_completion) {
945 /*
946 * If we are running to completion, start it and run
947 * transactions until everything is clear.
948 */
949 smi_info->curr_msg = smi_info->waiting_msg;
950 smi_info->waiting_msg = NULL;
951
952 /*
953 * Run to completion means we are single-threaded, no
954 * need for locks.
955 */
956
957 result = smi_event_handler(smi_info, 0);
958 while (result != SI_SM_IDLE) {
959 udelay(SI_SHORT_TIMEOUT_USEC);
960 result = smi_event_handler(smi_info,
961 SI_SHORT_TIMEOUT_USEC);
962 }
963 return;
964 }
965
966 spin_lock_irqsave(&smi_info->si_lock, flags);
967 check_start_timer_thread(smi_info);
968 spin_unlock_irqrestore(&smi_info->si_lock, flags);
969 }
970
971 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
972 {
973 struct smi_info *smi_info = send_info;
974 enum si_sm_result result;
975
976 smi_info->run_to_completion = i_run_to_completion;
977 if (i_run_to_completion) {
978 result = smi_event_handler(smi_info, 0);
979 while (result != SI_SM_IDLE) {
980 udelay(SI_SHORT_TIMEOUT_USEC);
981 result = smi_event_handler(smi_info,
982 SI_SHORT_TIMEOUT_USEC);
983 }
984 }
985 }
986
987 /*
988 * Use -1 in the nsec value of the busy waiting timespec to tell that
989 * we are spinning in kipmid looking for something and not delaying
990 * between checks
991 */
992 static inline void ipmi_si_set_not_busy(struct timespec *ts)
993 {
994 ts->tv_nsec = -1;
995 }
996 static inline int ipmi_si_is_busy(struct timespec *ts)
997 {
998 return ts->tv_nsec != -1;
999 }
1000
1001 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1002 const struct smi_info *smi_info,
1003 struct timespec *busy_until)
1004 {
1005 unsigned int max_busy_us = 0;
1006
1007 if (smi_info->intf_num < num_max_busy_us)
1008 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1009 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1010 ipmi_si_set_not_busy(busy_until);
1011 else if (!ipmi_si_is_busy(busy_until)) {
1012 getnstimeofday(busy_until);
1013 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1014 } else {
1015 struct timespec now;
1016 getnstimeofday(&now);
1017 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
1018 ipmi_si_set_not_busy(busy_until);
1019 return 0;
1020 }
1021 }
1022 return 1;
1023 }
1024
1025
1026 /*
1027 * A busy-waiting loop for speeding up IPMI operation.
1028 *
1029 * Lousy hardware makes this hard. This is only enabled for systems
1030 * that are not BT and do not have interrupts. It starts spinning
1031 * when an operation is complete or until max_busy tells it to stop
1032 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1033 * Documentation/IPMI.txt for details.
1034 */
1035 static int ipmi_thread(void *data)
1036 {
1037 struct smi_info *smi_info = data;
1038 unsigned long flags;
1039 enum si_sm_result smi_result;
1040 struct timespec busy_until;
1041
1042 ipmi_si_set_not_busy(&busy_until);
1043 set_user_nice(current, MAX_NICE);
1044 while (!kthread_should_stop()) {
1045 int busy_wait;
1046
1047 spin_lock_irqsave(&(smi_info->si_lock), flags);
1048 smi_result = smi_event_handler(smi_info, 0);
1049
1050 /*
1051 * If the driver is doing something, there is a possible
1052 * race with the timer. If the timer handler see idle,
1053 * and the thread here sees something else, the timer
1054 * handler won't restart the timer even though it is
1055 * required. So start it here if necessary.
1056 */
1057 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1058 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1059
1060 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1061 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1062 &busy_until);
1063 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1064 ; /* do nothing */
1065 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1066 schedule();
1067 else if (smi_result == SI_SM_IDLE) {
1068 if (atomic_read(&smi_info->need_watch)) {
1069 schedule_timeout_interruptible(100);
1070 } else {
1071 /* Wait to be woken up when we are needed. */
1072 __set_current_state(TASK_INTERRUPTIBLE);
1073 schedule();
1074 }
1075 } else
1076 schedule_timeout_interruptible(1);
1077 }
1078 return 0;
1079 }
1080
1081
1082 static void poll(void *send_info)
1083 {
1084 struct smi_info *smi_info = send_info;
1085 unsigned long flags = 0;
1086 bool run_to_completion = smi_info->run_to_completion;
1087
1088 /*
1089 * Make sure there is some delay in the poll loop so we can
1090 * drive time forward and timeout things.
1091 */
1092 udelay(10);
1093 if (!run_to_completion)
1094 spin_lock_irqsave(&smi_info->si_lock, flags);
1095 smi_event_handler(smi_info, 10);
1096 if (!run_to_completion)
1097 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1098 }
1099
1100 static void request_events(void *send_info)
1101 {
1102 struct smi_info *smi_info = send_info;
1103
1104 if (!smi_info->has_event_buffer)
1105 return;
1106
1107 atomic_set(&smi_info->req_events, 1);
1108 }
1109
1110 static void set_need_watch(void *send_info, bool enable)
1111 {
1112 struct smi_info *smi_info = send_info;
1113 unsigned long flags;
1114
1115 atomic_set(&smi_info->need_watch, enable);
1116 spin_lock_irqsave(&smi_info->si_lock, flags);
1117 check_start_timer_thread(smi_info);
1118 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1119 }
1120
1121 static int initialized;
1122
1123 static void smi_timeout(unsigned long data)
1124 {
1125 struct smi_info *smi_info = (struct smi_info *) data;
1126 enum si_sm_result smi_result;
1127 unsigned long flags;
1128 unsigned long jiffies_now;
1129 long time_diff;
1130 long timeout;
1131 #ifdef DEBUG_TIMING
1132 struct timeval t;
1133 #endif
1134
1135 spin_lock_irqsave(&(smi_info->si_lock), flags);
1136 #ifdef DEBUG_TIMING
1137 do_gettimeofday(&t);
1138 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1139 #endif
1140 jiffies_now = jiffies;
1141 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1142 * SI_USEC_PER_JIFFY);
1143 smi_result = smi_event_handler(smi_info, time_diff);
1144
1145 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1146 /* Running with interrupts, only do long timeouts. */
1147 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1148 smi_inc_stat(smi_info, long_timeouts);
1149 goto do_mod_timer;
1150 }
1151
1152 /*
1153 * If the state machine asks for a short delay, then shorten
1154 * the timer timeout.
1155 */
1156 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1157 smi_inc_stat(smi_info, short_timeouts);
1158 timeout = jiffies + 1;
1159 } else {
1160 smi_inc_stat(smi_info, long_timeouts);
1161 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1162 }
1163
1164 do_mod_timer:
1165 if (smi_result != SI_SM_IDLE)
1166 smi_mod_timer(smi_info, timeout);
1167 else
1168 smi_info->timer_running = false;
1169 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1170 }
1171
1172 static irqreturn_t si_irq_handler(int irq, void *data)
1173 {
1174 struct smi_info *smi_info = data;
1175 unsigned long flags;
1176 #ifdef DEBUG_TIMING
1177 struct timeval t;
1178 #endif
1179
1180 spin_lock_irqsave(&(smi_info->si_lock), flags);
1181
1182 smi_inc_stat(smi_info, interrupts);
1183
1184 #ifdef DEBUG_TIMING
1185 do_gettimeofday(&t);
1186 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1187 #endif
1188 smi_event_handler(smi_info, 0);
1189 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1190 return IRQ_HANDLED;
1191 }
1192
1193 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1194 {
1195 struct smi_info *smi_info = data;
1196 /* We need to clear the IRQ flag for the BT interface. */
1197 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1198 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1199 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1200 return si_irq_handler(irq, data);
1201 }
1202
1203 static int smi_start_processing(void *send_info,
1204 ipmi_smi_t intf)
1205 {
1206 struct smi_info *new_smi = send_info;
1207 int enable = 0;
1208
1209 new_smi->intf = intf;
1210
1211 /* Try to claim any interrupts. */
1212 if (new_smi->irq_setup)
1213 new_smi->irq_setup(new_smi);
1214
1215 /* Set up the timer that drives the interface. */
1216 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1217 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1218
1219 /*
1220 * Check if the user forcefully enabled the daemon.
1221 */
1222 if (new_smi->intf_num < num_force_kipmid)
1223 enable = force_kipmid[new_smi->intf_num];
1224 /*
1225 * The BT interface is efficient enough to not need a thread,
1226 * and there is no need for a thread if we have interrupts.
1227 */
1228 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1229 enable = 1;
1230
1231 if (enable) {
1232 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1233 "kipmi%d", new_smi->intf_num);
1234 if (IS_ERR(new_smi->thread)) {
1235 dev_notice(new_smi->dev, "Could not start"
1236 " kernel thread due to error %ld, only using"
1237 " timers to drive the interface\n",
1238 PTR_ERR(new_smi->thread));
1239 new_smi->thread = NULL;
1240 }
1241 }
1242
1243 return 0;
1244 }
1245
1246 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1247 {
1248 struct smi_info *smi = send_info;
1249
1250 data->addr_src = smi->addr_source;
1251 data->dev = smi->dev;
1252 data->addr_info = smi->addr_info;
1253 get_device(smi->dev);
1254
1255 return 0;
1256 }
1257
1258 static void set_maintenance_mode(void *send_info, bool enable)
1259 {
1260 struct smi_info *smi_info = send_info;
1261
1262 if (!enable)
1263 atomic_set(&smi_info->req_events, 0);
1264 }
1265
1266 static struct ipmi_smi_handlers handlers = {
1267 .owner = THIS_MODULE,
1268 .start_processing = smi_start_processing,
1269 .get_smi_info = get_smi_info,
1270 .sender = sender,
1271 .request_events = request_events,
1272 .set_need_watch = set_need_watch,
1273 .set_maintenance_mode = set_maintenance_mode,
1274 .set_run_to_completion = set_run_to_completion,
1275 .poll = poll,
1276 };
1277
1278 /*
1279 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1280 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1281 */
1282
1283 static LIST_HEAD(smi_infos);
1284 static DEFINE_MUTEX(smi_infos_lock);
1285 static int smi_num; /* Used to sequence the SMIs */
1286
1287 #define DEFAULT_REGSPACING 1
1288 #define DEFAULT_REGSIZE 1
1289
1290 #ifdef CONFIG_ACPI
1291 static bool si_tryacpi = 1;
1292 #endif
1293 #ifdef CONFIG_DMI
1294 static bool si_trydmi = 1;
1295 #endif
1296 static bool si_tryplatform = 1;
1297 #ifdef CONFIG_PCI
1298 static bool si_trypci = 1;
1299 #endif
1300 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1301 static char *si_type[SI_MAX_PARMS];
1302 #define MAX_SI_TYPE_STR 30
1303 static char si_type_str[MAX_SI_TYPE_STR];
1304 static unsigned long addrs[SI_MAX_PARMS];
1305 static unsigned int num_addrs;
1306 static unsigned int ports[SI_MAX_PARMS];
1307 static unsigned int num_ports;
1308 static int irqs[SI_MAX_PARMS];
1309 static unsigned int num_irqs;
1310 static int regspacings[SI_MAX_PARMS];
1311 static unsigned int num_regspacings;
1312 static int regsizes[SI_MAX_PARMS];
1313 static unsigned int num_regsizes;
1314 static int regshifts[SI_MAX_PARMS];
1315 static unsigned int num_regshifts;
1316 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1317 static unsigned int num_slave_addrs;
1318
1319 #define IPMI_IO_ADDR_SPACE 0
1320 #define IPMI_MEM_ADDR_SPACE 1
1321 static char *addr_space_to_str[] = { "i/o", "mem" };
1322
1323 static int hotmod_handler(const char *val, struct kernel_param *kp);
1324
1325 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1326 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1327 " Documentation/IPMI.txt in the kernel sources for the"
1328 " gory details.");
1329
1330 #ifdef CONFIG_ACPI
1331 module_param_named(tryacpi, si_tryacpi, bool, 0);
1332 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1333 " default scan of the interfaces identified via ACPI");
1334 #endif
1335 #ifdef CONFIG_DMI
1336 module_param_named(trydmi, si_trydmi, bool, 0);
1337 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1338 " default scan of the interfaces identified via DMI");
1339 #endif
1340 module_param_named(tryplatform, si_tryplatform, bool, 0);
1341 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1342 " default scan of the interfaces identified via platform"
1343 " interfaces like openfirmware");
1344 #ifdef CONFIG_PCI
1345 module_param_named(trypci, si_trypci, bool, 0);
1346 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1347 " default scan of the interfaces identified via pci");
1348 #endif
1349 module_param_named(trydefaults, si_trydefaults, bool, 0);
1350 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1351 " default scan of the KCS and SMIC interface at the standard"
1352 " address");
1353 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1354 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1355 " interface separated by commas. The types are 'kcs',"
1356 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1357 " the first interface to kcs and the second to bt");
1358 module_param_array(addrs, ulong, &num_addrs, 0);
1359 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1360 " addresses separated by commas. Only use if an interface"
1361 " is in memory. Otherwise, set it to zero or leave"
1362 " it blank.");
1363 module_param_array(ports, uint, &num_ports, 0);
1364 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1365 " addresses separated by commas. Only use if an interface"
1366 " is a port. Otherwise, set it to zero or leave"
1367 " it blank.");
1368 module_param_array(irqs, int, &num_irqs, 0);
1369 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1370 " addresses separated by commas. Only use if an interface"
1371 " has an interrupt. Otherwise, set it to zero or leave"
1372 " it blank.");
1373 module_param_array(regspacings, int, &num_regspacings, 0);
1374 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1375 " and each successive register used by the interface. For"
1376 " instance, if the start address is 0xca2 and the spacing"
1377 " is 2, then the second address is at 0xca4. Defaults"
1378 " to 1.");
1379 module_param_array(regsizes, int, &num_regsizes, 0);
1380 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1381 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1382 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1383 " the 8-bit IPMI register has to be read from a larger"
1384 " register.");
1385 module_param_array(regshifts, int, &num_regshifts, 0);
1386 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1387 " IPMI register, in bits. For instance, if the data"
1388 " is read from a 32-bit word and the IPMI data is in"
1389 " bit 8-15, then the shift would be 8");
1390 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1391 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1392 " the controller. Normally this is 0x20, but can be"
1393 " overridden by this parm. This is an array indexed"
1394 " by interface number.");
1395 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1396 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1397 " disabled(0). Normally the IPMI driver auto-detects"
1398 " this, but the value may be overridden by this parm.");
1399 module_param(unload_when_empty, bool, 0);
1400 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1401 " specified or found, default is 1. Setting to 0"
1402 " is useful for hot add of devices using hotmod.");
1403 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1404 MODULE_PARM_DESC(kipmid_max_busy_us,
1405 "Max time (in microseconds) to busy-wait for IPMI data before"
1406 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1407 " if kipmid is using up a lot of CPU time.");
1408
1409
1410 static void std_irq_cleanup(struct smi_info *info)
1411 {
1412 if (info->si_type == SI_BT)
1413 /* Disable the interrupt in the BT interface. */
1414 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1415 free_irq(info->irq, info);
1416 }
1417
1418 static int std_irq_setup(struct smi_info *info)
1419 {
1420 int rv;
1421
1422 if (!info->irq)
1423 return 0;
1424
1425 if (info->si_type == SI_BT) {
1426 rv = request_irq(info->irq,
1427 si_bt_irq_handler,
1428 IRQF_SHARED,
1429 DEVICE_NAME,
1430 info);
1431 if (!rv)
1432 /* Enable the interrupt in the BT interface. */
1433 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1434 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1435 } else
1436 rv = request_irq(info->irq,
1437 si_irq_handler,
1438 IRQF_SHARED,
1439 DEVICE_NAME,
1440 info);
1441 if (rv) {
1442 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1443 " running polled\n",
1444 DEVICE_NAME, info->irq);
1445 info->irq = 0;
1446 } else {
1447 info->irq_cleanup = std_irq_cleanup;
1448 dev_info(info->dev, "Using irq %d\n", info->irq);
1449 }
1450
1451 return rv;
1452 }
1453
1454 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1455 {
1456 unsigned int addr = io->addr_data;
1457
1458 return inb(addr + (offset * io->regspacing));
1459 }
1460
1461 static void port_outb(struct si_sm_io *io, unsigned int offset,
1462 unsigned char b)
1463 {
1464 unsigned int addr = io->addr_data;
1465
1466 outb(b, addr + (offset * io->regspacing));
1467 }
1468
1469 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1470 {
1471 unsigned int addr = io->addr_data;
1472
1473 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1474 }
1475
1476 static void port_outw(struct si_sm_io *io, unsigned int offset,
1477 unsigned char b)
1478 {
1479 unsigned int addr = io->addr_data;
1480
1481 outw(b << io->regshift, addr + (offset * io->regspacing));
1482 }
1483
1484 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1485 {
1486 unsigned int addr = io->addr_data;
1487
1488 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1489 }
1490
1491 static void port_outl(struct si_sm_io *io, unsigned int offset,
1492 unsigned char b)
1493 {
1494 unsigned int addr = io->addr_data;
1495
1496 outl(b << io->regshift, addr+(offset * io->regspacing));
1497 }
1498
1499 static void port_cleanup(struct smi_info *info)
1500 {
1501 unsigned int addr = info->io.addr_data;
1502 int idx;
1503
1504 if (addr) {
1505 for (idx = 0; idx < info->io_size; idx++)
1506 release_region(addr + idx * info->io.regspacing,
1507 info->io.regsize);
1508 }
1509 }
1510
1511 static int port_setup(struct smi_info *info)
1512 {
1513 unsigned int addr = info->io.addr_data;
1514 int idx;
1515
1516 if (!addr)
1517 return -ENODEV;
1518
1519 info->io_cleanup = port_cleanup;
1520
1521 /*
1522 * Figure out the actual inb/inw/inl/etc routine to use based
1523 * upon the register size.
1524 */
1525 switch (info->io.regsize) {
1526 case 1:
1527 info->io.inputb = port_inb;
1528 info->io.outputb = port_outb;
1529 break;
1530 case 2:
1531 info->io.inputb = port_inw;
1532 info->io.outputb = port_outw;
1533 break;
1534 case 4:
1535 info->io.inputb = port_inl;
1536 info->io.outputb = port_outl;
1537 break;
1538 default:
1539 dev_warn(info->dev, "Invalid register size: %d\n",
1540 info->io.regsize);
1541 return -EINVAL;
1542 }
1543
1544 /*
1545 * Some BIOSes reserve disjoint I/O regions in their ACPI
1546 * tables. This causes problems when trying to register the
1547 * entire I/O region. Therefore we must register each I/O
1548 * port separately.
1549 */
1550 for (idx = 0; idx < info->io_size; idx++) {
1551 if (request_region(addr + idx * info->io.regspacing,
1552 info->io.regsize, DEVICE_NAME) == NULL) {
1553 /* Undo allocations */
1554 while (idx--) {
1555 release_region(addr + idx * info->io.regspacing,
1556 info->io.regsize);
1557 }
1558 return -EIO;
1559 }
1560 }
1561 return 0;
1562 }
1563
1564 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1565 {
1566 return readb((io->addr)+(offset * io->regspacing));
1567 }
1568
1569 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1570 unsigned char b)
1571 {
1572 writeb(b, (io->addr)+(offset * io->regspacing));
1573 }
1574
1575 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1576 {
1577 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1578 & 0xff;
1579 }
1580
1581 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1582 unsigned char b)
1583 {
1584 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1585 }
1586
1587 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1588 {
1589 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1590 & 0xff;
1591 }
1592
1593 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1594 unsigned char b)
1595 {
1596 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1597 }
1598
1599 #ifdef readq
1600 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1601 {
1602 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1603 & 0xff;
1604 }
1605
1606 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1607 unsigned char b)
1608 {
1609 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1610 }
1611 #endif
1612
1613 static void mem_cleanup(struct smi_info *info)
1614 {
1615 unsigned long addr = info->io.addr_data;
1616 int mapsize;
1617
1618 if (info->io.addr) {
1619 iounmap(info->io.addr);
1620
1621 mapsize = ((info->io_size * info->io.regspacing)
1622 - (info->io.regspacing - info->io.regsize));
1623
1624 release_mem_region(addr, mapsize);
1625 }
1626 }
1627
1628 static int mem_setup(struct smi_info *info)
1629 {
1630 unsigned long addr = info->io.addr_data;
1631 int mapsize;
1632
1633 if (!addr)
1634 return -ENODEV;
1635
1636 info->io_cleanup = mem_cleanup;
1637
1638 /*
1639 * Figure out the actual readb/readw/readl/etc routine to use based
1640 * upon the register size.
1641 */
1642 switch (info->io.regsize) {
1643 case 1:
1644 info->io.inputb = intf_mem_inb;
1645 info->io.outputb = intf_mem_outb;
1646 break;
1647 case 2:
1648 info->io.inputb = intf_mem_inw;
1649 info->io.outputb = intf_mem_outw;
1650 break;
1651 case 4:
1652 info->io.inputb = intf_mem_inl;
1653 info->io.outputb = intf_mem_outl;
1654 break;
1655 #ifdef readq
1656 case 8:
1657 info->io.inputb = mem_inq;
1658 info->io.outputb = mem_outq;
1659 break;
1660 #endif
1661 default:
1662 dev_warn(info->dev, "Invalid register size: %d\n",
1663 info->io.regsize);
1664 return -EINVAL;
1665 }
1666
1667 /*
1668 * Calculate the total amount of memory to claim. This is an
1669 * unusual looking calculation, but it avoids claiming any
1670 * more memory than it has to. It will claim everything
1671 * between the first address to the end of the last full
1672 * register.
1673 */
1674 mapsize = ((info->io_size * info->io.regspacing)
1675 - (info->io.regspacing - info->io.regsize));
1676
1677 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1678 return -EIO;
1679
1680 info->io.addr = ioremap(addr, mapsize);
1681 if (info->io.addr == NULL) {
1682 release_mem_region(addr, mapsize);
1683 return -EIO;
1684 }
1685 return 0;
1686 }
1687
1688 /*
1689 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1690 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1691 * Options are:
1692 * rsp=<regspacing>
1693 * rsi=<regsize>
1694 * rsh=<regshift>
1695 * irq=<irq>
1696 * ipmb=<ipmb addr>
1697 */
1698 enum hotmod_op { HM_ADD, HM_REMOVE };
1699 struct hotmod_vals {
1700 char *name;
1701 int val;
1702 };
1703 static struct hotmod_vals hotmod_ops[] = {
1704 { "add", HM_ADD },
1705 { "remove", HM_REMOVE },
1706 { NULL }
1707 };
1708 static struct hotmod_vals hotmod_si[] = {
1709 { "kcs", SI_KCS },
1710 { "smic", SI_SMIC },
1711 { "bt", SI_BT },
1712 { NULL }
1713 };
1714 static struct hotmod_vals hotmod_as[] = {
1715 { "mem", IPMI_MEM_ADDR_SPACE },
1716 { "i/o", IPMI_IO_ADDR_SPACE },
1717 { NULL }
1718 };
1719
1720 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1721 {
1722 char *s;
1723 int i;
1724
1725 s = strchr(*curr, ',');
1726 if (!s) {
1727 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1728 return -EINVAL;
1729 }
1730 *s = '\0';
1731 s++;
1732 for (i = 0; v[i].name; i++) {
1733 if (strcmp(*curr, v[i].name) == 0) {
1734 *val = v[i].val;
1735 *curr = s;
1736 return 0;
1737 }
1738 }
1739
1740 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1741 return -EINVAL;
1742 }
1743
1744 static int check_hotmod_int_op(const char *curr, const char *option,
1745 const char *name, int *val)
1746 {
1747 char *n;
1748
1749 if (strcmp(curr, name) == 0) {
1750 if (!option) {
1751 printk(KERN_WARNING PFX
1752 "No option given for '%s'\n",
1753 curr);
1754 return -EINVAL;
1755 }
1756 *val = simple_strtoul(option, &n, 0);
1757 if ((*n != '\0') || (*option == '\0')) {
1758 printk(KERN_WARNING PFX
1759 "Bad option given for '%s'\n",
1760 curr);
1761 return -EINVAL;
1762 }
1763 return 1;
1764 }
1765 return 0;
1766 }
1767
1768 static struct smi_info *smi_info_alloc(void)
1769 {
1770 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1771
1772 if (info)
1773 spin_lock_init(&info->si_lock);
1774 return info;
1775 }
1776
1777 static int hotmod_handler(const char *val, struct kernel_param *kp)
1778 {
1779 char *str = kstrdup(val, GFP_KERNEL);
1780 int rv;
1781 char *next, *curr, *s, *n, *o;
1782 enum hotmod_op op;
1783 enum si_type si_type;
1784 int addr_space;
1785 unsigned long addr;
1786 int regspacing;
1787 int regsize;
1788 int regshift;
1789 int irq;
1790 int ipmb;
1791 int ival;
1792 int len;
1793 struct smi_info *info;
1794
1795 if (!str)
1796 return -ENOMEM;
1797
1798 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1799 len = strlen(str);
1800 ival = len - 1;
1801 while ((ival >= 0) && isspace(str[ival])) {
1802 str[ival] = '\0';
1803 ival--;
1804 }
1805
1806 for (curr = str; curr; curr = next) {
1807 regspacing = 1;
1808 regsize = 1;
1809 regshift = 0;
1810 irq = 0;
1811 ipmb = 0; /* Choose the default if not specified */
1812
1813 next = strchr(curr, ':');
1814 if (next) {
1815 *next = '\0';
1816 next++;
1817 }
1818
1819 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1820 if (rv)
1821 break;
1822 op = ival;
1823
1824 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1825 if (rv)
1826 break;
1827 si_type = ival;
1828
1829 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1830 if (rv)
1831 break;
1832
1833 s = strchr(curr, ',');
1834 if (s) {
1835 *s = '\0';
1836 s++;
1837 }
1838 addr = simple_strtoul(curr, &n, 0);
1839 if ((*n != '\0') || (*curr == '\0')) {
1840 printk(KERN_WARNING PFX "Invalid hotmod address"
1841 " '%s'\n", curr);
1842 break;
1843 }
1844
1845 while (s) {
1846 curr = s;
1847 s = strchr(curr, ',');
1848 if (s) {
1849 *s = '\0';
1850 s++;
1851 }
1852 o = strchr(curr, '=');
1853 if (o) {
1854 *o = '\0';
1855 o++;
1856 }
1857 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1858 if (rv < 0)
1859 goto out;
1860 else if (rv)
1861 continue;
1862 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1863 if (rv < 0)
1864 goto out;
1865 else if (rv)
1866 continue;
1867 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1868 if (rv < 0)
1869 goto out;
1870 else if (rv)
1871 continue;
1872 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1873 if (rv < 0)
1874 goto out;
1875 else if (rv)
1876 continue;
1877 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1878 if (rv < 0)
1879 goto out;
1880 else if (rv)
1881 continue;
1882
1883 rv = -EINVAL;
1884 printk(KERN_WARNING PFX
1885 "Invalid hotmod option '%s'\n",
1886 curr);
1887 goto out;
1888 }
1889
1890 if (op == HM_ADD) {
1891 info = smi_info_alloc();
1892 if (!info) {
1893 rv = -ENOMEM;
1894 goto out;
1895 }
1896
1897 info->addr_source = SI_HOTMOD;
1898 info->si_type = si_type;
1899 info->io.addr_data = addr;
1900 info->io.addr_type = addr_space;
1901 if (addr_space == IPMI_MEM_ADDR_SPACE)
1902 info->io_setup = mem_setup;
1903 else
1904 info->io_setup = port_setup;
1905
1906 info->io.addr = NULL;
1907 info->io.regspacing = regspacing;
1908 if (!info->io.regspacing)
1909 info->io.regspacing = DEFAULT_REGSPACING;
1910 info->io.regsize = regsize;
1911 if (!info->io.regsize)
1912 info->io.regsize = DEFAULT_REGSPACING;
1913 info->io.regshift = regshift;
1914 info->irq = irq;
1915 if (info->irq)
1916 info->irq_setup = std_irq_setup;
1917 info->slave_addr = ipmb;
1918
1919 rv = add_smi(info);
1920 if (rv) {
1921 kfree(info);
1922 goto out;
1923 }
1924 rv = try_smi_init(info);
1925 if (rv) {
1926 cleanup_one_si(info);
1927 goto out;
1928 }
1929 } else {
1930 /* remove */
1931 struct smi_info *e, *tmp_e;
1932
1933 mutex_lock(&smi_infos_lock);
1934 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1935 if (e->io.addr_type != addr_space)
1936 continue;
1937 if (e->si_type != si_type)
1938 continue;
1939 if (e->io.addr_data == addr)
1940 cleanup_one_si(e);
1941 }
1942 mutex_unlock(&smi_infos_lock);
1943 }
1944 }
1945 rv = len;
1946 out:
1947 kfree(str);
1948 return rv;
1949 }
1950
1951 static int hardcode_find_bmc(void)
1952 {
1953 int ret = -ENODEV;
1954 int i;
1955 struct smi_info *info;
1956
1957 for (i = 0; i < SI_MAX_PARMS; i++) {
1958 if (!ports[i] && !addrs[i])
1959 continue;
1960
1961 info = smi_info_alloc();
1962 if (!info)
1963 return -ENOMEM;
1964
1965 info->addr_source = SI_HARDCODED;
1966 printk(KERN_INFO PFX "probing via hardcoded address\n");
1967
1968 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1969 info->si_type = SI_KCS;
1970 } else if (strcmp(si_type[i], "smic") == 0) {
1971 info->si_type = SI_SMIC;
1972 } else if (strcmp(si_type[i], "bt") == 0) {
1973 info->si_type = SI_BT;
1974 } else {
1975 printk(KERN_WARNING PFX "Interface type specified "
1976 "for interface %d, was invalid: %s\n",
1977 i, si_type[i]);
1978 kfree(info);
1979 continue;
1980 }
1981
1982 if (ports[i]) {
1983 /* An I/O port */
1984 info->io_setup = port_setup;
1985 info->io.addr_data = ports[i];
1986 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1987 } else if (addrs[i]) {
1988 /* A memory port */
1989 info->io_setup = mem_setup;
1990 info->io.addr_data = addrs[i];
1991 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1992 } else {
1993 printk(KERN_WARNING PFX "Interface type specified "
1994 "for interface %d, but port and address were "
1995 "not set or set to zero.\n", i);
1996 kfree(info);
1997 continue;
1998 }
1999
2000 info->io.addr = NULL;
2001 info->io.regspacing = regspacings[i];
2002 if (!info->io.regspacing)
2003 info->io.regspacing = DEFAULT_REGSPACING;
2004 info->io.regsize = regsizes[i];
2005 if (!info->io.regsize)
2006 info->io.regsize = DEFAULT_REGSPACING;
2007 info->io.regshift = regshifts[i];
2008 info->irq = irqs[i];
2009 if (info->irq)
2010 info->irq_setup = std_irq_setup;
2011 info->slave_addr = slave_addrs[i];
2012
2013 if (!add_smi(info)) {
2014 if (try_smi_init(info))
2015 cleanup_one_si(info);
2016 ret = 0;
2017 } else {
2018 kfree(info);
2019 }
2020 }
2021 return ret;
2022 }
2023
2024 #ifdef CONFIG_ACPI
2025
2026 #include <linux/acpi.h>
2027
2028 /*
2029 * Once we get an ACPI failure, we don't try any more, because we go
2030 * through the tables sequentially. Once we don't find a table, there
2031 * are no more.
2032 */
2033 static int acpi_failure;
2034
2035 /* For GPE-type interrupts. */
2036 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2037 u32 gpe_number, void *context)
2038 {
2039 struct smi_info *smi_info = context;
2040 unsigned long flags;
2041 #ifdef DEBUG_TIMING
2042 struct timeval t;
2043 #endif
2044
2045 spin_lock_irqsave(&(smi_info->si_lock), flags);
2046
2047 smi_inc_stat(smi_info, interrupts);
2048
2049 #ifdef DEBUG_TIMING
2050 do_gettimeofday(&t);
2051 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
2052 #endif
2053 smi_event_handler(smi_info, 0);
2054 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2055
2056 return ACPI_INTERRUPT_HANDLED;
2057 }
2058
2059 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2060 {
2061 if (!info->irq)
2062 return;
2063
2064 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2065 }
2066
2067 static int acpi_gpe_irq_setup(struct smi_info *info)
2068 {
2069 acpi_status status;
2070
2071 if (!info->irq)
2072 return 0;
2073
2074 /* FIXME - is level triggered right? */
2075 status = acpi_install_gpe_handler(NULL,
2076 info->irq,
2077 ACPI_GPE_LEVEL_TRIGGERED,
2078 &ipmi_acpi_gpe,
2079 info);
2080 if (status != AE_OK) {
2081 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2082 " running polled\n", DEVICE_NAME, info->irq);
2083 info->irq = 0;
2084 return -EINVAL;
2085 } else {
2086 info->irq_cleanup = acpi_gpe_irq_cleanup;
2087 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2088 return 0;
2089 }
2090 }
2091
2092 /*
2093 * Defined at
2094 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2095 */
2096 struct SPMITable {
2097 s8 Signature[4];
2098 u32 Length;
2099 u8 Revision;
2100 u8 Checksum;
2101 s8 OEMID[6];
2102 s8 OEMTableID[8];
2103 s8 OEMRevision[4];
2104 s8 CreatorID[4];
2105 s8 CreatorRevision[4];
2106 u8 InterfaceType;
2107 u8 IPMIlegacy;
2108 s16 SpecificationRevision;
2109
2110 /*
2111 * Bit 0 - SCI interrupt supported
2112 * Bit 1 - I/O APIC/SAPIC
2113 */
2114 u8 InterruptType;
2115
2116 /*
2117 * If bit 0 of InterruptType is set, then this is the SCI
2118 * interrupt in the GPEx_STS register.
2119 */
2120 u8 GPE;
2121
2122 s16 Reserved;
2123
2124 /*
2125 * If bit 1 of InterruptType is set, then this is the I/O
2126 * APIC/SAPIC interrupt.
2127 */
2128 u32 GlobalSystemInterrupt;
2129
2130 /* The actual register address. */
2131 struct acpi_generic_address addr;
2132
2133 u8 UID[4];
2134
2135 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2136 };
2137
2138 static int try_init_spmi(struct SPMITable *spmi)
2139 {
2140 struct smi_info *info;
2141 int rv;
2142
2143 if (spmi->IPMIlegacy != 1) {
2144 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2145 return -ENODEV;
2146 }
2147
2148 info = smi_info_alloc();
2149 if (!info) {
2150 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2151 return -ENOMEM;
2152 }
2153
2154 info->addr_source = SI_SPMI;
2155 printk(KERN_INFO PFX "probing via SPMI\n");
2156
2157 /* Figure out the interface type. */
2158 switch (spmi->InterfaceType) {
2159 case 1: /* KCS */
2160 info->si_type = SI_KCS;
2161 break;
2162 case 2: /* SMIC */
2163 info->si_type = SI_SMIC;
2164 break;
2165 case 3: /* BT */
2166 info->si_type = SI_BT;
2167 break;
2168 case 4: /* SSIF, just ignore */
2169 kfree(info);
2170 return -EIO;
2171 default:
2172 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2173 spmi->InterfaceType);
2174 kfree(info);
2175 return -EIO;
2176 }
2177
2178 if (spmi->InterruptType & 1) {
2179 /* We've got a GPE interrupt. */
2180 info->irq = spmi->GPE;
2181 info->irq_setup = acpi_gpe_irq_setup;
2182 } else if (spmi->InterruptType & 2) {
2183 /* We've got an APIC/SAPIC interrupt. */
2184 info->irq = spmi->GlobalSystemInterrupt;
2185 info->irq_setup = std_irq_setup;
2186 } else {
2187 /* Use the default interrupt setting. */
2188 info->irq = 0;
2189 info->irq_setup = NULL;
2190 }
2191
2192 if (spmi->addr.bit_width) {
2193 /* A (hopefully) properly formed register bit width. */
2194 info->io.regspacing = spmi->addr.bit_width / 8;
2195 } else {
2196 info->io.regspacing = DEFAULT_REGSPACING;
2197 }
2198 info->io.regsize = info->io.regspacing;
2199 info->io.regshift = spmi->addr.bit_offset;
2200
2201 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2202 info->io_setup = mem_setup;
2203 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2204 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2205 info->io_setup = port_setup;
2206 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2207 } else {
2208 kfree(info);
2209 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2210 return -EIO;
2211 }
2212 info->io.addr_data = spmi->addr.address;
2213
2214 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2215 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2216 info->io.addr_data, info->io.regsize, info->io.regspacing,
2217 info->irq);
2218
2219 rv = add_smi(info);
2220 if (rv)
2221 kfree(info);
2222
2223 return rv;
2224 }
2225
2226 static void spmi_find_bmc(void)
2227 {
2228 acpi_status status;
2229 struct SPMITable *spmi;
2230 int i;
2231
2232 if (acpi_disabled)
2233 return;
2234
2235 if (acpi_failure)
2236 return;
2237
2238 for (i = 0; ; i++) {
2239 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2240 (struct acpi_table_header **)&spmi);
2241 if (status != AE_OK)
2242 return;
2243
2244 try_init_spmi(spmi);
2245 }
2246 }
2247
2248 static int ipmi_pnp_probe(struct pnp_dev *dev,
2249 const struct pnp_device_id *dev_id)
2250 {
2251 struct acpi_device *acpi_dev;
2252 struct smi_info *info;
2253 struct resource *res, *res_second;
2254 acpi_handle handle;
2255 acpi_status status;
2256 unsigned long long tmp;
2257 int rv;
2258
2259 acpi_dev = pnp_acpi_device(dev);
2260 if (!acpi_dev)
2261 return -ENODEV;
2262
2263 info = smi_info_alloc();
2264 if (!info)
2265 return -ENOMEM;
2266
2267 info->addr_source = SI_ACPI;
2268 printk(KERN_INFO PFX "probing via ACPI\n");
2269
2270 handle = acpi_dev->handle;
2271 info->addr_info.acpi_info.acpi_handle = handle;
2272
2273 /* _IFT tells us the interface type: KCS, BT, etc */
2274 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2275 if (ACPI_FAILURE(status))
2276 goto err_free;
2277
2278 switch (tmp) {
2279 case 1:
2280 info->si_type = SI_KCS;
2281 break;
2282 case 2:
2283 info->si_type = SI_SMIC;
2284 break;
2285 case 3:
2286 info->si_type = SI_BT;
2287 break;
2288 case 4: /* SSIF, just ignore */
2289 goto err_free;
2290 default:
2291 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2292 goto err_free;
2293 }
2294
2295 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2296 if (res) {
2297 info->io_setup = port_setup;
2298 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2299 } else {
2300 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2301 if (res) {
2302 info->io_setup = mem_setup;
2303 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2304 }
2305 }
2306 if (!res) {
2307 dev_err(&dev->dev, "no I/O or memory address\n");
2308 goto err_free;
2309 }
2310 info->io.addr_data = res->start;
2311
2312 info->io.regspacing = DEFAULT_REGSPACING;
2313 res_second = pnp_get_resource(dev,
2314 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2315 IORESOURCE_IO : IORESOURCE_MEM,
2316 1);
2317 if (res_second) {
2318 if (res_second->start > info->io.addr_data)
2319 info->io.regspacing = res_second->start - info->io.addr_data;
2320 }
2321 info->io.regsize = DEFAULT_REGSPACING;
2322 info->io.regshift = 0;
2323
2324 /* If _GPE exists, use it; otherwise use standard interrupts */
2325 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2326 if (ACPI_SUCCESS(status)) {
2327 info->irq = tmp;
2328 info->irq_setup = acpi_gpe_irq_setup;
2329 } else if (pnp_irq_valid(dev, 0)) {
2330 info->irq = pnp_irq(dev, 0);
2331 info->irq_setup = std_irq_setup;
2332 }
2333
2334 info->dev = &dev->dev;
2335 pnp_set_drvdata(dev, info);
2336
2337 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2338 res, info->io.regsize, info->io.regspacing,
2339 info->irq);
2340
2341 rv = add_smi(info);
2342 if (rv)
2343 kfree(info);
2344
2345 return rv;
2346
2347 err_free:
2348 kfree(info);
2349 return -EINVAL;
2350 }
2351
2352 static void ipmi_pnp_remove(struct pnp_dev *dev)
2353 {
2354 struct smi_info *info = pnp_get_drvdata(dev);
2355
2356 cleanup_one_si(info);
2357 }
2358
2359 static const struct pnp_device_id pnp_dev_table[] = {
2360 {"IPI0001", 0},
2361 {"", 0},
2362 };
2363
2364 static struct pnp_driver ipmi_pnp_driver = {
2365 .name = DEVICE_NAME,
2366 .probe = ipmi_pnp_probe,
2367 .remove = ipmi_pnp_remove,
2368 .id_table = pnp_dev_table,
2369 };
2370
2371 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2372 #endif
2373
2374 #ifdef CONFIG_DMI
2375 struct dmi_ipmi_data {
2376 u8 type;
2377 u8 addr_space;
2378 unsigned long base_addr;
2379 u8 irq;
2380 u8 offset;
2381 u8 slave_addr;
2382 };
2383
2384 static int decode_dmi(const struct dmi_header *dm,
2385 struct dmi_ipmi_data *dmi)
2386 {
2387 const u8 *data = (const u8 *)dm;
2388 unsigned long base_addr;
2389 u8 reg_spacing;
2390 u8 len = dm->length;
2391
2392 dmi->type = data[4];
2393
2394 memcpy(&base_addr, data+8, sizeof(unsigned long));
2395 if (len >= 0x11) {
2396 if (base_addr & 1) {
2397 /* I/O */
2398 base_addr &= 0xFFFE;
2399 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2400 } else
2401 /* Memory */
2402 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2403
2404 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2405 is odd. */
2406 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2407
2408 dmi->irq = data[0x11];
2409
2410 /* The top two bits of byte 0x10 hold the register spacing. */
2411 reg_spacing = (data[0x10] & 0xC0) >> 6;
2412 switch (reg_spacing) {
2413 case 0x00: /* Byte boundaries */
2414 dmi->offset = 1;
2415 break;
2416 case 0x01: /* 32-bit boundaries */
2417 dmi->offset = 4;
2418 break;
2419 case 0x02: /* 16-byte boundaries */
2420 dmi->offset = 16;
2421 break;
2422 default:
2423 /* Some other interface, just ignore it. */
2424 return -EIO;
2425 }
2426 } else {
2427 /* Old DMI spec. */
2428 /*
2429 * Note that technically, the lower bit of the base
2430 * address should be 1 if the address is I/O and 0 if
2431 * the address is in memory. So many systems get that
2432 * wrong (and all that I have seen are I/O) so we just
2433 * ignore that bit and assume I/O. Systems that use
2434 * memory should use the newer spec, anyway.
2435 */
2436 dmi->base_addr = base_addr & 0xfffe;
2437 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2438 dmi->offset = 1;
2439 }
2440
2441 dmi->slave_addr = data[6];
2442
2443 return 0;
2444 }
2445
2446 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2447 {
2448 struct smi_info *info;
2449
2450 info = smi_info_alloc();
2451 if (!info) {
2452 printk(KERN_ERR PFX "Could not allocate SI data\n");
2453 return;
2454 }
2455
2456 info->addr_source = SI_SMBIOS;
2457 printk(KERN_INFO PFX "probing via SMBIOS\n");
2458
2459 switch (ipmi_data->type) {
2460 case 0x01: /* KCS */
2461 info->si_type = SI_KCS;
2462 break;
2463 case 0x02: /* SMIC */
2464 info->si_type = SI_SMIC;
2465 break;
2466 case 0x03: /* BT */
2467 info->si_type = SI_BT;
2468 break;
2469 default:
2470 kfree(info);
2471 return;
2472 }
2473
2474 switch (ipmi_data->addr_space) {
2475 case IPMI_MEM_ADDR_SPACE:
2476 info->io_setup = mem_setup;
2477 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2478 break;
2479
2480 case IPMI_IO_ADDR_SPACE:
2481 info->io_setup = port_setup;
2482 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2483 break;
2484
2485 default:
2486 kfree(info);
2487 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2488 ipmi_data->addr_space);
2489 return;
2490 }
2491 info->io.addr_data = ipmi_data->base_addr;
2492
2493 info->io.regspacing = ipmi_data->offset;
2494 if (!info->io.regspacing)
2495 info->io.regspacing = DEFAULT_REGSPACING;
2496 info->io.regsize = DEFAULT_REGSPACING;
2497 info->io.regshift = 0;
2498
2499 info->slave_addr = ipmi_data->slave_addr;
2500
2501 info->irq = ipmi_data->irq;
2502 if (info->irq)
2503 info->irq_setup = std_irq_setup;
2504
2505 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2506 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2507 info->io.addr_data, info->io.regsize, info->io.regspacing,
2508 info->irq);
2509
2510 if (add_smi(info))
2511 kfree(info);
2512 }
2513
2514 static void dmi_find_bmc(void)
2515 {
2516 const struct dmi_device *dev = NULL;
2517 struct dmi_ipmi_data data;
2518 int rv;
2519
2520 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2521 memset(&data, 0, sizeof(data));
2522 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2523 &data);
2524 if (!rv)
2525 try_init_dmi(&data);
2526 }
2527 }
2528 #endif /* CONFIG_DMI */
2529
2530 #ifdef CONFIG_PCI
2531
2532 #define PCI_ERMC_CLASSCODE 0x0C0700
2533 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2534 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2535 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2536 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2537 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2538
2539 #define PCI_HP_VENDOR_ID 0x103C
2540 #define PCI_MMC_DEVICE_ID 0x121A
2541 #define PCI_MMC_ADDR_CW 0x10
2542
2543 static void ipmi_pci_cleanup(struct smi_info *info)
2544 {
2545 struct pci_dev *pdev = info->addr_source_data;
2546
2547 pci_disable_device(pdev);
2548 }
2549
2550 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2551 {
2552 if (info->si_type == SI_KCS) {
2553 unsigned char status;
2554 int regspacing;
2555
2556 info->io.regsize = DEFAULT_REGSIZE;
2557 info->io.regshift = 0;
2558 info->io_size = 2;
2559 info->handlers = &kcs_smi_handlers;
2560
2561 /* detect 1, 4, 16byte spacing */
2562 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2563 info->io.regspacing = regspacing;
2564 if (info->io_setup(info)) {
2565 dev_err(info->dev,
2566 "Could not setup I/O space\n");
2567 return DEFAULT_REGSPACING;
2568 }
2569 /* write invalid cmd */
2570 info->io.outputb(&info->io, 1, 0x10);
2571 /* read status back */
2572 status = info->io.inputb(&info->io, 1);
2573 info->io_cleanup(info);
2574 if (status)
2575 return regspacing;
2576 regspacing *= 4;
2577 }
2578 }
2579 return DEFAULT_REGSPACING;
2580 }
2581
2582 static int ipmi_pci_probe(struct pci_dev *pdev,
2583 const struct pci_device_id *ent)
2584 {
2585 int rv;
2586 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2587 struct smi_info *info;
2588
2589 info = smi_info_alloc();
2590 if (!info)
2591 return -ENOMEM;
2592
2593 info->addr_source = SI_PCI;
2594 dev_info(&pdev->dev, "probing via PCI");
2595
2596 switch (class_type) {
2597 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2598 info->si_type = SI_SMIC;
2599 break;
2600
2601 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2602 info->si_type = SI_KCS;
2603 break;
2604
2605 case PCI_ERMC_CLASSCODE_TYPE_BT:
2606 info->si_type = SI_BT;
2607 break;
2608
2609 default:
2610 kfree(info);
2611 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2612 return -ENOMEM;
2613 }
2614
2615 rv = pci_enable_device(pdev);
2616 if (rv) {
2617 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2618 kfree(info);
2619 return rv;
2620 }
2621
2622 info->addr_source_cleanup = ipmi_pci_cleanup;
2623 info->addr_source_data = pdev;
2624
2625 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2626 info->io_setup = port_setup;
2627 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2628 } else {
2629 info->io_setup = mem_setup;
2630 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2631 }
2632 info->io.addr_data = pci_resource_start(pdev, 0);
2633
2634 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2635 info->io.regsize = DEFAULT_REGSIZE;
2636 info->io.regshift = 0;
2637
2638 info->irq = pdev->irq;
2639 if (info->irq)
2640 info->irq_setup = std_irq_setup;
2641
2642 info->dev = &pdev->dev;
2643 pci_set_drvdata(pdev, info);
2644
2645 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2646 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2647 info->irq);
2648
2649 rv = add_smi(info);
2650 if (rv) {
2651 kfree(info);
2652 pci_disable_device(pdev);
2653 }
2654
2655 return rv;
2656 }
2657
2658 static void ipmi_pci_remove(struct pci_dev *pdev)
2659 {
2660 struct smi_info *info = pci_get_drvdata(pdev);
2661 cleanup_one_si(info);
2662 pci_disable_device(pdev);
2663 }
2664
2665 static struct pci_device_id ipmi_pci_devices[] = {
2666 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2667 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2668 { 0, }
2669 };
2670 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2671
2672 static struct pci_driver ipmi_pci_driver = {
2673 .name = DEVICE_NAME,
2674 .id_table = ipmi_pci_devices,
2675 .probe = ipmi_pci_probe,
2676 .remove = ipmi_pci_remove,
2677 };
2678 #endif /* CONFIG_PCI */
2679
2680 static struct of_device_id ipmi_match[];
2681 static int ipmi_probe(struct platform_device *dev)
2682 {
2683 #ifdef CONFIG_OF
2684 const struct of_device_id *match;
2685 struct smi_info *info;
2686 struct resource resource;
2687 const __be32 *regsize, *regspacing, *regshift;
2688 struct device_node *np = dev->dev.of_node;
2689 int ret;
2690 int proplen;
2691
2692 dev_info(&dev->dev, "probing via device tree\n");
2693
2694 match = of_match_device(ipmi_match, &dev->dev);
2695 if (!match)
2696 return -EINVAL;
2697
2698 if (!of_device_is_available(np))
2699 return -EINVAL;
2700
2701 ret = of_address_to_resource(np, 0, &resource);
2702 if (ret) {
2703 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2704 return ret;
2705 }
2706
2707 regsize = of_get_property(np, "reg-size", &proplen);
2708 if (regsize && proplen != 4) {
2709 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2710 return -EINVAL;
2711 }
2712
2713 regspacing = of_get_property(np, "reg-spacing", &proplen);
2714 if (regspacing && proplen != 4) {
2715 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2716 return -EINVAL;
2717 }
2718
2719 regshift = of_get_property(np, "reg-shift", &proplen);
2720 if (regshift && proplen != 4) {
2721 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2722 return -EINVAL;
2723 }
2724
2725 info = smi_info_alloc();
2726
2727 if (!info) {
2728 dev_err(&dev->dev,
2729 "could not allocate memory for OF probe\n");
2730 return -ENOMEM;
2731 }
2732
2733 info->si_type = (enum si_type) match->data;
2734 info->addr_source = SI_DEVICETREE;
2735 info->irq_setup = std_irq_setup;
2736
2737 if (resource.flags & IORESOURCE_IO) {
2738 info->io_setup = port_setup;
2739 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2740 } else {
2741 info->io_setup = mem_setup;
2742 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2743 }
2744
2745 info->io.addr_data = resource.start;
2746
2747 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2748 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2749 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2750
2751 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2752 info->dev = &dev->dev;
2753
2754 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2755 info->io.addr_data, info->io.regsize, info->io.regspacing,
2756 info->irq);
2757
2758 dev_set_drvdata(&dev->dev, info);
2759
2760 ret = add_smi(info);
2761 if (ret) {
2762 kfree(info);
2763 return ret;
2764 }
2765 #endif
2766 return 0;
2767 }
2768
2769 static int ipmi_remove(struct platform_device *dev)
2770 {
2771 #ifdef CONFIG_OF
2772 cleanup_one_si(dev_get_drvdata(&dev->dev));
2773 #endif
2774 return 0;
2775 }
2776
2777 static struct of_device_id ipmi_match[] =
2778 {
2779 { .type = "ipmi", .compatible = "ipmi-kcs",
2780 .data = (void *)(unsigned long) SI_KCS },
2781 { .type = "ipmi", .compatible = "ipmi-smic",
2782 .data = (void *)(unsigned long) SI_SMIC },
2783 { .type = "ipmi", .compatible = "ipmi-bt",
2784 .data = (void *)(unsigned long) SI_BT },
2785 {},
2786 };
2787
2788 static struct platform_driver ipmi_driver = {
2789 .driver = {
2790 .name = DEVICE_NAME,
2791 .of_match_table = ipmi_match,
2792 },
2793 .probe = ipmi_probe,
2794 .remove = ipmi_remove,
2795 };
2796
2797 #ifdef CONFIG_PARISC
2798 static int ipmi_parisc_probe(struct parisc_device *dev)
2799 {
2800 struct smi_info *info;
2801 int rv;
2802
2803 info = smi_info_alloc();
2804
2805 if (!info) {
2806 dev_err(&dev->dev,
2807 "could not allocate memory for PARISC probe\n");
2808 return -ENOMEM;
2809 }
2810
2811 info->si_type = SI_KCS;
2812 info->addr_source = SI_DEVICETREE;
2813 info->io_setup = mem_setup;
2814 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2815 info->io.addr_data = dev->hpa.start;
2816 info->io.regsize = 1;
2817 info->io.regspacing = 1;
2818 info->io.regshift = 0;
2819 info->irq = 0; /* no interrupt */
2820 info->irq_setup = NULL;
2821 info->dev = &dev->dev;
2822
2823 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2824
2825 dev_set_drvdata(&dev->dev, info);
2826
2827 rv = add_smi(info);
2828 if (rv) {
2829 kfree(info);
2830 return rv;
2831 }
2832
2833 return 0;
2834 }
2835
2836 static int ipmi_parisc_remove(struct parisc_device *dev)
2837 {
2838 cleanup_one_si(dev_get_drvdata(&dev->dev));
2839 return 0;
2840 }
2841
2842 static struct parisc_device_id ipmi_parisc_tbl[] = {
2843 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2844 { 0, }
2845 };
2846
2847 static struct parisc_driver ipmi_parisc_driver = {
2848 .name = "ipmi",
2849 .id_table = ipmi_parisc_tbl,
2850 .probe = ipmi_parisc_probe,
2851 .remove = ipmi_parisc_remove,
2852 };
2853 #endif /* CONFIG_PARISC */
2854
2855 static int wait_for_msg_done(struct smi_info *smi_info)
2856 {
2857 enum si_sm_result smi_result;
2858
2859 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2860 for (;;) {
2861 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2862 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2863 schedule_timeout_uninterruptible(1);
2864 smi_result = smi_info->handlers->event(
2865 smi_info->si_sm, jiffies_to_usecs(1));
2866 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2867 smi_result = smi_info->handlers->event(
2868 smi_info->si_sm, 0);
2869 } else
2870 break;
2871 }
2872 if (smi_result == SI_SM_HOSED)
2873 /*
2874 * We couldn't get the state machine to run, so whatever's at
2875 * the port is probably not an IPMI SMI interface.
2876 */
2877 return -ENODEV;
2878
2879 return 0;
2880 }
2881
2882 static int try_get_dev_id(struct smi_info *smi_info)
2883 {
2884 unsigned char msg[2];
2885 unsigned char *resp;
2886 unsigned long resp_len;
2887 int rv = 0;
2888
2889 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2890 if (!resp)
2891 return -ENOMEM;
2892
2893 /*
2894 * Do a Get Device ID command, since it comes back with some
2895 * useful info.
2896 */
2897 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2898 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2899 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2900
2901 rv = wait_for_msg_done(smi_info);
2902 if (rv)
2903 goto out;
2904
2905 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2906 resp, IPMI_MAX_MSG_LENGTH);
2907
2908 /* Check and record info from the get device id, in case we need it. */
2909 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2910
2911 out:
2912 kfree(resp);
2913 return rv;
2914 }
2915
2916 static int try_enable_event_buffer(struct smi_info *smi_info)
2917 {
2918 unsigned char msg[3];
2919 unsigned char *resp;
2920 unsigned long resp_len;
2921 int rv = 0;
2922
2923 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2924 if (!resp)
2925 return -ENOMEM;
2926
2927 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2928 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2929 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2930
2931 rv = wait_for_msg_done(smi_info);
2932 if (rv) {
2933 printk(KERN_WARNING PFX "Error getting response from get"
2934 " global enables command, the event buffer is not"
2935 " enabled.\n");
2936 goto out;
2937 }
2938
2939 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2940 resp, IPMI_MAX_MSG_LENGTH);
2941
2942 if (resp_len < 4 ||
2943 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2944 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2945 resp[2] != 0) {
2946 printk(KERN_WARNING PFX "Invalid return from get global"
2947 " enables command, cannot enable the event buffer.\n");
2948 rv = -EINVAL;
2949 goto out;
2950 }
2951
2952 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
2953 /* buffer is already enabled, nothing to do. */
2954 smi_info->supports_event_msg_buff = true;
2955 goto out;
2956 }
2957
2958 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2959 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2960 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2961 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2962
2963 rv = wait_for_msg_done(smi_info);
2964 if (rv) {
2965 printk(KERN_WARNING PFX "Error getting response from set"
2966 " global, enables command, the event buffer is not"
2967 " enabled.\n");
2968 goto out;
2969 }
2970
2971 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2972 resp, IPMI_MAX_MSG_LENGTH);
2973
2974 if (resp_len < 3 ||
2975 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2976 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2977 printk(KERN_WARNING PFX "Invalid return from get global,"
2978 "enables command, not enable the event buffer.\n");
2979 rv = -EINVAL;
2980 goto out;
2981 }
2982
2983 if (resp[2] != 0)
2984 /*
2985 * An error when setting the event buffer bit means
2986 * that the event buffer is not supported.
2987 */
2988 rv = -ENOENT;
2989 else
2990 smi_info->supports_event_msg_buff = true;
2991
2992 out:
2993 kfree(resp);
2994 return rv;
2995 }
2996
2997 static int smi_type_proc_show(struct seq_file *m, void *v)
2998 {
2999 struct smi_info *smi = m->private;
3000
3001 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3002 }
3003
3004 static int smi_type_proc_open(struct inode *inode, struct file *file)
3005 {
3006 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3007 }
3008
3009 static const struct file_operations smi_type_proc_ops = {
3010 .open = smi_type_proc_open,
3011 .read = seq_read,
3012 .llseek = seq_lseek,
3013 .release = single_release,
3014 };
3015
3016 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3017 {
3018 struct smi_info *smi = m->private;
3019
3020 seq_printf(m, "interrupts_enabled: %d\n",
3021 smi->irq && !smi->interrupt_disabled);
3022 seq_printf(m, "short_timeouts: %u\n",
3023 smi_get_stat(smi, short_timeouts));
3024 seq_printf(m, "long_timeouts: %u\n",
3025 smi_get_stat(smi, long_timeouts));
3026 seq_printf(m, "idles: %u\n",
3027 smi_get_stat(smi, idles));
3028 seq_printf(m, "interrupts: %u\n",
3029 smi_get_stat(smi, interrupts));
3030 seq_printf(m, "attentions: %u\n",
3031 smi_get_stat(smi, attentions));
3032 seq_printf(m, "flag_fetches: %u\n",
3033 smi_get_stat(smi, flag_fetches));
3034 seq_printf(m, "hosed_count: %u\n",
3035 smi_get_stat(smi, hosed_count));
3036 seq_printf(m, "complete_transactions: %u\n",
3037 smi_get_stat(smi, complete_transactions));
3038 seq_printf(m, "events: %u\n",
3039 smi_get_stat(smi, events));
3040 seq_printf(m, "watchdog_pretimeouts: %u\n",
3041 smi_get_stat(smi, watchdog_pretimeouts));
3042 seq_printf(m, "incoming_messages: %u\n",
3043 smi_get_stat(smi, incoming_messages));
3044 return 0;
3045 }
3046
3047 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3048 {
3049 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3050 }
3051
3052 static const struct file_operations smi_si_stats_proc_ops = {
3053 .open = smi_si_stats_proc_open,
3054 .read = seq_read,
3055 .llseek = seq_lseek,
3056 .release = single_release,
3057 };
3058
3059 static int smi_params_proc_show(struct seq_file *m, void *v)
3060 {
3061 struct smi_info *smi = m->private;
3062
3063 return seq_printf(m,
3064 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3065 si_to_str[smi->si_type],
3066 addr_space_to_str[smi->io.addr_type],
3067 smi->io.addr_data,
3068 smi->io.regspacing,
3069 smi->io.regsize,
3070 smi->io.regshift,
3071 smi->irq,
3072 smi->slave_addr);
3073 }
3074
3075 static int smi_params_proc_open(struct inode *inode, struct file *file)
3076 {
3077 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3078 }
3079
3080 static const struct file_operations smi_params_proc_ops = {
3081 .open = smi_params_proc_open,
3082 .read = seq_read,
3083 .llseek = seq_lseek,
3084 .release = single_release,
3085 };
3086
3087 /*
3088 * oem_data_avail_to_receive_msg_avail
3089 * @info - smi_info structure with msg_flags set
3090 *
3091 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3092 * Returns 1 indicating need to re-run handle_flags().
3093 */
3094 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3095 {
3096 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3097 RECEIVE_MSG_AVAIL);
3098 return 1;
3099 }
3100
3101 /*
3102 * setup_dell_poweredge_oem_data_handler
3103 * @info - smi_info.device_id must be populated
3104 *
3105 * Systems that match, but have firmware version < 1.40 may assert
3106 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3107 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3108 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3109 * as RECEIVE_MSG_AVAIL instead.
3110 *
3111 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3112 * assert the OEM[012] bits, and if it did, the driver would have to
3113 * change to handle that properly, we don't actually check for the
3114 * firmware version.
3115 * Device ID = 0x20 BMC on PowerEdge 8G servers
3116 * Device Revision = 0x80
3117 * Firmware Revision1 = 0x01 BMC version 1.40
3118 * Firmware Revision2 = 0x40 BCD encoded
3119 * IPMI Version = 0x51 IPMI 1.5
3120 * Manufacturer ID = A2 02 00 Dell IANA
3121 *
3122 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3123 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3124 *
3125 */
3126 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3127 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3128 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3129 #define DELL_IANA_MFR_ID 0x0002a2
3130 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3131 {
3132 struct ipmi_device_id *id = &smi_info->device_id;
3133 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3134 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3135 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3136 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3137 smi_info->oem_data_avail_handler =
3138 oem_data_avail_to_receive_msg_avail;
3139 } else if (ipmi_version_major(id) < 1 ||
3140 (ipmi_version_major(id) == 1 &&
3141 ipmi_version_minor(id) < 5)) {
3142 smi_info->oem_data_avail_handler =
3143 oem_data_avail_to_receive_msg_avail;
3144 }
3145 }
3146 }
3147
3148 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3149 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3150 {
3151 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3152
3153 /* Make it a response */
3154 msg->rsp[0] = msg->data[0] | 4;
3155 msg->rsp[1] = msg->data[1];
3156 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3157 msg->rsp_size = 3;
3158 smi_info->curr_msg = NULL;
3159 deliver_recv_msg(smi_info, msg);
3160 }
3161
3162 /*
3163 * dell_poweredge_bt_xaction_handler
3164 * @info - smi_info.device_id must be populated
3165 *
3166 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3167 * not respond to a Get SDR command if the length of the data
3168 * requested is exactly 0x3A, which leads to command timeouts and no
3169 * data returned. This intercepts such commands, and causes userspace
3170 * callers to try again with a different-sized buffer, which succeeds.
3171 */
3172
3173 #define STORAGE_NETFN 0x0A
3174 #define STORAGE_CMD_GET_SDR 0x23
3175 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3176 unsigned long unused,
3177 void *in)
3178 {
3179 struct smi_info *smi_info = in;
3180 unsigned char *data = smi_info->curr_msg->data;
3181 unsigned int size = smi_info->curr_msg->data_size;
3182 if (size >= 8 &&
3183 (data[0]>>2) == STORAGE_NETFN &&
3184 data[1] == STORAGE_CMD_GET_SDR &&
3185 data[7] == 0x3A) {
3186 return_hosed_msg_badsize(smi_info);
3187 return NOTIFY_STOP;
3188 }
3189 return NOTIFY_DONE;
3190 }
3191
3192 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3193 .notifier_call = dell_poweredge_bt_xaction_handler,
3194 };
3195
3196 /*
3197 * setup_dell_poweredge_bt_xaction_handler
3198 * @info - smi_info.device_id must be filled in already
3199 *
3200 * Fills in smi_info.device_id.start_transaction_pre_hook
3201 * when we know what function to use there.
3202 */
3203 static void
3204 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3205 {
3206 struct ipmi_device_id *id = &smi_info->device_id;
3207 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3208 smi_info->si_type == SI_BT)
3209 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3210 }
3211
3212 /*
3213 * setup_oem_data_handler
3214 * @info - smi_info.device_id must be filled in already
3215 *
3216 * Fills in smi_info.device_id.oem_data_available_handler
3217 * when we know what function to use there.
3218 */
3219
3220 static void setup_oem_data_handler(struct smi_info *smi_info)
3221 {
3222 setup_dell_poweredge_oem_data_handler(smi_info);
3223 }
3224
3225 static void setup_xaction_handlers(struct smi_info *smi_info)
3226 {
3227 setup_dell_poweredge_bt_xaction_handler(smi_info);
3228 }
3229
3230 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3231 {
3232 if (smi_info->thread != NULL)
3233 kthread_stop(smi_info->thread);
3234 if (smi_info->timer_running)
3235 del_timer_sync(&smi_info->si_timer);
3236 }
3237
3238 static struct ipmi_default_vals
3239 {
3240 int type;
3241 int port;
3242 } ipmi_defaults[] =
3243 {
3244 { .type = SI_KCS, .port = 0xca2 },
3245 { .type = SI_SMIC, .port = 0xca9 },
3246 { .type = SI_BT, .port = 0xe4 },
3247 { .port = 0 }
3248 };
3249
3250 static void default_find_bmc(void)
3251 {
3252 struct smi_info *info;
3253 int i;
3254
3255 for (i = 0; ; i++) {
3256 if (!ipmi_defaults[i].port)
3257 break;
3258 #ifdef CONFIG_PPC
3259 if (check_legacy_ioport(ipmi_defaults[i].port))
3260 continue;
3261 #endif
3262 info = smi_info_alloc();
3263 if (!info)
3264 return;
3265
3266 info->addr_source = SI_DEFAULT;
3267
3268 info->si_type = ipmi_defaults[i].type;
3269 info->io_setup = port_setup;
3270 info->io.addr_data = ipmi_defaults[i].port;
3271 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3272
3273 info->io.addr = NULL;
3274 info->io.regspacing = DEFAULT_REGSPACING;
3275 info->io.regsize = DEFAULT_REGSPACING;
3276 info->io.regshift = 0;
3277
3278 if (add_smi(info) == 0) {
3279 if ((try_smi_init(info)) == 0) {
3280 /* Found one... */
3281 printk(KERN_INFO PFX "Found default %s"
3282 " state machine at %s address 0x%lx\n",
3283 si_to_str[info->si_type],
3284 addr_space_to_str[info->io.addr_type],
3285 info->io.addr_data);
3286 } else
3287 cleanup_one_si(info);
3288 } else {
3289 kfree(info);
3290 }
3291 }
3292 }
3293
3294 static int is_new_interface(struct smi_info *info)
3295 {
3296 struct smi_info *e;
3297
3298 list_for_each_entry(e, &smi_infos, link) {
3299 if (e->io.addr_type != info->io.addr_type)
3300 continue;
3301 if (e->io.addr_data == info->io.addr_data)
3302 return 0;
3303 }
3304
3305 return 1;
3306 }
3307
3308 static int add_smi(struct smi_info *new_smi)
3309 {
3310 int rv = 0;
3311
3312 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3313 ipmi_addr_src_to_str(new_smi->addr_source),
3314 si_to_str[new_smi->si_type]);
3315 mutex_lock(&smi_infos_lock);
3316 if (!is_new_interface(new_smi)) {
3317 printk(KERN_CONT " duplicate interface\n");
3318 rv = -EBUSY;
3319 goto out_err;
3320 }
3321
3322 printk(KERN_CONT "\n");
3323
3324 /* So we know not to free it unless we have allocated one. */
3325 new_smi->intf = NULL;
3326 new_smi->si_sm = NULL;
3327 new_smi->handlers = NULL;
3328
3329 list_add_tail(&new_smi->link, &smi_infos);
3330
3331 out_err:
3332 mutex_unlock(&smi_infos_lock);
3333 return rv;
3334 }
3335
3336 static int try_smi_init(struct smi_info *new_smi)
3337 {
3338 int rv = 0;
3339 int i;
3340
3341 printk(KERN_INFO PFX "Trying %s-specified %s state"
3342 " machine at %s address 0x%lx, slave address 0x%x,"
3343 " irq %d\n",
3344 ipmi_addr_src_to_str(new_smi->addr_source),
3345 si_to_str[new_smi->si_type],
3346 addr_space_to_str[new_smi->io.addr_type],
3347 new_smi->io.addr_data,
3348 new_smi->slave_addr, new_smi->irq);
3349
3350 switch (new_smi->si_type) {
3351 case SI_KCS:
3352 new_smi->handlers = &kcs_smi_handlers;
3353 break;
3354
3355 case SI_SMIC:
3356 new_smi->handlers = &smic_smi_handlers;
3357 break;
3358
3359 case SI_BT:
3360 new_smi->handlers = &bt_smi_handlers;
3361 break;
3362
3363 default:
3364 /* No support for anything else yet. */
3365 rv = -EIO;
3366 goto out_err;
3367 }
3368
3369 /* Allocate the state machine's data and initialize it. */
3370 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3371 if (!new_smi->si_sm) {
3372 printk(KERN_ERR PFX
3373 "Could not allocate state machine memory\n");
3374 rv = -ENOMEM;
3375 goto out_err;
3376 }
3377 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3378 &new_smi->io);
3379
3380 /* Now that we know the I/O size, we can set up the I/O. */
3381 rv = new_smi->io_setup(new_smi);
3382 if (rv) {
3383 printk(KERN_ERR PFX "Could not set up I/O space\n");
3384 goto out_err;
3385 }
3386
3387 /* Do low-level detection first. */
3388 if (new_smi->handlers->detect(new_smi->si_sm)) {
3389 if (new_smi->addr_source)
3390 printk(KERN_INFO PFX "Interface detection failed\n");
3391 rv = -ENODEV;
3392 goto out_err;
3393 }
3394
3395 /*
3396 * Attempt a get device id command. If it fails, we probably
3397 * don't have a BMC here.
3398 */
3399 rv = try_get_dev_id(new_smi);
3400 if (rv) {
3401 if (new_smi->addr_source)
3402 printk(KERN_INFO PFX "There appears to be no BMC"
3403 " at this location\n");
3404 goto out_err;
3405 }
3406
3407 setup_oem_data_handler(new_smi);
3408 setup_xaction_handlers(new_smi);
3409
3410 new_smi->waiting_msg = NULL;
3411 new_smi->curr_msg = NULL;
3412 atomic_set(&new_smi->req_events, 0);
3413 new_smi->run_to_completion = false;
3414 for (i = 0; i < SI_NUM_STATS; i++)
3415 atomic_set(&new_smi->stats[i], 0);
3416
3417 new_smi->interrupt_disabled = true;
3418 atomic_set(&new_smi->need_watch, 0);
3419 new_smi->intf_num = smi_num;
3420 smi_num++;
3421
3422 rv = try_enable_event_buffer(new_smi);
3423 if (rv == 0)
3424 new_smi->has_event_buffer = true;
3425
3426 /*
3427 * Start clearing the flags before we enable interrupts or the
3428 * timer to avoid racing with the timer.
3429 */
3430 start_clear_flags(new_smi);
3431
3432 /*
3433 * IRQ is defined to be set when non-zero. req_events will
3434 * cause a global flags check that will enable interrupts.
3435 */
3436 if (new_smi->irq) {
3437 new_smi->interrupt_disabled = false;
3438 atomic_set(&new_smi->req_events, 1);
3439 }
3440
3441 if (!new_smi->dev) {
3442 /*
3443 * If we don't already have a device from something
3444 * else (like PCI), then register a new one.
3445 */
3446 new_smi->pdev = platform_device_alloc("ipmi_si",
3447 new_smi->intf_num);
3448 if (!new_smi->pdev) {
3449 printk(KERN_ERR PFX
3450 "Unable to allocate platform device\n");
3451 goto out_err;
3452 }
3453 new_smi->dev = &new_smi->pdev->dev;
3454 new_smi->dev->driver = &ipmi_driver.driver;
3455
3456 rv = platform_device_add(new_smi->pdev);
3457 if (rv) {
3458 printk(KERN_ERR PFX
3459 "Unable to register system interface device:"
3460 " %d\n",
3461 rv);
3462 goto out_err;
3463 }
3464 new_smi->dev_registered = true;
3465 }
3466
3467 rv = ipmi_register_smi(&handlers,
3468 new_smi,
3469 &new_smi->device_id,
3470 new_smi->dev,
3471 new_smi->slave_addr);
3472 if (rv) {
3473 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3474 rv);
3475 goto out_err_stop_timer;
3476 }
3477
3478 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3479 &smi_type_proc_ops,
3480 new_smi);
3481 if (rv) {
3482 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3483 goto out_err_stop_timer;
3484 }
3485
3486 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3487 &smi_si_stats_proc_ops,
3488 new_smi);
3489 if (rv) {
3490 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3491 goto out_err_stop_timer;
3492 }
3493
3494 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3495 &smi_params_proc_ops,
3496 new_smi);
3497 if (rv) {
3498 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3499 goto out_err_stop_timer;
3500 }
3501
3502 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3503 si_to_str[new_smi->si_type]);
3504
3505 return 0;
3506
3507 out_err_stop_timer:
3508 wait_for_timer_and_thread(new_smi);
3509
3510 out_err:
3511 new_smi->interrupt_disabled = true;
3512
3513 if (new_smi->intf) {
3514 ipmi_smi_t intf = new_smi->intf;
3515 new_smi->intf = NULL;
3516 ipmi_unregister_smi(intf);
3517 }
3518
3519 if (new_smi->irq_cleanup) {
3520 new_smi->irq_cleanup(new_smi);
3521 new_smi->irq_cleanup = NULL;
3522 }
3523
3524 /*
3525 * Wait until we know that we are out of any interrupt
3526 * handlers might have been running before we freed the
3527 * interrupt.
3528 */
3529 synchronize_sched();
3530
3531 if (new_smi->si_sm) {
3532 if (new_smi->handlers)
3533 new_smi->handlers->cleanup(new_smi->si_sm);
3534 kfree(new_smi->si_sm);
3535 new_smi->si_sm = NULL;
3536 }
3537 if (new_smi->addr_source_cleanup) {
3538 new_smi->addr_source_cleanup(new_smi);
3539 new_smi->addr_source_cleanup = NULL;
3540 }
3541 if (new_smi->io_cleanup) {
3542 new_smi->io_cleanup(new_smi);
3543 new_smi->io_cleanup = NULL;
3544 }
3545
3546 if (new_smi->dev_registered) {
3547 platform_device_unregister(new_smi->pdev);
3548 new_smi->dev_registered = false;
3549 }
3550
3551 return rv;
3552 }
3553
3554 static int init_ipmi_si(void)
3555 {
3556 int i;
3557 char *str;
3558 int rv;
3559 struct smi_info *e;
3560 enum ipmi_addr_src type = SI_INVALID;
3561
3562 if (initialized)
3563 return 0;
3564 initialized = 1;
3565
3566 if (si_tryplatform) {
3567 rv = platform_driver_register(&ipmi_driver);
3568 if (rv) {
3569 printk(KERN_ERR PFX "Unable to register "
3570 "driver: %d\n", rv);
3571 return rv;
3572 }
3573 }
3574
3575 /* Parse out the si_type string into its components. */
3576 str = si_type_str;
3577 if (*str != '\0') {
3578 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3579 si_type[i] = str;
3580 str = strchr(str, ',');
3581 if (str) {
3582 *str = '\0';
3583 str++;
3584 } else {
3585 break;
3586 }
3587 }
3588 }
3589
3590 printk(KERN_INFO "IPMI System Interface driver.\n");
3591
3592 /* If the user gave us a device, they presumably want us to use it */
3593 if (!hardcode_find_bmc())
3594 return 0;
3595
3596 #ifdef CONFIG_PCI
3597 if (si_trypci) {
3598 rv = pci_register_driver(&ipmi_pci_driver);
3599 if (rv)
3600 printk(KERN_ERR PFX "Unable to register "
3601 "PCI driver: %d\n", rv);
3602 else
3603 pci_registered = true;
3604 }
3605 #endif
3606
3607 #ifdef CONFIG_ACPI
3608 if (si_tryacpi) {
3609 pnp_register_driver(&ipmi_pnp_driver);
3610 pnp_registered = true;
3611 }
3612 #endif
3613
3614 #ifdef CONFIG_DMI
3615 if (si_trydmi)
3616 dmi_find_bmc();
3617 #endif
3618
3619 #ifdef CONFIG_ACPI
3620 if (si_tryacpi)
3621 spmi_find_bmc();
3622 #endif
3623
3624 #ifdef CONFIG_PARISC
3625 register_parisc_driver(&ipmi_parisc_driver);
3626 parisc_registered = true;
3627 /* poking PC IO addresses will crash machine, don't do it */
3628 si_trydefaults = 0;
3629 #endif
3630
3631 /* We prefer devices with interrupts, but in the case of a machine
3632 with multiple BMCs we assume that there will be several instances
3633 of a given type so if we succeed in registering a type then also
3634 try to register everything else of the same type */
3635
3636 mutex_lock(&smi_infos_lock);
3637 list_for_each_entry(e, &smi_infos, link) {
3638 /* Try to register a device if it has an IRQ and we either
3639 haven't successfully registered a device yet or this
3640 device has the same type as one we successfully registered */
3641 if (e->irq && (!type || e->addr_source == type)) {
3642 if (!try_smi_init(e)) {
3643 type = e->addr_source;
3644 }
3645 }
3646 }
3647
3648 /* type will only have been set if we successfully registered an si */
3649 if (type) {
3650 mutex_unlock(&smi_infos_lock);
3651 return 0;
3652 }
3653
3654 /* Fall back to the preferred device */
3655
3656 list_for_each_entry(e, &smi_infos, link) {
3657 if (!e->irq && (!type || e->addr_source == type)) {
3658 if (!try_smi_init(e)) {
3659 type = e->addr_source;
3660 }
3661 }
3662 }
3663 mutex_unlock(&smi_infos_lock);
3664
3665 if (type)
3666 return 0;
3667
3668 if (si_trydefaults) {
3669 mutex_lock(&smi_infos_lock);
3670 if (list_empty(&smi_infos)) {
3671 /* No BMC was found, try defaults. */
3672 mutex_unlock(&smi_infos_lock);
3673 default_find_bmc();
3674 } else
3675 mutex_unlock(&smi_infos_lock);
3676 }
3677
3678 mutex_lock(&smi_infos_lock);
3679 if (unload_when_empty && list_empty(&smi_infos)) {
3680 mutex_unlock(&smi_infos_lock);
3681 cleanup_ipmi_si();
3682 printk(KERN_WARNING PFX
3683 "Unable to find any System Interface(s)\n");
3684 return -ENODEV;
3685 } else {
3686 mutex_unlock(&smi_infos_lock);
3687 return 0;
3688 }
3689 }
3690 module_init(init_ipmi_si);
3691
3692 static void cleanup_one_si(struct smi_info *to_clean)
3693 {
3694 int rv = 0;
3695
3696 if (!to_clean)
3697 return;
3698
3699 if (to_clean->intf) {
3700 ipmi_smi_t intf = to_clean->intf;
3701
3702 to_clean->intf = NULL;
3703 rv = ipmi_unregister_smi(intf);
3704 if (rv) {
3705 pr_err(PFX "Unable to unregister device: errno=%d\n",
3706 rv);
3707 }
3708 }
3709
3710 if (to_clean->dev)
3711 dev_set_drvdata(to_clean->dev, NULL);
3712
3713 list_del(&to_clean->link);
3714
3715 /*
3716 * Make sure that interrupts, the timer and the thread are
3717 * stopped and will not run again.
3718 */
3719 if (to_clean->irq_cleanup)
3720 to_clean->irq_cleanup(to_clean);
3721 wait_for_timer_and_thread(to_clean);
3722
3723 /*
3724 * Timeouts are stopped, now make sure the interrupts are off
3725 * in the BMC. Note that timers and CPU interrupts are off,
3726 * so no need for locks.
3727 */
3728 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3729 poll(to_clean);
3730 schedule_timeout_uninterruptible(1);
3731 }
3732 disable_si_irq(to_clean);
3733 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3734 poll(to_clean);
3735 schedule_timeout_uninterruptible(1);
3736 }
3737
3738 if (to_clean->handlers)
3739 to_clean->handlers->cleanup(to_clean->si_sm);
3740
3741 kfree(to_clean->si_sm);
3742
3743 if (to_clean->addr_source_cleanup)
3744 to_clean->addr_source_cleanup(to_clean);
3745 if (to_clean->io_cleanup)
3746 to_clean->io_cleanup(to_clean);
3747
3748 if (to_clean->dev_registered)
3749 platform_device_unregister(to_clean->pdev);
3750
3751 kfree(to_clean);
3752 }
3753
3754 static void cleanup_ipmi_si(void)
3755 {
3756 struct smi_info *e, *tmp_e;
3757
3758 if (!initialized)
3759 return;
3760
3761 #ifdef CONFIG_PCI
3762 if (pci_registered)
3763 pci_unregister_driver(&ipmi_pci_driver);
3764 #endif
3765 #ifdef CONFIG_ACPI
3766 if (pnp_registered)
3767 pnp_unregister_driver(&ipmi_pnp_driver);
3768 #endif
3769 #ifdef CONFIG_PARISC
3770 if (parisc_registered)
3771 unregister_parisc_driver(&ipmi_parisc_driver);
3772 #endif
3773
3774 platform_driver_unregister(&ipmi_driver);
3775
3776 mutex_lock(&smi_infos_lock);
3777 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3778 cleanup_one_si(e);
3779 mutex_unlock(&smi_infos_lock);
3780 }
3781 module_exit(cleanup_ipmi_si);
3782
3783 MODULE_LICENSE("GPL");
3784 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3785 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3786 " system interfaces.");
This page took 0.11064 seconds and 6 git commands to generate.