Merge tag 'vmwgfx-fixes-4.3-151014' of git://people.freedesktop.org/~thomash/linux...
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC 10000
84 #define SI_USEC_PER_JIFFY (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
87 short timeout */
88
89 enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
94 SI_GETTING_MESSAGES,
95 SI_CHECKING_ENABLES,
96 SI_SETTING_ENABLES
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 #define DEVICE_NAME "ipmi_si"
111
112 static struct platform_driver ipmi_driver;
113
114 /*
115 * Indexes into stats[] in smi_info below.
116 */
117 enum si_stat_indexes {
118 /*
119 * Number of times the driver requested a timer while an operation
120 * was in progress.
121 */
122 SI_STAT_short_timeouts = 0,
123
124 /*
125 * Number of times the driver requested a timer while nothing was in
126 * progress.
127 */
128 SI_STAT_long_timeouts,
129
130 /* Number of times the interface was idle while being polled. */
131 SI_STAT_idles,
132
133 /* Number of interrupts the driver handled. */
134 SI_STAT_interrupts,
135
136 /* Number of time the driver got an ATTN from the hardware. */
137 SI_STAT_attentions,
138
139 /* Number of times the driver requested flags from the hardware. */
140 SI_STAT_flag_fetches,
141
142 /* Number of times the hardware didn't follow the state machine. */
143 SI_STAT_hosed_count,
144
145 /* Number of completed messages. */
146 SI_STAT_complete_transactions,
147
148 /* Number of IPMI events received from the hardware. */
149 SI_STAT_events,
150
151 /* Number of watchdog pretimeouts. */
152 SI_STAT_watchdog_pretimeouts,
153
154 /* Number of asynchronous messages received. */
155 SI_STAT_incoming_messages,
156
157
158 /* This *must* remain last, add new values above this. */
159 SI_NUM_STATS
160 };
161
162 struct smi_info {
163 int intf_num;
164 ipmi_smi_t intf;
165 struct si_sm_data *si_sm;
166 const struct si_sm_handlers *handlers;
167 enum si_type si_type;
168 spinlock_t si_lock;
169 struct ipmi_smi_msg *waiting_msg;
170 struct ipmi_smi_msg *curr_msg;
171 enum si_intf_state si_state;
172
173 /*
174 * Used to handle the various types of I/O that can occur with
175 * IPMI
176 */
177 struct si_sm_io io;
178 int (*io_setup)(struct smi_info *info);
179 void (*io_cleanup)(struct smi_info *info);
180 int (*irq_setup)(struct smi_info *info);
181 void (*irq_cleanup)(struct smi_info *info);
182 unsigned int io_size;
183 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184 void (*addr_source_cleanup)(struct smi_info *info);
185 void *addr_source_data;
186
187 /*
188 * Per-OEM handler, called from handle_flags(). Returns 1
189 * when handle_flags() needs to be re-run or 0 indicating it
190 * set si_state itself.
191 */
192 int (*oem_data_avail_handler)(struct smi_info *smi_info);
193
194 /*
195 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196 * is set to hold the flags until we are done handling everything
197 * from the flags.
198 */
199 #define RECEIVE_MSG_AVAIL 0x01
200 #define EVENT_MSG_BUFFER_FULL 0x02
201 #define WDT_PRE_TIMEOUT_INT 0x08
202 #define OEM0_DATA_AVAIL 0x20
203 #define OEM1_DATA_AVAIL 0x40
204 #define OEM2_DATA_AVAIL 0x80
205 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
206 OEM1_DATA_AVAIL | \
207 OEM2_DATA_AVAIL)
208 unsigned char msg_flags;
209
210 /* Does the BMC have an event buffer? */
211 bool has_event_buffer;
212
213 /*
214 * If set to true, this will request events the next time the
215 * state machine is idle.
216 */
217 atomic_t req_events;
218
219 /*
220 * If true, run the state machine to completion on every send
221 * call. Generally used after a panic to make sure stuff goes
222 * out.
223 */
224 bool run_to_completion;
225
226 /* The I/O port of an SI interface. */
227 int port;
228
229 /*
230 * The space between start addresses of the two ports. For
231 * instance, if the first port is 0xca2 and the spacing is 4, then
232 * the second port is 0xca6.
233 */
234 unsigned int spacing;
235
236 /* zero if no irq; */
237 int irq;
238
239 /* The timer for this si. */
240 struct timer_list si_timer;
241
242 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
243 bool timer_running;
244
245 /* The time (in jiffies) the last timeout occurred at. */
246 unsigned long last_timeout_jiffies;
247
248 /* Are we waiting for the events, pretimeouts, received msgs? */
249 atomic_t need_watch;
250
251 /*
252 * The driver will disable interrupts when it gets into a
253 * situation where it cannot handle messages due to lack of
254 * memory. Once that situation clears up, it will re-enable
255 * interrupts.
256 */
257 bool interrupt_disabled;
258
259 /*
260 * Does the BMC support events?
261 */
262 bool supports_event_msg_buff;
263
264 /*
265 * Can we disable interrupts the global enables receive irq
266 * bit? There are currently two forms of brokenness, some
267 * systems cannot disable the bit (which is technically within
268 * the spec but a bad idea) and some systems have the bit
269 * forced to zero even though interrupts work (which is
270 * clearly outside the spec). The next bool tells which form
271 * of brokenness is present.
272 */
273 bool cannot_disable_irq;
274
275 /*
276 * Some systems are broken and cannot set the irq enable
277 * bit, even if they support interrupts.
278 */
279 bool irq_enable_broken;
280
281 /*
282 * Did we get an attention that we did not handle?
283 */
284 bool got_attn;
285
286 /* From the get device id response... */
287 struct ipmi_device_id device_id;
288
289 /* Driver model stuff. */
290 struct device *dev;
291 struct platform_device *pdev;
292
293 /*
294 * True if we allocated the device, false if it came from
295 * someplace else (like PCI).
296 */
297 bool dev_registered;
298
299 /* Slave address, could be reported from DMI. */
300 unsigned char slave_addr;
301
302 /* Counters and things for the proc filesystem. */
303 atomic_t stats[SI_NUM_STATS];
304
305 struct task_struct *thread;
306
307 struct list_head link;
308 union ipmi_smi_info_union addr_info;
309 };
310
311 #define smi_inc_stat(smi, stat) \
312 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
313 #define smi_get_stat(smi, stat) \
314 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
315
316 #define SI_MAX_PARMS 4
317
318 static int force_kipmid[SI_MAX_PARMS];
319 static int num_force_kipmid;
320 #ifdef CONFIG_PCI
321 static bool pci_registered;
322 #endif
323 #ifdef CONFIG_PARISC
324 static bool parisc_registered;
325 #endif
326
327 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
328 static int num_max_busy_us;
329
330 static bool unload_when_empty = true;
331
332 static int add_smi(struct smi_info *smi);
333 static int try_smi_init(struct smi_info *smi);
334 static void cleanup_one_si(struct smi_info *to_clean);
335 static void cleanup_ipmi_si(void);
336
337 #ifdef DEBUG_TIMING
338 void debug_timestamp(char *msg)
339 {
340 struct timespec64 t;
341
342 getnstimeofday64(&t);
343 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
344 }
345 #else
346 #define debug_timestamp(x)
347 #endif
348
349 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
350 static int register_xaction_notifier(struct notifier_block *nb)
351 {
352 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
353 }
354
355 static void deliver_recv_msg(struct smi_info *smi_info,
356 struct ipmi_smi_msg *msg)
357 {
358 /* Deliver the message to the upper layer. */
359 if (smi_info->intf)
360 ipmi_smi_msg_received(smi_info->intf, msg);
361 else
362 ipmi_free_smi_msg(msg);
363 }
364
365 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
366 {
367 struct ipmi_smi_msg *msg = smi_info->curr_msg;
368
369 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
370 cCode = IPMI_ERR_UNSPECIFIED;
371 /* else use it as is */
372
373 /* Make it a response */
374 msg->rsp[0] = msg->data[0] | 4;
375 msg->rsp[1] = msg->data[1];
376 msg->rsp[2] = cCode;
377 msg->rsp_size = 3;
378
379 smi_info->curr_msg = NULL;
380 deliver_recv_msg(smi_info, msg);
381 }
382
383 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
384 {
385 int rv;
386
387 if (!smi_info->waiting_msg) {
388 smi_info->curr_msg = NULL;
389 rv = SI_SM_IDLE;
390 } else {
391 int err;
392
393 smi_info->curr_msg = smi_info->waiting_msg;
394 smi_info->waiting_msg = NULL;
395 debug_timestamp("Start2");
396 err = atomic_notifier_call_chain(&xaction_notifier_list,
397 0, smi_info);
398 if (err & NOTIFY_STOP_MASK) {
399 rv = SI_SM_CALL_WITHOUT_DELAY;
400 goto out;
401 }
402 err = smi_info->handlers->start_transaction(
403 smi_info->si_sm,
404 smi_info->curr_msg->data,
405 smi_info->curr_msg->data_size);
406 if (err)
407 return_hosed_msg(smi_info, err);
408
409 rv = SI_SM_CALL_WITHOUT_DELAY;
410 }
411 out:
412 return rv;
413 }
414
415 static void start_check_enables(struct smi_info *smi_info)
416 {
417 unsigned char msg[2];
418
419 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
421
422 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423 smi_info->si_state = SI_CHECKING_ENABLES;
424 }
425
426 static void start_clear_flags(struct smi_info *smi_info)
427 {
428 unsigned char msg[3];
429
430 /* Make sure the watchdog pre-timeout flag is not set at startup. */
431 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
432 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
433 msg[2] = WDT_PRE_TIMEOUT_INT;
434
435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
436 smi_info->si_state = SI_CLEARING_FLAGS;
437 }
438
439 static void start_getting_msg_queue(struct smi_info *smi_info)
440 {
441 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
443 smi_info->curr_msg->data_size = 2;
444
445 smi_info->handlers->start_transaction(
446 smi_info->si_sm,
447 smi_info->curr_msg->data,
448 smi_info->curr_msg->data_size);
449 smi_info->si_state = SI_GETTING_MESSAGES;
450 }
451
452 static void start_getting_events(struct smi_info *smi_info)
453 {
454 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
455 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
456 smi_info->curr_msg->data_size = 2;
457
458 smi_info->handlers->start_transaction(
459 smi_info->si_sm,
460 smi_info->curr_msg->data,
461 smi_info->curr_msg->data_size);
462 smi_info->si_state = SI_GETTING_EVENTS;
463 }
464
465 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
466 {
467 smi_info->last_timeout_jiffies = jiffies;
468 mod_timer(&smi_info->si_timer, new_val);
469 smi_info->timer_running = true;
470 }
471
472 /*
473 * When we have a situtaion where we run out of memory and cannot
474 * allocate messages, we just leave them in the BMC and run the system
475 * polled until we can allocate some memory. Once we have some
476 * memory, we will re-enable the interrupt.
477 *
478 * Note that we cannot just use disable_irq(), since the interrupt may
479 * be shared.
480 */
481 static inline bool disable_si_irq(struct smi_info *smi_info)
482 {
483 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
484 smi_info->interrupt_disabled = true;
485 start_check_enables(smi_info);
486 return true;
487 }
488 return false;
489 }
490
491 static inline bool enable_si_irq(struct smi_info *smi_info)
492 {
493 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
494 smi_info->interrupt_disabled = false;
495 start_check_enables(smi_info);
496 return true;
497 }
498 return false;
499 }
500
501 /*
502 * Allocate a message. If unable to allocate, start the interrupt
503 * disable process and return NULL. If able to allocate but
504 * interrupts are disabled, free the message and return NULL after
505 * starting the interrupt enable process.
506 */
507 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
508 {
509 struct ipmi_smi_msg *msg;
510
511 msg = ipmi_alloc_smi_msg();
512 if (!msg) {
513 if (!disable_si_irq(smi_info))
514 smi_info->si_state = SI_NORMAL;
515 } else if (enable_si_irq(smi_info)) {
516 ipmi_free_smi_msg(msg);
517 msg = NULL;
518 }
519 return msg;
520 }
521
522 static void handle_flags(struct smi_info *smi_info)
523 {
524 retry:
525 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
526 /* Watchdog pre-timeout */
527 smi_inc_stat(smi_info, watchdog_pretimeouts);
528
529 start_clear_flags(smi_info);
530 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
531 if (smi_info->intf)
532 ipmi_smi_watchdog_pretimeout(smi_info->intf);
533 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
534 /* Messages available. */
535 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
536 if (!smi_info->curr_msg)
537 return;
538
539 start_getting_msg_queue(smi_info);
540 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
541 /* Events available. */
542 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
543 if (!smi_info->curr_msg)
544 return;
545
546 start_getting_events(smi_info);
547 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
548 smi_info->oem_data_avail_handler) {
549 if (smi_info->oem_data_avail_handler(smi_info))
550 goto retry;
551 } else
552 smi_info->si_state = SI_NORMAL;
553 }
554
555 /*
556 * Global enables we care about.
557 */
558 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
559 IPMI_BMC_EVT_MSG_INTR)
560
561 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
562 bool *irq_on)
563 {
564 u8 enables = 0;
565
566 if (smi_info->supports_event_msg_buff)
567 enables |= IPMI_BMC_EVT_MSG_BUFF;
568
569 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
570 smi_info->cannot_disable_irq) &&
571 !smi_info->irq_enable_broken)
572 enables |= IPMI_BMC_RCV_MSG_INTR;
573
574 if (smi_info->supports_event_msg_buff &&
575 smi_info->irq && !smi_info->interrupt_disabled &&
576 !smi_info->irq_enable_broken)
577 enables |= IPMI_BMC_EVT_MSG_INTR;
578
579 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
580
581 return enables;
582 }
583
584 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
585 {
586 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
587
588 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
589
590 if ((bool)irqstate == irq_on)
591 return;
592
593 if (irq_on)
594 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
595 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
596 else
597 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
598 }
599
600 static void handle_transaction_done(struct smi_info *smi_info)
601 {
602 struct ipmi_smi_msg *msg;
603
604 debug_timestamp("Done");
605 switch (smi_info->si_state) {
606 case SI_NORMAL:
607 if (!smi_info->curr_msg)
608 break;
609
610 smi_info->curr_msg->rsp_size
611 = smi_info->handlers->get_result(
612 smi_info->si_sm,
613 smi_info->curr_msg->rsp,
614 IPMI_MAX_MSG_LENGTH);
615
616 /*
617 * Do this here becase deliver_recv_msg() releases the
618 * lock, and a new message can be put in during the
619 * time the lock is released.
620 */
621 msg = smi_info->curr_msg;
622 smi_info->curr_msg = NULL;
623 deliver_recv_msg(smi_info, msg);
624 break;
625
626 case SI_GETTING_FLAGS:
627 {
628 unsigned char msg[4];
629 unsigned int len;
630
631 /* We got the flags from the SMI, now handle them. */
632 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
633 if (msg[2] != 0) {
634 /* Error fetching flags, just give up for now. */
635 smi_info->si_state = SI_NORMAL;
636 } else if (len < 4) {
637 /*
638 * Hmm, no flags. That's technically illegal, but
639 * don't use uninitialized data.
640 */
641 smi_info->si_state = SI_NORMAL;
642 } else {
643 smi_info->msg_flags = msg[3];
644 handle_flags(smi_info);
645 }
646 break;
647 }
648
649 case SI_CLEARING_FLAGS:
650 {
651 unsigned char msg[3];
652
653 /* We cleared the flags. */
654 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
655 if (msg[2] != 0) {
656 /* Error clearing flags */
657 dev_warn(smi_info->dev,
658 "Error clearing flags: %2.2x\n", msg[2]);
659 }
660 smi_info->si_state = SI_NORMAL;
661 break;
662 }
663
664 case SI_GETTING_EVENTS:
665 {
666 smi_info->curr_msg->rsp_size
667 = smi_info->handlers->get_result(
668 smi_info->si_sm,
669 smi_info->curr_msg->rsp,
670 IPMI_MAX_MSG_LENGTH);
671
672 /*
673 * Do this here becase deliver_recv_msg() releases the
674 * lock, and a new message can be put in during the
675 * time the lock is released.
676 */
677 msg = smi_info->curr_msg;
678 smi_info->curr_msg = NULL;
679 if (msg->rsp[2] != 0) {
680 /* Error getting event, probably done. */
681 msg->done(msg);
682
683 /* Take off the event flag. */
684 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
685 handle_flags(smi_info);
686 } else {
687 smi_inc_stat(smi_info, events);
688
689 /*
690 * Do this before we deliver the message
691 * because delivering the message releases the
692 * lock and something else can mess with the
693 * state.
694 */
695 handle_flags(smi_info);
696
697 deliver_recv_msg(smi_info, msg);
698 }
699 break;
700 }
701
702 case SI_GETTING_MESSAGES:
703 {
704 smi_info->curr_msg->rsp_size
705 = smi_info->handlers->get_result(
706 smi_info->si_sm,
707 smi_info->curr_msg->rsp,
708 IPMI_MAX_MSG_LENGTH);
709
710 /*
711 * Do this here becase deliver_recv_msg() releases the
712 * lock, and a new message can be put in during the
713 * time the lock is released.
714 */
715 msg = smi_info->curr_msg;
716 smi_info->curr_msg = NULL;
717 if (msg->rsp[2] != 0) {
718 /* Error getting event, probably done. */
719 msg->done(msg);
720
721 /* Take off the msg flag. */
722 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
723 handle_flags(smi_info);
724 } else {
725 smi_inc_stat(smi_info, incoming_messages);
726
727 /*
728 * Do this before we deliver the message
729 * because delivering the message releases the
730 * lock and something else can mess with the
731 * state.
732 */
733 handle_flags(smi_info);
734
735 deliver_recv_msg(smi_info, msg);
736 }
737 break;
738 }
739
740 case SI_CHECKING_ENABLES:
741 {
742 unsigned char msg[4];
743 u8 enables;
744 bool irq_on;
745
746 /* We got the flags from the SMI, now handle them. */
747 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
748 if (msg[2] != 0) {
749 dev_warn(smi_info->dev,
750 "Couldn't get irq info: %x.\n", msg[2]);
751 dev_warn(smi_info->dev,
752 "Maybe ok, but ipmi might run very slowly.\n");
753 smi_info->si_state = SI_NORMAL;
754 break;
755 }
756 enables = current_global_enables(smi_info, 0, &irq_on);
757 if (smi_info->si_type == SI_BT)
758 /* BT has its own interrupt enable bit. */
759 check_bt_irq(smi_info, irq_on);
760 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
761 /* Enables are not correct, fix them. */
762 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
763 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
764 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
765 smi_info->handlers->start_transaction(
766 smi_info->si_sm, msg, 3);
767 smi_info->si_state = SI_SETTING_ENABLES;
768 } else if (smi_info->supports_event_msg_buff) {
769 smi_info->curr_msg = ipmi_alloc_smi_msg();
770 if (!smi_info->curr_msg) {
771 smi_info->si_state = SI_NORMAL;
772 break;
773 }
774 start_getting_msg_queue(smi_info);
775 } else {
776 smi_info->si_state = SI_NORMAL;
777 }
778 break;
779 }
780
781 case SI_SETTING_ENABLES:
782 {
783 unsigned char msg[4];
784
785 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
786 if (msg[2] != 0)
787 dev_warn(smi_info->dev,
788 "Could not set the global enables: 0x%x.\n",
789 msg[2]);
790
791 if (smi_info->supports_event_msg_buff) {
792 smi_info->curr_msg = ipmi_alloc_smi_msg();
793 if (!smi_info->curr_msg) {
794 smi_info->si_state = SI_NORMAL;
795 break;
796 }
797 start_getting_msg_queue(smi_info);
798 } else {
799 smi_info->si_state = SI_NORMAL;
800 }
801 break;
802 }
803 }
804 }
805
806 /*
807 * Called on timeouts and events. Timeouts should pass the elapsed
808 * time, interrupts should pass in zero. Must be called with
809 * si_lock held and interrupts disabled.
810 */
811 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
812 int time)
813 {
814 enum si_sm_result si_sm_result;
815
816 restart:
817 /*
818 * There used to be a loop here that waited a little while
819 * (around 25us) before giving up. That turned out to be
820 * pointless, the minimum delays I was seeing were in the 300us
821 * range, which is far too long to wait in an interrupt. So
822 * we just run until the state machine tells us something
823 * happened or it needs a delay.
824 */
825 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
826 time = 0;
827 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
828 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
829
830 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
831 smi_inc_stat(smi_info, complete_transactions);
832
833 handle_transaction_done(smi_info);
834 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
835 } else if (si_sm_result == SI_SM_HOSED) {
836 smi_inc_stat(smi_info, hosed_count);
837
838 /*
839 * Do the before return_hosed_msg, because that
840 * releases the lock.
841 */
842 smi_info->si_state = SI_NORMAL;
843 if (smi_info->curr_msg != NULL) {
844 /*
845 * If we were handling a user message, format
846 * a response to send to the upper layer to
847 * tell it about the error.
848 */
849 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
850 }
851 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
852 }
853
854 /*
855 * We prefer handling attn over new messages. But don't do
856 * this if there is not yet an upper layer to handle anything.
857 */
858 if (likely(smi_info->intf) &&
859 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
860 unsigned char msg[2];
861
862 if (smi_info->si_state != SI_NORMAL) {
863 /*
864 * We got an ATTN, but we are doing something else.
865 * Handle the ATTN later.
866 */
867 smi_info->got_attn = true;
868 } else {
869 smi_info->got_attn = false;
870 smi_inc_stat(smi_info, attentions);
871
872 /*
873 * Got a attn, send down a get message flags to see
874 * what's causing it. It would be better to handle
875 * this in the upper layer, but due to the way
876 * interrupts work with the SMI, that's not really
877 * possible.
878 */
879 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
880 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
881
882 smi_info->handlers->start_transaction(
883 smi_info->si_sm, msg, 2);
884 smi_info->si_state = SI_GETTING_FLAGS;
885 goto restart;
886 }
887 }
888
889 /* If we are currently idle, try to start the next message. */
890 if (si_sm_result == SI_SM_IDLE) {
891 smi_inc_stat(smi_info, idles);
892
893 si_sm_result = start_next_msg(smi_info);
894 if (si_sm_result != SI_SM_IDLE)
895 goto restart;
896 }
897
898 if ((si_sm_result == SI_SM_IDLE)
899 && (atomic_read(&smi_info->req_events))) {
900 /*
901 * We are idle and the upper layer requested that I fetch
902 * events, so do so.
903 */
904 atomic_set(&smi_info->req_events, 0);
905
906 /*
907 * Take this opportunity to check the interrupt and
908 * message enable state for the BMC. The BMC can be
909 * asynchronously reset, and may thus get interrupts
910 * disable and messages disabled.
911 */
912 if (smi_info->supports_event_msg_buff || smi_info->irq) {
913 start_check_enables(smi_info);
914 } else {
915 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
916 if (!smi_info->curr_msg)
917 goto out;
918
919 start_getting_events(smi_info);
920 }
921 goto restart;
922 }
923 out:
924 return si_sm_result;
925 }
926
927 static void check_start_timer_thread(struct smi_info *smi_info)
928 {
929 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
930 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
931
932 if (smi_info->thread)
933 wake_up_process(smi_info->thread);
934
935 start_next_msg(smi_info);
936 smi_event_handler(smi_info, 0);
937 }
938 }
939
940 static void flush_messages(void *send_info)
941 {
942 struct smi_info *smi_info = send_info;
943 enum si_sm_result result;
944
945 /*
946 * Currently, this function is called only in run-to-completion
947 * mode. This means we are single-threaded, no need for locks.
948 */
949 result = smi_event_handler(smi_info, 0);
950 while (result != SI_SM_IDLE) {
951 udelay(SI_SHORT_TIMEOUT_USEC);
952 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
953 }
954 }
955
956 static void sender(void *send_info,
957 struct ipmi_smi_msg *msg)
958 {
959 struct smi_info *smi_info = send_info;
960 unsigned long flags;
961
962 debug_timestamp("Enqueue");
963
964 if (smi_info->run_to_completion) {
965 /*
966 * If we are running to completion, start it. Upper
967 * layer will call flush_messages to clear it out.
968 */
969 smi_info->waiting_msg = msg;
970 return;
971 }
972
973 spin_lock_irqsave(&smi_info->si_lock, flags);
974 /*
975 * The following two lines don't need to be under the lock for
976 * the lock's sake, but they do need SMP memory barriers to
977 * avoid getting things out of order. We are already claiming
978 * the lock, anyway, so just do it under the lock to avoid the
979 * ordering problem.
980 */
981 BUG_ON(smi_info->waiting_msg);
982 smi_info->waiting_msg = msg;
983 check_start_timer_thread(smi_info);
984 spin_unlock_irqrestore(&smi_info->si_lock, flags);
985 }
986
987 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
988 {
989 struct smi_info *smi_info = send_info;
990
991 smi_info->run_to_completion = i_run_to_completion;
992 if (i_run_to_completion)
993 flush_messages(smi_info);
994 }
995
996 /*
997 * Use -1 in the nsec value of the busy waiting timespec to tell that
998 * we are spinning in kipmid looking for something and not delaying
999 * between checks
1000 */
1001 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1002 {
1003 ts->tv_nsec = -1;
1004 }
1005 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1006 {
1007 return ts->tv_nsec != -1;
1008 }
1009
1010 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1011 const struct smi_info *smi_info,
1012 struct timespec64 *busy_until)
1013 {
1014 unsigned int max_busy_us = 0;
1015
1016 if (smi_info->intf_num < num_max_busy_us)
1017 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1018 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1019 ipmi_si_set_not_busy(busy_until);
1020 else if (!ipmi_si_is_busy(busy_until)) {
1021 getnstimeofday64(busy_until);
1022 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1023 } else {
1024 struct timespec64 now;
1025
1026 getnstimeofday64(&now);
1027 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1028 ipmi_si_set_not_busy(busy_until);
1029 return 0;
1030 }
1031 }
1032 return 1;
1033 }
1034
1035
1036 /*
1037 * A busy-waiting loop for speeding up IPMI operation.
1038 *
1039 * Lousy hardware makes this hard. This is only enabled for systems
1040 * that are not BT and do not have interrupts. It starts spinning
1041 * when an operation is complete or until max_busy tells it to stop
1042 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1043 * Documentation/IPMI.txt for details.
1044 */
1045 static int ipmi_thread(void *data)
1046 {
1047 struct smi_info *smi_info = data;
1048 unsigned long flags;
1049 enum si_sm_result smi_result;
1050 struct timespec64 busy_until;
1051
1052 ipmi_si_set_not_busy(&busy_until);
1053 set_user_nice(current, MAX_NICE);
1054 while (!kthread_should_stop()) {
1055 int busy_wait;
1056
1057 spin_lock_irqsave(&(smi_info->si_lock), flags);
1058 smi_result = smi_event_handler(smi_info, 0);
1059
1060 /*
1061 * If the driver is doing something, there is a possible
1062 * race with the timer. If the timer handler see idle,
1063 * and the thread here sees something else, the timer
1064 * handler won't restart the timer even though it is
1065 * required. So start it here if necessary.
1066 */
1067 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1068 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1069
1070 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1071 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1072 &busy_until);
1073 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1074 ; /* do nothing */
1075 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1076 schedule();
1077 else if (smi_result == SI_SM_IDLE) {
1078 if (atomic_read(&smi_info->need_watch)) {
1079 schedule_timeout_interruptible(100);
1080 } else {
1081 /* Wait to be woken up when we are needed. */
1082 __set_current_state(TASK_INTERRUPTIBLE);
1083 schedule();
1084 }
1085 } else
1086 schedule_timeout_interruptible(1);
1087 }
1088 return 0;
1089 }
1090
1091
1092 static void poll(void *send_info)
1093 {
1094 struct smi_info *smi_info = send_info;
1095 unsigned long flags = 0;
1096 bool run_to_completion = smi_info->run_to_completion;
1097
1098 /*
1099 * Make sure there is some delay in the poll loop so we can
1100 * drive time forward and timeout things.
1101 */
1102 udelay(10);
1103 if (!run_to_completion)
1104 spin_lock_irqsave(&smi_info->si_lock, flags);
1105 smi_event_handler(smi_info, 10);
1106 if (!run_to_completion)
1107 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1108 }
1109
1110 static void request_events(void *send_info)
1111 {
1112 struct smi_info *smi_info = send_info;
1113
1114 if (!smi_info->has_event_buffer)
1115 return;
1116
1117 atomic_set(&smi_info->req_events, 1);
1118 }
1119
1120 static void set_need_watch(void *send_info, bool enable)
1121 {
1122 struct smi_info *smi_info = send_info;
1123 unsigned long flags;
1124
1125 atomic_set(&smi_info->need_watch, enable);
1126 spin_lock_irqsave(&smi_info->si_lock, flags);
1127 check_start_timer_thread(smi_info);
1128 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1129 }
1130
1131 static int initialized;
1132
1133 static void smi_timeout(unsigned long data)
1134 {
1135 struct smi_info *smi_info = (struct smi_info *) data;
1136 enum si_sm_result smi_result;
1137 unsigned long flags;
1138 unsigned long jiffies_now;
1139 long time_diff;
1140 long timeout;
1141
1142 spin_lock_irqsave(&(smi_info->si_lock), flags);
1143 debug_timestamp("Timer");
1144
1145 jiffies_now = jiffies;
1146 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1147 * SI_USEC_PER_JIFFY);
1148 smi_result = smi_event_handler(smi_info, time_diff);
1149
1150 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1151 /* Running with interrupts, only do long timeouts. */
1152 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1153 smi_inc_stat(smi_info, long_timeouts);
1154 goto do_mod_timer;
1155 }
1156
1157 /*
1158 * If the state machine asks for a short delay, then shorten
1159 * the timer timeout.
1160 */
1161 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1162 smi_inc_stat(smi_info, short_timeouts);
1163 timeout = jiffies + 1;
1164 } else {
1165 smi_inc_stat(smi_info, long_timeouts);
1166 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1167 }
1168
1169 do_mod_timer:
1170 if (smi_result != SI_SM_IDLE)
1171 smi_mod_timer(smi_info, timeout);
1172 else
1173 smi_info->timer_running = false;
1174 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1175 }
1176
1177 static irqreturn_t si_irq_handler(int irq, void *data)
1178 {
1179 struct smi_info *smi_info = data;
1180 unsigned long flags;
1181
1182 spin_lock_irqsave(&(smi_info->si_lock), flags);
1183
1184 smi_inc_stat(smi_info, interrupts);
1185
1186 debug_timestamp("Interrupt");
1187
1188 smi_event_handler(smi_info, 0);
1189 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1190 return IRQ_HANDLED;
1191 }
1192
1193 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1194 {
1195 struct smi_info *smi_info = data;
1196 /* We need to clear the IRQ flag for the BT interface. */
1197 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1198 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1199 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1200 return si_irq_handler(irq, data);
1201 }
1202
1203 static int smi_start_processing(void *send_info,
1204 ipmi_smi_t intf)
1205 {
1206 struct smi_info *new_smi = send_info;
1207 int enable = 0;
1208
1209 new_smi->intf = intf;
1210
1211 /* Try to claim any interrupts. */
1212 if (new_smi->irq_setup)
1213 new_smi->irq_setup(new_smi);
1214
1215 /* Set up the timer that drives the interface. */
1216 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1217 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1218
1219 /*
1220 * Check if the user forcefully enabled the daemon.
1221 */
1222 if (new_smi->intf_num < num_force_kipmid)
1223 enable = force_kipmid[new_smi->intf_num];
1224 /*
1225 * The BT interface is efficient enough to not need a thread,
1226 * and there is no need for a thread if we have interrupts.
1227 */
1228 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1229 enable = 1;
1230
1231 if (enable) {
1232 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1233 "kipmi%d", new_smi->intf_num);
1234 if (IS_ERR(new_smi->thread)) {
1235 dev_notice(new_smi->dev, "Could not start"
1236 " kernel thread due to error %ld, only using"
1237 " timers to drive the interface\n",
1238 PTR_ERR(new_smi->thread));
1239 new_smi->thread = NULL;
1240 }
1241 }
1242
1243 return 0;
1244 }
1245
1246 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1247 {
1248 struct smi_info *smi = send_info;
1249
1250 data->addr_src = smi->addr_source;
1251 data->dev = smi->dev;
1252 data->addr_info = smi->addr_info;
1253 get_device(smi->dev);
1254
1255 return 0;
1256 }
1257
1258 static void set_maintenance_mode(void *send_info, bool enable)
1259 {
1260 struct smi_info *smi_info = send_info;
1261
1262 if (!enable)
1263 atomic_set(&smi_info->req_events, 0);
1264 }
1265
1266 static const struct ipmi_smi_handlers handlers = {
1267 .owner = THIS_MODULE,
1268 .start_processing = smi_start_processing,
1269 .get_smi_info = get_smi_info,
1270 .sender = sender,
1271 .request_events = request_events,
1272 .set_need_watch = set_need_watch,
1273 .set_maintenance_mode = set_maintenance_mode,
1274 .set_run_to_completion = set_run_to_completion,
1275 .flush_messages = flush_messages,
1276 .poll = poll,
1277 };
1278
1279 /*
1280 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1281 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1282 */
1283
1284 static LIST_HEAD(smi_infos);
1285 static DEFINE_MUTEX(smi_infos_lock);
1286 static int smi_num; /* Used to sequence the SMIs */
1287
1288 #define DEFAULT_REGSPACING 1
1289 #define DEFAULT_REGSIZE 1
1290
1291 #ifdef CONFIG_ACPI
1292 static bool si_tryacpi = true;
1293 #endif
1294 #ifdef CONFIG_DMI
1295 static bool si_trydmi = true;
1296 #endif
1297 static bool si_tryplatform = true;
1298 #ifdef CONFIG_PCI
1299 static bool si_trypci = true;
1300 #endif
1301 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1302 static char *si_type[SI_MAX_PARMS];
1303 #define MAX_SI_TYPE_STR 30
1304 static char si_type_str[MAX_SI_TYPE_STR];
1305 static unsigned long addrs[SI_MAX_PARMS];
1306 static unsigned int num_addrs;
1307 static unsigned int ports[SI_MAX_PARMS];
1308 static unsigned int num_ports;
1309 static int irqs[SI_MAX_PARMS];
1310 static unsigned int num_irqs;
1311 static int regspacings[SI_MAX_PARMS];
1312 static unsigned int num_regspacings;
1313 static int regsizes[SI_MAX_PARMS];
1314 static unsigned int num_regsizes;
1315 static int regshifts[SI_MAX_PARMS];
1316 static unsigned int num_regshifts;
1317 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1318 static unsigned int num_slave_addrs;
1319
1320 #define IPMI_IO_ADDR_SPACE 0
1321 #define IPMI_MEM_ADDR_SPACE 1
1322 static char *addr_space_to_str[] = { "i/o", "mem" };
1323
1324 static int hotmod_handler(const char *val, struct kernel_param *kp);
1325
1326 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1327 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1328 " Documentation/IPMI.txt in the kernel sources for the"
1329 " gory details.");
1330
1331 #ifdef CONFIG_ACPI
1332 module_param_named(tryacpi, si_tryacpi, bool, 0);
1333 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1334 " default scan of the interfaces identified via ACPI");
1335 #endif
1336 #ifdef CONFIG_DMI
1337 module_param_named(trydmi, si_trydmi, bool, 0);
1338 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1339 " default scan of the interfaces identified via DMI");
1340 #endif
1341 module_param_named(tryplatform, si_tryplatform, bool, 0);
1342 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1343 " default scan of the interfaces identified via platform"
1344 " interfaces like openfirmware");
1345 #ifdef CONFIG_PCI
1346 module_param_named(trypci, si_trypci, bool, 0);
1347 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1348 " default scan of the interfaces identified via pci");
1349 #endif
1350 module_param_named(trydefaults, si_trydefaults, bool, 0);
1351 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1352 " default scan of the KCS and SMIC interface at the standard"
1353 " address");
1354 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1355 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1356 " interface separated by commas. The types are 'kcs',"
1357 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1358 " the first interface to kcs and the second to bt");
1359 module_param_array(addrs, ulong, &num_addrs, 0);
1360 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1361 " addresses separated by commas. Only use if an interface"
1362 " is in memory. Otherwise, set it to zero or leave"
1363 " it blank.");
1364 module_param_array(ports, uint, &num_ports, 0);
1365 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1366 " addresses separated by commas. Only use if an interface"
1367 " is a port. Otherwise, set it to zero or leave"
1368 " it blank.");
1369 module_param_array(irqs, int, &num_irqs, 0);
1370 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1371 " addresses separated by commas. Only use if an interface"
1372 " has an interrupt. Otherwise, set it to zero or leave"
1373 " it blank.");
1374 module_param_array(regspacings, int, &num_regspacings, 0);
1375 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1376 " and each successive register used by the interface. For"
1377 " instance, if the start address is 0xca2 and the spacing"
1378 " is 2, then the second address is at 0xca4. Defaults"
1379 " to 1.");
1380 module_param_array(regsizes, int, &num_regsizes, 0);
1381 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1382 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1383 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1384 " the 8-bit IPMI register has to be read from a larger"
1385 " register.");
1386 module_param_array(regshifts, int, &num_regshifts, 0);
1387 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1388 " IPMI register, in bits. For instance, if the data"
1389 " is read from a 32-bit word and the IPMI data is in"
1390 " bit 8-15, then the shift would be 8");
1391 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1392 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1393 " the controller. Normally this is 0x20, but can be"
1394 " overridden by this parm. This is an array indexed"
1395 " by interface number.");
1396 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1397 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1398 " disabled(0). Normally the IPMI driver auto-detects"
1399 " this, but the value may be overridden by this parm.");
1400 module_param(unload_when_empty, bool, 0);
1401 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1402 " specified or found, default is 1. Setting to 0"
1403 " is useful for hot add of devices using hotmod.");
1404 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1405 MODULE_PARM_DESC(kipmid_max_busy_us,
1406 "Max time (in microseconds) to busy-wait for IPMI data before"
1407 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1408 " if kipmid is using up a lot of CPU time.");
1409
1410
1411 static void std_irq_cleanup(struct smi_info *info)
1412 {
1413 if (info->si_type == SI_BT)
1414 /* Disable the interrupt in the BT interface. */
1415 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1416 free_irq(info->irq, info);
1417 }
1418
1419 static int std_irq_setup(struct smi_info *info)
1420 {
1421 int rv;
1422
1423 if (!info->irq)
1424 return 0;
1425
1426 if (info->si_type == SI_BT) {
1427 rv = request_irq(info->irq,
1428 si_bt_irq_handler,
1429 IRQF_SHARED,
1430 DEVICE_NAME,
1431 info);
1432 if (!rv)
1433 /* Enable the interrupt in the BT interface. */
1434 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1435 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1436 } else
1437 rv = request_irq(info->irq,
1438 si_irq_handler,
1439 IRQF_SHARED,
1440 DEVICE_NAME,
1441 info);
1442 if (rv) {
1443 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1444 " running polled\n",
1445 DEVICE_NAME, info->irq);
1446 info->irq = 0;
1447 } else {
1448 info->irq_cleanup = std_irq_cleanup;
1449 dev_info(info->dev, "Using irq %d\n", info->irq);
1450 }
1451
1452 return rv;
1453 }
1454
1455 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1456 {
1457 unsigned int addr = io->addr_data;
1458
1459 return inb(addr + (offset * io->regspacing));
1460 }
1461
1462 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1463 unsigned char b)
1464 {
1465 unsigned int addr = io->addr_data;
1466
1467 outb(b, addr + (offset * io->regspacing));
1468 }
1469
1470 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1471 {
1472 unsigned int addr = io->addr_data;
1473
1474 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1475 }
1476
1477 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1478 unsigned char b)
1479 {
1480 unsigned int addr = io->addr_data;
1481
1482 outw(b << io->regshift, addr + (offset * io->regspacing));
1483 }
1484
1485 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1486 {
1487 unsigned int addr = io->addr_data;
1488
1489 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1490 }
1491
1492 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1493 unsigned char b)
1494 {
1495 unsigned int addr = io->addr_data;
1496
1497 outl(b << io->regshift, addr+(offset * io->regspacing));
1498 }
1499
1500 static void port_cleanup(struct smi_info *info)
1501 {
1502 unsigned int addr = info->io.addr_data;
1503 int idx;
1504
1505 if (addr) {
1506 for (idx = 0; idx < info->io_size; idx++)
1507 release_region(addr + idx * info->io.regspacing,
1508 info->io.regsize);
1509 }
1510 }
1511
1512 static int port_setup(struct smi_info *info)
1513 {
1514 unsigned int addr = info->io.addr_data;
1515 int idx;
1516
1517 if (!addr)
1518 return -ENODEV;
1519
1520 info->io_cleanup = port_cleanup;
1521
1522 /*
1523 * Figure out the actual inb/inw/inl/etc routine to use based
1524 * upon the register size.
1525 */
1526 switch (info->io.regsize) {
1527 case 1:
1528 info->io.inputb = port_inb;
1529 info->io.outputb = port_outb;
1530 break;
1531 case 2:
1532 info->io.inputb = port_inw;
1533 info->io.outputb = port_outw;
1534 break;
1535 case 4:
1536 info->io.inputb = port_inl;
1537 info->io.outputb = port_outl;
1538 break;
1539 default:
1540 dev_warn(info->dev, "Invalid register size: %d\n",
1541 info->io.regsize);
1542 return -EINVAL;
1543 }
1544
1545 /*
1546 * Some BIOSes reserve disjoint I/O regions in their ACPI
1547 * tables. This causes problems when trying to register the
1548 * entire I/O region. Therefore we must register each I/O
1549 * port separately.
1550 */
1551 for (idx = 0; idx < info->io_size; idx++) {
1552 if (request_region(addr + idx * info->io.regspacing,
1553 info->io.regsize, DEVICE_NAME) == NULL) {
1554 /* Undo allocations */
1555 while (idx--) {
1556 release_region(addr + idx * info->io.regspacing,
1557 info->io.regsize);
1558 }
1559 return -EIO;
1560 }
1561 }
1562 return 0;
1563 }
1564
1565 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1566 unsigned int offset)
1567 {
1568 return readb((io->addr)+(offset * io->regspacing));
1569 }
1570
1571 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1572 unsigned char b)
1573 {
1574 writeb(b, (io->addr)+(offset * io->regspacing));
1575 }
1576
1577 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1578 unsigned int offset)
1579 {
1580 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1581 & 0xff;
1582 }
1583
1584 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1585 unsigned char b)
1586 {
1587 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1588 }
1589
1590 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1591 unsigned int offset)
1592 {
1593 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1594 & 0xff;
1595 }
1596
1597 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1598 unsigned char b)
1599 {
1600 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1601 }
1602
1603 #ifdef readq
1604 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1605 {
1606 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1607 & 0xff;
1608 }
1609
1610 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1611 unsigned char b)
1612 {
1613 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1614 }
1615 #endif
1616
1617 static void mem_cleanup(struct smi_info *info)
1618 {
1619 unsigned long addr = info->io.addr_data;
1620 int mapsize;
1621
1622 if (info->io.addr) {
1623 iounmap(info->io.addr);
1624
1625 mapsize = ((info->io_size * info->io.regspacing)
1626 - (info->io.regspacing - info->io.regsize));
1627
1628 release_mem_region(addr, mapsize);
1629 }
1630 }
1631
1632 static int mem_setup(struct smi_info *info)
1633 {
1634 unsigned long addr = info->io.addr_data;
1635 int mapsize;
1636
1637 if (!addr)
1638 return -ENODEV;
1639
1640 info->io_cleanup = mem_cleanup;
1641
1642 /*
1643 * Figure out the actual readb/readw/readl/etc routine to use based
1644 * upon the register size.
1645 */
1646 switch (info->io.regsize) {
1647 case 1:
1648 info->io.inputb = intf_mem_inb;
1649 info->io.outputb = intf_mem_outb;
1650 break;
1651 case 2:
1652 info->io.inputb = intf_mem_inw;
1653 info->io.outputb = intf_mem_outw;
1654 break;
1655 case 4:
1656 info->io.inputb = intf_mem_inl;
1657 info->io.outputb = intf_mem_outl;
1658 break;
1659 #ifdef readq
1660 case 8:
1661 info->io.inputb = mem_inq;
1662 info->io.outputb = mem_outq;
1663 break;
1664 #endif
1665 default:
1666 dev_warn(info->dev, "Invalid register size: %d\n",
1667 info->io.regsize);
1668 return -EINVAL;
1669 }
1670
1671 /*
1672 * Calculate the total amount of memory to claim. This is an
1673 * unusual looking calculation, but it avoids claiming any
1674 * more memory than it has to. It will claim everything
1675 * between the first address to the end of the last full
1676 * register.
1677 */
1678 mapsize = ((info->io_size * info->io.regspacing)
1679 - (info->io.regspacing - info->io.regsize));
1680
1681 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1682 return -EIO;
1683
1684 info->io.addr = ioremap(addr, mapsize);
1685 if (info->io.addr == NULL) {
1686 release_mem_region(addr, mapsize);
1687 return -EIO;
1688 }
1689 return 0;
1690 }
1691
1692 /*
1693 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1694 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1695 * Options are:
1696 * rsp=<regspacing>
1697 * rsi=<regsize>
1698 * rsh=<regshift>
1699 * irq=<irq>
1700 * ipmb=<ipmb addr>
1701 */
1702 enum hotmod_op { HM_ADD, HM_REMOVE };
1703 struct hotmod_vals {
1704 char *name;
1705 int val;
1706 };
1707 static struct hotmod_vals hotmod_ops[] = {
1708 { "add", HM_ADD },
1709 { "remove", HM_REMOVE },
1710 { NULL }
1711 };
1712 static struct hotmod_vals hotmod_si[] = {
1713 { "kcs", SI_KCS },
1714 { "smic", SI_SMIC },
1715 { "bt", SI_BT },
1716 { NULL }
1717 };
1718 static struct hotmod_vals hotmod_as[] = {
1719 { "mem", IPMI_MEM_ADDR_SPACE },
1720 { "i/o", IPMI_IO_ADDR_SPACE },
1721 { NULL }
1722 };
1723
1724 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1725 {
1726 char *s;
1727 int i;
1728
1729 s = strchr(*curr, ',');
1730 if (!s) {
1731 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1732 return -EINVAL;
1733 }
1734 *s = '\0';
1735 s++;
1736 for (i = 0; v[i].name; i++) {
1737 if (strcmp(*curr, v[i].name) == 0) {
1738 *val = v[i].val;
1739 *curr = s;
1740 return 0;
1741 }
1742 }
1743
1744 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1745 return -EINVAL;
1746 }
1747
1748 static int check_hotmod_int_op(const char *curr, const char *option,
1749 const char *name, int *val)
1750 {
1751 char *n;
1752
1753 if (strcmp(curr, name) == 0) {
1754 if (!option) {
1755 printk(KERN_WARNING PFX
1756 "No option given for '%s'\n",
1757 curr);
1758 return -EINVAL;
1759 }
1760 *val = simple_strtoul(option, &n, 0);
1761 if ((*n != '\0') || (*option == '\0')) {
1762 printk(KERN_WARNING PFX
1763 "Bad option given for '%s'\n",
1764 curr);
1765 return -EINVAL;
1766 }
1767 return 1;
1768 }
1769 return 0;
1770 }
1771
1772 static struct smi_info *smi_info_alloc(void)
1773 {
1774 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1775
1776 if (info)
1777 spin_lock_init(&info->si_lock);
1778 return info;
1779 }
1780
1781 static int hotmod_handler(const char *val, struct kernel_param *kp)
1782 {
1783 char *str = kstrdup(val, GFP_KERNEL);
1784 int rv;
1785 char *next, *curr, *s, *n, *o;
1786 enum hotmod_op op;
1787 enum si_type si_type;
1788 int addr_space;
1789 unsigned long addr;
1790 int regspacing;
1791 int regsize;
1792 int regshift;
1793 int irq;
1794 int ipmb;
1795 int ival;
1796 int len;
1797 struct smi_info *info;
1798
1799 if (!str)
1800 return -ENOMEM;
1801
1802 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1803 len = strlen(str);
1804 ival = len - 1;
1805 while ((ival >= 0) && isspace(str[ival])) {
1806 str[ival] = '\0';
1807 ival--;
1808 }
1809
1810 for (curr = str; curr; curr = next) {
1811 regspacing = 1;
1812 regsize = 1;
1813 regshift = 0;
1814 irq = 0;
1815 ipmb = 0; /* Choose the default if not specified */
1816
1817 next = strchr(curr, ':');
1818 if (next) {
1819 *next = '\0';
1820 next++;
1821 }
1822
1823 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1824 if (rv)
1825 break;
1826 op = ival;
1827
1828 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1829 if (rv)
1830 break;
1831 si_type = ival;
1832
1833 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1834 if (rv)
1835 break;
1836
1837 s = strchr(curr, ',');
1838 if (s) {
1839 *s = '\0';
1840 s++;
1841 }
1842 addr = simple_strtoul(curr, &n, 0);
1843 if ((*n != '\0') || (*curr == '\0')) {
1844 printk(KERN_WARNING PFX "Invalid hotmod address"
1845 " '%s'\n", curr);
1846 break;
1847 }
1848
1849 while (s) {
1850 curr = s;
1851 s = strchr(curr, ',');
1852 if (s) {
1853 *s = '\0';
1854 s++;
1855 }
1856 o = strchr(curr, '=');
1857 if (o) {
1858 *o = '\0';
1859 o++;
1860 }
1861 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1862 if (rv < 0)
1863 goto out;
1864 else if (rv)
1865 continue;
1866 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1867 if (rv < 0)
1868 goto out;
1869 else if (rv)
1870 continue;
1871 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1872 if (rv < 0)
1873 goto out;
1874 else if (rv)
1875 continue;
1876 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1877 if (rv < 0)
1878 goto out;
1879 else if (rv)
1880 continue;
1881 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1882 if (rv < 0)
1883 goto out;
1884 else if (rv)
1885 continue;
1886
1887 rv = -EINVAL;
1888 printk(KERN_WARNING PFX
1889 "Invalid hotmod option '%s'\n",
1890 curr);
1891 goto out;
1892 }
1893
1894 if (op == HM_ADD) {
1895 info = smi_info_alloc();
1896 if (!info) {
1897 rv = -ENOMEM;
1898 goto out;
1899 }
1900
1901 info->addr_source = SI_HOTMOD;
1902 info->si_type = si_type;
1903 info->io.addr_data = addr;
1904 info->io.addr_type = addr_space;
1905 if (addr_space == IPMI_MEM_ADDR_SPACE)
1906 info->io_setup = mem_setup;
1907 else
1908 info->io_setup = port_setup;
1909
1910 info->io.addr = NULL;
1911 info->io.regspacing = regspacing;
1912 if (!info->io.regspacing)
1913 info->io.regspacing = DEFAULT_REGSPACING;
1914 info->io.regsize = regsize;
1915 if (!info->io.regsize)
1916 info->io.regsize = DEFAULT_REGSPACING;
1917 info->io.regshift = regshift;
1918 info->irq = irq;
1919 if (info->irq)
1920 info->irq_setup = std_irq_setup;
1921 info->slave_addr = ipmb;
1922
1923 rv = add_smi(info);
1924 if (rv) {
1925 kfree(info);
1926 goto out;
1927 }
1928 rv = try_smi_init(info);
1929 if (rv) {
1930 cleanup_one_si(info);
1931 goto out;
1932 }
1933 } else {
1934 /* remove */
1935 struct smi_info *e, *tmp_e;
1936
1937 mutex_lock(&smi_infos_lock);
1938 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1939 if (e->io.addr_type != addr_space)
1940 continue;
1941 if (e->si_type != si_type)
1942 continue;
1943 if (e->io.addr_data == addr)
1944 cleanup_one_si(e);
1945 }
1946 mutex_unlock(&smi_infos_lock);
1947 }
1948 }
1949 rv = len;
1950 out:
1951 kfree(str);
1952 return rv;
1953 }
1954
1955 static int hardcode_find_bmc(void)
1956 {
1957 int ret = -ENODEV;
1958 int i;
1959 struct smi_info *info;
1960
1961 for (i = 0; i < SI_MAX_PARMS; i++) {
1962 if (!ports[i] && !addrs[i])
1963 continue;
1964
1965 info = smi_info_alloc();
1966 if (!info)
1967 return -ENOMEM;
1968
1969 info->addr_source = SI_HARDCODED;
1970 printk(KERN_INFO PFX "probing via hardcoded address\n");
1971
1972 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1973 info->si_type = SI_KCS;
1974 } else if (strcmp(si_type[i], "smic") == 0) {
1975 info->si_type = SI_SMIC;
1976 } else if (strcmp(si_type[i], "bt") == 0) {
1977 info->si_type = SI_BT;
1978 } else {
1979 printk(KERN_WARNING PFX "Interface type specified "
1980 "for interface %d, was invalid: %s\n",
1981 i, si_type[i]);
1982 kfree(info);
1983 continue;
1984 }
1985
1986 if (ports[i]) {
1987 /* An I/O port */
1988 info->io_setup = port_setup;
1989 info->io.addr_data = ports[i];
1990 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1991 } else if (addrs[i]) {
1992 /* A memory port */
1993 info->io_setup = mem_setup;
1994 info->io.addr_data = addrs[i];
1995 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1996 } else {
1997 printk(KERN_WARNING PFX "Interface type specified "
1998 "for interface %d, but port and address were "
1999 "not set or set to zero.\n", i);
2000 kfree(info);
2001 continue;
2002 }
2003
2004 info->io.addr = NULL;
2005 info->io.regspacing = regspacings[i];
2006 if (!info->io.regspacing)
2007 info->io.regspacing = DEFAULT_REGSPACING;
2008 info->io.regsize = regsizes[i];
2009 if (!info->io.regsize)
2010 info->io.regsize = DEFAULT_REGSPACING;
2011 info->io.regshift = regshifts[i];
2012 info->irq = irqs[i];
2013 if (info->irq)
2014 info->irq_setup = std_irq_setup;
2015 info->slave_addr = slave_addrs[i];
2016
2017 if (!add_smi(info)) {
2018 if (try_smi_init(info))
2019 cleanup_one_si(info);
2020 ret = 0;
2021 } else {
2022 kfree(info);
2023 }
2024 }
2025 return ret;
2026 }
2027
2028 #ifdef CONFIG_ACPI
2029
2030 #include <linux/acpi.h>
2031
2032 /*
2033 * Once we get an ACPI failure, we don't try any more, because we go
2034 * through the tables sequentially. Once we don't find a table, there
2035 * are no more.
2036 */
2037 static int acpi_failure;
2038
2039 /* For GPE-type interrupts. */
2040 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2041 u32 gpe_number, void *context)
2042 {
2043 struct smi_info *smi_info = context;
2044 unsigned long flags;
2045
2046 spin_lock_irqsave(&(smi_info->si_lock), flags);
2047
2048 smi_inc_stat(smi_info, interrupts);
2049
2050 debug_timestamp("ACPI_GPE");
2051
2052 smi_event_handler(smi_info, 0);
2053 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2054
2055 return ACPI_INTERRUPT_HANDLED;
2056 }
2057
2058 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2059 {
2060 if (!info->irq)
2061 return;
2062
2063 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2064 }
2065
2066 static int acpi_gpe_irq_setup(struct smi_info *info)
2067 {
2068 acpi_status status;
2069
2070 if (!info->irq)
2071 return 0;
2072
2073 status = acpi_install_gpe_handler(NULL,
2074 info->irq,
2075 ACPI_GPE_LEVEL_TRIGGERED,
2076 &ipmi_acpi_gpe,
2077 info);
2078 if (status != AE_OK) {
2079 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2080 " running polled\n", DEVICE_NAME, info->irq);
2081 info->irq = 0;
2082 return -EINVAL;
2083 } else {
2084 info->irq_cleanup = acpi_gpe_irq_cleanup;
2085 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2086 return 0;
2087 }
2088 }
2089
2090 /*
2091 * Defined at
2092 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2093 */
2094 struct SPMITable {
2095 s8 Signature[4];
2096 u32 Length;
2097 u8 Revision;
2098 u8 Checksum;
2099 s8 OEMID[6];
2100 s8 OEMTableID[8];
2101 s8 OEMRevision[4];
2102 s8 CreatorID[4];
2103 s8 CreatorRevision[4];
2104 u8 InterfaceType;
2105 u8 IPMIlegacy;
2106 s16 SpecificationRevision;
2107
2108 /*
2109 * Bit 0 - SCI interrupt supported
2110 * Bit 1 - I/O APIC/SAPIC
2111 */
2112 u8 InterruptType;
2113
2114 /*
2115 * If bit 0 of InterruptType is set, then this is the SCI
2116 * interrupt in the GPEx_STS register.
2117 */
2118 u8 GPE;
2119
2120 s16 Reserved;
2121
2122 /*
2123 * If bit 1 of InterruptType is set, then this is the I/O
2124 * APIC/SAPIC interrupt.
2125 */
2126 u32 GlobalSystemInterrupt;
2127
2128 /* The actual register address. */
2129 struct acpi_generic_address addr;
2130
2131 u8 UID[4];
2132
2133 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2134 };
2135
2136 static int try_init_spmi(struct SPMITable *spmi)
2137 {
2138 struct smi_info *info;
2139 int rv;
2140
2141 if (spmi->IPMIlegacy != 1) {
2142 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2143 return -ENODEV;
2144 }
2145
2146 info = smi_info_alloc();
2147 if (!info) {
2148 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2149 return -ENOMEM;
2150 }
2151
2152 info->addr_source = SI_SPMI;
2153 printk(KERN_INFO PFX "probing via SPMI\n");
2154
2155 /* Figure out the interface type. */
2156 switch (spmi->InterfaceType) {
2157 case 1: /* KCS */
2158 info->si_type = SI_KCS;
2159 break;
2160 case 2: /* SMIC */
2161 info->si_type = SI_SMIC;
2162 break;
2163 case 3: /* BT */
2164 info->si_type = SI_BT;
2165 break;
2166 case 4: /* SSIF, just ignore */
2167 kfree(info);
2168 return -EIO;
2169 default:
2170 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2171 spmi->InterfaceType);
2172 kfree(info);
2173 return -EIO;
2174 }
2175
2176 if (spmi->InterruptType & 1) {
2177 /* We've got a GPE interrupt. */
2178 info->irq = spmi->GPE;
2179 info->irq_setup = acpi_gpe_irq_setup;
2180 } else if (spmi->InterruptType & 2) {
2181 /* We've got an APIC/SAPIC interrupt. */
2182 info->irq = spmi->GlobalSystemInterrupt;
2183 info->irq_setup = std_irq_setup;
2184 } else {
2185 /* Use the default interrupt setting. */
2186 info->irq = 0;
2187 info->irq_setup = NULL;
2188 }
2189
2190 if (spmi->addr.bit_width) {
2191 /* A (hopefully) properly formed register bit width. */
2192 info->io.regspacing = spmi->addr.bit_width / 8;
2193 } else {
2194 info->io.regspacing = DEFAULT_REGSPACING;
2195 }
2196 info->io.regsize = info->io.regspacing;
2197 info->io.regshift = spmi->addr.bit_offset;
2198
2199 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2200 info->io_setup = mem_setup;
2201 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2202 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2203 info->io_setup = port_setup;
2204 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2205 } else {
2206 kfree(info);
2207 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2208 return -EIO;
2209 }
2210 info->io.addr_data = spmi->addr.address;
2211
2212 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2213 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2214 info->io.addr_data, info->io.regsize, info->io.regspacing,
2215 info->irq);
2216
2217 rv = add_smi(info);
2218 if (rv)
2219 kfree(info);
2220
2221 return rv;
2222 }
2223
2224 static void spmi_find_bmc(void)
2225 {
2226 acpi_status status;
2227 struct SPMITable *spmi;
2228 int i;
2229
2230 if (acpi_disabled)
2231 return;
2232
2233 if (acpi_failure)
2234 return;
2235
2236 for (i = 0; ; i++) {
2237 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2238 (struct acpi_table_header **)&spmi);
2239 if (status != AE_OK)
2240 return;
2241
2242 try_init_spmi(spmi);
2243 }
2244 }
2245 #endif
2246
2247 #ifdef CONFIG_DMI
2248 struct dmi_ipmi_data {
2249 u8 type;
2250 u8 addr_space;
2251 unsigned long base_addr;
2252 u8 irq;
2253 u8 offset;
2254 u8 slave_addr;
2255 };
2256
2257 static int decode_dmi(const struct dmi_header *dm,
2258 struct dmi_ipmi_data *dmi)
2259 {
2260 const u8 *data = (const u8 *)dm;
2261 unsigned long base_addr;
2262 u8 reg_spacing;
2263 u8 len = dm->length;
2264
2265 dmi->type = data[4];
2266
2267 memcpy(&base_addr, data+8, sizeof(unsigned long));
2268 if (len >= 0x11) {
2269 if (base_addr & 1) {
2270 /* I/O */
2271 base_addr &= 0xFFFE;
2272 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2273 } else
2274 /* Memory */
2275 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2276
2277 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2278 is odd. */
2279 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2280
2281 dmi->irq = data[0x11];
2282
2283 /* The top two bits of byte 0x10 hold the register spacing. */
2284 reg_spacing = (data[0x10] & 0xC0) >> 6;
2285 switch (reg_spacing) {
2286 case 0x00: /* Byte boundaries */
2287 dmi->offset = 1;
2288 break;
2289 case 0x01: /* 32-bit boundaries */
2290 dmi->offset = 4;
2291 break;
2292 case 0x02: /* 16-byte boundaries */
2293 dmi->offset = 16;
2294 break;
2295 default:
2296 /* Some other interface, just ignore it. */
2297 return -EIO;
2298 }
2299 } else {
2300 /* Old DMI spec. */
2301 /*
2302 * Note that technically, the lower bit of the base
2303 * address should be 1 if the address is I/O and 0 if
2304 * the address is in memory. So many systems get that
2305 * wrong (and all that I have seen are I/O) so we just
2306 * ignore that bit and assume I/O. Systems that use
2307 * memory should use the newer spec, anyway.
2308 */
2309 dmi->base_addr = base_addr & 0xfffe;
2310 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2311 dmi->offset = 1;
2312 }
2313
2314 dmi->slave_addr = data[6];
2315
2316 return 0;
2317 }
2318
2319 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2320 {
2321 struct smi_info *info;
2322
2323 info = smi_info_alloc();
2324 if (!info) {
2325 printk(KERN_ERR PFX "Could not allocate SI data\n");
2326 return;
2327 }
2328
2329 info->addr_source = SI_SMBIOS;
2330 printk(KERN_INFO PFX "probing via SMBIOS\n");
2331
2332 switch (ipmi_data->type) {
2333 case 0x01: /* KCS */
2334 info->si_type = SI_KCS;
2335 break;
2336 case 0x02: /* SMIC */
2337 info->si_type = SI_SMIC;
2338 break;
2339 case 0x03: /* BT */
2340 info->si_type = SI_BT;
2341 break;
2342 default:
2343 kfree(info);
2344 return;
2345 }
2346
2347 switch (ipmi_data->addr_space) {
2348 case IPMI_MEM_ADDR_SPACE:
2349 info->io_setup = mem_setup;
2350 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2351 break;
2352
2353 case IPMI_IO_ADDR_SPACE:
2354 info->io_setup = port_setup;
2355 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2356 break;
2357
2358 default:
2359 kfree(info);
2360 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2361 ipmi_data->addr_space);
2362 return;
2363 }
2364 info->io.addr_data = ipmi_data->base_addr;
2365
2366 info->io.regspacing = ipmi_data->offset;
2367 if (!info->io.regspacing)
2368 info->io.regspacing = DEFAULT_REGSPACING;
2369 info->io.regsize = DEFAULT_REGSPACING;
2370 info->io.regshift = 0;
2371
2372 info->slave_addr = ipmi_data->slave_addr;
2373
2374 info->irq = ipmi_data->irq;
2375 if (info->irq)
2376 info->irq_setup = std_irq_setup;
2377
2378 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2379 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2380 info->io.addr_data, info->io.regsize, info->io.regspacing,
2381 info->irq);
2382
2383 if (add_smi(info))
2384 kfree(info);
2385 }
2386
2387 static void dmi_find_bmc(void)
2388 {
2389 const struct dmi_device *dev = NULL;
2390 struct dmi_ipmi_data data;
2391 int rv;
2392
2393 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2394 memset(&data, 0, sizeof(data));
2395 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2396 &data);
2397 if (!rv)
2398 try_init_dmi(&data);
2399 }
2400 }
2401 #endif /* CONFIG_DMI */
2402
2403 #ifdef CONFIG_PCI
2404
2405 #define PCI_ERMC_CLASSCODE 0x0C0700
2406 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2407 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2408 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2409 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2410 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2411
2412 #define PCI_HP_VENDOR_ID 0x103C
2413 #define PCI_MMC_DEVICE_ID 0x121A
2414 #define PCI_MMC_ADDR_CW 0x10
2415
2416 static void ipmi_pci_cleanup(struct smi_info *info)
2417 {
2418 struct pci_dev *pdev = info->addr_source_data;
2419
2420 pci_disable_device(pdev);
2421 }
2422
2423 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2424 {
2425 if (info->si_type == SI_KCS) {
2426 unsigned char status;
2427 int regspacing;
2428
2429 info->io.regsize = DEFAULT_REGSIZE;
2430 info->io.regshift = 0;
2431 info->io_size = 2;
2432 info->handlers = &kcs_smi_handlers;
2433
2434 /* detect 1, 4, 16byte spacing */
2435 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2436 info->io.regspacing = regspacing;
2437 if (info->io_setup(info)) {
2438 dev_err(info->dev,
2439 "Could not setup I/O space\n");
2440 return DEFAULT_REGSPACING;
2441 }
2442 /* write invalid cmd */
2443 info->io.outputb(&info->io, 1, 0x10);
2444 /* read status back */
2445 status = info->io.inputb(&info->io, 1);
2446 info->io_cleanup(info);
2447 if (status)
2448 return regspacing;
2449 regspacing *= 4;
2450 }
2451 }
2452 return DEFAULT_REGSPACING;
2453 }
2454
2455 static int ipmi_pci_probe(struct pci_dev *pdev,
2456 const struct pci_device_id *ent)
2457 {
2458 int rv;
2459 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2460 struct smi_info *info;
2461
2462 info = smi_info_alloc();
2463 if (!info)
2464 return -ENOMEM;
2465
2466 info->addr_source = SI_PCI;
2467 dev_info(&pdev->dev, "probing via PCI");
2468
2469 switch (class_type) {
2470 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2471 info->si_type = SI_SMIC;
2472 break;
2473
2474 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2475 info->si_type = SI_KCS;
2476 break;
2477
2478 case PCI_ERMC_CLASSCODE_TYPE_BT:
2479 info->si_type = SI_BT;
2480 break;
2481
2482 default:
2483 kfree(info);
2484 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2485 return -ENOMEM;
2486 }
2487
2488 rv = pci_enable_device(pdev);
2489 if (rv) {
2490 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2491 kfree(info);
2492 return rv;
2493 }
2494
2495 info->addr_source_cleanup = ipmi_pci_cleanup;
2496 info->addr_source_data = pdev;
2497
2498 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2499 info->io_setup = port_setup;
2500 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2501 } else {
2502 info->io_setup = mem_setup;
2503 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2504 }
2505 info->io.addr_data = pci_resource_start(pdev, 0);
2506
2507 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2508 info->io.regsize = DEFAULT_REGSIZE;
2509 info->io.regshift = 0;
2510
2511 info->irq = pdev->irq;
2512 if (info->irq)
2513 info->irq_setup = std_irq_setup;
2514
2515 info->dev = &pdev->dev;
2516 pci_set_drvdata(pdev, info);
2517
2518 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2519 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2520 info->irq);
2521
2522 rv = add_smi(info);
2523 if (rv) {
2524 kfree(info);
2525 pci_disable_device(pdev);
2526 }
2527
2528 return rv;
2529 }
2530
2531 static void ipmi_pci_remove(struct pci_dev *pdev)
2532 {
2533 struct smi_info *info = pci_get_drvdata(pdev);
2534 cleanup_one_si(info);
2535 pci_disable_device(pdev);
2536 }
2537
2538 static const struct pci_device_id ipmi_pci_devices[] = {
2539 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541 { 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544
2545 static struct pci_driver ipmi_pci_driver = {
2546 .name = DEVICE_NAME,
2547 .id_table = ipmi_pci_devices,
2548 .probe = ipmi_pci_probe,
2549 .remove = ipmi_pci_remove,
2550 };
2551 #endif /* CONFIG_PCI */
2552
2553 #ifdef CONFIG_OF
2554 static const struct of_device_id of_ipmi_match[] = {
2555 { .type = "ipmi", .compatible = "ipmi-kcs",
2556 .data = (void *)(unsigned long) SI_KCS },
2557 { .type = "ipmi", .compatible = "ipmi-smic",
2558 .data = (void *)(unsigned long) SI_SMIC },
2559 { .type = "ipmi", .compatible = "ipmi-bt",
2560 .data = (void *)(unsigned long) SI_BT },
2561 {},
2562 };
2563
2564 static int of_ipmi_probe(struct platform_device *dev)
2565 {
2566 const struct of_device_id *match;
2567 struct smi_info *info;
2568 struct resource resource;
2569 const __be32 *regsize, *regspacing, *regshift;
2570 struct device_node *np = dev->dev.of_node;
2571 int ret;
2572 int proplen;
2573
2574 dev_info(&dev->dev, "probing via device tree\n");
2575
2576 match = of_match_device(of_ipmi_match, &dev->dev);
2577 if (!match)
2578 return -ENODEV;
2579
2580 if (!of_device_is_available(np))
2581 return -EINVAL;
2582
2583 ret = of_address_to_resource(np, 0, &resource);
2584 if (ret) {
2585 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2586 return ret;
2587 }
2588
2589 regsize = of_get_property(np, "reg-size", &proplen);
2590 if (regsize && proplen != 4) {
2591 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2592 return -EINVAL;
2593 }
2594
2595 regspacing = of_get_property(np, "reg-spacing", &proplen);
2596 if (regspacing && proplen != 4) {
2597 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2598 return -EINVAL;
2599 }
2600
2601 regshift = of_get_property(np, "reg-shift", &proplen);
2602 if (regshift && proplen != 4) {
2603 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2604 return -EINVAL;
2605 }
2606
2607 info = smi_info_alloc();
2608
2609 if (!info) {
2610 dev_err(&dev->dev,
2611 "could not allocate memory for OF probe\n");
2612 return -ENOMEM;
2613 }
2614
2615 info->si_type = (enum si_type) match->data;
2616 info->addr_source = SI_DEVICETREE;
2617 info->irq_setup = std_irq_setup;
2618
2619 if (resource.flags & IORESOURCE_IO) {
2620 info->io_setup = port_setup;
2621 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2622 } else {
2623 info->io_setup = mem_setup;
2624 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2625 }
2626
2627 info->io.addr_data = resource.start;
2628
2629 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2630 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2631 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2632
2633 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2634 info->dev = &dev->dev;
2635
2636 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2637 info->io.addr_data, info->io.regsize, info->io.regspacing,
2638 info->irq);
2639
2640 dev_set_drvdata(&dev->dev, info);
2641
2642 ret = add_smi(info);
2643 if (ret) {
2644 kfree(info);
2645 return ret;
2646 }
2647 return 0;
2648 }
2649 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2650 #else
2651 #define of_ipmi_match NULL
2652 static int of_ipmi_probe(struct platform_device *dev)
2653 {
2654 return -ENODEV;
2655 }
2656 #endif
2657
2658 #ifdef CONFIG_ACPI
2659 static int acpi_ipmi_probe(struct platform_device *dev)
2660 {
2661 struct smi_info *info;
2662 struct resource *res, *res_second;
2663 acpi_handle handle;
2664 acpi_status status;
2665 unsigned long long tmp;
2666 int rv = -EINVAL;
2667
2668 handle = ACPI_HANDLE(&dev->dev);
2669 if (!handle)
2670 return -ENODEV;
2671
2672 info = smi_info_alloc();
2673 if (!info)
2674 return -ENOMEM;
2675
2676 info->addr_source = SI_ACPI;
2677 dev_info(&dev->dev, PFX "probing via ACPI\n");
2678
2679 info->addr_info.acpi_info.acpi_handle = handle;
2680
2681 /* _IFT tells us the interface type: KCS, BT, etc */
2682 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2683 if (ACPI_FAILURE(status)) {
2684 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2685 goto err_free;
2686 }
2687
2688 switch (tmp) {
2689 case 1:
2690 info->si_type = SI_KCS;
2691 break;
2692 case 2:
2693 info->si_type = SI_SMIC;
2694 break;
2695 case 3:
2696 info->si_type = SI_BT;
2697 break;
2698 case 4: /* SSIF, just ignore */
2699 rv = -ENODEV;
2700 goto err_free;
2701 default:
2702 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2703 goto err_free;
2704 }
2705
2706 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2707 if (res) {
2708 info->io_setup = port_setup;
2709 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2710 } else {
2711 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2712 if (res) {
2713 info->io_setup = mem_setup;
2714 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2715 }
2716 }
2717 if (!res) {
2718 dev_err(&dev->dev, "no I/O or memory address\n");
2719 goto err_free;
2720 }
2721 info->io.addr_data = res->start;
2722
2723 info->io.regspacing = DEFAULT_REGSPACING;
2724 res_second = platform_get_resource(dev,
2725 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2726 IORESOURCE_IO : IORESOURCE_MEM,
2727 1);
2728 if (res_second) {
2729 if (res_second->start > info->io.addr_data)
2730 info->io.regspacing =
2731 res_second->start - info->io.addr_data;
2732 }
2733 info->io.regsize = DEFAULT_REGSPACING;
2734 info->io.regshift = 0;
2735
2736 /* If _GPE exists, use it; otherwise use standard interrupts */
2737 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2738 if (ACPI_SUCCESS(status)) {
2739 info->irq = tmp;
2740 info->irq_setup = acpi_gpe_irq_setup;
2741 } else {
2742 int irq = platform_get_irq(dev, 0);
2743
2744 if (irq > 0) {
2745 info->irq = irq;
2746 info->irq_setup = std_irq_setup;
2747 }
2748 }
2749
2750 info->dev = &dev->dev;
2751 platform_set_drvdata(dev, info);
2752
2753 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2754 res, info->io.regsize, info->io.regspacing,
2755 info->irq);
2756
2757 rv = add_smi(info);
2758 if (rv)
2759 kfree(info);
2760
2761 return rv;
2762
2763 err_free:
2764 kfree(info);
2765 return rv;
2766 }
2767
2768 static const struct acpi_device_id acpi_ipmi_match[] = {
2769 { "IPI0001", 0 },
2770 { },
2771 };
2772 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2773 #else
2774 static int acpi_ipmi_probe(struct platform_device *dev)
2775 {
2776 return -ENODEV;
2777 }
2778 #endif
2779
2780 static int ipmi_probe(struct platform_device *dev)
2781 {
2782 if (of_ipmi_probe(dev) == 0)
2783 return 0;
2784
2785 return acpi_ipmi_probe(dev);
2786 }
2787
2788 static int ipmi_remove(struct platform_device *dev)
2789 {
2790 struct smi_info *info = dev_get_drvdata(&dev->dev);
2791
2792 cleanup_one_si(info);
2793 return 0;
2794 }
2795
2796 static struct platform_driver ipmi_driver = {
2797 .driver = {
2798 .name = DEVICE_NAME,
2799 .of_match_table = of_ipmi_match,
2800 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2801 },
2802 .probe = ipmi_probe,
2803 .remove = ipmi_remove,
2804 };
2805
2806 #ifdef CONFIG_PARISC
2807 static int ipmi_parisc_probe(struct parisc_device *dev)
2808 {
2809 struct smi_info *info;
2810 int rv;
2811
2812 info = smi_info_alloc();
2813
2814 if (!info) {
2815 dev_err(&dev->dev,
2816 "could not allocate memory for PARISC probe\n");
2817 return -ENOMEM;
2818 }
2819
2820 info->si_type = SI_KCS;
2821 info->addr_source = SI_DEVICETREE;
2822 info->io_setup = mem_setup;
2823 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2824 info->io.addr_data = dev->hpa.start;
2825 info->io.regsize = 1;
2826 info->io.regspacing = 1;
2827 info->io.regshift = 0;
2828 info->irq = 0; /* no interrupt */
2829 info->irq_setup = NULL;
2830 info->dev = &dev->dev;
2831
2832 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2833
2834 dev_set_drvdata(&dev->dev, info);
2835
2836 rv = add_smi(info);
2837 if (rv) {
2838 kfree(info);
2839 return rv;
2840 }
2841
2842 return 0;
2843 }
2844
2845 static int ipmi_parisc_remove(struct parisc_device *dev)
2846 {
2847 cleanup_one_si(dev_get_drvdata(&dev->dev));
2848 return 0;
2849 }
2850
2851 static struct parisc_device_id ipmi_parisc_tbl[] = {
2852 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2853 { 0, }
2854 };
2855
2856 static struct parisc_driver ipmi_parisc_driver = {
2857 .name = "ipmi",
2858 .id_table = ipmi_parisc_tbl,
2859 .probe = ipmi_parisc_probe,
2860 .remove = ipmi_parisc_remove,
2861 };
2862 #endif /* CONFIG_PARISC */
2863
2864 static int wait_for_msg_done(struct smi_info *smi_info)
2865 {
2866 enum si_sm_result smi_result;
2867
2868 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2869 for (;;) {
2870 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2871 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2872 schedule_timeout_uninterruptible(1);
2873 smi_result = smi_info->handlers->event(
2874 smi_info->si_sm, jiffies_to_usecs(1));
2875 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2876 smi_result = smi_info->handlers->event(
2877 smi_info->si_sm, 0);
2878 } else
2879 break;
2880 }
2881 if (smi_result == SI_SM_HOSED)
2882 /*
2883 * We couldn't get the state machine to run, so whatever's at
2884 * the port is probably not an IPMI SMI interface.
2885 */
2886 return -ENODEV;
2887
2888 return 0;
2889 }
2890
2891 static int try_get_dev_id(struct smi_info *smi_info)
2892 {
2893 unsigned char msg[2];
2894 unsigned char *resp;
2895 unsigned long resp_len;
2896 int rv = 0;
2897
2898 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2899 if (!resp)
2900 return -ENOMEM;
2901
2902 /*
2903 * Do a Get Device ID command, since it comes back with some
2904 * useful info.
2905 */
2906 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2907 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2908 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2909
2910 rv = wait_for_msg_done(smi_info);
2911 if (rv)
2912 goto out;
2913
2914 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2915 resp, IPMI_MAX_MSG_LENGTH);
2916
2917 /* Check and record info from the get device id, in case we need it. */
2918 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2919
2920 out:
2921 kfree(resp);
2922 return rv;
2923 }
2924
2925 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2926 {
2927 unsigned char msg[3];
2928 unsigned char *resp;
2929 unsigned long resp_len;
2930 int rv;
2931
2932 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2933 if (!resp)
2934 return -ENOMEM;
2935
2936 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2937 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2938 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2939
2940 rv = wait_for_msg_done(smi_info);
2941 if (rv) {
2942 dev_warn(smi_info->dev,
2943 "Error getting response from get global enables command: %d\n",
2944 rv);
2945 goto out;
2946 }
2947
2948 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2949 resp, IPMI_MAX_MSG_LENGTH);
2950
2951 if (resp_len < 4 ||
2952 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2953 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2954 resp[2] != 0) {
2955 dev_warn(smi_info->dev,
2956 "Invalid return from get global enables command: %ld %x %x %x\n",
2957 resp_len, resp[0], resp[1], resp[2]);
2958 rv = -EINVAL;
2959 goto out;
2960 } else {
2961 *enables = resp[3];
2962 }
2963
2964 out:
2965 kfree(resp);
2966 return rv;
2967 }
2968
2969 /*
2970 * Returns 1 if it gets an error from the command.
2971 */
2972 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2973 {
2974 unsigned char msg[3];
2975 unsigned char *resp;
2976 unsigned long resp_len;
2977 int rv;
2978
2979 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2980 if (!resp)
2981 return -ENOMEM;
2982
2983 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2984 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2985 msg[2] = enables;
2986 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2987
2988 rv = wait_for_msg_done(smi_info);
2989 if (rv) {
2990 dev_warn(smi_info->dev,
2991 "Error getting response from set global enables command: %d\n",
2992 rv);
2993 goto out;
2994 }
2995
2996 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2997 resp, IPMI_MAX_MSG_LENGTH);
2998
2999 if (resp_len < 3 ||
3000 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3001 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3002 dev_warn(smi_info->dev,
3003 "Invalid return from set global enables command: %ld %x %x\n",
3004 resp_len, resp[0], resp[1]);
3005 rv = -EINVAL;
3006 goto out;
3007 }
3008
3009 if (resp[2] != 0)
3010 rv = 1;
3011
3012 out:
3013 kfree(resp);
3014 return rv;
3015 }
3016
3017 /*
3018 * Some BMCs do not support clearing the receive irq bit in the global
3019 * enables (even if they don't support interrupts on the BMC). Check
3020 * for this and handle it properly.
3021 */
3022 static void check_clr_rcv_irq(struct smi_info *smi_info)
3023 {
3024 u8 enables = 0;
3025 int rv;
3026
3027 rv = get_global_enables(smi_info, &enables);
3028 if (!rv) {
3029 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3030 /* Already clear, should work ok. */
3031 return;
3032
3033 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3034 rv = set_global_enables(smi_info, enables);
3035 }
3036
3037 if (rv < 0) {
3038 dev_err(smi_info->dev,
3039 "Cannot check clearing the rcv irq: %d\n", rv);
3040 return;
3041 }
3042
3043 if (rv) {
3044 /*
3045 * An error when setting the event buffer bit means
3046 * clearing the bit is not supported.
3047 */
3048 dev_warn(smi_info->dev,
3049 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3050 smi_info->cannot_disable_irq = true;
3051 }
3052 }
3053
3054 /*
3055 * Some BMCs do not support setting the interrupt bits in the global
3056 * enables even if they support interrupts. Clearly bad, but we can
3057 * compensate.
3058 */
3059 static void check_set_rcv_irq(struct smi_info *smi_info)
3060 {
3061 u8 enables = 0;
3062 int rv;
3063
3064 if (!smi_info->irq)
3065 return;
3066
3067 rv = get_global_enables(smi_info, &enables);
3068 if (!rv) {
3069 enables |= IPMI_BMC_RCV_MSG_INTR;
3070 rv = set_global_enables(smi_info, enables);
3071 }
3072
3073 if (rv < 0) {
3074 dev_err(smi_info->dev,
3075 "Cannot check setting the rcv irq: %d\n", rv);
3076 return;
3077 }
3078
3079 if (rv) {
3080 /*
3081 * An error when setting the event buffer bit means
3082 * setting the bit is not supported.
3083 */
3084 dev_warn(smi_info->dev,
3085 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 smi_info->cannot_disable_irq = true;
3087 smi_info->irq_enable_broken = true;
3088 }
3089 }
3090
3091 static int try_enable_event_buffer(struct smi_info *smi_info)
3092 {
3093 unsigned char msg[3];
3094 unsigned char *resp;
3095 unsigned long resp_len;
3096 int rv = 0;
3097
3098 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3099 if (!resp)
3100 return -ENOMEM;
3101
3102 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3103 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3104 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3105
3106 rv = wait_for_msg_done(smi_info);
3107 if (rv) {
3108 printk(KERN_WARNING PFX "Error getting response from get"
3109 " global enables command, the event buffer is not"
3110 " enabled.\n");
3111 goto out;
3112 }
3113
3114 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3115 resp, IPMI_MAX_MSG_LENGTH);
3116
3117 if (resp_len < 4 ||
3118 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3119 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3120 resp[2] != 0) {
3121 printk(KERN_WARNING PFX "Invalid return from get global"
3122 " enables command, cannot enable the event buffer.\n");
3123 rv = -EINVAL;
3124 goto out;
3125 }
3126
3127 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3128 /* buffer is already enabled, nothing to do. */
3129 smi_info->supports_event_msg_buff = true;
3130 goto out;
3131 }
3132
3133 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3134 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3135 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3136 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3137
3138 rv = wait_for_msg_done(smi_info);
3139 if (rv) {
3140 printk(KERN_WARNING PFX "Error getting response from set"
3141 " global, enables command, the event buffer is not"
3142 " enabled.\n");
3143 goto out;
3144 }
3145
3146 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3147 resp, IPMI_MAX_MSG_LENGTH);
3148
3149 if (resp_len < 3 ||
3150 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3151 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3152 printk(KERN_WARNING PFX "Invalid return from get global,"
3153 "enables command, not enable the event buffer.\n");
3154 rv = -EINVAL;
3155 goto out;
3156 }
3157
3158 if (resp[2] != 0)
3159 /*
3160 * An error when setting the event buffer bit means
3161 * that the event buffer is not supported.
3162 */
3163 rv = -ENOENT;
3164 else
3165 smi_info->supports_event_msg_buff = true;
3166
3167 out:
3168 kfree(resp);
3169 return rv;
3170 }
3171
3172 static int smi_type_proc_show(struct seq_file *m, void *v)
3173 {
3174 struct smi_info *smi = m->private;
3175
3176 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3177
3178 return 0;
3179 }
3180
3181 static int smi_type_proc_open(struct inode *inode, struct file *file)
3182 {
3183 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3184 }
3185
3186 static const struct file_operations smi_type_proc_ops = {
3187 .open = smi_type_proc_open,
3188 .read = seq_read,
3189 .llseek = seq_lseek,
3190 .release = single_release,
3191 };
3192
3193 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3194 {
3195 struct smi_info *smi = m->private;
3196
3197 seq_printf(m, "interrupts_enabled: %d\n",
3198 smi->irq && !smi->interrupt_disabled);
3199 seq_printf(m, "short_timeouts: %u\n",
3200 smi_get_stat(smi, short_timeouts));
3201 seq_printf(m, "long_timeouts: %u\n",
3202 smi_get_stat(smi, long_timeouts));
3203 seq_printf(m, "idles: %u\n",
3204 smi_get_stat(smi, idles));
3205 seq_printf(m, "interrupts: %u\n",
3206 smi_get_stat(smi, interrupts));
3207 seq_printf(m, "attentions: %u\n",
3208 smi_get_stat(smi, attentions));
3209 seq_printf(m, "flag_fetches: %u\n",
3210 smi_get_stat(smi, flag_fetches));
3211 seq_printf(m, "hosed_count: %u\n",
3212 smi_get_stat(smi, hosed_count));
3213 seq_printf(m, "complete_transactions: %u\n",
3214 smi_get_stat(smi, complete_transactions));
3215 seq_printf(m, "events: %u\n",
3216 smi_get_stat(smi, events));
3217 seq_printf(m, "watchdog_pretimeouts: %u\n",
3218 smi_get_stat(smi, watchdog_pretimeouts));
3219 seq_printf(m, "incoming_messages: %u\n",
3220 smi_get_stat(smi, incoming_messages));
3221 return 0;
3222 }
3223
3224 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3225 {
3226 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3227 }
3228
3229 static const struct file_operations smi_si_stats_proc_ops = {
3230 .open = smi_si_stats_proc_open,
3231 .read = seq_read,
3232 .llseek = seq_lseek,
3233 .release = single_release,
3234 };
3235
3236 static int smi_params_proc_show(struct seq_file *m, void *v)
3237 {
3238 struct smi_info *smi = m->private;
3239
3240 seq_printf(m,
3241 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3242 si_to_str[smi->si_type],
3243 addr_space_to_str[smi->io.addr_type],
3244 smi->io.addr_data,
3245 smi->io.regspacing,
3246 smi->io.regsize,
3247 smi->io.regshift,
3248 smi->irq,
3249 smi->slave_addr);
3250
3251 return 0;
3252 }
3253
3254 static int smi_params_proc_open(struct inode *inode, struct file *file)
3255 {
3256 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3257 }
3258
3259 static const struct file_operations smi_params_proc_ops = {
3260 .open = smi_params_proc_open,
3261 .read = seq_read,
3262 .llseek = seq_lseek,
3263 .release = single_release,
3264 };
3265
3266 /*
3267 * oem_data_avail_to_receive_msg_avail
3268 * @info - smi_info structure with msg_flags set
3269 *
3270 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3271 * Returns 1 indicating need to re-run handle_flags().
3272 */
3273 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3274 {
3275 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3276 RECEIVE_MSG_AVAIL);
3277 return 1;
3278 }
3279
3280 /*
3281 * setup_dell_poweredge_oem_data_handler
3282 * @info - smi_info.device_id must be populated
3283 *
3284 * Systems that match, but have firmware version < 1.40 may assert
3285 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3286 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3287 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3288 * as RECEIVE_MSG_AVAIL instead.
3289 *
3290 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3291 * assert the OEM[012] bits, and if it did, the driver would have to
3292 * change to handle that properly, we don't actually check for the
3293 * firmware version.
3294 * Device ID = 0x20 BMC on PowerEdge 8G servers
3295 * Device Revision = 0x80
3296 * Firmware Revision1 = 0x01 BMC version 1.40
3297 * Firmware Revision2 = 0x40 BCD encoded
3298 * IPMI Version = 0x51 IPMI 1.5
3299 * Manufacturer ID = A2 02 00 Dell IANA
3300 *
3301 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3302 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3303 *
3304 */
3305 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3306 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3307 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3308 #define DELL_IANA_MFR_ID 0x0002a2
3309 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3310 {
3311 struct ipmi_device_id *id = &smi_info->device_id;
3312 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3313 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3314 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3315 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3316 smi_info->oem_data_avail_handler =
3317 oem_data_avail_to_receive_msg_avail;
3318 } else if (ipmi_version_major(id) < 1 ||
3319 (ipmi_version_major(id) == 1 &&
3320 ipmi_version_minor(id) < 5)) {
3321 smi_info->oem_data_avail_handler =
3322 oem_data_avail_to_receive_msg_avail;
3323 }
3324 }
3325 }
3326
3327 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3328 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3329 {
3330 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3331
3332 /* Make it a response */
3333 msg->rsp[0] = msg->data[0] | 4;
3334 msg->rsp[1] = msg->data[1];
3335 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3336 msg->rsp_size = 3;
3337 smi_info->curr_msg = NULL;
3338 deliver_recv_msg(smi_info, msg);
3339 }
3340
3341 /*
3342 * dell_poweredge_bt_xaction_handler
3343 * @info - smi_info.device_id must be populated
3344 *
3345 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3346 * not respond to a Get SDR command if the length of the data
3347 * requested is exactly 0x3A, which leads to command timeouts and no
3348 * data returned. This intercepts such commands, and causes userspace
3349 * callers to try again with a different-sized buffer, which succeeds.
3350 */
3351
3352 #define STORAGE_NETFN 0x0A
3353 #define STORAGE_CMD_GET_SDR 0x23
3354 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3355 unsigned long unused,
3356 void *in)
3357 {
3358 struct smi_info *smi_info = in;
3359 unsigned char *data = smi_info->curr_msg->data;
3360 unsigned int size = smi_info->curr_msg->data_size;
3361 if (size >= 8 &&
3362 (data[0]>>2) == STORAGE_NETFN &&
3363 data[1] == STORAGE_CMD_GET_SDR &&
3364 data[7] == 0x3A) {
3365 return_hosed_msg_badsize(smi_info);
3366 return NOTIFY_STOP;
3367 }
3368 return NOTIFY_DONE;
3369 }
3370
3371 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3372 .notifier_call = dell_poweredge_bt_xaction_handler,
3373 };
3374
3375 /*
3376 * setup_dell_poweredge_bt_xaction_handler
3377 * @info - smi_info.device_id must be filled in already
3378 *
3379 * Fills in smi_info.device_id.start_transaction_pre_hook
3380 * when we know what function to use there.
3381 */
3382 static void
3383 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3384 {
3385 struct ipmi_device_id *id = &smi_info->device_id;
3386 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3387 smi_info->si_type == SI_BT)
3388 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3389 }
3390
3391 /*
3392 * setup_oem_data_handler
3393 * @info - smi_info.device_id must be filled in already
3394 *
3395 * Fills in smi_info.device_id.oem_data_available_handler
3396 * when we know what function to use there.
3397 */
3398
3399 static void setup_oem_data_handler(struct smi_info *smi_info)
3400 {
3401 setup_dell_poweredge_oem_data_handler(smi_info);
3402 }
3403
3404 static void setup_xaction_handlers(struct smi_info *smi_info)
3405 {
3406 setup_dell_poweredge_bt_xaction_handler(smi_info);
3407 }
3408
3409 static void check_for_broken_irqs(struct smi_info *smi_info)
3410 {
3411 check_clr_rcv_irq(smi_info);
3412 check_set_rcv_irq(smi_info);
3413 }
3414
3415 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3416 {
3417 if (smi_info->thread != NULL)
3418 kthread_stop(smi_info->thread);
3419 if (smi_info->timer_running)
3420 del_timer_sync(&smi_info->si_timer);
3421 }
3422
3423 static const struct ipmi_default_vals
3424 {
3425 int type;
3426 int port;
3427 } ipmi_defaults[] =
3428 {
3429 { .type = SI_KCS, .port = 0xca2 },
3430 { .type = SI_SMIC, .port = 0xca9 },
3431 { .type = SI_BT, .port = 0xe4 },
3432 { .port = 0 }
3433 };
3434
3435 static void default_find_bmc(void)
3436 {
3437 struct smi_info *info;
3438 int i;
3439
3440 for (i = 0; ; i++) {
3441 if (!ipmi_defaults[i].port)
3442 break;
3443 #ifdef CONFIG_PPC
3444 if (check_legacy_ioport(ipmi_defaults[i].port))
3445 continue;
3446 #endif
3447 info = smi_info_alloc();
3448 if (!info)
3449 return;
3450
3451 info->addr_source = SI_DEFAULT;
3452
3453 info->si_type = ipmi_defaults[i].type;
3454 info->io_setup = port_setup;
3455 info->io.addr_data = ipmi_defaults[i].port;
3456 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3457
3458 info->io.addr = NULL;
3459 info->io.regspacing = DEFAULT_REGSPACING;
3460 info->io.regsize = DEFAULT_REGSPACING;
3461 info->io.regshift = 0;
3462
3463 if (add_smi(info) == 0) {
3464 if ((try_smi_init(info)) == 0) {
3465 /* Found one... */
3466 printk(KERN_INFO PFX "Found default %s"
3467 " state machine at %s address 0x%lx\n",
3468 si_to_str[info->si_type],
3469 addr_space_to_str[info->io.addr_type],
3470 info->io.addr_data);
3471 } else
3472 cleanup_one_si(info);
3473 } else {
3474 kfree(info);
3475 }
3476 }
3477 }
3478
3479 static int is_new_interface(struct smi_info *info)
3480 {
3481 struct smi_info *e;
3482
3483 list_for_each_entry(e, &smi_infos, link) {
3484 if (e->io.addr_type != info->io.addr_type)
3485 continue;
3486 if (e->io.addr_data == info->io.addr_data)
3487 return 0;
3488 }
3489
3490 return 1;
3491 }
3492
3493 static int add_smi(struct smi_info *new_smi)
3494 {
3495 int rv = 0;
3496
3497 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3498 ipmi_addr_src_to_str(new_smi->addr_source),
3499 si_to_str[new_smi->si_type]);
3500 mutex_lock(&smi_infos_lock);
3501 if (!is_new_interface(new_smi)) {
3502 printk(KERN_CONT " duplicate interface\n");
3503 rv = -EBUSY;
3504 goto out_err;
3505 }
3506
3507 printk(KERN_CONT "\n");
3508
3509 /* So we know not to free it unless we have allocated one. */
3510 new_smi->intf = NULL;
3511 new_smi->si_sm = NULL;
3512 new_smi->handlers = NULL;
3513
3514 list_add_tail(&new_smi->link, &smi_infos);
3515
3516 out_err:
3517 mutex_unlock(&smi_infos_lock);
3518 return rv;
3519 }
3520
3521 static int try_smi_init(struct smi_info *new_smi)
3522 {
3523 int rv = 0;
3524 int i;
3525
3526 printk(KERN_INFO PFX "Trying %s-specified %s state"
3527 " machine at %s address 0x%lx, slave address 0x%x,"
3528 " irq %d\n",
3529 ipmi_addr_src_to_str(new_smi->addr_source),
3530 si_to_str[new_smi->si_type],
3531 addr_space_to_str[new_smi->io.addr_type],
3532 new_smi->io.addr_data,
3533 new_smi->slave_addr, new_smi->irq);
3534
3535 switch (new_smi->si_type) {
3536 case SI_KCS:
3537 new_smi->handlers = &kcs_smi_handlers;
3538 break;
3539
3540 case SI_SMIC:
3541 new_smi->handlers = &smic_smi_handlers;
3542 break;
3543
3544 case SI_BT:
3545 new_smi->handlers = &bt_smi_handlers;
3546 break;
3547
3548 default:
3549 /* No support for anything else yet. */
3550 rv = -EIO;
3551 goto out_err;
3552 }
3553
3554 /* Allocate the state machine's data and initialize it. */
3555 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3556 if (!new_smi->si_sm) {
3557 printk(KERN_ERR PFX
3558 "Could not allocate state machine memory\n");
3559 rv = -ENOMEM;
3560 goto out_err;
3561 }
3562 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3563 &new_smi->io);
3564
3565 /* Now that we know the I/O size, we can set up the I/O. */
3566 rv = new_smi->io_setup(new_smi);
3567 if (rv) {
3568 printk(KERN_ERR PFX "Could not set up I/O space\n");
3569 goto out_err;
3570 }
3571
3572 /* Do low-level detection first. */
3573 if (new_smi->handlers->detect(new_smi->si_sm)) {
3574 if (new_smi->addr_source)
3575 printk(KERN_INFO PFX "Interface detection failed\n");
3576 rv = -ENODEV;
3577 goto out_err;
3578 }
3579
3580 /*
3581 * Attempt a get device id command. If it fails, we probably
3582 * don't have a BMC here.
3583 */
3584 rv = try_get_dev_id(new_smi);
3585 if (rv) {
3586 if (new_smi->addr_source)
3587 printk(KERN_INFO PFX "There appears to be no BMC"
3588 " at this location\n");
3589 goto out_err;
3590 }
3591
3592 setup_oem_data_handler(new_smi);
3593 setup_xaction_handlers(new_smi);
3594 check_for_broken_irqs(new_smi);
3595
3596 new_smi->waiting_msg = NULL;
3597 new_smi->curr_msg = NULL;
3598 atomic_set(&new_smi->req_events, 0);
3599 new_smi->run_to_completion = false;
3600 for (i = 0; i < SI_NUM_STATS; i++)
3601 atomic_set(&new_smi->stats[i], 0);
3602
3603 new_smi->interrupt_disabled = true;
3604 atomic_set(&new_smi->need_watch, 0);
3605 new_smi->intf_num = smi_num;
3606 smi_num++;
3607
3608 rv = try_enable_event_buffer(new_smi);
3609 if (rv == 0)
3610 new_smi->has_event_buffer = true;
3611
3612 /*
3613 * Start clearing the flags before we enable interrupts or the
3614 * timer to avoid racing with the timer.
3615 */
3616 start_clear_flags(new_smi);
3617
3618 /*
3619 * IRQ is defined to be set when non-zero. req_events will
3620 * cause a global flags check that will enable interrupts.
3621 */
3622 if (new_smi->irq) {
3623 new_smi->interrupt_disabled = false;
3624 atomic_set(&new_smi->req_events, 1);
3625 }
3626
3627 if (!new_smi->dev) {
3628 /*
3629 * If we don't already have a device from something
3630 * else (like PCI), then register a new one.
3631 */
3632 new_smi->pdev = platform_device_alloc("ipmi_si",
3633 new_smi->intf_num);
3634 if (!new_smi->pdev) {
3635 printk(KERN_ERR PFX
3636 "Unable to allocate platform device\n");
3637 goto out_err;
3638 }
3639 new_smi->dev = &new_smi->pdev->dev;
3640 new_smi->dev->driver = &ipmi_driver.driver;
3641
3642 rv = platform_device_add(new_smi->pdev);
3643 if (rv) {
3644 printk(KERN_ERR PFX
3645 "Unable to register system interface device:"
3646 " %d\n",
3647 rv);
3648 goto out_err;
3649 }
3650 new_smi->dev_registered = true;
3651 }
3652
3653 rv = ipmi_register_smi(&handlers,
3654 new_smi,
3655 &new_smi->device_id,
3656 new_smi->dev,
3657 new_smi->slave_addr);
3658 if (rv) {
3659 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3660 rv);
3661 goto out_err_stop_timer;
3662 }
3663
3664 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3665 &smi_type_proc_ops,
3666 new_smi);
3667 if (rv) {
3668 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3669 goto out_err_stop_timer;
3670 }
3671
3672 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3673 &smi_si_stats_proc_ops,
3674 new_smi);
3675 if (rv) {
3676 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3677 goto out_err_stop_timer;
3678 }
3679
3680 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3681 &smi_params_proc_ops,
3682 new_smi);
3683 if (rv) {
3684 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3685 goto out_err_stop_timer;
3686 }
3687
3688 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3689 si_to_str[new_smi->si_type]);
3690
3691 return 0;
3692
3693 out_err_stop_timer:
3694 wait_for_timer_and_thread(new_smi);
3695
3696 out_err:
3697 new_smi->interrupt_disabled = true;
3698
3699 if (new_smi->intf) {
3700 ipmi_smi_t intf = new_smi->intf;
3701 new_smi->intf = NULL;
3702 ipmi_unregister_smi(intf);
3703 }
3704
3705 if (new_smi->irq_cleanup) {
3706 new_smi->irq_cleanup(new_smi);
3707 new_smi->irq_cleanup = NULL;
3708 }
3709
3710 /*
3711 * Wait until we know that we are out of any interrupt
3712 * handlers might have been running before we freed the
3713 * interrupt.
3714 */
3715 synchronize_sched();
3716
3717 if (new_smi->si_sm) {
3718 if (new_smi->handlers)
3719 new_smi->handlers->cleanup(new_smi->si_sm);
3720 kfree(new_smi->si_sm);
3721 new_smi->si_sm = NULL;
3722 }
3723 if (new_smi->addr_source_cleanup) {
3724 new_smi->addr_source_cleanup(new_smi);
3725 new_smi->addr_source_cleanup = NULL;
3726 }
3727 if (new_smi->io_cleanup) {
3728 new_smi->io_cleanup(new_smi);
3729 new_smi->io_cleanup = NULL;
3730 }
3731
3732 if (new_smi->dev_registered) {
3733 platform_device_unregister(new_smi->pdev);
3734 new_smi->dev_registered = false;
3735 }
3736
3737 return rv;
3738 }
3739
3740 static int init_ipmi_si(void)
3741 {
3742 int i;
3743 char *str;
3744 int rv;
3745 struct smi_info *e;
3746 enum ipmi_addr_src type = SI_INVALID;
3747
3748 if (initialized)
3749 return 0;
3750 initialized = 1;
3751
3752 if (si_tryplatform) {
3753 rv = platform_driver_register(&ipmi_driver);
3754 if (rv) {
3755 printk(KERN_ERR PFX "Unable to register "
3756 "driver: %d\n", rv);
3757 return rv;
3758 }
3759 }
3760
3761 /* Parse out the si_type string into its components. */
3762 str = si_type_str;
3763 if (*str != '\0') {
3764 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3765 si_type[i] = str;
3766 str = strchr(str, ',');
3767 if (str) {
3768 *str = '\0';
3769 str++;
3770 } else {
3771 break;
3772 }
3773 }
3774 }
3775
3776 printk(KERN_INFO "IPMI System Interface driver.\n");
3777
3778 /* If the user gave us a device, they presumably want us to use it */
3779 if (!hardcode_find_bmc())
3780 return 0;
3781
3782 #ifdef CONFIG_PCI
3783 if (si_trypci) {
3784 rv = pci_register_driver(&ipmi_pci_driver);
3785 if (rv)
3786 printk(KERN_ERR PFX "Unable to register "
3787 "PCI driver: %d\n", rv);
3788 else
3789 pci_registered = true;
3790 }
3791 #endif
3792
3793 #ifdef CONFIG_DMI
3794 if (si_trydmi)
3795 dmi_find_bmc();
3796 #endif
3797
3798 #ifdef CONFIG_ACPI
3799 if (si_tryacpi)
3800 spmi_find_bmc();
3801 #endif
3802
3803 #ifdef CONFIG_PARISC
3804 register_parisc_driver(&ipmi_parisc_driver);
3805 parisc_registered = true;
3806 /* poking PC IO addresses will crash machine, don't do it */
3807 si_trydefaults = 0;
3808 #endif
3809
3810 /* We prefer devices with interrupts, but in the case of a machine
3811 with multiple BMCs we assume that there will be several instances
3812 of a given type so if we succeed in registering a type then also
3813 try to register everything else of the same type */
3814
3815 mutex_lock(&smi_infos_lock);
3816 list_for_each_entry(e, &smi_infos, link) {
3817 /* Try to register a device if it has an IRQ and we either
3818 haven't successfully registered a device yet or this
3819 device has the same type as one we successfully registered */
3820 if (e->irq && (!type || e->addr_source == type)) {
3821 if (!try_smi_init(e)) {
3822 type = e->addr_source;
3823 }
3824 }
3825 }
3826
3827 /* type will only have been set if we successfully registered an si */
3828 if (type) {
3829 mutex_unlock(&smi_infos_lock);
3830 return 0;
3831 }
3832
3833 /* Fall back to the preferred device */
3834
3835 list_for_each_entry(e, &smi_infos, link) {
3836 if (!e->irq && (!type || e->addr_source == type)) {
3837 if (!try_smi_init(e)) {
3838 type = e->addr_source;
3839 }
3840 }
3841 }
3842 mutex_unlock(&smi_infos_lock);
3843
3844 if (type)
3845 return 0;
3846
3847 if (si_trydefaults) {
3848 mutex_lock(&smi_infos_lock);
3849 if (list_empty(&smi_infos)) {
3850 /* No BMC was found, try defaults. */
3851 mutex_unlock(&smi_infos_lock);
3852 default_find_bmc();
3853 } else
3854 mutex_unlock(&smi_infos_lock);
3855 }
3856
3857 mutex_lock(&smi_infos_lock);
3858 if (unload_when_empty && list_empty(&smi_infos)) {
3859 mutex_unlock(&smi_infos_lock);
3860 cleanup_ipmi_si();
3861 printk(KERN_WARNING PFX
3862 "Unable to find any System Interface(s)\n");
3863 return -ENODEV;
3864 } else {
3865 mutex_unlock(&smi_infos_lock);
3866 return 0;
3867 }
3868 }
3869 module_init(init_ipmi_si);
3870
3871 static void cleanup_one_si(struct smi_info *to_clean)
3872 {
3873 int rv = 0;
3874
3875 if (!to_clean)
3876 return;
3877
3878 if (to_clean->intf) {
3879 ipmi_smi_t intf = to_clean->intf;
3880
3881 to_clean->intf = NULL;
3882 rv = ipmi_unregister_smi(intf);
3883 if (rv) {
3884 pr_err(PFX "Unable to unregister device: errno=%d\n",
3885 rv);
3886 }
3887 }
3888
3889 if (to_clean->dev)
3890 dev_set_drvdata(to_clean->dev, NULL);
3891
3892 list_del(&to_clean->link);
3893
3894 /*
3895 * Make sure that interrupts, the timer and the thread are
3896 * stopped and will not run again.
3897 */
3898 if (to_clean->irq_cleanup)
3899 to_clean->irq_cleanup(to_clean);
3900 wait_for_timer_and_thread(to_clean);
3901
3902 /*
3903 * Timeouts are stopped, now make sure the interrupts are off
3904 * in the BMC. Note that timers and CPU interrupts are off,
3905 * so no need for locks.
3906 */
3907 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3908 poll(to_clean);
3909 schedule_timeout_uninterruptible(1);
3910 }
3911 disable_si_irq(to_clean);
3912 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3913 poll(to_clean);
3914 schedule_timeout_uninterruptible(1);
3915 }
3916
3917 if (to_clean->handlers)
3918 to_clean->handlers->cleanup(to_clean->si_sm);
3919
3920 kfree(to_clean->si_sm);
3921
3922 if (to_clean->addr_source_cleanup)
3923 to_clean->addr_source_cleanup(to_clean);
3924 if (to_clean->io_cleanup)
3925 to_clean->io_cleanup(to_clean);
3926
3927 if (to_clean->dev_registered)
3928 platform_device_unregister(to_clean->pdev);
3929
3930 kfree(to_clean);
3931 }
3932
3933 static void cleanup_ipmi_si(void)
3934 {
3935 struct smi_info *e, *tmp_e;
3936
3937 if (!initialized)
3938 return;
3939
3940 #ifdef CONFIG_PCI
3941 if (pci_registered)
3942 pci_unregister_driver(&ipmi_pci_driver);
3943 #endif
3944 #ifdef CONFIG_PARISC
3945 if (parisc_registered)
3946 unregister_parisc_driver(&ipmi_parisc_driver);
3947 #endif
3948
3949 platform_driver_unregister(&ipmi_driver);
3950
3951 mutex_lock(&smi_infos_lock);
3952 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3953 cleanup_one_si(e);
3954 mutex_unlock(&smi_infos_lock);
3955 }
3956 module_exit(cleanup_ipmi_si);
3957
3958 MODULE_LICENSE("GPL");
3959 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3960 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3961 " system interfaces.");
This page took 0.106499 seconds and 6 git commands to generate.