[PATCH] drivers/char: Use ARRAY_SIZE macro
[deliverable/linux.git] / drivers / char / istallion.c
1 /*****************************************************************************/
2
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 /*****************************************************************************/
28
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cdk.h>
37 #include <linux/comstats.h>
38 #include <linux/istallion.h>
39 #include <linux/ioport.h>
40 #include <linux/delay.h>
41 #include <linux/init.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/device.h>
44 #include <linux/wait.h>
45
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48
49 #ifdef CONFIG_PCI
50 #include <linux/pci.h>
51 #endif
52
53 /*****************************************************************************/
54
55 /*
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
60 * STAL = Stallion.
61 */
62 #define BRD_UNKNOWN 0
63 #define BRD_STALLION 1
64 #define BRD_BRUMBY4 2
65 #define BRD_ONBOARD2 3
66 #define BRD_ONBOARD 4
67 #define BRD_BRUMBY8 5
68 #define BRD_BRUMBY16 6
69 #define BRD_ONBOARDE 7
70 #define BRD_ONBOARD32 9
71 #define BRD_ONBOARD2_32 10
72 #define BRD_ONBOARDRS 11
73 #define BRD_EASYIO 20
74 #define BRD_ECH 21
75 #define BRD_ECHMC 22
76 #define BRD_ECP 23
77 #define BRD_ECPE 24
78 #define BRD_ECPMC 25
79 #define BRD_ECHPCI 26
80 #define BRD_ECH64PCI 27
81 #define BRD_EASYIOPCI 28
82 #define BRD_ECPPCI 29
83
84 #define BRD_BRUMBY BRD_BRUMBY4
85
86 /*
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
93 * Some examples:
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
99 * Another example:
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
105 * Another example:
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
110 * Another example:
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
116 * Another example:
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
123 */
124
125 typedef struct {
126 int brdtype;
127 int ioaddr1;
128 int ioaddr2;
129 unsigned long memaddr;
130 int irq;
131 int irqtype;
132 } stlconf_t;
133
134 static stlconf_t stli_brdconf[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
136 };
137
138 static int stli_nrbrds = ARRAY_SIZE(stli_brdconf);
139
140 /*
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
144 */
145 #define STLI_EISAPROBE 0
146
147 /*****************************************************************************/
148
149 /*
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
152 */
153 #ifndef STL_SIOMEMMAJOR
154 #define STL_SIOMEMMAJOR 28
155 #endif
156 #ifndef STL_SERIALMAJOR
157 #define STL_SERIALMAJOR 24
158 #endif
159 #ifndef STL_CALLOUTMAJOR
160 #define STL_CALLOUTMAJOR 25
161 #endif
162
163 /*****************************************************************************/
164
165 /*
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
168 */
169 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
170 static char *stli_drvname = "istallion";
171 static char *stli_drvversion = "5.6.0";
172 static char *stli_serialname = "ttyE";
173
174 static struct tty_driver *stli_serial;
175
176 /*
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
182 */
183 static char *stli_tmpwritebuf;
184 static DECLARE_MUTEX(stli_tmpwritesem);
185
186 #define STLI_TXBUFSIZE 4096
187
188 /*
189 * Use a fast local buffer for cooked characters. Typically a whole
190 * bunch of cooked characters come in for a port, 1 at a time. So we
191 * save those up into a local buffer, then write out the whole lot
192 * with a large memcpy. Just use 1 buffer for all ports, since its
193 * use it is only need for short periods of time by each port.
194 */
195 static char *stli_txcookbuf;
196 static int stli_txcooksize;
197 static int stli_txcookrealsize;
198 static struct tty_struct *stli_txcooktty;
199
200 /*
201 * Define a local default termios struct. All ports will be created
202 * with this termios initially. Basically all it defines is a raw port
203 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
204 */
205 static struct termios stli_deftermios = {
206 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
207 .c_cc = INIT_C_CC,
208 };
209
210 /*
211 * Define global stats structures. Not used often, and can be
212 * re-used for each stats call.
213 */
214 static comstats_t stli_comstats;
215 static combrd_t stli_brdstats;
216 static asystats_t stli_cdkstats;
217 static stlibrd_t stli_dummybrd;
218 static stliport_t stli_dummyport;
219
220 /*****************************************************************************/
221
222 static stlibrd_t *stli_brds[STL_MAXBRDS];
223
224 static int stli_shared;
225
226 /*
227 * Per board state flags. Used with the state field of the board struct.
228 * Not really much here... All we need to do is keep track of whether
229 * the board has been detected, and whether it is actually running a slave
230 * or not.
231 */
232 #define BST_FOUND 0x1
233 #define BST_STARTED 0x2
234
235 /*
236 * Define the set of port state flags. These are marked for internal
237 * state purposes only, usually to do with the state of communications
238 * with the slave. Most of them need to be updated atomically, so always
239 * use the bit setting operations (unless protected by cli/sti).
240 */
241 #define ST_INITIALIZING 1
242 #define ST_OPENING 2
243 #define ST_CLOSING 3
244 #define ST_CMDING 4
245 #define ST_TXBUSY 5
246 #define ST_RXING 6
247 #define ST_DOFLUSHRX 7
248 #define ST_DOFLUSHTX 8
249 #define ST_DOSIGS 9
250 #define ST_RXSTOP 10
251 #define ST_GETSIGS 11
252
253 /*
254 * Define an array of board names as printable strings. Handy for
255 * referencing boards when printing trace and stuff.
256 */
257 static char *stli_brdnames[] = {
258 "Unknown",
259 "Stallion",
260 "Brumby",
261 "ONboard-MC",
262 "ONboard",
263 "Brumby",
264 "Brumby",
265 "ONboard-EI",
266 (char *) NULL,
267 "ONboard",
268 "ONboard-MC",
269 "ONboard-MC",
270 (char *) NULL,
271 (char *) NULL,
272 (char *) NULL,
273 (char *) NULL,
274 (char *) NULL,
275 (char *) NULL,
276 (char *) NULL,
277 (char *) NULL,
278 "EasyIO",
279 "EC8/32-AT",
280 "EC8/32-MC",
281 "EC8/64-AT",
282 "EC8/64-EI",
283 "EC8/64-MC",
284 "EC8/32-PCI",
285 "EC8/64-PCI",
286 "EasyIO-PCI",
287 "EC/RA-PCI",
288 };
289
290 /*****************************************************************************/
291
292 #ifdef MODULE
293 /*
294 * Define some string labels for arguments passed from the module
295 * load line. These allow for easy board definitions, and easy
296 * modification of the io, memory and irq resoucres.
297 */
298
299 static char *board0[8];
300 static char *board1[8];
301 static char *board2[8];
302 static char *board3[8];
303
304 static char **stli_brdsp[] = {
305 (char **) &board0,
306 (char **) &board1,
307 (char **) &board2,
308 (char **) &board3
309 };
310
311 /*
312 * Define a set of common board names, and types. This is used to
313 * parse any module arguments.
314 */
315
316 typedef struct stlibrdtype {
317 char *name;
318 int type;
319 } stlibrdtype_t;
320
321 static stlibrdtype_t stli_brdstr[] = {
322 { "stallion", BRD_STALLION },
323 { "1", BRD_STALLION },
324 { "brumby", BRD_BRUMBY },
325 { "brumby4", BRD_BRUMBY },
326 { "brumby/4", BRD_BRUMBY },
327 { "brumby-4", BRD_BRUMBY },
328 { "brumby8", BRD_BRUMBY },
329 { "brumby/8", BRD_BRUMBY },
330 { "brumby-8", BRD_BRUMBY },
331 { "brumby16", BRD_BRUMBY },
332 { "brumby/16", BRD_BRUMBY },
333 { "brumby-16", BRD_BRUMBY },
334 { "2", BRD_BRUMBY },
335 { "onboard2", BRD_ONBOARD2 },
336 { "onboard-2", BRD_ONBOARD2 },
337 { "onboard/2", BRD_ONBOARD2 },
338 { "onboard-mc", BRD_ONBOARD2 },
339 { "onboard/mc", BRD_ONBOARD2 },
340 { "onboard-mca", BRD_ONBOARD2 },
341 { "onboard/mca", BRD_ONBOARD2 },
342 { "3", BRD_ONBOARD2 },
343 { "onboard", BRD_ONBOARD },
344 { "onboardat", BRD_ONBOARD },
345 { "4", BRD_ONBOARD },
346 { "onboarde", BRD_ONBOARDE },
347 { "onboard-e", BRD_ONBOARDE },
348 { "onboard/e", BRD_ONBOARDE },
349 { "onboard-ei", BRD_ONBOARDE },
350 { "onboard/ei", BRD_ONBOARDE },
351 { "7", BRD_ONBOARDE },
352 { "ecp", BRD_ECP },
353 { "ecpat", BRD_ECP },
354 { "ec8/64", BRD_ECP },
355 { "ec8/64-at", BRD_ECP },
356 { "ec8/64-isa", BRD_ECP },
357 { "23", BRD_ECP },
358 { "ecpe", BRD_ECPE },
359 { "ecpei", BRD_ECPE },
360 { "ec8/64-e", BRD_ECPE },
361 { "ec8/64-ei", BRD_ECPE },
362 { "24", BRD_ECPE },
363 { "ecpmc", BRD_ECPMC },
364 { "ec8/64-mc", BRD_ECPMC },
365 { "ec8/64-mca", BRD_ECPMC },
366 { "25", BRD_ECPMC },
367 { "ecppci", BRD_ECPPCI },
368 { "ec/ra", BRD_ECPPCI },
369 { "ec/ra-pc", BRD_ECPPCI },
370 { "ec/ra-pci", BRD_ECPPCI },
371 { "29", BRD_ECPPCI },
372 };
373
374 /*
375 * Define the module agruments.
376 */
377 MODULE_AUTHOR("Greg Ungerer");
378 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
379 MODULE_LICENSE("GPL");
380
381
382 MODULE_PARM(board0, "1-3s");
383 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
384 MODULE_PARM(board1, "1-3s");
385 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
386 MODULE_PARM(board2, "1-3s");
387 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
388 MODULE_PARM(board3, "1-3s");
389 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
390
391 #endif
392
393 /*
394 * Set up a default memory address table for EISA board probing.
395 * The default addresses are all bellow 1Mbyte, which has to be the
396 * case anyway. They should be safe, since we only read values from
397 * them, and interrupts are disabled while we do it. If the higher
398 * memory support is compiled in then we also try probing around
399 * the 1Gb, 2Gb and 3Gb areas as well...
400 */
401 static unsigned long stli_eisamemprobeaddrs[] = {
402 0xc0000, 0xd0000, 0xe0000, 0xf0000,
403 0x80000000, 0x80010000, 0x80020000, 0x80030000,
404 0x40000000, 0x40010000, 0x40020000, 0x40030000,
405 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
406 0xff000000, 0xff010000, 0xff020000, 0xff030000,
407 };
408
409 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
410
411 /*
412 * Define the Stallion PCI vendor and device IDs.
413 */
414 #ifdef CONFIG_PCI
415 #ifndef PCI_VENDOR_ID_STALLION
416 #define PCI_VENDOR_ID_STALLION 0x124d
417 #endif
418 #ifndef PCI_DEVICE_ID_ECRA
419 #define PCI_DEVICE_ID_ECRA 0x0004
420 #endif
421
422 static struct pci_device_id istallion_pci_tbl[] = {
423 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
424 { 0 }
425 };
426 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
427
428 #endif /* CONFIG_PCI */
429
430 /*****************************************************************************/
431
432 /*
433 * Hardware configuration info for ECP boards. These defines apply
434 * to the directly accessible io ports of the ECP. There is a set of
435 * defines for each ECP board type, ISA, EISA, MCA and PCI.
436 */
437 #define ECP_IOSIZE 4
438
439 #define ECP_MEMSIZE (128 * 1024)
440 #define ECP_PCIMEMSIZE (256 * 1024)
441
442 #define ECP_ATPAGESIZE (4 * 1024)
443 #define ECP_MCPAGESIZE (4 * 1024)
444 #define ECP_EIPAGESIZE (64 * 1024)
445 #define ECP_PCIPAGESIZE (64 * 1024)
446
447 #define STL_EISAID 0x8c4e
448
449 /*
450 * Important defines for the ISA class of ECP board.
451 */
452 #define ECP_ATIREG 0
453 #define ECP_ATCONFR 1
454 #define ECP_ATMEMAR 2
455 #define ECP_ATMEMPR 3
456 #define ECP_ATSTOP 0x1
457 #define ECP_ATINTENAB 0x10
458 #define ECP_ATENABLE 0x20
459 #define ECP_ATDISABLE 0x00
460 #define ECP_ATADDRMASK 0x3f000
461 #define ECP_ATADDRSHFT 12
462
463 /*
464 * Important defines for the EISA class of ECP board.
465 */
466 #define ECP_EIIREG 0
467 #define ECP_EIMEMARL 1
468 #define ECP_EICONFR 2
469 #define ECP_EIMEMARH 3
470 #define ECP_EIENABLE 0x1
471 #define ECP_EIDISABLE 0x0
472 #define ECP_EISTOP 0x4
473 #define ECP_EIEDGE 0x00
474 #define ECP_EILEVEL 0x80
475 #define ECP_EIADDRMASKL 0x00ff0000
476 #define ECP_EIADDRSHFTL 16
477 #define ECP_EIADDRMASKH 0xff000000
478 #define ECP_EIADDRSHFTH 24
479 #define ECP_EIBRDENAB 0xc84
480
481 #define ECP_EISAID 0x4
482
483 /*
484 * Important defines for the Micro-channel class of ECP board.
485 * (It has a lot in common with the ISA boards.)
486 */
487 #define ECP_MCIREG 0
488 #define ECP_MCCONFR 1
489 #define ECP_MCSTOP 0x20
490 #define ECP_MCENABLE 0x80
491 #define ECP_MCDISABLE 0x00
492
493 /*
494 * Important defines for the PCI class of ECP board.
495 * (It has a lot in common with the other ECP boards.)
496 */
497 #define ECP_PCIIREG 0
498 #define ECP_PCICONFR 1
499 #define ECP_PCISTOP 0x01
500
501 /*
502 * Hardware configuration info for ONboard and Brumby boards. These
503 * defines apply to the directly accessible io ports of these boards.
504 */
505 #define ONB_IOSIZE 16
506 #define ONB_MEMSIZE (64 * 1024)
507 #define ONB_ATPAGESIZE (64 * 1024)
508 #define ONB_MCPAGESIZE (64 * 1024)
509 #define ONB_EIMEMSIZE (128 * 1024)
510 #define ONB_EIPAGESIZE (64 * 1024)
511
512 /*
513 * Important defines for the ISA class of ONboard board.
514 */
515 #define ONB_ATIREG 0
516 #define ONB_ATMEMAR 1
517 #define ONB_ATCONFR 2
518 #define ONB_ATSTOP 0x4
519 #define ONB_ATENABLE 0x01
520 #define ONB_ATDISABLE 0x00
521 #define ONB_ATADDRMASK 0xff0000
522 #define ONB_ATADDRSHFT 16
523
524 #define ONB_MEMENABLO 0
525 #define ONB_MEMENABHI 0x02
526
527 /*
528 * Important defines for the EISA class of ONboard board.
529 */
530 #define ONB_EIIREG 0
531 #define ONB_EIMEMARL 1
532 #define ONB_EICONFR 2
533 #define ONB_EIMEMARH 3
534 #define ONB_EIENABLE 0x1
535 #define ONB_EIDISABLE 0x0
536 #define ONB_EISTOP 0x4
537 #define ONB_EIEDGE 0x00
538 #define ONB_EILEVEL 0x80
539 #define ONB_EIADDRMASKL 0x00ff0000
540 #define ONB_EIADDRSHFTL 16
541 #define ONB_EIADDRMASKH 0xff000000
542 #define ONB_EIADDRSHFTH 24
543 #define ONB_EIBRDENAB 0xc84
544
545 #define ONB_EISAID 0x1
546
547 /*
548 * Important defines for the Brumby boards. They are pretty simple,
549 * there is not much that is programmably configurable.
550 */
551 #define BBY_IOSIZE 16
552 #define BBY_MEMSIZE (64 * 1024)
553 #define BBY_PAGESIZE (16 * 1024)
554
555 #define BBY_ATIREG 0
556 #define BBY_ATCONFR 1
557 #define BBY_ATSTOP 0x4
558
559 /*
560 * Important defines for the Stallion boards. They are pretty simple,
561 * there is not much that is programmably configurable.
562 */
563 #define STAL_IOSIZE 16
564 #define STAL_MEMSIZE (64 * 1024)
565 #define STAL_PAGESIZE (64 * 1024)
566
567 /*
568 * Define the set of status register values for EasyConnection panels.
569 * The signature will return with the status value for each panel. From
570 * this we can determine what is attached to the board - before we have
571 * actually down loaded any code to it.
572 */
573 #define ECH_PNLSTATUS 2
574 #define ECH_PNL16PORT 0x20
575 #define ECH_PNLIDMASK 0x07
576 #define ECH_PNLXPID 0x40
577 #define ECH_PNLINTRPEND 0x80
578
579 /*
580 * Define some macros to do things to the board. Even those these boards
581 * are somewhat related there is often significantly different ways of
582 * doing some operation on it (like enable, paging, reset, etc). So each
583 * board class has a set of functions which do the commonly required
584 * operations. The macros below basically just call these functions,
585 * generally checking for a NULL function - which means that the board
586 * needs nothing done to it to achieve this operation!
587 */
588 #define EBRDINIT(brdp) \
589 if (brdp->init != NULL) \
590 (* brdp->init)(brdp)
591
592 #define EBRDENABLE(brdp) \
593 if (brdp->enable != NULL) \
594 (* brdp->enable)(brdp);
595
596 #define EBRDDISABLE(brdp) \
597 if (brdp->disable != NULL) \
598 (* brdp->disable)(brdp);
599
600 #define EBRDINTR(brdp) \
601 if (brdp->intr != NULL) \
602 (* brdp->intr)(brdp);
603
604 #define EBRDRESET(brdp) \
605 if (brdp->reset != NULL) \
606 (* brdp->reset)(brdp);
607
608 #define EBRDGETMEMPTR(brdp,offset) \
609 (* brdp->getmemptr)(brdp, offset, __LINE__)
610
611 /*
612 * Define the maximal baud rate, and the default baud base for ports.
613 */
614 #define STL_MAXBAUD 460800
615 #define STL_BAUDBASE 115200
616 #define STL_CLOSEDELAY (5 * HZ / 10)
617
618 /*****************************************************************************/
619
620 /*
621 * Define macros to extract a brd or port number from a minor number.
622 */
623 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
624 #define MINOR2PORT(min) ((min) & 0x3f)
625
626 /*
627 * Define a baud rate table that converts termios baud rate selector
628 * into the actual baud rate value. All baud rate calculations are based
629 * on the actual baud rate required.
630 */
631 static unsigned int stli_baudrates[] = {
632 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
633 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
634 };
635
636 /*****************************************************************************/
637
638 /*
639 * Define some handy local macros...
640 */
641 #undef MIN
642 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
643
644 #undef TOLOWER
645 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
646
647 /*****************************************************************************/
648
649 /*
650 * Prototype all functions in this driver!
651 */
652
653 #ifdef MODULE
654 static void stli_argbrds(void);
655 static int stli_parsebrd(stlconf_t *confp, char **argp);
656
657 static unsigned long stli_atol(char *str);
658 #endif
659
660 int stli_init(void);
661 static int stli_open(struct tty_struct *tty, struct file *filp);
662 static void stli_close(struct tty_struct *tty, struct file *filp);
663 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
664 static void stli_putchar(struct tty_struct *tty, unsigned char ch);
665 static void stli_flushchars(struct tty_struct *tty);
666 static int stli_writeroom(struct tty_struct *tty);
667 static int stli_charsinbuffer(struct tty_struct *tty);
668 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
669 static void stli_settermios(struct tty_struct *tty, struct termios *old);
670 static void stli_throttle(struct tty_struct *tty);
671 static void stli_unthrottle(struct tty_struct *tty);
672 static void stli_stop(struct tty_struct *tty);
673 static void stli_start(struct tty_struct *tty);
674 static void stli_flushbuffer(struct tty_struct *tty);
675 static void stli_breakctl(struct tty_struct *tty, int state);
676 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
677 static void stli_sendxchar(struct tty_struct *tty, char ch);
678 static void stli_hangup(struct tty_struct *tty);
679 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
680
681 static int stli_brdinit(stlibrd_t *brdp);
682 static int stli_startbrd(stlibrd_t *brdp);
683 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
684 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
685 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
686 static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
687 static void stli_poll(unsigned long arg);
688 static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
689 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
690 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
691 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
692 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
693 static void stli_dohangup(void *arg);
694 static int stli_setport(stliport_t *portp);
695 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
696 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
697 static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
698 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
699 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
700 static long stli_mktiocm(unsigned long sigvalue);
701 static void stli_read(stlibrd_t *brdp, stliport_t *portp);
702 static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
703 static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
704 static int stli_getbrdstats(combrd_t __user *bp);
705 static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
706 static int stli_portcmdstats(stliport_t *portp);
707 static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
708 static int stli_getportstruct(stliport_t __user *arg);
709 static int stli_getbrdstruct(stlibrd_t __user *arg);
710 static void *stli_memalloc(int len);
711 static stlibrd_t *stli_allocbrd(void);
712
713 static void stli_ecpinit(stlibrd_t *brdp);
714 static void stli_ecpenable(stlibrd_t *brdp);
715 static void stli_ecpdisable(stlibrd_t *brdp);
716 static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
717 static void stli_ecpreset(stlibrd_t *brdp);
718 static void stli_ecpintr(stlibrd_t *brdp);
719 static void stli_ecpeiinit(stlibrd_t *brdp);
720 static void stli_ecpeienable(stlibrd_t *brdp);
721 static void stli_ecpeidisable(stlibrd_t *brdp);
722 static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
723 static void stli_ecpeireset(stlibrd_t *brdp);
724 static void stli_ecpmcenable(stlibrd_t *brdp);
725 static void stli_ecpmcdisable(stlibrd_t *brdp);
726 static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
727 static void stli_ecpmcreset(stlibrd_t *brdp);
728 static void stli_ecppciinit(stlibrd_t *brdp);
729 static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
730 static void stli_ecppcireset(stlibrd_t *brdp);
731
732 static void stli_onbinit(stlibrd_t *brdp);
733 static void stli_onbenable(stlibrd_t *brdp);
734 static void stli_onbdisable(stlibrd_t *brdp);
735 static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
736 static void stli_onbreset(stlibrd_t *brdp);
737 static void stli_onbeinit(stlibrd_t *brdp);
738 static void stli_onbeenable(stlibrd_t *brdp);
739 static void stli_onbedisable(stlibrd_t *brdp);
740 static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
741 static void stli_onbereset(stlibrd_t *brdp);
742 static void stli_bbyinit(stlibrd_t *brdp);
743 static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
744 static void stli_bbyreset(stlibrd_t *brdp);
745 static void stli_stalinit(stlibrd_t *brdp);
746 static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
747 static void stli_stalreset(stlibrd_t *brdp);
748
749 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
750
751 static int stli_initecp(stlibrd_t *brdp);
752 static int stli_initonb(stlibrd_t *brdp);
753 static int stli_eisamemprobe(stlibrd_t *brdp);
754 static int stli_initports(stlibrd_t *brdp);
755
756 #ifdef CONFIG_PCI
757 static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
758 #endif
759
760 /*****************************************************************************/
761
762 /*
763 * Define the driver info for a user level shared memory device. This
764 * device will work sort of like the /dev/kmem device - except that it
765 * will give access to the shared memory on the Stallion intelligent
766 * board. This is also a very useful debugging tool.
767 */
768 static struct file_operations stli_fsiomem = {
769 .owner = THIS_MODULE,
770 .read = stli_memread,
771 .write = stli_memwrite,
772 .ioctl = stli_memioctl,
773 };
774
775 /*****************************************************************************/
776
777 /*
778 * Define a timer_list entry for our poll routine. The slave board
779 * is polled every so often to see if anything needs doing. This is
780 * much cheaper on host cpu than using interrupts. It turns out to
781 * not increase character latency by much either...
782 */
783 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
784
785 static int stli_timeron;
786
787 /*
788 * Define the calculation for the timeout routine.
789 */
790 #define STLI_TIMEOUT (jiffies + 1)
791
792 /*****************************************************************************/
793
794 static struct class *istallion_class;
795
796 #ifdef MODULE
797
798 /*
799 * Loadable module initialization stuff.
800 */
801
802 static int __init istallion_module_init(void)
803 {
804 unsigned long flags;
805
806 #ifdef DEBUG
807 printk("init_module()\n");
808 #endif
809
810 save_flags(flags);
811 cli();
812 stli_init();
813 restore_flags(flags);
814
815 return(0);
816 }
817
818 /*****************************************************************************/
819
820 static void __exit istallion_module_exit(void)
821 {
822 stlibrd_t *brdp;
823 stliport_t *portp;
824 unsigned long flags;
825 int i, j;
826
827 #ifdef DEBUG
828 printk("cleanup_module()\n");
829 #endif
830
831 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
832 stli_drvversion);
833
834 save_flags(flags);
835 cli();
836
837 /*
838 * Free up all allocated resources used by the ports. This includes
839 * memory and interrupts.
840 */
841 if (stli_timeron) {
842 stli_timeron = 0;
843 del_timer(&stli_timerlist);
844 }
845
846 i = tty_unregister_driver(stli_serial);
847 if (i) {
848 printk("STALLION: failed to un-register tty driver, "
849 "errno=%d\n", -i);
850 restore_flags(flags);
851 return;
852 }
853 put_tty_driver(stli_serial);
854 for (i = 0; i < 4; i++) {
855 devfs_remove("staliomem/%d", i);
856 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
857 }
858 devfs_remove("staliomem");
859 class_destroy(istallion_class);
860 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
861 printk("STALLION: failed to un-register serial memory device, "
862 "errno=%d\n", -i);
863
864 kfree(stli_tmpwritebuf);
865 kfree(stli_txcookbuf);
866
867 for (i = 0; (i < stli_nrbrds); i++) {
868 if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
869 continue;
870 for (j = 0; (j < STL_MAXPORTS); j++) {
871 portp = brdp->ports[j];
872 if (portp != (stliport_t *) NULL) {
873 if (portp->tty != (struct tty_struct *) NULL)
874 tty_hangup(portp->tty);
875 kfree(portp);
876 }
877 }
878
879 iounmap(brdp->membase);
880 if (brdp->iosize > 0)
881 release_region(brdp->iobase, brdp->iosize);
882 kfree(brdp);
883 stli_brds[i] = (stlibrd_t *) NULL;
884 }
885
886 restore_flags(flags);
887 }
888
889 module_init(istallion_module_init);
890 module_exit(istallion_module_exit);
891
892 /*****************************************************************************/
893
894 /*
895 * Check for any arguments passed in on the module load command line.
896 */
897
898 static void stli_argbrds(void)
899 {
900 stlconf_t conf;
901 stlibrd_t *brdp;
902 int i;
903
904 #ifdef DEBUG
905 printk("stli_argbrds()\n");
906 #endif
907
908 for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
909 memset(&conf, 0, sizeof(conf));
910 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
911 continue;
912 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
913 continue;
914 stli_nrbrds = i + 1;
915 brdp->brdnr = i;
916 brdp->brdtype = conf.brdtype;
917 brdp->iobase = conf.ioaddr1;
918 brdp->memaddr = conf.memaddr;
919 stli_brdinit(brdp);
920 }
921 }
922
923 /*****************************************************************************/
924
925 /*
926 * Convert an ascii string number into an unsigned long.
927 */
928
929 static unsigned long stli_atol(char *str)
930 {
931 unsigned long val;
932 int base, c;
933 char *sp;
934
935 val = 0;
936 sp = str;
937 if ((*sp == '0') && (*(sp+1) == 'x')) {
938 base = 16;
939 sp += 2;
940 } else if (*sp == '0') {
941 base = 8;
942 sp++;
943 } else {
944 base = 10;
945 }
946
947 for (; (*sp != 0); sp++) {
948 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
949 if ((c < 0) || (c >= base)) {
950 printk("STALLION: invalid argument %s\n", str);
951 val = 0;
952 break;
953 }
954 val = (val * base) + c;
955 }
956 return(val);
957 }
958
959 /*****************************************************************************/
960
961 /*
962 * Parse the supplied argument string, into the board conf struct.
963 */
964
965 static int stli_parsebrd(stlconf_t *confp, char **argp)
966 {
967 char *sp;
968 int i;
969
970 #ifdef DEBUG
971 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
972 #endif
973
974 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
975 return(0);
976
977 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
978 *sp = TOLOWER(*sp);
979
980 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
981 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
982 break;
983 }
984 if (i == ARRAY_SIZE(stli_brdstr)) {
985 printk("STALLION: unknown board name, %s?\n", argp[0]);
986 return 0;
987 }
988
989 confp->brdtype = stli_brdstr[i].type;
990 if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
991 confp->ioaddr1 = stli_atol(argp[1]);
992 if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
993 confp->memaddr = stli_atol(argp[2]);
994 return(1);
995 }
996
997 #endif
998
999 /*****************************************************************************/
1000
1001 /*
1002 * Local driver kernel malloc routine.
1003 */
1004
1005 static void *stli_memalloc(int len)
1006 {
1007 return((void *) kmalloc(len, GFP_KERNEL));
1008 }
1009
1010 /*****************************************************************************/
1011
1012 static int stli_open(struct tty_struct *tty, struct file *filp)
1013 {
1014 stlibrd_t *brdp;
1015 stliport_t *portp;
1016 unsigned int minordev;
1017 int brdnr, portnr, rc;
1018
1019 #ifdef DEBUG
1020 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1021 (int) filp, tty->name);
1022 #endif
1023
1024 minordev = tty->index;
1025 brdnr = MINOR2BRD(minordev);
1026 if (brdnr >= stli_nrbrds)
1027 return(-ENODEV);
1028 brdp = stli_brds[brdnr];
1029 if (brdp == (stlibrd_t *) NULL)
1030 return(-ENODEV);
1031 if ((brdp->state & BST_STARTED) == 0)
1032 return(-ENODEV);
1033 portnr = MINOR2PORT(minordev);
1034 if ((portnr < 0) || (portnr > brdp->nrports))
1035 return(-ENODEV);
1036
1037 portp = brdp->ports[portnr];
1038 if (portp == (stliport_t *) NULL)
1039 return(-ENODEV);
1040 if (portp->devnr < 1)
1041 return(-ENODEV);
1042
1043
1044 /*
1045 * Check if this port is in the middle of closing. If so then wait
1046 * until it is closed then return error status based on flag settings.
1047 * The sleep here does not need interrupt protection since the wakeup
1048 * for it is done with the same context.
1049 */
1050 if (portp->flags & ASYNC_CLOSING) {
1051 interruptible_sleep_on(&portp->close_wait);
1052 if (portp->flags & ASYNC_HUP_NOTIFY)
1053 return(-EAGAIN);
1054 return(-ERESTARTSYS);
1055 }
1056
1057 /*
1058 * On the first open of the device setup the port hardware, and
1059 * initialize the per port data structure. Since initializing the port
1060 * requires several commands to the board we will need to wait for any
1061 * other open that is already initializing the port.
1062 */
1063 portp->tty = tty;
1064 tty->driver_data = portp;
1065 portp->refcount++;
1066
1067 wait_event_interruptible(portp->raw_wait,
1068 !test_bit(ST_INITIALIZING, &portp->state));
1069 if (signal_pending(current))
1070 return(-ERESTARTSYS);
1071
1072 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1073 set_bit(ST_INITIALIZING, &portp->state);
1074 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1075 portp->flags |= ASYNC_INITIALIZED;
1076 clear_bit(TTY_IO_ERROR, &tty->flags);
1077 }
1078 clear_bit(ST_INITIALIZING, &portp->state);
1079 wake_up_interruptible(&portp->raw_wait);
1080 if (rc < 0)
1081 return(rc);
1082 }
1083
1084 /*
1085 * Check if this port is in the middle of closing. If so then wait
1086 * until it is closed then return error status, based on flag settings.
1087 * The sleep here does not need interrupt protection since the wakeup
1088 * for it is done with the same context.
1089 */
1090 if (portp->flags & ASYNC_CLOSING) {
1091 interruptible_sleep_on(&portp->close_wait);
1092 if (portp->flags & ASYNC_HUP_NOTIFY)
1093 return(-EAGAIN);
1094 return(-ERESTARTSYS);
1095 }
1096
1097 /*
1098 * Based on type of open being done check if it can overlap with any
1099 * previous opens still in effect. If we are a normal serial device
1100 * then also we might have to wait for carrier.
1101 */
1102 if (!(filp->f_flags & O_NONBLOCK)) {
1103 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1104 return(rc);
1105 }
1106 portp->flags |= ASYNC_NORMAL_ACTIVE;
1107 return(0);
1108 }
1109
1110 /*****************************************************************************/
1111
1112 static void stli_close(struct tty_struct *tty, struct file *filp)
1113 {
1114 stlibrd_t *brdp;
1115 stliport_t *portp;
1116 unsigned long flags;
1117
1118 #ifdef DEBUG
1119 printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1120 #endif
1121
1122 portp = tty->driver_data;
1123 if (portp == (stliport_t *) NULL)
1124 return;
1125
1126 save_flags(flags);
1127 cli();
1128 if (tty_hung_up_p(filp)) {
1129 restore_flags(flags);
1130 return;
1131 }
1132 if ((tty->count == 1) && (portp->refcount != 1))
1133 portp->refcount = 1;
1134 if (portp->refcount-- > 1) {
1135 restore_flags(flags);
1136 return;
1137 }
1138
1139 portp->flags |= ASYNC_CLOSING;
1140
1141 /*
1142 * May want to wait for data to drain before closing. The BUSY flag
1143 * keeps track of whether we are still transmitting or not. It is
1144 * updated by messages from the slave - indicating when all chars
1145 * really have drained.
1146 */
1147 if (tty == stli_txcooktty)
1148 stli_flushchars(tty);
1149 tty->closing = 1;
1150 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1151 tty_wait_until_sent(tty, portp->closing_wait);
1152
1153 portp->flags &= ~ASYNC_INITIALIZED;
1154 brdp = stli_brds[portp->brdnr];
1155 stli_rawclose(brdp, portp, 0, 0);
1156 if (tty->termios->c_cflag & HUPCL) {
1157 stli_mkasysigs(&portp->asig, 0, 0);
1158 if (test_bit(ST_CMDING, &portp->state))
1159 set_bit(ST_DOSIGS, &portp->state);
1160 else
1161 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1162 sizeof(asysigs_t), 0);
1163 }
1164 clear_bit(ST_TXBUSY, &portp->state);
1165 clear_bit(ST_RXSTOP, &portp->state);
1166 set_bit(TTY_IO_ERROR, &tty->flags);
1167 if (tty->ldisc.flush_buffer)
1168 (tty->ldisc.flush_buffer)(tty);
1169 set_bit(ST_DOFLUSHRX, &portp->state);
1170 stli_flushbuffer(tty);
1171
1172 tty->closing = 0;
1173 portp->tty = (struct tty_struct *) NULL;
1174
1175 if (portp->openwaitcnt) {
1176 if (portp->close_delay)
1177 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1178 wake_up_interruptible(&portp->open_wait);
1179 }
1180
1181 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1182 wake_up_interruptible(&portp->close_wait);
1183 restore_flags(flags);
1184 }
1185
1186 /*****************************************************************************/
1187
1188 /*
1189 * Carry out first open operations on a port. This involves a number of
1190 * commands to be sent to the slave. We need to open the port, set the
1191 * notification events, set the initial port settings, get and set the
1192 * initial signal values. We sleep and wait in between each one. But
1193 * this still all happens pretty quickly.
1194 */
1195
1196 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1197 {
1198 struct tty_struct *tty;
1199 asynotify_t nt;
1200 asyport_t aport;
1201 int rc;
1202
1203 #ifdef DEBUG
1204 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1205 #endif
1206
1207 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1208 return(rc);
1209
1210 memset(&nt, 0, sizeof(asynotify_t));
1211 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1212 nt.signal = SG_DCD;
1213 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1214 sizeof(asynotify_t), 0)) < 0)
1215 return(rc);
1216
1217 tty = portp->tty;
1218 if (tty == (struct tty_struct *) NULL)
1219 return(-ENODEV);
1220 stli_mkasyport(portp, &aport, tty->termios);
1221 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1222 sizeof(asyport_t), 0)) < 0)
1223 return(rc);
1224
1225 set_bit(ST_GETSIGS, &portp->state);
1226 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1227 sizeof(asysigs_t), 1)) < 0)
1228 return(rc);
1229 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1230 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1231 stli_mkasysigs(&portp->asig, 1, 1);
1232 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1233 sizeof(asysigs_t), 0)) < 0)
1234 return(rc);
1235
1236 return(0);
1237 }
1238
1239 /*****************************************************************************/
1240
1241 /*
1242 * Send an open message to the slave. This will sleep waiting for the
1243 * acknowledgement, so must have user context. We need to co-ordinate
1244 * with close events here, since we don't want open and close events
1245 * to overlap.
1246 */
1247
1248 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1249 {
1250 volatile cdkhdr_t *hdrp;
1251 volatile cdkctrl_t *cp;
1252 volatile unsigned char *bits;
1253 unsigned long flags;
1254 int rc;
1255
1256 #ifdef DEBUG
1257 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1258 (int) brdp, (int) portp, (int) arg, wait);
1259 #endif
1260
1261 /*
1262 * Send a message to the slave to open this port.
1263 */
1264 save_flags(flags);
1265 cli();
1266
1267 /*
1268 * Slave is already closing this port. This can happen if a hangup
1269 * occurs on this port. So we must wait until it is complete. The
1270 * order of opens and closes may not be preserved across shared
1271 * memory, so we must wait until it is complete.
1272 */
1273 wait_event_interruptible(portp->raw_wait,
1274 !test_bit(ST_CLOSING, &portp->state));
1275 if (signal_pending(current)) {
1276 restore_flags(flags);
1277 return -ERESTARTSYS;
1278 }
1279
1280 /*
1281 * Everything is ready now, so write the open message into shared
1282 * memory. Once the message is in set the service bits to say that
1283 * this port wants service.
1284 */
1285 EBRDENABLE(brdp);
1286 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1287 cp->openarg = arg;
1288 cp->open = 1;
1289 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1290 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1291 portp->portidx;
1292 *bits |= portp->portbit;
1293 EBRDDISABLE(brdp);
1294
1295 if (wait == 0) {
1296 restore_flags(flags);
1297 return(0);
1298 }
1299
1300 /*
1301 * Slave is in action, so now we must wait for the open acknowledgment
1302 * to come back.
1303 */
1304 rc = 0;
1305 set_bit(ST_OPENING, &portp->state);
1306 wait_event_interruptible(portp->raw_wait,
1307 !test_bit(ST_OPENING, &portp->state));
1308 if (signal_pending(current))
1309 rc = -ERESTARTSYS;
1310 restore_flags(flags);
1311
1312 if ((rc == 0) && (portp->rc != 0))
1313 rc = -EIO;
1314 return(rc);
1315 }
1316
1317 /*****************************************************************************/
1318
1319 /*
1320 * Send a close message to the slave. Normally this will sleep waiting
1321 * for the acknowledgement, but if wait parameter is 0 it will not. If
1322 * wait is true then must have user context (to sleep).
1323 */
1324
1325 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1326 {
1327 volatile cdkhdr_t *hdrp;
1328 volatile cdkctrl_t *cp;
1329 volatile unsigned char *bits;
1330 unsigned long flags;
1331 int rc;
1332
1333 #ifdef DEBUG
1334 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1335 (int) brdp, (int) portp, (int) arg, wait);
1336 #endif
1337
1338 save_flags(flags);
1339 cli();
1340
1341 /*
1342 * Slave is already closing this port. This can happen if a hangup
1343 * occurs on this port.
1344 */
1345 if (wait) {
1346 wait_event_interruptible(portp->raw_wait,
1347 !test_bit(ST_CLOSING, &portp->state));
1348 if (signal_pending(current)) {
1349 restore_flags(flags);
1350 return -ERESTARTSYS;
1351 }
1352 }
1353
1354 /*
1355 * Write the close command into shared memory.
1356 */
1357 EBRDENABLE(brdp);
1358 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1359 cp->closearg = arg;
1360 cp->close = 1;
1361 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1362 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1363 portp->portidx;
1364 *bits |= portp->portbit;
1365 EBRDDISABLE(brdp);
1366
1367 set_bit(ST_CLOSING, &portp->state);
1368 if (wait == 0) {
1369 restore_flags(flags);
1370 return(0);
1371 }
1372
1373 /*
1374 * Slave is in action, so now we must wait for the open acknowledgment
1375 * to come back.
1376 */
1377 rc = 0;
1378 wait_event_interruptible(portp->raw_wait,
1379 !test_bit(ST_CLOSING, &portp->state));
1380 if (signal_pending(current))
1381 rc = -ERESTARTSYS;
1382 restore_flags(flags);
1383
1384 if ((rc == 0) && (portp->rc != 0))
1385 rc = -EIO;
1386 return(rc);
1387 }
1388
1389 /*****************************************************************************/
1390
1391 /*
1392 * Send a command to the slave and wait for the response. This must
1393 * have user context (it sleeps). This routine is generic in that it
1394 * can send any type of command. Its purpose is to wait for that command
1395 * to complete (as opposed to initiating the command then returning).
1396 */
1397
1398 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1399 {
1400 unsigned long flags;
1401
1402 #ifdef DEBUG
1403 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1404 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1405 (int) arg, size, copyback);
1406 #endif
1407
1408 save_flags(flags);
1409 cli();
1410 wait_event_interruptible(portp->raw_wait,
1411 !test_bit(ST_CMDING, &portp->state));
1412 if (signal_pending(current)) {
1413 restore_flags(flags);
1414 return -ERESTARTSYS;
1415 }
1416
1417 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1418
1419 wait_event_interruptible(portp->raw_wait,
1420 !test_bit(ST_CMDING, &portp->state));
1421 if (signal_pending(current)) {
1422 restore_flags(flags);
1423 return -ERESTARTSYS;
1424 }
1425 restore_flags(flags);
1426
1427 if (portp->rc != 0)
1428 return(-EIO);
1429 return(0);
1430 }
1431
1432 /*****************************************************************************/
1433
1434 /*
1435 * Send the termios settings for this port to the slave. This sleeps
1436 * waiting for the command to complete - so must have user context.
1437 */
1438
1439 static int stli_setport(stliport_t *portp)
1440 {
1441 stlibrd_t *brdp;
1442 asyport_t aport;
1443
1444 #ifdef DEBUG
1445 printk("stli_setport(portp=%x)\n", (int) portp);
1446 #endif
1447
1448 if (portp == (stliport_t *) NULL)
1449 return(-ENODEV);
1450 if (portp->tty == (struct tty_struct *) NULL)
1451 return(-ENODEV);
1452 if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1453 return(-ENODEV);
1454 brdp = stli_brds[portp->brdnr];
1455 if (brdp == (stlibrd_t *) NULL)
1456 return(-ENODEV);
1457
1458 stli_mkasyport(portp, &aport, portp->tty->termios);
1459 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1460 }
1461
1462 /*****************************************************************************/
1463
1464 /*
1465 * Possibly need to wait for carrier (DCD signal) to come high. Say
1466 * maybe because if we are clocal then we don't need to wait...
1467 */
1468
1469 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1470 {
1471 unsigned long flags;
1472 int rc, doclocal;
1473
1474 #ifdef DEBUG
1475 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1476 (int) brdp, (int) portp, (int) filp);
1477 #endif
1478
1479 rc = 0;
1480 doclocal = 0;
1481
1482 if (portp->tty->termios->c_cflag & CLOCAL)
1483 doclocal++;
1484
1485 save_flags(flags);
1486 cli();
1487 portp->openwaitcnt++;
1488 if (! tty_hung_up_p(filp))
1489 portp->refcount--;
1490
1491 for (;;) {
1492 stli_mkasysigs(&portp->asig, 1, 1);
1493 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1494 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1495 break;
1496 if (tty_hung_up_p(filp) ||
1497 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1498 if (portp->flags & ASYNC_HUP_NOTIFY)
1499 rc = -EBUSY;
1500 else
1501 rc = -ERESTARTSYS;
1502 break;
1503 }
1504 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1505 (doclocal || (portp->sigs & TIOCM_CD))) {
1506 break;
1507 }
1508 if (signal_pending(current)) {
1509 rc = -ERESTARTSYS;
1510 break;
1511 }
1512 interruptible_sleep_on(&portp->open_wait);
1513 }
1514
1515 if (! tty_hung_up_p(filp))
1516 portp->refcount++;
1517 portp->openwaitcnt--;
1518 restore_flags(flags);
1519
1520 return(rc);
1521 }
1522
1523 /*****************************************************************************/
1524
1525 /*
1526 * Write routine. Take the data and put it in the shared memory ring
1527 * queue. If port is not already sending chars then need to mark the
1528 * service bits for this port.
1529 */
1530
1531 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1532 {
1533 volatile cdkasy_t *ap;
1534 volatile cdkhdr_t *hdrp;
1535 volatile unsigned char *bits;
1536 unsigned char *shbuf, *chbuf;
1537 stliport_t *portp;
1538 stlibrd_t *brdp;
1539 unsigned int len, stlen, head, tail, size;
1540 unsigned long flags;
1541
1542 #ifdef DEBUG
1543 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1544 (int) tty, (int) buf, count);
1545 #endif
1546
1547 if ((tty == (struct tty_struct *) NULL) ||
1548 (stli_tmpwritebuf == (char *) NULL))
1549 return(0);
1550 if (tty == stli_txcooktty)
1551 stli_flushchars(tty);
1552 portp = tty->driver_data;
1553 if (portp == (stliport_t *) NULL)
1554 return(0);
1555 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1556 return(0);
1557 brdp = stli_brds[portp->brdnr];
1558 if (brdp == (stlibrd_t *) NULL)
1559 return(0);
1560 chbuf = (unsigned char *) buf;
1561
1562 /*
1563 * All data is now local, shove as much as possible into shared memory.
1564 */
1565 save_flags(flags);
1566 cli();
1567 EBRDENABLE(brdp);
1568 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1569 head = (unsigned int) ap->txq.head;
1570 tail = (unsigned int) ap->txq.tail;
1571 if (tail != ((unsigned int) ap->txq.tail))
1572 tail = (unsigned int) ap->txq.tail;
1573 size = portp->txsize;
1574 if (head >= tail) {
1575 len = size - (head - tail) - 1;
1576 stlen = size - head;
1577 } else {
1578 len = tail - head - 1;
1579 stlen = len;
1580 }
1581
1582 len = MIN(len, count);
1583 count = 0;
1584 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1585
1586 while (len > 0) {
1587 stlen = MIN(len, stlen);
1588 memcpy((shbuf + head), chbuf, stlen);
1589 chbuf += stlen;
1590 len -= stlen;
1591 count += stlen;
1592 head += stlen;
1593 if (head >= size) {
1594 head = 0;
1595 stlen = tail;
1596 }
1597 }
1598
1599 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1600 ap->txq.head = head;
1601 if (test_bit(ST_TXBUSY, &portp->state)) {
1602 if (ap->changed.data & DT_TXEMPTY)
1603 ap->changed.data &= ~DT_TXEMPTY;
1604 }
1605 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1606 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1607 portp->portidx;
1608 *bits |= portp->portbit;
1609 set_bit(ST_TXBUSY, &portp->state);
1610 EBRDDISABLE(brdp);
1611
1612 restore_flags(flags);
1613
1614 return(count);
1615 }
1616
1617 /*****************************************************************************/
1618
1619 /*
1620 * Output a single character. We put it into a temporary local buffer
1621 * (for speed) then write out that buffer when the flushchars routine
1622 * is called. There is a safety catch here so that if some other port
1623 * writes chars before the current buffer has been, then we write them
1624 * first them do the new ports.
1625 */
1626
1627 static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1628 {
1629 #ifdef DEBUG
1630 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1631 #endif
1632
1633 if (tty == (struct tty_struct *) NULL)
1634 return;
1635 if (tty != stli_txcooktty) {
1636 if (stli_txcooktty != (struct tty_struct *) NULL)
1637 stli_flushchars(stli_txcooktty);
1638 stli_txcooktty = tty;
1639 }
1640
1641 stli_txcookbuf[stli_txcooksize++] = ch;
1642 }
1643
1644 /*****************************************************************************/
1645
1646 /*
1647 * Transfer characters from the local TX cooking buffer to the board.
1648 * We sort of ignore the tty that gets passed in here. We rely on the
1649 * info stored with the TX cook buffer to tell us which port to flush
1650 * the data on. In any case we clean out the TX cook buffer, for re-use
1651 * by someone else.
1652 */
1653
1654 static void stli_flushchars(struct tty_struct *tty)
1655 {
1656 volatile cdkhdr_t *hdrp;
1657 volatile unsigned char *bits;
1658 volatile cdkasy_t *ap;
1659 struct tty_struct *cooktty;
1660 stliport_t *portp;
1661 stlibrd_t *brdp;
1662 unsigned int len, stlen, head, tail, size, count, cooksize;
1663 unsigned char *buf, *shbuf;
1664 unsigned long flags;
1665
1666 #ifdef DEBUG
1667 printk("stli_flushchars(tty=%x)\n", (int) tty);
1668 #endif
1669
1670 cooksize = stli_txcooksize;
1671 cooktty = stli_txcooktty;
1672 stli_txcooksize = 0;
1673 stli_txcookrealsize = 0;
1674 stli_txcooktty = (struct tty_struct *) NULL;
1675
1676 if (tty == (struct tty_struct *) NULL)
1677 return;
1678 if (cooktty == (struct tty_struct *) NULL)
1679 return;
1680 if (tty != cooktty)
1681 tty = cooktty;
1682 if (cooksize == 0)
1683 return;
1684
1685 portp = tty->driver_data;
1686 if (portp == (stliport_t *) NULL)
1687 return;
1688 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1689 return;
1690 brdp = stli_brds[portp->brdnr];
1691 if (brdp == (stlibrd_t *) NULL)
1692 return;
1693
1694 save_flags(flags);
1695 cli();
1696 EBRDENABLE(brdp);
1697
1698 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1699 head = (unsigned int) ap->txq.head;
1700 tail = (unsigned int) ap->txq.tail;
1701 if (tail != ((unsigned int) ap->txq.tail))
1702 tail = (unsigned int) ap->txq.tail;
1703 size = portp->txsize;
1704 if (head >= tail) {
1705 len = size - (head - tail) - 1;
1706 stlen = size - head;
1707 } else {
1708 len = tail - head - 1;
1709 stlen = len;
1710 }
1711
1712 len = MIN(len, cooksize);
1713 count = 0;
1714 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1715 buf = stli_txcookbuf;
1716
1717 while (len > 0) {
1718 stlen = MIN(len, stlen);
1719 memcpy((shbuf + head), buf, stlen);
1720 buf += stlen;
1721 len -= stlen;
1722 count += stlen;
1723 head += stlen;
1724 if (head >= size) {
1725 head = 0;
1726 stlen = tail;
1727 }
1728 }
1729
1730 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1731 ap->txq.head = head;
1732
1733 if (test_bit(ST_TXBUSY, &portp->state)) {
1734 if (ap->changed.data & DT_TXEMPTY)
1735 ap->changed.data &= ~DT_TXEMPTY;
1736 }
1737 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1738 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1739 portp->portidx;
1740 *bits |= portp->portbit;
1741 set_bit(ST_TXBUSY, &portp->state);
1742
1743 EBRDDISABLE(brdp);
1744 restore_flags(flags);
1745 }
1746
1747 /*****************************************************************************/
1748
1749 static int stli_writeroom(struct tty_struct *tty)
1750 {
1751 volatile cdkasyrq_t *rp;
1752 stliport_t *portp;
1753 stlibrd_t *brdp;
1754 unsigned int head, tail, len;
1755 unsigned long flags;
1756
1757 #ifdef DEBUG
1758 printk("stli_writeroom(tty=%x)\n", (int) tty);
1759 #endif
1760
1761 if (tty == (struct tty_struct *) NULL)
1762 return(0);
1763 if (tty == stli_txcooktty) {
1764 if (stli_txcookrealsize != 0) {
1765 len = stli_txcookrealsize - stli_txcooksize;
1766 return(len);
1767 }
1768 }
1769
1770 portp = tty->driver_data;
1771 if (portp == (stliport_t *) NULL)
1772 return(0);
1773 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1774 return(0);
1775 brdp = stli_brds[portp->brdnr];
1776 if (brdp == (stlibrd_t *) NULL)
1777 return(0);
1778
1779 save_flags(flags);
1780 cli();
1781 EBRDENABLE(brdp);
1782 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1783 head = (unsigned int) rp->head;
1784 tail = (unsigned int) rp->tail;
1785 if (tail != ((unsigned int) rp->tail))
1786 tail = (unsigned int) rp->tail;
1787 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1788 len--;
1789 EBRDDISABLE(brdp);
1790 restore_flags(flags);
1791
1792 if (tty == stli_txcooktty) {
1793 stli_txcookrealsize = len;
1794 len -= stli_txcooksize;
1795 }
1796 return(len);
1797 }
1798
1799 /*****************************************************************************/
1800
1801 /*
1802 * Return the number of characters in the transmit buffer. Normally we
1803 * will return the number of chars in the shared memory ring queue.
1804 * We need to kludge around the case where the shared memory buffer is
1805 * empty but not all characters have drained yet, for this case just
1806 * return that there is 1 character in the buffer!
1807 */
1808
1809 static int stli_charsinbuffer(struct tty_struct *tty)
1810 {
1811 volatile cdkasyrq_t *rp;
1812 stliport_t *portp;
1813 stlibrd_t *brdp;
1814 unsigned int head, tail, len;
1815 unsigned long flags;
1816
1817 #ifdef DEBUG
1818 printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1819 #endif
1820
1821 if (tty == (struct tty_struct *) NULL)
1822 return(0);
1823 if (tty == stli_txcooktty)
1824 stli_flushchars(tty);
1825 portp = tty->driver_data;
1826 if (portp == (stliport_t *) NULL)
1827 return(0);
1828 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1829 return(0);
1830 brdp = stli_brds[portp->brdnr];
1831 if (brdp == (stlibrd_t *) NULL)
1832 return(0);
1833
1834 save_flags(flags);
1835 cli();
1836 EBRDENABLE(brdp);
1837 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1838 head = (unsigned int) rp->head;
1839 tail = (unsigned int) rp->tail;
1840 if (tail != ((unsigned int) rp->tail))
1841 tail = (unsigned int) rp->tail;
1842 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1843 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1844 len = 1;
1845 EBRDDISABLE(brdp);
1846 restore_flags(flags);
1847
1848 return(len);
1849 }
1850
1851 /*****************************************************************************/
1852
1853 /*
1854 * Generate the serial struct info.
1855 */
1856
1857 static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1858 {
1859 struct serial_struct sio;
1860 stlibrd_t *brdp;
1861
1862 #ifdef DEBUG
1863 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1864 #endif
1865
1866 memset(&sio, 0, sizeof(struct serial_struct));
1867 sio.type = PORT_UNKNOWN;
1868 sio.line = portp->portnr;
1869 sio.irq = 0;
1870 sio.flags = portp->flags;
1871 sio.baud_base = portp->baud_base;
1872 sio.close_delay = portp->close_delay;
1873 sio.closing_wait = portp->closing_wait;
1874 sio.custom_divisor = portp->custom_divisor;
1875 sio.xmit_fifo_size = 0;
1876 sio.hub6 = 0;
1877
1878 brdp = stli_brds[portp->brdnr];
1879 if (brdp != (stlibrd_t *) NULL)
1880 sio.port = brdp->iobase;
1881
1882 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1883 -EFAULT : 0;
1884 }
1885
1886 /*****************************************************************************/
1887
1888 /*
1889 * Set port according to the serial struct info.
1890 * At this point we do not do any auto-configure stuff, so we will
1891 * just quietly ignore any requests to change irq, etc.
1892 */
1893
1894 static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1895 {
1896 struct serial_struct sio;
1897 int rc;
1898
1899 #ifdef DEBUG
1900 printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1901 #endif
1902
1903 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1904 return -EFAULT;
1905 if (!capable(CAP_SYS_ADMIN)) {
1906 if ((sio.baud_base != portp->baud_base) ||
1907 (sio.close_delay != portp->close_delay) ||
1908 ((sio.flags & ~ASYNC_USR_MASK) !=
1909 (portp->flags & ~ASYNC_USR_MASK)))
1910 return(-EPERM);
1911 }
1912
1913 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1914 (sio.flags & ASYNC_USR_MASK);
1915 portp->baud_base = sio.baud_base;
1916 portp->close_delay = sio.close_delay;
1917 portp->closing_wait = sio.closing_wait;
1918 portp->custom_divisor = sio.custom_divisor;
1919
1920 if ((rc = stli_setport(portp)) < 0)
1921 return(rc);
1922 return(0);
1923 }
1924
1925 /*****************************************************************************/
1926
1927 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1928 {
1929 stliport_t *portp = tty->driver_data;
1930 stlibrd_t *brdp;
1931 int rc;
1932
1933 if (portp == (stliport_t *) NULL)
1934 return(-ENODEV);
1935 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1936 return(0);
1937 brdp = stli_brds[portp->brdnr];
1938 if (brdp == (stlibrd_t *) NULL)
1939 return(0);
1940 if (tty->flags & (1 << TTY_IO_ERROR))
1941 return(-EIO);
1942
1943 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1944 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1945 return(rc);
1946
1947 return stli_mktiocm(portp->asig.sigvalue);
1948 }
1949
1950 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1951 unsigned int set, unsigned int clear)
1952 {
1953 stliport_t *portp = tty->driver_data;
1954 stlibrd_t *brdp;
1955 int rts = -1, dtr = -1;
1956
1957 if (portp == (stliport_t *) NULL)
1958 return(-ENODEV);
1959 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1960 return(0);
1961 brdp = stli_brds[portp->brdnr];
1962 if (brdp == (stlibrd_t *) NULL)
1963 return(0);
1964 if (tty->flags & (1 << TTY_IO_ERROR))
1965 return(-EIO);
1966
1967 if (set & TIOCM_RTS)
1968 rts = 1;
1969 if (set & TIOCM_DTR)
1970 dtr = 1;
1971 if (clear & TIOCM_RTS)
1972 rts = 0;
1973 if (clear & TIOCM_DTR)
1974 dtr = 0;
1975
1976 stli_mkasysigs(&portp->asig, dtr, rts);
1977
1978 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1979 sizeof(asysigs_t), 0);
1980 }
1981
1982 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1983 {
1984 stliport_t *portp;
1985 stlibrd_t *brdp;
1986 unsigned int ival;
1987 int rc;
1988 void __user *argp = (void __user *)arg;
1989
1990 #ifdef DEBUG
1991 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1992 (int) tty, (int) file, cmd, (int) arg);
1993 #endif
1994
1995 if (tty == (struct tty_struct *) NULL)
1996 return(-ENODEV);
1997 portp = tty->driver_data;
1998 if (portp == (stliport_t *) NULL)
1999 return(-ENODEV);
2000 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2001 return(0);
2002 brdp = stli_brds[portp->brdnr];
2003 if (brdp == (stlibrd_t *) NULL)
2004 return(0);
2005
2006 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
2007 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
2008 if (tty->flags & (1 << TTY_IO_ERROR))
2009 return(-EIO);
2010 }
2011
2012 rc = 0;
2013
2014 switch (cmd) {
2015 case TIOCGSOFTCAR:
2016 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2017 (unsigned __user *) arg);
2018 break;
2019 case TIOCSSOFTCAR:
2020 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2021 tty->termios->c_cflag =
2022 (tty->termios->c_cflag & ~CLOCAL) |
2023 (ival ? CLOCAL : 0);
2024 break;
2025 case TIOCGSERIAL:
2026 rc = stli_getserial(portp, argp);
2027 break;
2028 case TIOCSSERIAL:
2029 rc = stli_setserial(portp, argp);
2030 break;
2031 case STL_GETPFLAG:
2032 rc = put_user(portp->pflag, (unsigned __user *)argp);
2033 break;
2034 case STL_SETPFLAG:
2035 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2036 stli_setport(portp);
2037 break;
2038 case COM_GETPORTSTATS:
2039 rc = stli_getportstats(portp, argp);
2040 break;
2041 case COM_CLRPORTSTATS:
2042 rc = stli_clrportstats(portp, argp);
2043 break;
2044 case TIOCSERCONFIG:
2045 case TIOCSERGWILD:
2046 case TIOCSERSWILD:
2047 case TIOCSERGETLSR:
2048 case TIOCSERGSTRUCT:
2049 case TIOCSERGETMULTI:
2050 case TIOCSERSETMULTI:
2051 default:
2052 rc = -ENOIOCTLCMD;
2053 break;
2054 }
2055
2056 return(rc);
2057 }
2058
2059 /*****************************************************************************/
2060
2061 /*
2062 * This routine assumes that we have user context and can sleep.
2063 * Looks like it is true for the current ttys implementation..!!
2064 */
2065
2066 static void stli_settermios(struct tty_struct *tty, struct termios *old)
2067 {
2068 stliport_t *portp;
2069 stlibrd_t *brdp;
2070 struct termios *tiosp;
2071 asyport_t aport;
2072
2073 #ifdef DEBUG
2074 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2075 #endif
2076
2077 if (tty == (struct tty_struct *) NULL)
2078 return;
2079 portp = tty->driver_data;
2080 if (portp == (stliport_t *) NULL)
2081 return;
2082 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2083 return;
2084 brdp = stli_brds[portp->brdnr];
2085 if (brdp == (stlibrd_t *) NULL)
2086 return;
2087
2088 tiosp = tty->termios;
2089 if ((tiosp->c_cflag == old->c_cflag) &&
2090 (tiosp->c_iflag == old->c_iflag))
2091 return;
2092
2093 stli_mkasyport(portp, &aport, tiosp);
2094 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2095 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2096 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2097 sizeof(asysigs_t), 0);
2098 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2099 tty->hw_stopped = 0;
2100 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2101 wake_up_interruptible(&portp->open_wait);
2102 }
2103
2104 /*****************************************************************************/
2105
2106 /*
2107 * Attempt to flow control who ever is sending us data. We won't really
2108 * do any flow control action here. We can't directly, and even if we
2109 * wanted to we would have to send a command to the slave. The slave
2110 * knows how to flow control, and will do so when its buffers reach its
2111 * internal high water marks. So what we will do is set a local state
2112 * bit that will stop us sending any RX data up from the poll routine
2113 * (which is the place where RX data from the slave is handled).
2114 */
2115
2116 static void stli_throttle(struct tty_struct *tty)
2117 {
2118 stliport_t *portp;
2119
2120 #ifdef DEBUG
2121 printk("stli_throttle(tty=%x)\n", (int) tty);
2122 #endif
2123
2124 if (tty == (struct tty_struct *) NULL)
2125 return;
2126 portp = tty->driver_data;
2127 if (portp == (stliport_t *) NULL)
2128 return;
2129
2130 set_bit(ST_RXSTOP, &portp->state);
2131 }
2132
2133 /*****************************************************************************/
2134
2135 /*
2136 * Unflow control the device sending us data... That means that all
2137 * we have to do is clear the RXSTOP state bit. The next poll call
2138 * will then be able to pass the RX data back up.
2139 */
2140
2141 static void stli_unthrottle(struct tty_struct *tty)
2142 {
2143 stliport_t *portp;
2144
2145 #ifdef DEBUG
2146 printk("stli_unthrottle(tty=%x)\n", (int) tty);
2147 #endif
2148
2149 if (tty == (struct tty_struct *) NULL)
2150 return;
2151 portp = tty->driver_data;
2152 if (portp == (stliport_t *) NULL)
2153 return;
2154
2155 clear_bit(ST_RXSTOP, &portp->state);
2156 }
2157
2158 /*****************************************************************************/
2159
2160 /*
2161 * Stop the transmitter. Basically to do this we will just turn TX
2162 * interrupts off.
2163 */
2164
2165 static void stli_stop(struct tty_struct *tty)
2166 {
2167 stlibrd_t *brdp;
2168 stliport_t *portp;
2169 asyctrl_t actrl;
2170
2171 #ifdef DEBUG
2172 printk("stli_stop(tty=%x)\n", (int) tty);
2173 #endif
2174
2175 if (tty == (struct tty_struct *) NULL)
2176 return;
2177 portp = tty->driver_data;
2178 if (portp == (stliport_t *) NULL)
2179 return;
2180 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2181 return;
2182 brdp = stli_brds[portp->brdnr];
2183 if (brdp == (stlibrd_t *) NULL)
2184 return;
2185
2186 memset(&actrl, 0, sizeof(asyctrl_t));
2187 actrl.txctrl = CT_STOPFLOW;
2188 #if 0
2189 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2190 #endif
2191 }
2192
2193 /*****************************************************************************/
2194
2195 /*
2196 * Start the transmitter again. Just turn TX interrupts back on.
2197 */
2198
2199 static void stli_start(struct tty_struct *tty)
2200 {
2201 stliport_t *portp;
2202 stlibrd_t *brdp;
2203 asyctrl_t actrl;
2204
2205 #ifdef DEBUG
2206 printk("stli_start(tty=%x)\n", (int) tty);
2207 #endif
2208
2209 if (tty == (struct tty_struct *) NULL)
2210 return;
2211 portp = tty->driver_data;
2212 if (portp == (stliport_t *) NULL)
2213 return;
2214 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2215 return;
2216 brdp = stli_brds[portp->brdnr];
2217 if (brdp == (stlibrd_t *) NULL)
2218 return;
2219
2220 memset(&actrl, 0, sizeof(asyctrl_t));
2221 actrl.txctrl = CT_STARTFLOW;
2222 #if 0
2223 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2224 #endif
2225 }
2226
2227 /*****************************************************************************/
2228
2229 /*
2230 * Scheduler called hang up routine. This is called from the scheduler,
2231 * not direct from the driver "poll" routine. We can't call it there
2232 * since the real local hangup code will enable/disable the board and
2233 * other things that we can't do while handling the poll. Much easier
2234 * to deal with it some time later (don't really care when, hangups
2235 * aren't that time critical).
2236 */
2237
2238 static void stli_dohangup(void *arg)
2239 {
2240 stliport_t *portp;
2241
2242 #ifdef DEBUG
2243 printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2244 #endif
2245
2246 /*
2247 * FIXME: There's a module removal race here: tty_hangup
2248 * calls schedule_work which will call into this
2249 * driver later.
2250 */
2251 portp = (stliport_t *) arg;
2252 if (portp != (stliport_t *) NULL) {
2253 if (portp->tty != (struct tty_struct *) NULL) {
2254 tty_hangup(portp->tty);
2255 }
2256 }
2257 }
2258
2259 /*****************************************************************************/
2260
2261 /*
2262 * Hangup this port. This is pretty much like closing the port, only
2263 * a little more brutal. No waiting for data to drain. Shutdown the
2264 * port and maybe drop signals. This is rather tricky really. We want
2265 * to close the port as well.
2266 */
2267
2268 static void stli_hangup(struct tty_struct *tty)
2269 {
2270 stliport_t *portp;
2271 stlibrd_t *brdp;
2272 unsigned long flags;
2273
2274 #ifdef DEBUG
2275 printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2276 #endif
2277
2278 if (tty == (struct tty_struct *) NULL)
2279 return;
2280 portp = tty->driver_data;
2281 if (portp == (stliport_t *) NULL)
2282 return;
2283 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2284 return;
2285 brdp = stli_brds[portp->brdnr];
2286 if (brdp == (stlibrd_t *) NULL)
2287 return;
2288
2289 portp->flags &= ~ASYNC_INITIALIZED;
2290
2291 save_flags(flags);
2292 cli();
2293 if (! test_bit(ST_CLOSING, &portp->state))
2294 stli_rawclose(brdp, portp, 0, 0);
2295 if (tty->termios->c_cflag & HUPCL) {
2296 stli_mkasysigs(&portp->asig, 0, 0);
2297 if (test_bit(ST_CMDING, &portp->state)) {
2298 set_bit(ST_DOSIGS, &portp->state);
2299 set_bit(ST_DOFLUSHTX, &portp->state);
2300 set_bit(ST_DOFLUSHRX, &portp->state);
2301 } else {
2302 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2303 &portp->asig, sizeof(asysigs_t), 0);
2304 }
2305 }
2306 restore_flags(flags);
2307
2308 clear_bit(ST_TXBUSY, &portp->state);
2309 clear_bit(ST_RXSTOP, &portp->state);
2310 set_bit(TTY_IO_ERROR, &tty->flags);
2311 portp->tty = (struct tty_struct *) NULL;
2312 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2313 portp->refcount = 0;
2314 wake_up_interruptible(&portp->open_wait);
2315 }
2316
2317 /*****************************************************************************/
2318
2319 /*
2320 * Flush characters from the lower buffer. We may not have user context
2321 * so we cannot sleep waiting for it to complete. Also we need to check
2322 * if there is chars for this port in the TX cook buffer, and flush them
2323 * as well.
2324 */
2325
2326 static void stli_flushbuffer(struct tty_struct *tty)
2327 {
2328 stliport_t *portp;
2329 stlibrd_t *brdp;
2330 unsigned long ftype, flags;
2331
2332 #ifdef DEBUG
2333 printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2334 #endif
2335
2336 if (tty == (struct tty_struct *) NULL)
2337 return;
2338 portp = tty->driver_data;
2339 if (portp == (stliport_t *) NULL)
2340 return;
2341 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2342 return;
2343 brdp = stli_brds[portp->brdnr];
2344 if (brdp == (stlibrd_t *) NULL)
2345 return;
2346
2347 save_flags(flags);
2348 cli();
2349 if (tty == stli_txcooktty) {
2350 stli_txcooktty = (struct tty_struct *) NULL;
2351 stli_txcooksize = 0;
2352 stli_txcookrealsize = 0;
2353 }
2354 if (test_bit(ST_CMDING, &portp->state)) {
2355 set_bit(ST_DOFLUSHTX, &portp->state);
2356 } else {
2357 ftype = FLUSHTX;
2358 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2359 ftype |= FLUSHRX;
2360 clear_bit(ST_DOFLUSHRX, &portp->state);
2361 }
2362 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2363 sizeof(unsigned long), 0);
2364 }
2365 restore_flags(flags);
2366
2367 wake_up_interruptible(&tty->write_wait);
2368 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2369 tty->ldisc.write_wakeup)
2370 (tty->ldisc.write_wakeup)(tty);
2371 }
2372
2373 /*****************************************************************************/
2374
2375 static void stli_breakctl(struct tty_struct *tty, int state)
2376 {
2377 stlibrd_t *brdp;
2378 stliport_t *portp;
2379 long arg;
2380 /* long savestate, savetime; */
2381
2382 #ifdef DEBUG
2383 printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2384 #endif
2385
2386 if (tty == (struct tty_struct *) NULL)
2387 return;
2388 portp = tty->driver_data;
2389 if (portp == (stliport_t *) NULL)
2390 return;
2391 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2392 return;
2393 brdp = stli_brds[portp->brdnr];
2394 if (brdp == (stlibrd_t *) NULL)
2395 return;
2396
2397 /*
2398 * Due to a bug in the tty send_break() code we need to preserve
2399 * the current process state and timeout...
2400 savetime = current->timeout;
2401 savestate = current->state;
2402 */
2403
2404 arg = (state == -1) ? BREAKON : BREAKOFF;
2405 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2406
2407 /*
2408 *
2409 current->timeout = savetime;
2410 current->state = savestate;
2411 */
2412 }
2413
2414 /*****************************************************************************/
2415
2416 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2417 {
2418 stliport_t *portp;
2419 unsigned long tend;
2420
2421 #ifdef DEBUG
2422 printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2423 #endif
2424
2425 if (tty == (struct tty_struct *) NULL)
2426 return;
2427 portp = tty->driver_data;
2428 if (portp == (stliport_t *) NULL)
2429 return;
2430
2431 if (timeout == 0)
2432 timeout = HZ;
2433 tend = jiffies + timeout;
2434
2435 while (test_bit(ST_TXBUSY, &portp->state)) {
2436 if (signal_pending(current))
2437 break;
2438 msleep_interruptible(20);
2439 if (time_after_eq(jiffies, tend))
2440 break;
2441 }
2442 }
2443
2444 /*****************************************************************************/
2445
2446 static void stli_sendxchar(struct tty_struct *tty, char ch)
2447 {
2448 stlibrd_t *brdp;
2449 stliport_t *portp;
2450 asyctrl_t actrl;
2451
2452 #ifdef DEBUG
2453 printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2454 #endif
2455
2456 if (tty == (struct tty_struct *) NULL)
2457 return;
2458 portp = tty->driver_data;
2459 if (portp == (stliport_t *) NULL)
2460 return;
2461 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2462 return;
2463 brdp = stli_brds[portp->brdnr];
2464 if (brdp == (stlibrd_t *) NULL)
2465 return;
2466
2467 memset(&actrl, 0, sizeof(asyctrl_t));
2468 if (ch == STOP_CHAR(tty)) {
2469 actrl.rxctrl = CT_STOPFLOW;
2470 } else if (ch == START_CHAR(tty)) {
2471 actrl.rxctrl = CT_STARTFLOW;
2472 } else {
2473 actrl.txctrl = CT_SENDCHR;
2474 actrl.tximdch = ch;
2475 }
2476
2477 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2478 }
2479
2480 /*****************************************************************************/
2481
2482 #define MAXLINE 80
2483
2484 /*
2485 * Format info for a specified port. The line is deliberately limited
2486 * to 80 characters. (If it is too long it will be truncated, if too
2487 * short then padded with spaces).
2488 */
2489
2490 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2491 {
2492 char *sp, *uart;
2493 int rc, cnt;
2494
2495 rc = stli_portcmdstats(portp);
2496
2497 uart = "UNKNOWN";
2498 if (brdp->state & BST_STARTED) {
2499 switch (stli_comstats.hwid) {
2500 case 0: uart = "2681"; break;
2501 case 1: uart = "SC26198"; break;
2502 default: uart = "CD1400"; break;
2503 }
2504 }
2505
2506 sp = pos;
2507 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2508
2509 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2510 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2511 (int) stli_comstats.rxtotal);
2512
2513 if (stli_comstats.rxframing)
2514 sp += sprintf(sp, " fe:%d",
2515 (int) stli_comstats.rxframing);
2516 if (stli_comstats.rxparity)
2517 sp += sprintf(sp, " pe:%d",
2518 (int) stli_comstats.rxparity);
2519 if (stli_comstats.rxbreaks)
2520 sp += sprintf(sp, " brk:%d",
2521 (int) stli_comstats.rxbreaks);
2522 if (stli_comstats.rxoverrun)
2523 sp += sprintf(sp, " oe:%d",
2524 (int) stli_comstats.rxoverrun);
2525
2526 cnt = sprintf(sp, "%s%s%s%s%s ",
2527 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2528 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2529 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2530 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2531 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2532 *sp = ' ';
2533 sp += cnt;
2534 }
2535
2536 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2537 *sp++ = ' ';
2538 if (cnt >= MAXLINE)
2539 pos[(MAXLINE - 2)] = '+';
2540 pos[(MAXLINE - 1)] = '\n';
2541
2542 return(MAXLINE);
2543 }
2544
2545 /*****************************************************************************/
2546
2547 /*
2548 * Port info, read from the /proc file system.
2549 */
2550
2551 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2552 {
2553 stlibrd_t *brdp;
2554 stliport_t *portp;
2555 int brdnr, portnr, totalport;
2556 int curoff, maxoff;
2557 char *pos;
2558
2559 #ifdef DEBUG
2560 printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2561 "data=%x\n", (int) page, (int) start, (int) off, count,
2562 (int) eof, (int) data);
2563 #endif
2564
2565 pos = page;
2566 totalport = 0;
2567 curoff = 0;
2568
2569 if (off == 0) {
2570 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2571 stli_drvversion);
2572 while (pos < (page + MAXLINE - 1))
2573 *pos++ = ' ';
2574 *pos++ = '\n';
2575 }
2576 curoff = MAXLINE;
2577
2578 /*
2579 * We scan through for each board, panel and port. The offset is
2580 * calculated on the fly, and irrelevant ports are skipped.
2581 */
2582 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2583 brdp = stli_brds[brdnr];
2584 if (brdp == (stlibrd_t *) NULL)
2585 continue;
2586 if (brdp->state == 0)
2587 continue;
2588
2589 maxoff = curoff + (brdp->nrports * MAXLINE);
2590 if (off >= maxoff) {
2591 curoff = maxoff;
2592 continue;
2593 }
2594
2595 totalport = brdnr * STL_MAXPORTS;
2596 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2597 totalport++) {
2598 portp = brdp->ports[portnr];
2599 if (portp == (stliport_t *) NULL)
2600 continue;
2601 if (off >= (curoff += MAXLINE))
2602 continue;
2603 if ((pos - page + MAXLINE) > count)
2604 goto stli_readdone;
2605 pos += stli_portinfo(brdp, portp, totalport, pos);
2606 }
2607 }
2608
2609 *eof = 1;
2610
2611 stli_readdone:
2612 *start = page;
2613 return(pos - page);
2614 }
2615
2616 /*****************************************************************************/
2617
2618 /*
2619 * Generic send command routine. This will send a message to the slave,
2620 * of the specified type with the specified argument. Must be very
2621 * careful of data that will be copied out from shared memory -
2622 * containing command results. The command completion is all done from
2623 * a poll routine that does not have user context. Therefore you cannot
2624 * copy back directly into user space, or to the kernel stack of a
2625 * process. This routine does not sleep, so can be called from anywhere.
2626 */
2627
2628 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2629 {
2630 volatile cdkhdr_t *hdrp;
2631 volatile cdkctrl_t *cp;
2632 volatile unsigned char *bits;
2633 unsigned long flags;
2634
2635 #ifdef DEBUG
2636 printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2637 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2638 (int) arg, size, copyback);
2639 #endif
2640
2641 save_flags(flags);
2642 cli();
2643
2644 if (test_bit(ST_CMDING, &portp->state)) {
2645 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2646 (int) cmd);
2647 restore_flags(flags);
2648 return;
2649 }
2650
2651 EBRDENABLE(brdp);
2652 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2653 if (size > 0) {
2654 memcpy((void *) &(cp->args[0]), arg, size);
2655 if (copyback) {
2656 portp->argp = arg;
2657 portp->argsize = size;
2658 }
2659 }
2660 cp->status = 0;
2661 cp->cmd = cmd;
2662 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2663 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2664 portp->portidx;
2665 *bits |= portp->portbit;
2666 set_bit(ST_CMDING, &portp->state);
2667 EBRDDISABLE(brdp);
2668 restore_flags(flags);
2669 }
2670
2671 /*****************************************************************************/
2672
2673 /*
2674 * Read data from shared memory. This assumes that the shared memory
2675 * is enabled and that interrupts are off. Basically we just empty out
2676 * the shared memory buffer into the tty buffer. Must be careful to
2677 * handle the case where we fill up the tty buffer, but still have
2678 * more chars to unload.
2679 */
2680
2681 static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2682 {
2683 volatile cdkasyrq_t *rp;
2684 volatile char *shbuf;
2685 struct tty_struct *tty;
2686 unsigned int head, tail, size;
2687 unsigned int len, stlen;
2688
2689 #ifdef DEBUG
2690 printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2691 (int) brdp, (int) portp);
2692 #endif
2693
2694 if (test_bit(ST_RXSTOP, &portp->state))
2695 return;
2696 tty = portp->tty;
2697 if (tty == (struct tty_struct *) NULL)
2698 return;
2699
2700 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2701 head = (unsigned int) rp->head;
2702 if (head != ((unsigned int) rp->head))
2703 head = (unsigned int) rp->head;
2704 tail = (unsigned int) rp->tail;
2705 size = portp->rxsize;
2706 if (head >= tail) {
2707 len = head - tail;
2708 stlen = len;
2709 } else {
2710 len = size - (tail - head);
2711 stlen = size - tail;
2712 }
2713
2714 len = MIN(len, (TTY_FLIPBUF_SIZE - tty->flip.count));
2715 shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2716
2717 while (len > 0) {
2718 stlen = MIN(len, stlen);
2719 memcpy(tty->flip.char_buf_ptr, (char *) (shbuf + tail), stlen);
2720 memset(tty->flip.flag_buf_ptr, 0, stlen);
2721 tty->flip.char_buf_ptr += stlen;
2722 tty->flip.flag_buf_ptr += stlen;
2723 tty->flip.count += stlen;
2724
2725 len -= stlen;
2726 tail += stlen;
2727 if (tail >= size) {
2728 tail = 0;
2729 stlen = head;
2730 }
2731 }
2732 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2733 rp->tail = tail;
2734
2735 if (head != tail)
2736 set_bit(ST_RXING, &portp->state);
2737
2738 tty_schedule_flip(tty);
2739 }
2740
2741 /*****************************************************************************/
2742
2743 /*
2744 * Set up and carry out any delayed commands. There is only a small set
2745 * of slave commands that can be done "off-level". So it is not too
2746 * difficult to deal with them here.
2747 */
2748
2749 static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2750 {
2751 int cmd;
2752
2753 if (test_bit(ST_DOSIGS, &portp->state)) {
2754 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2755 test_bit(ST_DOFLUSHRX, &portp->state))
2756 cmd = A_SETSIGNALSF;
2757 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2758 cmd = A_SETSIGNALSFTX;
2759 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2760 cmd = A_SETSIGNALSFRX;
2761 else
2762 cmd = A_SETSIGNALS;
2763 clear_bit(ST_DOFLUSHTX, &portp->state);
2764 clear_bit(ST_DOFLUSHRX, &portp->state);
2765 clear_bit(ST_DOSIGS, &portp->state);
2766 memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2767 sizeof(asysigs_t));
2768 cp->status = 0;
2769 cp->cmd = cmd;
2770 set_bit(ST_CMDING, &portp->state);
2771 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2772 test_bit(ST_DOFLUSHRX, &portp->state)) {
2773 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2774 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2775 clear_bit(ST_DOFLUSHTX, &portp->state);
2776 clear_bit(ST_DOFLUSHRX, &portp->state);
2777 memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2778 cp->status = 0;
2779 cp->cmd = A_FLUSH;
2780 set_bit(ST_CMDING, &portp->state);
2781 }
2782 }
2783
2784 /*****************************************************************************/
2785
2786 /*
2787 * Host command service checking. This handles commands or messages
2788 * coming from the slave to the host. Must have board shared memory
2789 * enabled and interrupts off when called. Notice that by servicing the
2790 * read data last we don't need to change the shared memory pointer
2791 * during processing (which is a slow IO operation).
2792 * Return value indicates if this port is still awaiting actions from
2793 * the slave (like open, command, or even TX data being sent). If 0
2794 * then port is still busy, otherwise no longer busy.
2795 */
2796
2797 static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2798 {
2799 volatile cdkasy_t *ap;
2800 volatile cdkctrl_t *cp;
2801 struct tty_struct *tty;
2802 asynotify_t nt;
2803 unsigned long oldsigs;
2804 int rc, donerx;
2805
2806 #ifdef DEBUG
2807 printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2808 (int) brdp, channr);
2809 #endif
2810
2811 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2812 cp = &ap->ctrl;
2813
2814 /*
2815 * Check if we are waiting for an open completion message.
2816 */
2817 if (test_bit(ST_OPENING, &portp->state)) {
2818 rc = (int) cp->openarg;
2819 if ((cp->open == 0) && (rc != 0)) {
2820 if (rc > 0)
2821 rc--;
2822 cp->openarg = 0;
2823 portp->rc = rc;
2824 clear_bit(ST_OPENING, &portp->state);
2825 wake_up_interruptible(&portp->raw_wait);
2826 }
2827 }
2828
2829 /*
2830 * Check if we are waiting for a close completion message.
2831 */
2832 if (test_bit(ST_CLOSING, &portp->state)) {
2833 rc = (int) cp->closearg;
2834 if ((cp->close == 0) && (rc != 0)) {
2835 if (rc > 0)
2836 rc--;
2837 cp->closearg = 0;
2838 portp->rc = rc;
2839 clear_bit(ST_CLOSING, &portp->state);
2840 wake_up_interruptible(&portp->raw_wait);
2841 }
2842 }
2843
2844 /*
2845 * Check if we are waiting for a command completion message. We may
2846 * need to copy out the command results associated with this command.
2847 */
2848 if (test_bit(ST_CMDING, &portp->state)) {
2849 rc = cp->status;
2850 if ((cp->cmd == 0) && (rc != 0)) {
2851 if (rc > 0)
2852 rc--;
2853 if (portp->argp != (void *) NULL) {
2854 memcpy(portp->argp, (void *) &(cp->args[0]),
2855 portp->argsize);
2856 portp->argp = (void *) NULL;
2857 }
2858 cp->status = 0;
2859 portp->rc = rc;
2860 clear_bit(ST_CMDING, &portp->state);
2861 stli_dodelaycmd(portp, cp);
2862 wake_up_interruptible(&portp->raw_wait);
2863 }
2864 }
2865
2866 /*
2867 * Check for any notification messages ready. This includes lots of
2868 * different types of events - RX chars ready, RX break received,
2869 * TX data low or empty in the slave, modem signals changed state.
2870 */
2871 donerx = 0;
2872
2873 if (ap->notify) {
2874 nt = ap->changed;
2875 ap->notify = 0;
2876 tty = portp->tty;
2877
2878 if (nt.signal & SG_DCD) {
2879 oldsigs = portp->sigs;
2880 portp->sigs = stli_mktiocm(nt.sigvalue);
2881 clear_bit(ST_GETSIGS, &portp->state);
2882 if ((portp->sigs & TIOCM_CD) &&
2883 ((oldsigs & TIOCM_CD) == 0))
2884 wake_up_interruptible(&portp->open_wait);
2885 if ((oldsigs & TIOCM_CD) &&
2886 ((portp->sigs & TIOCM_CD) == 0)) {
2887 if (portp->flags & ASYNC_CHECK_CD) {
2888 if (tty)
2889 schedule_work(&portp->tqhangup);
2890 }
2891 }
2892 }
2893
2894 if (nt.data & DT_TXEMPTY)
2895 clear_bit(ST_TXBUSY, &portp->state);
2896 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2897 if (tty != (struct tty_struct *) NULL) {
2898 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2899 tty->ldisc.write_wakeup) {
2900 (tty->ldisc.write_wakeup)(tty);
2901 EBRDENABLE(brdp);
2902 }
2903 wake_up_interruptible(&tty->write_wait);
2904 }
2905 }
2906
2907 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2908 if (tty != (struct tty_struct *) NULL) {
2909 if (tty->flip.count < TTY_FLIPBUF_SIZE) {
2910 tty->flip.count++;
2911 *tty->flip.flag_buf_ptr++ = TTY_BREAK;
2912 *tty->flip.char_buf_ptr++ = 0;
2913 if (portp->flags & ASYNC_SAK) {
2914 do_SAK(tty);
2915 EBRDENABLE(brdp);
2916 }
2917 tty_schedule_flip(tty);
2918 }
2919 }
2920 }
2921
2922 if (nt.data & DT_RXBUSY) {
2923 donerx++;
2924 stli_read(brdp, portp);
2925 }
2926 }
2927
2928 /*
2929 * It might seem odd that we are checking for more RX chars here.
2930 * But, we need to handle the case where the tty buffer was previously
2931 * filled, but we had more characters to pass up. The slave will not
2932 * send any more RX notify messages until the RX buffer has been emptied.
2933 * But it will leave the service bits on (since the buffer is not empty).
2934 * So from here we can try to process more RX chars.
2935 */
2936 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2937 clear_bit(ST_RXING, &portp->state);
2938 stli_read(brdp, portp);
2939 }
2940
2941 return((test_bit(ST_OPENING, &portp->state) ||
2942 test_bit(ST_CLOSING, &portp->state) ||
2943 test_bit(ST_CMDING, &portp->state) ||
2944 test_bit(ST_TXBUSY, &portp->state) ||
2945 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2946 }
2947
2948 /*****************************************************************************/
2949
2950 /*
2951 * Service all ports on a particular board. Assumes that the boards
2952 * shared memory is enabled, and that the page pointer is pointed
2953 * at the cdk header structure.
2954 */
2955
2956 static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2957 {
2958 stliport_t *portp;
2959 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2960 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2961 unsigned char *slavep;
2962 int bitpos, bitat, bitsize;
2963 int channr, nrdevs, slavebitchange;
2964
2965 bitsize = brdp->bitsize;
2966 nrdevs = brdp->nrdevs;
2967
2968 /*
2969 * Check if slave wants any service. Basically we try to do as
2970 * little work as possible here. There are 2 levels of service
2971 * bits. So if there is nothing to do we bail early. We check
2972 * 8 service bits at a time in the inner loop, so we can bypass
2973 * the lot if none of them want service.
2974 */
2975 memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2976 bitsize);
2977
2978 memset(&slavebits[0], 0, bitsize);
2979 slavebitchange = 0;
2980
2981 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2982 if (hostbits[bitpos] == 0)
2983 continue;
2984 channr = bitpos * 8;
2985 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2986 if (hostbits[bitpos] & bitat) {
2987 portp = brdp->ports[(channr - 1)];
2988 if (stli_hostcmd(brdp, portp)) {
2989 slavebitchange++;
2990 slavebits[bitpos] |= bitat;
2991 }
2992 }
2993 }
2994 }
2995
2996 /*
2997 * If any of the ports are no longer busy then update them in the
2998 * slave request bits. We need to do this after, since a host port
2999 * service may initiate more slave requests.
3000 */
3001 if (slavebitchange) {
3002 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3003 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
3004 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
3005 if (slavebits[bitpos])
3006 slavep[bitpos] &= ~slavebits[bitpos];
3007 }
3008 }
3009 }
3010
3011 /*****************************************************************************/
3012
3013 /*
3014 * Driver poll routine. This routine polls the boards in use and passes
3015 * messages back up to host when necessary. This is actually very
3016 * CPU efficient, since we will always have the kernel poll clock, it
3017 * adds only a few cycles when idle (since board service can be
3018 * determined very easily), but when loaded generates no interrupts
3019 * (with their expensive associated context change).
3020 */
3021
3022 static void stli_poll(unsigned long arg)
3023 {
3024 volatile cdkhdr_t *hdrp;
3025 stlibrd_t *brdp;
3026 int brdnr;
3027
3028 stli_timerlist.expires = STLI_TIMEOUT;
3029 add_timer(&stli_timerlist);
3030
3031 /*
3032 * Check each board and do any servicing required.
3033 */
3034 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3035 brdp = stli_brds[brdnr];
3036 if (brdp == (stlibrd_t *) NULL)
3037 continue;
3038 if ((brdp->state & BST_STARTED) == 0)
3039 continue;
3040
3041 EBRDENABLE(brdp);
3042 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3043 if (hdrp->hostreq)
3044 stli_brdpoll(brdp, hdrp);
3045 EBRDDISABLE(brdp);
3046 }
3047 }
3048
3049 /*****************************************************************************/
3050
3051 /*
3052 * Translate the termios settings into the port setting structure of
3053 * the slave.
3054 */
3055
3056 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3057 {
3058 #ifdef DEBUG
3059 printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3060 (int) portp, (int) pp, (int) tiosp);
3061 #endif
3062
3063 memset(pp, 0, sizeof(asyport_t));
3064
3065 /*
3066 * Start of by setting the baud, char size, parity and stop bit info.
3067 */
3068 pp->baudout = tiosp->c_cflag & CBAUD;
3069 if (pp->baudout & CBAUDEX) {
3070 pp->baudout &= ~CBAUDEX;
3071 if ((pp->baudout < 1) || (pp->baudout > 4))
3072 tiosp->c_cflag &= ~CBAUDEX;
3073 else
3074 pp->baudout += 15;
3075 }
3076 pp->baudout = stli_baudrates[pp->baudout];
3077 if ((tiosp->c_cflag & CBAUD) == B38400) {
3078 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3079 pp->baudout = 57600;
3080 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3081 pp->baudout = 115200;
3082 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3083 pp->baudout = 230400;
3084 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3085 pp->baudout = 460800;
3086 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3087 pp->baudout = (portp->baud_base / portp->custom_divisor);
3088 }
3089 if (pp->baudout > STL_MAXBAUD)
3090 pp->baudout = STL_MAXBAUD;
3091 pp->baudin = pp->baudout;
3092
3093 switch (tiosp->c_cflag & CSIZE) {
3094 case CS5:
3095 pp->csize = 5;
3096 break;
3097 case CS6:
3098 pp->csize = 6;
3099 break;
3100 case CS7:
3101 pp->csize = 7;
3102 break;
3103 default:
3104 pp->csize = 8;
3105 break;
3106 }
3107
3108 if (tiosp->c_cflag & CSTOPB)
3109 pp->stopbs = PT_STOP2;
3110 else
3111 pp->stopbs = PT_STOP1;
3112
3113 if (tiosp->c_cflag & PARENB) {
3114 if (tiosp->c_cflag & PARODD)
3115 pp->parity = PT_ODDPARITY;
3116 else
3117 pp->parity = PT_EVENPARITY;
3118 } else {
3119 pp->parity = PT_NOPARITY;
3120 }
3121
3122 /*
3123 * Set up any flow control options enabled.
3124 */
3125 if (tiosp->c_iflag & IXON) {
3126 pp->flow |= F_IXON;
3127 if (tiosp->c_iflag & IXANY)
3128 pp->flow |= F_IXANY;
3129 }
3130 if (tiosp->c_cflag & CRTSCTS)
3131 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3132
3133 pp->startin = tiosp->c_cc[VSTART];
3134 pp->stopin = tiosp->c_cc[VSTOP];
3135 pp->startout = tiosp->c_cc[VSTART];
3136 pp->stopout = tiosp->c_cc[VSTOP];
3137
3138 /*
3139 * Set up the RX char marking mask with those RX error types we must
3140 * catch. We can get the slave to help us out a little here, it will
3141 * ignore parity errors and breaks for us, and mark parity errors in
3142 * the data stream.
3143 */
3144 if (tiosp->c_iflag & IGNPAR)
3145 pp->iflag |= FI_IGNRXERRS;
3146 if (tiosp->c_iflag & IGNBRK)
3147 pp->iflag |= FI_IGNBREAK;
3148
3149 portp->rxmarkmsk = 0;
3150 if (tiosp->c_iflag & (INPCK | PARMRK))
3151 pp->iflag |= FI_1MARKRXERRS;
3152 if (tiosp->c_iflag & BRKINT)
3153 portp->rxmarkmsk |= BRKINT;
3154
3155 /*
3156 * Set up clocal processing as required.
3157 */
3158 if (tiosp->c_cflag & CLOCAL)
3159 portp->flags &= ~ASYNC_CHECK_CD;
3160 else
3161 portp->flags |= ASYNC_CHECK_CD;
3162
3163 /*
3164 * Transfer any persistent flags into the asyport structure.
3165 */
3166 pp->pflag = (portp->pflag & 0xffff);
3167 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3168 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3169 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3170 }
3171
3172 /*****************************************************************************/
3173
3174 /*
3175 * Construct a slave signals structure for setting the DTR and RTS
3176 * signals as specified.
3177 */
3178
3179 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3180 {
3181 #ifdef DEBUG
3182 printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3183 (int) sp, dtr, rts);
3184 #endif
3185
3186 memset(sp, 0, sizeof(asysigs_t));
3187 if (dtr >= 0) {
3188 sp->signal |= SG_DTR;
3189 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3190 }
3191 if (rts >= 0) {
3192 sp->signal |= SG_RTS;
3193 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3194 }
3195 }
3196
3197 /*****************************************************************************/
3198
3199 /*
3200 * Convert the signals returned from the slave into a local TIOCM type
3201 * signals value. We keep them locally in TIOCM format.
3202 */
3203
3204 static long stli_mktiocm(unsigned long sigvalue)
3205 {
3206 long tiocm;
3207
3208 #ifdef DEBUG
3209 printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3210 #endif
3211
3212 tiocm = 0;
3213 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3214 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3215 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3216 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3217 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3218 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3219 return(tiocm);
3220 }
3221
3222 /*****************************************************************************/
3223
3224 /*
3225 * All panels and ports actually attached have been worked out. All
3226 * we need to do here is set up the appropriate per port data structures.
3227 */
3228
3229 static int stli_initports(stlibrd_t *brdp)
3230 {
3231 stliport_t *portp;
3232 int i, panelnr, panelport;
3233
3234 #ifdef DEBUG
3235 printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3236 #endif
3237
3238 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3239 portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
3240 if (portp == (stliport_t *) NULL) {
3241 printk("STALLION: failed to allocate port structure\n");
3242 continue;
3243 }
3244
3245 memset(portp, 0, sizeof(stliport_t));
3246 portp->magic = STLI_PORTMAGIC;
3247 portp->portnr = i;
3248 portp->brdnr = brdp->brdnr;
3249 portp->panelnr = panelnr;
3250 portp->baud_base = STL_BAUDBASE;
3251 portp->close_delay = STL_CLOSEDELAY;
3252 portp->closing_wait = 30 * HZ;
3253 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3254 init_waitqueue_head(&portp->open_wait);
3255 init_waitqueue_head(&portp->close_wait);
3256 init_waitqueue_head(&portp->raw_wait);
3257 panelport++;
3258 if (panelport >= brdp->panels[panelnr]) {
3259 panelport = 0;
3260 panelnr++;
3261 }
3262 brdp->ports[i] = portp;
3263 }
3264
3265 return(0);
3266 }
3267
3268 /*****************************************************************************/
3269
3270 /*
3271 * All the following routines are board specific hardware operations.
3272 */
3273
3274 static void stli_ecpinit(stlibrd_t *brdp)
3275 {
3276 unsigned long memconf;
3277
3278 #ifdef DEBUG
3279 printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3280 #endif
3281
3282 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3283 udelay(10);
3284 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3285 udelay(100);
3286
3287 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3288 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3289 }
3290
3291 /*****************************************************************************/
3292
3293 static void stli_ecpenable(stlibrd_t *brdp)
3294 {
3295 #ifdef DEBUG
3296 printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3297 #endif
3298 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3299 }
3300
3301 /*****************************************************************************/
3302
3303 static void stli_ecpdisable(stlibrd_t *brdp)
3304 {
3305 #ifdef DEBUG
3306 printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3307 #endif
3308 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3309 }
3310
3311 /*****************************************************************************/
3312
3313 static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3314 {
3315 void *ptr;
3316 unsigned char val;
3317
3318 #ifdef DEBUG
3319 printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3320 (int) offset);
3321 #endif
3322
3323 if (offset > brdp->memsize) {
3324 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3325 "range at line=%d(%d), brd=%d\n",
3326 (int) offset, line, __LINE__, brdp->brdnr);
3327 ptr = NULL;
3328 val = 0;
3329 } else {
3330 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3331 val = (unsigned char) (offset / ECP_ATPAGESIZE);
3332 }
3333 outb(val, (brdp->iobase + ECP_ATMEMPR));
3334 return(ptr);
3335 }
3336
3337 /*****************************************************************************/
3338
3339 static void stli_ecpreset(stlibrd_t *brdp)
3340 {
3341 #ifdef DEBUG
3342 printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3343 #endif
3344
3345 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3346 udelay(10);
3347 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3348 udelay(500);
3349 }
3350
3351 /*****************************************************************************/
3352
3353 static void stli_ecpintr(stlibrd_t *brdp)
3354 {
3355 #ifdef DEBUG
3356 printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3357 #endif
3358 outb(0x1, brdp->iobase);
3359 }
3360
3361 /*****************************************************************************/
3362
3363 /*
3364 * The following set of functions act on ECP EISA boards.
3365 */
3366
3367 static void stli_ecpeiinit(stlibrd_t *brdp)
3368 {
3369 unsigned long memconf;
3370
3371 #ifdef DEBUG
3372 printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3373 #endif
3374
3375 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3376 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3377 udelay(10);
3378 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3379 udelay(500);
3380
3381 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3382 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3383 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3384 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3385 }
3386
3387 /*****************************************************************************/
3388
3389 static void stli_ecpeienable(stlibrd_t *brdp)
3390 {
3391 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3392 }
3393
3394 /*****************************************************************************/
3395
3396 static void stli_ecpeidisable(stlibrd_t *brdp)
3397 {
3398 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3399 }
3400
3401 /*****************************************************************************/
3402
3403 static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3404 {
3405 void *ptr;
3406 unsigned char val;
3407
3408 #ifdef DEBUG
3409 printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3410 (int) brdp, (int) offset, line);
3411 #endif
3412
3413 if (offset > brdp->memsize) {
3414 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3415 "range at line=%d(%d), brd=%d\n",
3416 (int) offset, line, __LINE__, brdp->brdnr);
3417 ptr = NULL;
3418 val = 0;
3419 } else {
3420 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3421 if (offset < ECP_EIPAGESIZE)
3422 val = ECP_EIENABLE;
3423 else
3424 val = ECP_EIENABLE | 0x40;
3425 }
3426 outb(val, (brdp->iobase + ECP_EICONFR));
3427 return(ptr);
3428 }
3429
3430 /*****************************************************************************/
3431
3432 static void stli_ecpeireset(stlibrd_t *brdp)
3433 {
3434 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3435 udelay(10);
3436 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3437 udelay(500);
3438 }
3439
3440 /*****************************************************************************/
3441
3442 /*
3443 * The following set of functions act on ECP MCA boards.
3444 */
3445
3446 static void stli_ecpmcenable(stlibrd_t *brdp)
3447 {
3448 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3449 }
3450
3451 /*****************************************************************************/
3452
3453 static void stli_ecpmcdisable(stlibrd_t *brdp)
3454 {
3455 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3456 }
3457
3458 /*****************************************************************************/
3459
3460 static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3461 {
3462 void *ptr;
3463 unsigned char val;
3464
3465 if (offset > brdp->memsize) {
3466 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3467 "range at line=%d(%d), brd=%d\n",
3468 (int) offset, line, __LINE__, brdp->brdnr);
3469 ptr = NULL;
3470 val = 0;
3471 } else {
3472 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3473 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3474 }
3475 outb(val, (brdp->iobase + ECP_MCCONFR));
3476 return(ptr);
3477 }
3478
3479 /*****************************************************************************/
3480
3481 static void stli_ecpmcreset(stlibrd_t *brdp)
3482 {
3483 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3484 udelay(10);
3485 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3486 udelay(500);
3487 }
3488
3489 /*****************************************************************************/
3490
3491 /*
3492 * The following set of functions act on ECP PCI boards.
3493 */
3494
3495 static void stli_ecppciinit(stlibrd_t *brdp)
3496 {
3497 #ifdef DEBUG
3498 printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3499 #endif
3500
3501 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3502 udelay(10);
3503 outb(0, (brdp->iobase + ECP_PCICONFR));
3504 udelay(500);
3505 }
3506
3507 /*****************************************************************************/
3508
3509 static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3510 {
3511 void *ptr;
3512 unsigned char val;
3513
3514 #ifdef DEBUG
3515 printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3516 (int) brdp, (int) offset, line);
3517 #endif
3518
3519 if (offset > brdp->memsize) {
3520 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3521 "range at line=%d(%d), board=%d\n",
3522 (int) offset, line, __LINE__, brdp->brdnr);
3523 ptr = NULL;
3524 val = 0;
3525 } else {
3526 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3527 val = (offset / ECP_PCIPAGESIZE) << 1;
3528 }
3529 outb(val, (brdp->iobase + ECP_PCICONFR));
3530 return(ptr);
3531 }
3532
3533 /*****************************************************************************/
3534
3535 static void stli_ecppcireset(stlibrd_t *brdp)
3536 {
3537 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3538 udelay(10);
3539 outb(0, (brdp->iobase + ECP_PCICONFR));
3540 udelay(500);
3541 }
3542
3543 /*****************************************************************************/
3544
3545 /*
3546 * The following routines act on ONboards.
3547 */
3548
3549 static void stli_onbinit(stlibrd_t *brdp)
3550 {
3551 unsigned long memconf;
3552
3553 #ifdef DEBUG
3554 printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3555 #endif
3556
3557 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3558 udelay(10);
3559 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3560 mdelay(1000);
3561
3562 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3563 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3564 outb(0x1, brdp->iobase);
3565 mdelay(1);
3566 }
3567
3568 /*****************************************************************************/
3569
3570 static void stli_onbenable(stlibrd_t *brdp)
3571 {
3572 #ifdef DEBUG
3573 printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3574 #endif
3575 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3576 }
3577
3578 /*****************************************************************************/
3579
3580 static void stli_onbdisable(stlibrd_t *brdp)
3581 {
3582 #ifdef DEBUG
3583 printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3584 #endif
3585 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3586 }
3587
3588 /*****************************************************************************/
3589
3590 static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3591 {
3592 void *ptr;
3593
3594 #ifdef DEBUG
3595 printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3596 (int) offset);
3597 #endif
3598
3599 if (offset > brdp->memsize) {
3600 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3601 "range at line=%d(%d), brd=%d\n",
3602 (int) offset, line, __LINE__, brdp->brdnr);
3603 ptr = NULL;
3604 } else {
3605 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3606 }
3607 return(ptr);
3608 }
3609
3610 /*****************************************************************************/
3611
3612 static void stli_onbreset(stlibrd_t *brdp)
3613 {
3614
3615 #ifdef DEBUG
3616 printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3617 #endif
3618
3619 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3620 udelay(10);
3621 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3622 mdelay(1000);
3623 }
3624
3625 /*****************************************************************************/
3626
3627 /*
3628 * The following routines act on ONboard EISA.
3629 */
3630
3631 static void stli_onbeinit(stlibrd_t *brdp)
3632 {
3633 unsigned long memconf;
3634
3635 #ifdef DEBUG
3636 printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3637 #endif
3638
3639 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3640 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3641 udelay(10);
3642 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3643 mdelay(1000);
3644
3645 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3646 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3647 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3648 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3649 outb(0x1, brdp->iobase);
3650 mdelay(1);
3651 }
3652
3653 /*****************************************************************************/
3654
3655 static void stli_onbeenable(stlibrd_t *brdp)
3656 {
3657 #ifdef DEBUG
3658 printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3659 #endif
3660 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3661 }
3662
3663 /*****************************************************************************/
3664
3665 static void stli_onbedisable(stlibrd_t *brdp)
3666 {
3667 #ifdef DEBUG
3668 printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3669 #endif
3670 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3671 }
3672
3673 /*****************************************************************************/
3674
3675 static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3676 {
3677 void *ptr;
3678 unsigned char val;
3679
3680 #ifdef DEBUG
3681 printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3682 (int) brdp, (int) offset, line);
3683 #endif
3684
3685 if (offset > brdp->memsize) {
3686 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3687 "range at line=%d(%d), brd=%d\n",
3688 (int) offset, line, __LINE__, brdp->brdnr);
3689 ptr = NULL;
3690 val = 0;
3691 } else {
3692 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3693 if (offset < ONB_EIPAGESIZE)
3694 val = ONB_EIENABLE;
3695 else
3696 val = ONB_EIENABLE | 0x40;
3697 }
3698 outb(val, (brdp->iobase + ONB_EICONFR));
3699 return(ptr);
3700 }
3701
3702 /*****************************************************************************/
3703
3704 static void stli_onbereset(stlibrd_t *brdp)
3705 {
3706
3707 #ifdef DEBUG
3708 printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3709 #endif
3710
3711 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3712 udelay(10);
3713 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3714 mdelay(1000);
3715 }
3716
3717 /*****************************************************************************/
3718
3719 /*
3720 * The following routines act on Brumby boards.
3721 */
3722
3723 static void stli_bbyinit(stlibrd_t *brdp)
3724 {
3725
3726 #ifdef DEBUG
3727 printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3728 #endif
3729
3730 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3731 udelay(10);
3732 outb(0, (brdp->iobase + BBY_ATCONFR));
3733 mdelay(1000);
3734 outb(0x1, brdp->iobase);
3735 mdelay(1);
3736 }
3737
3738 /*****************************************************************************/
3739
3740 static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3741 {
3742 void *ptr;
3743 unsigned char val;
3744
3745 #ifdef DEBUG
3746 printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3747 (int) offset);
3748 #endif
3749
3750 if (offset > brdp->memsize) {
3751 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3752 "range at line=%d(%d), brd=%d\n",
3753 (int) offset, line, __LINE__, brdp->brdnr);
3754 ptr = NULL;
3755 val = 0;
3756 } else {
3757 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3758 val = (unsigned char) (offset / BBY_PAGESIZE);
3759 }
3760 outb(val, (brdp->iobase + BBY_ATCONFR));
3761 return(ptr);
3762 }
3763
3764 /*****************************************************************************/
3765
3766 static void stli_bbyreset(stlibrd_t *brdp)
3767 {
3768
3769 #ifdef DEBUG
3770 printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3771 #endif
3772
3773 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3774 udelay(10);
3775 outb(0, (brdp->iobase + BBY_ATCONFR));
3776 mdelay(1000);
3777 }
3778
3779 /*****************************************************************************/
3780
3781 /*
3782 * The following routines act on original old Stallion boards.
3783 */
3784
3785 static void stli_stalinit(stlibrd_t *brdp)
3786 {
3787
3788 #ifdef DEBUG
3789 printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3790 #endif
3791
3792 outb(0x1, brdp->iobase);
3793 mdelay(1000);
3794 }
3795
3796 /*****************************************************************************/
3797
3798 static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3799 {
3800 void *ptr;
3801
3802 #ifdef DEBUG
3803 printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3804 (int) offset);
3805 #endif
3806
3807 if (offset > brdp->memsize) {
3808 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3809 "range at line=%d(%d), brd=%d\n",
3810 (int) offset, line, __LINE__, brdp->brdnr);
3811 ptr = NULL;
3812 } else {
3813 ptr = brdp->membase + (offset % STAL_PAGESIZE);
3814 }
3815 return(ptr);
3816 }
3817
3818 /*****************************************************************************/
3819
3820 static void stli_stalreset(stlibrd_t *brdp)
3821 {
3822 volatile unsigned long *vecp;
3823
3824 #ifdef DEBUG
3825 printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3826 #endif
3827
3828 vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3829 *vecp = 0xffff0000;
3830 outb(0, brdp->iobase);
3831 mdelay(1000);
3832 }
3833
3834 /*****************************************************************************/
3835
3836 /*
3837 * Try to find an ECP board and initialize it. This handles only ECP
3838 * board types.
3839 */
3840
3841 static int stli_initecp(stlibrd_t *brdp)
3842 {
3843 cdkecpsig_t sig;
3844 cdkecpsig_t *sigsp;
3845 unsigned int status, nxtid;
3846 char *name;
3847 int panelnr, nrports;
3848
3849 #ifdef DEBUG
3850 printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3851 #endif
3852
3853 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3854 return -EIO;
3855
3856 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3857 {
3858 release_region(brdp->iobase, brdp->iosize);
3859 return(-ENODEV);
3860 }
3861
3862 brdp->iosize = ECP_IOSIZE;
3863
3864 /*
3865 * Based on the specific board type setup the common vars to access
3866 * and enable shared memory. Set all board specific information now
3867 * as well.
3868 */
3869 switch (brdp->brdtype) {
3870 case BRD_ECP:
3871 brdp->membase = (void *) brdp->memaddr;
3872 brdp->memsize = ECP_MEMSIZE;
3873 brdp->pagesize = ECP_ATPAGESIZE;
3874 brdp->init = stli_ecpinit;
3875 brdp->enable = stli_ecpenable;
3876 brdp->reenable = stli_ecpenable;
3877 brdp->disable = stli_ecpdisable;
3878 brdp->getmemptr = stli_ecpgetmemptr;
3879 brdp->intr = stli_ecpintr;
3880 brdp->reset = stli_ecpreset;
3881 name = "serial(EC8/64)";
3882 break;
3883
3884 case BRD_ECPE:
3885 brdp->membase = (void *) brdp->memaddr;
3886 brdp->memsize = ECP_MEMSIZE;
3887 brdp->pagesize = ECP_EIPAGESIZE;
3888 brdp->init = stli_ecpeiinit;
3889 brdp->enable = stli_ecpeienable;
3890 brdp->reenable = stli_ecpeienable;
3891 brdp->disable = stli_ecpeidisable;
3892 brdp->getmemptr = stli_ecpeigetmemptr;
3893 brdp->intr = stli_ecpintr;
3894 brdp->reset = stli_ecpeireset;
3895 name = "serial(EC8/64-EI)";
3896 break;
3897
3898 case BRD_ECPMC:
3899 brdp->membase = (void *) brdp->memaddr;
3900 brdp->memsize = ECP_MEMSIZE;
3901 brdp->pagesize = ECP_MCPAGESIZE;
3902 brdp->init = NULL;
3903 brdp->enable = stli_ecpmcenable;
3904 brdp->reenable = stli_ecpmcenable;
3905 brdp->disable = stli_ecpmcdisable;
3906 brdp->getmemptr = stli_ecpmcgetmemptr;
3907 brdp->intr = stli_ecpintr;
3908 brdp->reset = stli_ecpmcreset;
3909 name = "serial(EC8/64-MCA)";
3910 break;
3911
3912 case BRD_ECPPCI:
3913 brdp->membase = (void *) brdp->memaddr;
3914 brdp->memsize = ECP_PCIMEMSIZE;
3915 brdp->pagesize = ECP_PCIPAGESIZE;
3916 brdp->init = stli_ecppciinit;
3917 brdp->enable = NULL;
3918 brdp->reenable = NULL;
3919 brdp->disable = NULL;
3920 brdp->getmemptr = stli_ecppcigetmemptr;
3921 brdp->intr = stli_ecpintr;
3922 brdp->reset = stli_ecppcireset;
3923 name = "serial(EC/RA-PCI)";
3924 break;
3925
3926 default:
3927 release_region(brdp->iobase, brdp->iosize);
3928 return(-EINVAL);
3929 }
3930
3931 /*
3932 * The per-board operations structure is all set up, so now let's go
3933 * and get the board operational. Firstly initialize board configuration
3934 * registers. Set the memory mapping info so we can get at the boards
3935 * shared memory.
3936 */
3937 EBRDINIT(brdp);
3938
3939 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3940 if (brdp->membase == (void *) NULL)
3941 {
3942 release_region(brdp->iobase, brdp->iosize);
3943 return(-ENOMEM);
3944 }
3945
3946 /*
3947 * Now that all specific code is set up, enable the shared memory and
3948 * look for the a signature area that will tell us exactly what board
3949 * this is, and what it is connected to it.
3950 */
3951 EBRDENABLE(brdp);
3952 sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3953 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3954 EBRDDISABLE(brdp);
3955
3956 #if 0
3957 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3958 __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3959 (int) sig.panelid[1], (int) sig.panelid[2],
3960 (int) sig.panelid[3], (int) sig.panelid[4],
3961 (int) sig.panelid[5], (int) sig.panelid[6],
3962 (int) sig.panelid[7]);
3963 #endif
3964
3965 if (sig.magic != ECP_MAGIC)
3966 {
3967 release_region(brdp->iobase, brdp->iosize);
3968 return(-ENODEV);
3969 }
3970
3971 /*
3972 * Scan through the signature looking at the panels connected to the
3973 * board. Calculate the total number of ports as we go.
3974 */
3975 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3976 status = sig.panelid[nxtid];
3977 if ((status & ECH_PNLIDMASK) != nxtid)
3978 break;
3979
3980 brdp->panelids[panelnr] = status;
3981 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3982 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3983 nxtid++;
3984 brdp->panels[panelnr] = nrports;
3985 brdp->nrports += nrports;
3986 nxtid++;
3987 brdp->nrpanels++;
3988 }
3989
3990
3991 brdp->state |= BST_FOUND;
3992 return(0);
3993 }
3994
3995 /*****************************************************************************/
3996
3997 /*
3998 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3999 * This handles only these board types.
4000 */
4001
4002 static int stli_initonb(stlibrd_t *brdp)
4003 {
4004 cdkonbsig_t sig;
4005 cdkonbsig_t *sigsp;
4006 char *name;
4007 int i;
4008
4009 #ifdef DEBUG
4010 printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
4011 #endif
4012
4013 /*
4014 * Do a basic sanity check on the IO and memory addresses.
4015 */
4016 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
4017 return(-ENODEV);
4018
4019 brdp->iosize = ONB_IOSIZE;
4020
4021 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
4022 return -EIO;
4023
4024 /*
4025 * Based on the specific board type setup the common vars to access
4026 * and enable shared memory. Set all board specific information now
4027 * as well.
4028 */
4029 switch (brdp->brdtype) {
4030 case BRD_ONBOARD:
4031 case BRD_ONBOARD32:
4032 case BRD_ONBOARD2:
4033 case BRD_ONBOARD2_32:
4034 case BRD_ONBOARDRS:
4035 brdp->membase = (void *) brdp->memaddr;
4036 brdp->memsize = ONB_MEMSIZE;
4037 brdp->pagesize = ONB_ATPAGESIZE;
4038 brdp->init = stli_onbinit;
4039 brdp->enable = stli_onbenable;
4040 brdp->reenable = stli_onbenable;
4041 brdp->disable = stli_onbdisable;
4042 brdp->getmemptr = stli_onbgetmemptr;
4043 brdp->intr = stli_ecpintr;
4044 brdp->reset = stli_onbreset;
4045 if (brdp->memaddr > 0x100000)
4046 brdp->enabval = ONB_MEMENABHI;
4047 else
4048 brdp->enabval = ONB_MEMENABLO;
4049 name = "serial(ONBoard)";
4050 break;
4051
4052 case BRD_ONBOARDE:
4053 brdp->membase = (void *) brdp->memaddr;
4054 brdp->memsize = ONB_EIMEMSIZE;
4055 brdp->pagesize = ONB_EIPAGESIZE;
4056 brdp->init = stli_onbeinit;
4057 brdp->enable = stli_onbeenable;
4058 brdp->reenable = stli_onbeenable;
4059 brdp->disable = stli_onbedisable;
4060 brdp->getmemptr = stli_onbegetmemptr;
4061 brdp->intr = stli_ecpintr;
4062 brdp->reset = stli_onbereset;
4063 name = "serial(ONBoard/E)";
4064 break;
4065
4066 case BRD_BRUMBY4:
4067 case BRD_BRUMBY8:
4068 case BRD_BRUMBY16:
4069 brdp->membase = (void *) brdp->memaddr;
4070 brdp->memsize = BBY_MEMSIZE;
4071 brdp->pagesize = BBY_PAGESIZE;
4072 brdp->init = stli_bbyinit;
4073 brdp->enable = NULL;
4074 brdp->reenable = NULL;
4075 brdp->disable = NULL;
4076 brdp->getmemptr = stli_bbygetmemptr;
4077 brdp->intr = stli_ecpintr;
4078 brdp->reset = stli_bbyreset;
4079 name = "serial(Brumby)";
4080 break;
4081
4082 case BRD_STALLION:
4083 brdp->membase = (void *) brdp->memaddr;
4084 brdp->memsize = STAL_MEMSIZE;
4085 brdp->pagesize = STAL_PAGESIZE;
4086 brdp->init = stli_stalinit;
4087 brdp->enable = NULL;
4088 brdp->reenable = NULL;
4089 brdp->disable = NULL;
4090 brdp->getmemptr = stli_stalgetmemptr;
4091 brdp->intr = stli_ecpintr;
4092 brdp->reset = stli_stalreset;
4093 name = "serial(Stallion)";
4094 break;
4095
4096 default:
4097 release_region(brdp->iobase, brdp->iosize);
4098 return(-EINVAL);
4099 }
4100
4101 /*
4102 * The per-board operations structure is all set up, so now let's go
4103 * and get the board operational. Firstly initialize board configuration
4104 * registers. Set the memory mapping info so we can get at the boards
4105 * shared memory.
4106 */
4107 EBRDINIT(brdp);
4108
4109 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4110 if (brdp->membase == (void *) NULL)
4111 {
4112 release_region(brdp->iobase, brdp->iosize);
4113 return(-ENOMEM);
4114 }
4115
4116 /*
4117 * Now that all specific code is set up, enable the shared memory and
4118 * look for the a signature area that will tell us exactly what board
4119 * this is, and how many ports.
4120 */
4121 EBRDENABLE(brdp);
4122 sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4123 memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4124 EBRDDISABLE(brdp);
4125
4126 #if 0
4127 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4128 __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4129 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4130 #endif
4131
4132 if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4133 (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4134 {
4135 release_region(brdp->iobase, brdp->iosize);
4136 return(-ENODEV);
4137 }
4138
4139 /*
4140 * Scan through the signature alive mask and calculate how many ports
4141 * there are on this board.
4142 */
4143 brdp->nrpanels = 1;
4144 if (sig.amask1) {
4145 brdp->nrports = 32;
4146 } else {
4147 for (i = 0; (i < 16); i++) {
4148 if (((sig.amask0 << i) & 0x8000) == 0)
4149 break;
4150 }
4151 brdp->nrports = i;
4152 }
4153 brdp->panels[0] = brdp->nrports;
4154
4155
4156 brdp->state |= BST_FOUND;
4157 return(0);
4158 }
4159
4160 /*****************************************************************************/
4161
4162 /*
4163 * Start up a running board. This routine is only called after the
4164 * code has been down loaded to the board and is operational. It will
4165 * read in the memory map, and get the show on the road...
4166 */
4167
4168 static int stli_startbrd(stlibrd_t *brdp)
4169 {
4170 volatile cdkhdr_t *hdrp;
4171 volatile cdkmem_t *memp;
4172 volatile cdkasy_t *ap;
4173 unsigned long flags;
4174 stliport_t *portp;
4175 int portnr, nrdevs, i, rc;
4176
4177 #ifdef DEBUG
4178 printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4179 #endif
4180
4181 rc = 0;
4182
4183 save_flags(flags);
4184 cli();
4185 EBRDENABLE(brdp);
4186 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4187 nrdevs = hdrp->nrdevs;
4188
4189 #if 0
4190 printk("%s(%d): CDK version %d.%d.%d --> "
4191 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4192 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4193 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4194 (int) hdrp->slavep);
4195 #endif
4196
4197 if (nrdevs < (brdp->nrports + 1)) {
4198 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4199 "all devices, devices=%d\n", nrdevs);
4200 brdp->nrports = nrdevs - 1;
4201 }
4202 brdp->nrdevs = nrdevs;
4203 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4204 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4205 brdp->bitsize = (nrdevs + 7) / 8;
4206 memp = (volatile cdkmem_t *) hdrp->memp;
4207 if (((unsigned long) memp) > brdp->memsize) {
4208 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4209 rc = -EIO;
4210 goto stli_donestartup;
4211 }
4212 memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4213 if (memp->dtype != TYP_ASYNCTRL) {
4214 printk(KERN_ERR "STALLION: no slave control device found\n");
4215 goto stli_donestartup;
4216 }
4217 memp++;
4218
4219 /*
4220 * Cycle through memory allocation of each port. We are guaranteed to
4221 * have all ports inside the first page of slave window, so no need to
4222 * change pages while reading memory map.
4223 */
4224 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4225 if (memp->dtype != TYP_ASYNC)
4226 break;
4227 portp = brdp->ports[portnr];
4228 if (portp == (stliport_t *) NULL)
4229 break;
4230 portp->devnr = i;
4231 portp->addr = memp->offset;
4232 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4233 portp->portidx = (unsigned char) (i / 8);
4234 portp->portbit = (unsigned char) (0x1 << (i % 8));
4235 }
4236
4237 hdrp->slavereq = 0xff;
4238
4239 /*
4240 * For each port setup a local copy of the RX and TX buffer offsets
4241 * and sizes. We do this separate from the above, because we need to
4242 * move the shared memory page...
4243 */
4244 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4245 portp = brdp->ports[portnr];
4246 if (portp == (stliport_t *) NULL)
4247 break;
4248 if (portp->addr == 0)
4249 break;
4250 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4251 if (ap != (volatile cdkasy_t *) NULL) {
4252 portp->rxsize = ap->rxq.size;
4253 portp->txsize = ap->txq.size;
4254 portp->rxoffset = ap->rxq.offset;
4255 portp->txoffset = ap->txq.offset;
4256 }
4257 }
4258
4259 stli_donestartup:
4260 EBRDDISABLE(brdp);
4261 restore_flags(flags);
4262
4263 if (rc == 0)
4264 brdp->state |= BST_STARTED;
4265
4266 if (! stli_timeron) {
4267 stli_timeron++;
4268 stli_timerlist.expires = STLI_TIMEOUT;
4269 add_timer(&stli_timerlist);
4270 }
4271
4272 return(rc);
4273 }
4274
4275 /*****************************************************************************/
4276
4277 /*
4278 * Probe and initialize the specified board.
4279 */
4280
4281 static int __init stli_brdinit(stlibrd_t *brdp)
4282 {
4283 #ifdef DEBUG
4284 printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4285 #endif
4286
4287 stli_brds[brdp->brdnr] = brdp;
4288
4289 switch (brdp->brdtype) {
4290 case BRD_ECP:
4291 case BRD_ECPE:
4292 case BRD_ECPMC:
4293 case BRD_ECPPCI:
4294 stli_initecp(brdp);
4295 break;
4296 case BRD_ONBOARD:
4297 case BRD_ONBOARDE:
4298 case BRD_ONBOARD2:
4299 case BRD_ONBOARD32:
4300 case BRD_ONBOARD2_32:
4301 case BRD_ONBOARDRS:
4302 case BRD_BRUMBY4:
4303 case BRD_BRUMBY8:
4304 case BRD_BRUMBY16:
4305 case BRD_STALLION:
4306 stli_initonb(brdp);
4307 break;
4308 case BRD_EASYIO:
4309 case BRD_ECH:
4310 case BRD_ECHMC:
4311 case BRD_ECHPCI:
4312 printk(KERN_ERR "STALLION: %s board type not supported in "
4313 "this driver\n", stli_brdnames[brdp->brdtype]);
4314 return(ENODEV);
4315 default:
4316 printk(KERN_ERR "STALLION: board=%d is unknown board "
4317 "type=%d\n", brdp->brdnr, brdp->brdtype);
4318 return(ENODEV);
4319 }
4320
4321 if ((brdp->state & BST_FOUND) == 0) {
4322 printk(KERN_ERR "STALLION: %s board not found, board=%d "
4323 "io=%x mem=%x\n",
4324 stli_brdnames[brdp->brdtype], brdp->brdnr,
4325 brdp->iobase, (int) brdp->memaddr);
4326 return(ENODEV);
4327 }
4328
4329 stli_initports(brdp);
4330 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4331 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4332 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4333 brdp->nrpanels, brdp->nrports);
4334 return(0);
4335 }
4336
4337 /*****************************************************************************/
4338
4339 /*
4340 * Probe around trying to find where the EISA boards shared memory
4341 * might be. This is a bit if hack, but it is the best we can do.
4342 */
4343
4344 static int stli_eisamemprobe(stlibrd_t *brdp)
4345 {
4346 cdkecpsig_t ecpsig, *ecpsigp;
4347 cdkonbsig_t onbsig, *onbsigp;
4348 int i, foundit;
4349
4350 #ifdef DEBUG
4351 printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4352 #endif
4353
4354 /*
4355 * First up we reset the board, to get it into a known state. There
4356 * is only 2 board types here we need to worry about. Don;t use the
4357 * standard board init routine here, it programs up the shared
4358 * memory address, and we don't know it yet...
4359 */
4360 if (brdp->brdtype == BRD_ECPE) {
4361 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4362 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4363 udelay(10);
4364 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4365 udelay(500);
4366 stli_ecpeienable(brdp);
4367 } else if (brdp->brdtype == BRD_ONBOARDE) {
4368 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4369 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4370 udelay(10);
4371 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4372 mdelay(100);
4373 outb(0x1, brdp->iobase);
4374 mdelay(1);
4375 stli_onbeenable(brdp);
4376 } else {
4377 return(-ENODEV);
4378 }
4379
4380 foundit = 0;
4381 brdp->memsize = ECP_MEMSIZE;
4382
4383 /*
4384 * Board shared memory is enabled, so now we have a poke around and
4385 * see if we can find it.
4386 */
4387 for (i = 0; (i < stli_eisamempsize); i++) {
4388 brdp->memaddr = stli_eisamemprobeaddrs[i];
4389 brdp->membase = (void *) brdp->memaddr;
4390 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4391 if (brdp->membase == (void *) NULL)
4392 continue;
4393
4394 if (brdp->brdtype == BRD_ECPE) {
4395 ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4396 CDK_SIGADDR, __LINE__);
4397 memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4398 if (ecpsig.magic == ECP_MAGIC)
4399 foundit = 1;
4400 } else {
4401 onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4402 CDK_SIGADDR, __LINE__);
4403 memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4404 if ((onbsig.magic0 == ONB_MAGIC0) &&
4405 (onbsig.magic1 == ONB_MAGIC1) &&
4406 (onbsig.magic2 == ONB_MAGIC2) &&
4407 (onbsig.magic3 == ONB_MAGIC3))
4408 foundit = 1;
4409 }
4410
4411 iounmap(brdp->membase);
4412 if (foundit)
4413 break;
4414 }
4415
4416 /*
4417 * Regardless of whether we found the shared memory or not we must
4418 * disable the region. After that return success or failure.
4419 */
4420 if (brdp->brdtype == BRD_ECPE)
4421 stli_ecpeidisable(brdp);
4422 else
4423 stli_onbedisable(brdp);
4424
4425 if (! foundit) {
4426 brdp->memaddr = 0;
4427 brdp->membase = NULL;
4428 printk(KERN_ERR "STALLION: failed to probe shared memory "
4429 "region for %s in EISA slot=%d\n",
4430 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4431 return(-ENODEV);
4432 }
4433 return(0);
4434 }
4435
4436 static int stli_getbrdnr(void)
4437 {
4438 int i;
4439
4440 for (i = 0; i < STL_MAXBRDS; i++) {
4441 if (!stli_brds[i]) {
4442 if (i >= stli_nrbrds)
4443 stli_nrbrds = i + 1;
4444 return i;
4445 }
4446 }
4447 return -1;
4448 }
4449
4450 /*****************************************************************************/
4451
4452 /*
4453 * Probe around and try to find any EISA boards in system. The biggest
4454 * problem here is finding out what memory address is associated with
4455 * an EISA board after it is found. The registers of the ECPE and
4456 * ONboardE are not readable - so we can't read them from there. We
4457 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4458 * actually have any way to find out the real value. The best we can
4459 * do is go probing around in the usual places hoping we can find it.
4460 */
4461
4462 static int stli_findeisabrds(void)
4463 {
4464 stlibrd_t *brdp;
4465 unsigned int iobase, eid;
4466 int i;
4467
4468 #ifdef DEBUG
4469 printk(KERN_DEBUG "stli_findeisabrds()\n");
4470 #endif
4471
4472 /*
4473 * Firstly check if this is an EISA system. Do this by probing for
4474 * the system board EISA ID. If this is not an EISA system then
4475 * don't bother going any further!
4476 */
4477 outb(0xff, 0xc80);
4478 if (inb(0xc80) == 0xff)
4479 return(0);
4480
4481 /*
4482 * Looks like an EISA system, so go searching for EISA boards.
4483 */
4484 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4485 outb(0xff, (iobase + 0xc80));
4486 eid = inb(iobase + 0xc80);
4487 eid |= inb(iobase + 0xc81) << 8;
4488 if (eid != STL_EISAID)
4489 continue;
4490
4491 /*
4492 * We have found a board. Need to check if this board was
4493 * statically configured already (just in case!).
4494 */
4495 for (i = 0; (i < STL_MAXBRDS); i++) {
4496 brdp = stli_brds[i];
4497 if (brdp == (stlibrd_t *) NULL)
4498 continue;
4499 if (brdp->iobase == iobase)
4500 break;
4501 }
4502 if (i < STL_MAXBRDS)
4503 continue;
4504
4505 /*
4506 * We have found a Stallion board and it is not configured already.
4507 * Allocate a board structure and initialize it.
4508 */
4509 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4510 return(-ENOMEM);
4511 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4512 return(-ENOMEM);
4513 eid = inb(iobase + 0xc82);
4514 if (eid == ECP_EISAID)
4515 brdp->brdtype = BRD_ECPE;
4516 else if (eid == ONB_EISAID)
4517 brdp->brdtype = BRD_ONBOARDE;
4518 else
4519 brdp->brdtype = BRD_UNKNOWN;
4520 brdp->iobase = iobase;
4521 outb(0x1, (iobase + 0xc84));
4522 if (stli_eisamemprobe(brdp))
4523 outb(0, (iobase + 0xc84));
4524 stli_brdinit(brdp);
4525 }
4526
4527 return(0);
4528 }
4529
4530 /*****************************************************************************/
4531
4532 /*
4533 * Find the next available board number that is free.
4534 */
4535
4536 /*****************************************************************************/
4537
4538 #ifdef CONFIG_PCI
4539
4540 /*
4541 * We have a Stallion board. Allocate a board structure and
4542 * initialize it. Read its IO and MEMORY resources from PCI
4543 * configuration space.
4544 */
4545
4546 static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4547 {
4548 stlibrd_t *brdp;
4549
4550 #ifdef DEBUG
4551 printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4552 brdtype, dev->bus->number, dev->devfn);
4553 #endif
4554
4555 if (pci_enable_device(devp))
4556 return(-EIO);
4557 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4558 return(-ENOMEM);
4559 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4560 printk(KERN_INFO "STALLION: too many boards found, "
4561 "maximum supported %d\n", STL_MAXBRDS);
4562 return(0);
4563 }
4564 brdp->brdtype = brdtype;
4565
4566 #ifdef DEBUG
4567 printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4568 pci_resource_start(devp, 0),
4569 pci_resource_start(devp, 1),
4570 pci_resource_start(devp, 2),
4571 pci_resource_start(devp, 3));
4572 #endif
4573
4574 /*
4575 * We have all resources from the board, so lets setup the actual
4576 * board structure now.
4577 */
4578 brdp->iobase = pci_resource_start(devp, 3);
4579 brdp->memaddr = pci_resource_start(devp, 2);
4580 stli_brdinit(brdp);
4581
4582 return(0);
4583 }
4584
4585 /*****************************************************************************/
4586
4587 /*
4588 * Find all Stallion PCI boards that might be installed. Initialize each
4589 * one as it is found.
4590 */
4591
4592 static int stli_findpcibrds(void)
4593 {
4594 struct pci_dev *dev = NULL;
4595 int rc;
4596
4597 #ifdef DEBUG
4598 printk("stli_findpcibrds()\n");
4599 #endif
4600
4601 while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4602 PCI_DEVICE_ID_ECRA, dev))) {
4603 if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4604 return(rc);
4605 }
4606
4607 return(0);
4608 }
4609
4610 #endif
4611
4612 /*****************************************************************************/
4613
4614 /*
4615 * Allocate a new board structure. Fill out the basic info in it.
4616 */
4617
4618 static stlibrd_t *stli_allocbrd(void)
4619 {
4620 stlibrd_t *brdp;
4621
4622 brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
4623 if (brdp == (stlibrd_t *) NULL) {
4624 printk(KERN_ERR "STALLION: failed to allocate memory "
4625 "(size=%d)\n", sizeof(stlibrd_t));
4626 return((stlibrd_t *) NULL);
4627 }
4628
4629 memset(brdp, 0, sizeof(stlibrd_t));
4630 brdp->magic = STLI_BOARDMAGIC;
4631 return(brdp);
4632 }
4633
4634 /*****************************************************************************/
4635
4636 /*
4637 * Scan through all the boards in the configuration and see what we
4638 * can find.
4639 */
4640
4641 static int stli_initbrds(void)
4642 {
4643 stlibrd_t *brdp, *nxtbrdp;
4644 stlconf_t *confp;
4645 int i, j;
4646
4647 #ifdef DEBUG
4648 printk(KERN_DEBUG "stli_initbrds()\n");
4649 #endif
4650
4651 if (stli_nrbrds > STL_MAXBRDS) {
4652 printk(KERN_INFO "STALLION: too many boards in configuration "
4653 "table, truncating to %d\n", STL_MAXBRDS);
4654 stli_nrbrds = STL_MAXBRDS;
4655 }
4656
4657 /*
4658 * Firstly scan the list of static boards configured. Allocate
4659 * resources and initialize the boards as found. If this is a
4660 * module then let the module args override static configuration.
4661 */
4662 for (i = 0; (i < stli_nrbrds); i++) {
4663 confp = &stli_brdconf[i];
4664 #ifdef MODULE
4665 stli_parsebrd(confp, stli_brdsp[i]);
4666 #endif
4667 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4668 return(-ENOMEM);
4669 brdp->brdnr = i;
4670 brdp->brdtype = confp->brdtype;
4671 brdp->iobase = confp->ioaddr1;
4672 brdp->memaddr = confp->memaddr;
4673 stli_brdinit(brdp);
4674 }
4675
4676 /*
4677 * Static configuration table done, so now use dynamic methods to
4678 * see if any more boards should be configured.
4679 */
4680 #ifdef MODULE
4681 stli_argbrds();
4682 #endif
4683 if (STLI_EISAPROBE)
4684 stli_findeisabrds();
4685 #ifdef CONFIG_PCI
4686 stli_findpcibrds();
4687 #endif
4688
4689 /*
4690 * All found boards are initialized. Now for a little optimization, if
4691 * no boards are sharing the "shared memory" regions then we can just
4692 * leave them all enabled. This is in fact the usual case.
4693 */
4694 stli_shared = 0;
4695 if (stli_nrbrds > 1) {
4696 for (i = 0; (i < stli_nrbrds); i++) {
4697 brdp = stli_brds[i];
4698 if (brdp == (stlibrd_t *) NULL)
4699 continue;
4700 for (j = i + 1; (j < stli_nrbrds); j++) {
4701 nxtbrdp = stli_brds[j];
4702 if (nxtbrdp == (stlibrd_t *) NULL)
4703 continue;
4704 if ((brdp->membase >= nxtbrdp->membase) &&
4705 (brdp->membase <= (nxtbrdp->membase +
4706 nxtbrdp->memsize - 1))) {
4707 stli_shared++;
4708 break;
4709 }
4710 }
4711 }
4712 }
4713
4714 if (stli_shared == 0) {
4715 for (i = 0; (i < stli_nrbrds); i++) {
4716 brdp = stli_brds[i];
4717 if (brdp == (stlibrd_t *) NULL)
4718 continue;
4719 if (brdp->state & BST_FOUND) {
4720 EBRDENABLE(brdp);
4721 brdp->enable = NULL;
4722 brdp->disable = NULL;
4723 }
4724 }
4725 }
4726
4727 return(0);
4728 }
4729
4730 /*****************************************************************************/
4731
4732 /*
4733 * Code to handle an "staliomem" read operation. This device is the
4734 * contents of the board shared memory. It is used for down loading
4735 * the slave image (and debugging :-)
4736 */
4737
4738 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4739 {
4740 unsigned long flags;
4741 void *memptr;
4742 stlibrd_t *brdp;
4743 int brdnr, size, n;
4744
4745 #ifdef DEBUG
4746 printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4747 (int) fp, (int) buf, count, (int) offp);
4748 #endif
4749
4750 brdnr = iminor(fp->f_dentry->d_inode);
4751 if (brdnr >= stli_nrbrds)
4752 return(-ENODEV);
4753 brdp = stli_brds[brdnr];
4754 if (brdp == (stlibrd_t *) NULL)
4755 return(-ENODEV);
4756 if (brdp->state == 0)
4757 return(-ENODEV);
4758 if (fp->f_pos >= brdp->memsize)
4759 return(0);
4760
4761 size = MIN(count, (brdp->memsize - fp->f_pos));
4762
4763 save_flags(flags);
4764 cli();
4765 EBRDENABLE(brdp);
4766 while (size > 0) {
4767 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4768 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4769 if (copy_to_user(buf, memptr, n)) {
4770 count = -EFAULT;
4771 goto out;
4772 }
4773 fp->f_pos += n;
4774 buf += n;
4775 size -= n;
4776 }
4777 out:
4778 EBRDDISABLE(brdp);
4779 restore_flags(flags);
4780
4781 return(count);
4782 }
4783
4784 /*****************************************************************************/
4785
4786 /*
4787 * Code to handle an "staliomem" write operation. This device is the
4788 * contents of the board shared memory. It is used for down loading
4789 * the slave image (and debugging :-)
4790 */
4791
4792 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4793 {
4794 unsigned long flags;
4795 void *memptr;
4796 stlibrd_t *brdp;
4797 char __user *chbuf;
4798 int brdnr, size, n;
4799
4800 #ifdef DEBUG
4801 printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4802 (int) fp, (int) buf, count, (int) offp);
4803 #endif
4804
4805 brdnr = iminor(fp->f_dentry->d_inode);
4806 if (brdnr >= stli_nrbrds)
4807 return(-ENODEV);
4808 brdp = stli_brds[brdnr];
4809 if (brdp == (stlibrd_t *) NULL)
4810 return(-ENODEV);
4811 if (brdp->state == 0)
4812 return(-ENODEV);
4813 if (fp->f_pos >= brdp->memsize)
4814 return(0);
4815
4816 chbuf = (char __user *) buf;
4817 size = MIN(count, (brdp->memsize - fp->f_pos));
4818
4819 save_flags(flags);
4820 cli();
4821 EBRDENABLE(brdp);
4822 while (size > 0) {
4823 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4824 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4825 if (copy_from_user(memptr, chbuf, n)) {
4826 count = -EFAULT;
4827 goto out;
4828 }
4829 fp->f_pos += n;
4830 chbuf += n;
4831 size -= n;
4832 }
4833 out:
4834 EBRDDISABLE(brdp);
4835 restore_flags(flags);
4836
4837 return(count);
4838 }
4839
4840 /*****************************************************************************/
4841
4842 /*
4843 * Return the board stats structure to user app.
4844 */
4845
4846 static int stli_getbrdstats(combrd_t __user *bp)
4847 {
4848 stlibrd_t *brdp;
4849 int i;
4850
4851 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4852 return -EFAULT;
4853 if (stli_brdstats.brd >= STL_MAXBRDS)
4854 return(-ENODEV);
4855 brdp = stli_brds[stli_brdstats.brd];
4856 if (brdp == (stlibrd_t *) NULL)
4857 return(-ENODEV);
4858
4859 memset(&stli_brdstats, 0, sizeof(combrd_t));
4860 stli_brdstats.brd = brdp->brdnr;
4861 stli_brdstats.type = brdp->brdtype;
4862 stli_brdstats.hwid = 0;
4863 stli_brdstats.state = brdp->state;
4864 stli_brdstats.ioaddr = brdp->iobase;
4865 stli_brdstats.memaddr = brdp->memaddr;
4866 stli_brdstats.nrpanels = brdp->nrpanels;
4867 stli_brdstats.nrports = brdp->nrports;
4868 for (i = 0; (i < brdp->nrpanels); i++) {
4869 stli_brdstats.panels[i].panel = i;
4870 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4871 stli_brdstats.panels[i].nrports = brdp->panels[i];
4872 }
4873
4874 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4875 return -EFAULT;
4876 return(0);
4877 }
4878
4879 /*****************************************************************************/
4880
4881 /*
4882 * Resolve the referenced port number into a port struct pointer.
4883 */
4884
4885 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4886 {
4887 stlibrd_t *brdp;
4888 int i;
4889
4890 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4891 return((stliport_t *) NULL);
4892 brdp = stli_brds[brdnr];
4893 if (brdp == (stlibrd_t *) NULL)
4894 return((stliport_t *) NULL);
4895 for (i = 0; (i < panelnr); i++)
4896 portnr += brdp->panels[i];
4897 if ((portnr < 0) || (portnr >= brdp->nrports))
4898 return((stliport_t *) NULL);
4899 return(brdp->ports[portnr]);
4900 }
4901
4902 /*****************************************************************************/
4903
4904 /*
4905 * Return the port stats structure to user app. A NULL port struct
4906 * pointer passed in means that we need to find out from the app
4907 * what port to get stats for (used through board control device).
4908 */
4909
4910 static int stli_portcmdstats(stliport_t *portp)
4911 {
4912 unsigned long flags;
4913 stlibrd_t *brdp;
4914 int rc;
4915
4916 memset(&stli_comstats, 0, sizeof(comstats_t));
4917
4918 if (portp == (stliport_t *) NULL)
4919 return(-ENODEV);
4920 brdp = stli_brds[portp->brdnr];
4921 if (brdp == (stlibrd_t *) NULL)
4922 return(-ENODEV);
4923
4924 if (brdp->state & BST_STARTED) {
4925 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4926 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4927 return(rc);
4928 } else {
4929 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4930 }
4931
4932 stli_comstats.brd = portp->brdnr;
4933 stli_comstats.panel = portp->panelnr;
4934 stli_comstats.port = portp->portnr;
4935 stli_comstats.state = portp->state;
4936 stli_comstats.flags = portp->flags;
4937
4938 save_flags(flags);
4939 cli();
4940 if (portp->tty != (struct tty_struct *) NULL) {
4941 if (portp->tty->driver_data == portp) {
4942 stli_comstats.ttystate = portp->tty->flags;
4943 stli_comstats.rxbuffered = portp->tty->flip.count;
4944 if (portp->tty->termios != (struct termios *) NULL) {
4945 stli_comstats.cflags = portp->tty->termios->c_cflag;
4946 stli_comstats.iflags = portp->tty->termios->c_iflag;
4947 stli_comstats.oflags = portp->tty->termios->c_oflag;
4948 stli_comstats.lflags = portp->tty->termios->c_lflag;
4949 }
4950 }
4951 }
4952 restore_flags(flags);
4953
4954 stli_comstats.txtotal = stli_cdkstats.txchars;
4955 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4956 stli_comstats.txbuffered = stli_cdkstats.txringq;
4957 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4958 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4959 stli_comstats.rxparity = stli_cdkstats.parity;
4960 stli_comstats.rxframing = stli_cdkstats.framing;
4961 stli_comstats.rxlost = stli_cdkstats.ringover;
4962 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4963 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4964 stli_comstats.txxon = stli_cdkstats.txstart;
4965 stli_comstats.txxoff = stli_cdkstats.txstop;
4966 stli_comstats.rxxon = stli_cdkstats.rxstart;
4967 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4968 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4969 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4970 stli_comstats.modem = stli_cdkstats.dcdcnt;
4971 stli_comstats.hwid = stli_cdkstats.hwid;
4972 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4973
4974 return(0);
4975 }
4976
4977 /*****************************************************************************/
4978
4979 /*
4980 * Return the port stats structure to user app. A NULL port struct
4981 * pointer passed in means that we need to find out from the app
4982 * what port to get stats for (used through board control device).
4983 */
4984
4985 static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4986 {
4987 stlibrd_t *brdp;
4988 int rc;
4989
4990 if (!portp) {
4991 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4992 return -EFAULT;
4993 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4994 stli_comstats.port);
4995 if (!portp)
4996 return -ENODEV;
4997 }
4998
4999 brdp = stli_brds[portp->brdnr];
5000 if (!brdp)
5001 return -ENODEV;
5002
5003 if ((rc = stli_portcmdstats(portp)) < 0)
5004 return rc;
5005
5006 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
5007 -EFAULT : 0;
5008 }
5009
5010 /*****************************************************************************/
5011
5012 /*
5013 * Clear the port stats structure. We also return it zeroed out...
5014 */
5015
5016 static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
5017 {
5018 stlibrd_t *brdp;
5019 int rc;
5020
5021 if (!portp) {
5022 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5023 return -EFAULT;
5024 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5025 stli_comstats.port);
5026 if (!portp)
5027 return -ENODEV;
5028 }
5029
5030 brdp = stli_brds[portp->brdnr];
5031 if (!brdp)
5032 return -ENODEV;
5033
5034 if (brdp->state & BST_STARTED) {
5035 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5036 return rc;
5037 }
5038
5039 memset(&stli_comstats, 0, sizeof(comstats_t));
5040 stli_comstats.brd = portp->brdnr;
5041 stli_comstats.panel = portp->panelnr;
5042 stli_comstats.port = portp->portnr;
5043
5044 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5045 return -EFAULT;
5046 return 0;
5047 }
5048
5049 /*****************************************************************************/
5050
5051 /*
5052 * Return the entire driver ports structure to a user app.
5053 */
5054
5055 static int stli_getportstruct(stliport_t __user *arg)
5056 {
5057 stliport_t *portp;
5058
5059 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5060 return -EFAULT;
5061 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5062 stli_dummyport.portnr);
5063 if (!portp)
5064 return -ENODEV;
5065 if (copy_to_user(arg, portp, sizeof(stliport_t)))
5066 return -EFAULT;
5067 return 0;
5068 }
5069
5070 /*****************************************************************************/
5071
5072 /*
5073 * Return the entire driver board structure to a user app.
5074 */
5075
5076 static int stli_getbrdstruct(stlibrd_t __user *arg)
5077 {
5078 stlibrd_t *brdp;
5079
5080 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5081 return -EFAULT;
5082 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5083 return -ENODEV;
5084 brdp = stli_brds[stli_dummybrd.brdnr];
5085 if (!brdp)
5086 return -ENODEV;
5087 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5088 return -EFAULT;
5089 return 0;
5090 }
5091
5092 /*****************************************************************************/
5093
5094 /*
5095 * The "staliomem" device is also required to do some special operations on
5096 * the board. We need to be able to send an interrupt to the board,
5097 * reset it, and start/stop it.
5098 */
5099
5100 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5101 {
5102 stlibrd_t *brdp;
5103 int brdnr, rc, done;
5104 void __user *argp = (void __user *)arg;
5105
5106 #ifdef DEBUG
5107 printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5108 (int) ip, (int) fp, cmd, (int) arg);
5109 #endif
5110
5111 /*
5112 * First up handle the board independent ioctls.
5113 */
5114 done = 0;
5115 rc = 0;
5116
5117 switch (cmd) {
5118 case COM_GETPORTSTATS:
5119 rc = stli_getportstats(NULL, argp);
5120 done++;
5121 break;
5122 case COM_CLRPORTSTATS:
5123 rc = stli_clrportstats(NULL, argp);
5124 done++;
5125 break;
5126 case COM_GETBRDSTATS:
5127 rc = stli_getbrdstats(argp);
5128 done++;
5129 break;
5130 case COM_READPORT:
5131 rc = stli_getportstruct(argp);
5132 done++;
5133 break;
5134 case COM_READBOARD:
5135 rc = stli_getbrdstruct(argp);
5136 done++;
5137 break;
5138 }
5139
5140 if (done)
5141 return(rc);
5142
5143 /*
5144 * Now handle the board specific ioctls. These all depend on the
5145 * minor number of the device they were called from.
5146 */
5147 brdnr = iminor(ip);
5148 if (brdnr >= STL_MAXBRDS)
5149 return(-ENODEV);
5150 brdp = stli_brds[brdnr];
5151 if (!brdp)
5152 return(-ENODEV);
5153 if (brdp->state == 0)
5154 return(-ENODEV);
5155
5156 switch (cmd) {
5157 case STL_BINTR:
5158 EBRDINTR(brdp);
5159 break;
5160 case STL_BSTART:
5161 rc = stli_startbrd(brdp);
5162 break;
5163 case STL_BSTOP:
5164 brdp->state &= ~BST_STARTED;
5165 break;
5166 case STL_BRESET:
5167 brdp->state &= ~BST_STARTED;
5168 EBRDRESET(brdp);
5169 if (stli_shared == 0) {
5170 if (brdp->reenable != NULL)
5171 (* brdp->reenable)(brdp);
5172 }
5173 break;
5174 default:
5175 rc = -ENOIOCTLCMD;
5176 break;
5177 }
5178
5179 return(rc);
5180 }
5181
5182 static struct tty_operations stli_ops = {
5183 .open = stli_open,
5184 .close = stli_close,
5185 .write = stli_write,
5186 .put_char = stli_putchar,
5187 .flush_chars = stli_flushchars,
5188 .write_room = stli_writeroom,
5189 .chars_in_buffer = stli_charsinbuffer,
5190 .ioctl = stli_ioctl,
5191 .set_termios = stli_settermios,
5192 .throttle = stli_throttle,
5193 .unthrottle = stli_unthrottle,
5194 .stop = stli_stop,
5195 .start = stli_start,
5196 .hangup = stli_hangup,
5197 .flush_buffer = stli_flushbuffer,
5198 .break_ctl = stli_breakctl,
5199 .wait_until_sent = stli_waituntilsent,
5200 .send_xchar = stli_sendxchar,
5201 .read_proc = stli_readproc,
5202 .tiocmget = stli_tiocmget,
5203 .tiocmset = stli_tiocmset,
5204 };
5205
5206 /*****************************************************************************/
5207
5208 int __init stli_init(void)
5209 {
5210 int i;
5211 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5212
5213 stli_initbrds();
5214
5215 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5216 if (!stli_serial)
5217 return -ENOMEM;
5218
5219 /*
5220 * Allocate a temporary write buffer.
5221 */
5222 stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
5223 if (stli_tmpwritebuf == (char *) NULL)
5224 printk(KERN_ERR "STALLION: failed to allocate memory "
5225 "(size=%d)\n", STLI_TXBUFSIZE);
5226 stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
5227 if (stli_txcookbuf == (char *) NULL)
5228 printk(KERN_ERR "STALLION: failed to allocate memory "
5229 "(size=%d)\n", STLI_TXBUFSIZE);
5230
5231 /*
5232 * Set up a character driver for the shared memory region. We need this
5233 * to down load the slave code image. Also it is a useful debugging tool.
5234 */
5235 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5236 printk(KERN_ERR "STALLION: failed to register serial memory "
5237 "device\n");
5238
5239 devfs_mk_dir("staliomem");
5240 istallion_class = class_create(THIS_MODULE, "staliomem");
5241 for (i = 0; i < 4; i++) {
5242 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
5243 S_IFCHR | S_IRUSR | S_IWUSR,
5244 "staliomem/%d", i);
5245 class_device_create(istallion_class, NULL,
5246 MKDEV(STL_SIOMEMMAJOR, i),
5247 NULL, "staliomem%d", i);
5248 }
5249
5250 /*
5251 * Set up the tty driver structure and register us as a driver.
5252 */
5253 stli_serial->owner = THIS_MODULE;
5254 stli_serial->driver_name = stli_drvname;
5255 stli_serial->name = stli_serialname;
5256 stli_serial->major = STL_SERIALMAJOR;
5257 stli_serial->minor_start = 0;
5258 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5259 stli_serial->subtype = SERIAL_TYPE_NORMAL;
5260 stli_serial->init_termios = stli_deftermios;
5261 stli_serial->flags = TTY_DRIVER_REAL_RAW;
5262 tty_set_operations(stli_serial, &stli_ops);
5263
5264 if (tty_register_driver(stli_serial)) {
5265 put_tty_driver(stli_serial);
5266 printk(KERN_ERR "STALLION: failed to register serial driver\n");
5267 return -EBUSY;
5268 }
5269 return(0);
5270 }
5271
5272 /*****************************************************************************/
This page took 0.257305 seconds and 5 git commands to generate.