checkpatch: fix regressions in "fix handling of leading spaces"
[deliverable/linux.git] / drivers / char / keyboard.c
1 /*
2 * linux/drivers/char/keyboard.c
3 *
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
6 *
7 * Some additional features added by Christoph Niemann (ChN), March 1993
8 *
9 * Loadable keymaps by Risto Kankkunen, May 1993
10 *
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
15 *
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
17 *
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
21 *
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
25 */
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/consolemap.h>
30 #include <linux/module.h>
31 #include <linux/sched.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/mm.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/irq.h>
39
40 #include <linux/kbd_kern.h>
41 #include <linux/kbd_diacr.h>
42 #include <linux/vt_kern.h>
43 #include <linux/input.h>
44 #include <linux/reboot.h>
45 #include <linux/notifier.h>
46 #include <linux/jiffies.h>
47
48 extern void ctrl_alt_del(void);
49
50 /*
51 * Exported functions/variables
52 */
53
54 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55
56 /*
57 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
58 * This seems a good reason to start with NumLock off. On HIL keyboards
59 * of PARISC machines however there is no NumLock key and everyone expects the keypad
60 * to be used for numbers.
61 */
62
63 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
64 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
65 #else
66 #define KBD_DEFLEDS 0
67 #endif
68
69 #define KBD_DEFLOCK 0
70
71 void compute_shiftstate(void);
72
73 /*
74 * Handler Tables.
75 */
76
77 #define K_HANDLERS\
78 k_self, k_fn, k_spec, k_pad,\
79 k_dead, k_cons, k_cur, k_shift,\
80 k_meta, k_ascii, k_lock, k_lowercase,\
81 k_slock, k_dead2, k_brl, k_ignore
82
83 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
84 char up_flag);
85 static k_handler_fn K_HANDLERS;
86 static k_handler_fn *k_handler[16] = { K_HANDLERS };
87
88 #define FN_HANDLERS\
89 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
90 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
91 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
92 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
93 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
94
95 typedef void (fn_handler_fn)(struct vc_data *vc);
96 static fn_handler_fn FN_HANDLERS;
97 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
98
99 /*
100 * Variables exported for vt_ioctl.c
101 */
102
103 /* maximum values each key_handler can handle */
104 const int max_vals[] = {
105 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
106 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
107 255, NR_LOCK - 1, 255, NR_BRL - 1
108 };
109
110 const int NR_TYPES = ARRAY_SIZE(max_vals);
111
112 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113 EXPORT_SYMBOL_GPL(kbd_table);
114 static struct kbd_struct *kbd = kbd_table;
115
116 struct vt_spawn_console vt_spawn_con = {
117 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
118 .pid = NULL,
119 .sig = 0,
120 };
121
122 /*
123 * Variables exported for vt.c
124 */
125
126 int shift_state = 0;
127
128 /*
129 * Internal Data.
130 */
131
132 static struct input_handler kbd_handler;
133 static DEFINE_SPINLOCK(kbd_event_lock);
134 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
135 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
136 static bool dead_key_next;
137 static int npadch = -1; /* -1 or number assembled on pad */
138 static unsigned int diacr;
139 static char rep; /* flag telling character repeat */
140
141 static unsigned char ledstate = 0xff; /* undefined */
142 static unsigned char ledioctl;
143
144 static struct ledptr {
145 unsigned int *addr;
146 unsigned int mask;
147 unsigned char valid:1;
148 } ledptrs[3];
149
150 /*
151 * Notifier list for console keyboard events
152 */
153 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
154
155 int register_keyboard_notifier(struct notifier_block *nb)
156 {
157 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
158 }
159 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
160
161 int unregister_keyboard_notifier(struct notifier_block *nb)
162 {
163 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
164 }
165 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
166
167 /*
168 * Translation of scancodes to keycodes. We set them on only the first
169 * keyboard in the list that accepts the scancode and keycode.
170 * Explanation for not choosing the first attached keyboard anymore:
171 * USB keyboards for example have two event devices: one for all "normal"
172 * keys and one for extra function keys (like "volume up", "make coffee",
173 * etc.). So this means that scancodes for the extra function keys won't
174 * be valid for the first event device, but will be for the second.
175 */
176
177 struct getset_keycode_data {
178 struct input_keymap_entry ke;
179 int error;
180 };
181
182 static int getkeycode_helper(struct input_handle *handle, void *data)
183 {
184 struct getset_keycode_data *d = data;
185
186 d->error = input_get_keycode(handle->dev, &d->ke);
187
188 return d->error == 0; /* stop as soon as we successfully get one */
189 }
190
191 int getkeycode(unsigned int scancode)
192 {
193 struct getset_keycode_data d = {
194 .ke = {
195 .flags = 0,
196 .len = sizeof(scancode),
197 .keycode = 0,
198 },
199 .error = -ENODEV,
200 };
201
202 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
203
204 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
205
206 return d.error ?: d.ke.keycode;
207 }
208
209 static int setkeycode_helper(struct input_handle *handle, void *data)
210 {
211 struct getset_keycode_data *d = data;
212
213 d->error = input_set_keycode(handle->dev, &d->ke);
214
215 return d->error == 0; /* stop as soon as we successfully set one */
216 }
217
218 int setkeycode(unsigned int scancode, unsigned int keycode)
219 {
220 struct getset_keycode_data d = {
221 .ke = {
222 .flags = 0,
223 .len = sizeof(scancode),
224 .keycode = keycode,
225 },
226 .error = -ENODEV,
227 };
228
229 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
230
231 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
232
233 return d.error;
234 }
235
236 /*
237 * Making beeps and bells. Note that we prefer beeps to bells, but when
238 * shutting the sound off we do both.
239 */
240
241 static int kd_sound_helper(struct input_handle *handle, void *data)
242 {
243 unsigned int *hz = data;
244 struct input_dev *dev = handle->dev;
245
246 if (test_bit(EV_SND, dev->evbit)) {
247 if (test_bit(SND_TONE, dev->sndbit)) {
248 input_inject_event(handle, EV_SND, SND_TONE, *hz);
249 if (*hz)
250 return 0;
251 }
252 if (test_bit(SND_BELL, dev->sndbit))
253 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
254 }
255
256 return 0;
257 }
258
259 static void kd_nosound(unsigned long ignored)
260 {
261 static unsigned int zero;
262
263 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
264 }
265
266 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
267
268 void kd_mksound(unsigned int hz, unsigned int ticks)
269 {
270 del_timer_sync(&kd_mksound_timer);
271
272 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
273
274 if (hz && ticks)
275 mod_timer(&kd_mksound_timer, jiffies + ticks);
276 }
277 EXPORT_SYMBOL(kd_mksound);
278
279 /*
280 * Setting the keyboard rate.
281 */
282
283 static int kbd_rate_helper(struct input_handle *handle, void *data)
284 {
285 struct input_dev *dev = handle->dev;
286 struct kbd_repeat *rep = data;
287
288 if (test_bit(EV_REP, dev->evbit)) {
289
290 if (rep[0].delay > 0)
291 input_inject_event(handle,
292 EV_REP, REP_DELAY, rep[0].delay);
293 if (rep[0].period > 0)
294 input_inject_event(handle,
295 EV_REP, REP_PERIOD, rep[0].period);
296
297 rep[1].delay = dev->rep[REP_DELAY];
298 rep[1].period = dev->rep[REP_PERIOD];
299 }
300
301 return 0;
302 }
303
304 int kbd_rate(struct kbd_repeat *rep)
305 {
306 struct kbd_repeat data[2] = { *rep };
307
308 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
309 *rep = data[1]; /* Copy currently used settings */
310
311 return 0;
312 }
313
314 /*
315 * Helper Functions.
316 */
317 static void put_queue(struct vc_data *vc, int ch)
318 {
319 struct tty_struct *tty = vc->port.tty;
320
321 if (tty) {
322 tty_insert_flip_char(tty, ch, 0);
323 con_schedule_flip(tty);
324 }
325 }
326
327 static void puts_queue(struct vc_data *vc, char *cp)
328 {
329 struct tty_struct *tty = vc->port.tty;
330
331 if (!tty)
332 return;
333
334 while (*cp) {
335 tty_insert_flip_char(tty, *cp, 0);
336 cp++;
337 }
338 con_schedule_flip(tty);
339 }
340
341 static void applkey(struct vc_data *vc, int key, char mode)
342 {
343 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
344
345 buf[1] = (mode ? 'O' : '[');
346 buf[2] = key;
347 puts_queue(vc, buf);
348 }
349
350 /*
351 * Many other routines do put_queue, but I think either
352 * they produce ASCII, or they produce some user-assigned
353 * string, and in both cases we might assume that it is
354 * in utf-8 already.
355 */
356 static void to_utf8(struct vc_data *vc, uint c)
357 {
358 if (c < 0x80)
359 /* 0******* */
360 put_queue(vc, c);
361 else if (c < 0x800) {
362 /* 110***** 10****** */
363 put_queue(vc, 0xc0 | (c >> 6));
364 put_queue(vc, 0x80 | (c & 0x3f));
365 } else if (c < 0x10000) {
366 if (c >= 0xD800 && c < 0xE000)
367 return;
368 if (c == 0xFFFF)
369 return;
370 /* 1110**** 10****** 10****** */
371 put_queue(vc, 0xe0 | (c >> 12));
372 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
373 put_queue(vc, 0x80 | (c & 0x3f));
374 } else if (c < 0x110000) {
375 /* 11110*** 10****** 10****** 10****** */
376 put_queue(vc, 0xf0 | (c >> 18));
377 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
378 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
379 put_queue(vc, 0x80 | (c & 0x3f));
380 }
381 }
382
383 /*
384 * Called after returning from RAW mode or when changing consoles - recompute
385 * shift_down[] and shift_state from key_down[] maybe called when keymap is
386 * undefined, so that shiftkey release is seen
387 */
388 void compute_shiftstate(void)
389 {
390 unsigned int i, j, k, sym, val;
391
392 shift_state = 0;
393 memset(shift_down, 0, sizeof(shift_down));
394
395 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
396
397 if (!key_down[i])
398 continue;
399
400 k = i * BITS_PER_LONG;
401
402 for (j = 0; j < BITS_PER_LONG; j++, k++) {
403
404 if (!test_bit(k, key_down))
405 continue;
406
407 sym = U(key_maps[0][k]);
408 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
409 continue;
410
411 val = KVAL(sym);
412 if (val == KVAL(K_CAPSSHIFT))
413 val = KVAL(K_SHIFT);
414
415 shift_down[val]++;
416 shift_state |= (1 << val);
417 }
418 }
419 }
420
421 /*
422 * We have a combining character DIACR here, followed by the character CH.
423 * If the combination occurs in the table, return the corresponding value.
424 * Otherwise, if CH is a space or equals DIACR, return DIACR.
425 * Otherwise, conclude that DIACR was not combining after all,
426 * queue it and return CH.
427 */
428 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
429 {
430 unsigned int d = diacr;
431 unsigned int i;
432
433 diacr = 0;
434
435 if ((d & ~0xff) == BRL_UC_ROW) {
436 if ((ch & ~0xff) == BRL_UC_ROW)
437 return d | ch;
438 } else {
439 for (i = 0; i < accent_table_size; i++)
440 if (accent_table[i].diacr == d && accent_table[i].base == ch)
441 return accent_table[i].result;
442 }
443
444 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
445 return d;
446
447 if (kbd->kbdmode == VC_UNICODE)
448 to_utf8(vc, d);
449 else {
450 int c = conv_uni_to_8bit(d);
451 if (c != -1)
452 put_queue(vc, c);
453 }
454
455 return ch;
456 }
457
458 /*
459 * Special function handlers
460 */
461 static void fn_enter(struct vc_data *vc)
462 {
463 if (diacr) {
464 if (kbd->kbdmode == VC_UNICODE)
465 to_utf8(vc, diacr);
466 else {
467 int c = conv_uni_to_8bit(diacr);
468 if (c != -1)
469 put_queue(vc, c);
470 }
471 diacr = 0;
472 }
473
474 put_queue(vc, 13);
475 if (vc_kbd_mode(kbd, VC_CRLF))
476 put_queue(vc, 10);
477 }
478
479 static void fn_caps_toggle(struct vc_data *vc)
480 {
481 if (rep)
482 return;
483
484 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
485 }
486
487 static void fn_caps_on(struct vc_data *vc)
488 {
489 if (rep)
490 return;
491
492 set_vc_kbd_led(kbd, VC_CAPSLOCK);
493 }
494
495 static void fn_show_ptregs(struct vc_data *vc)
496 {
497 struct pt_regs *regs = get_irq_regs();
498
499 if (regs)
500 show_regs(regs);
501 }
502
503 static void fn_hold(struct vc_data *vc)
504 {
505 struct tty_struct *tty = vc->port.tty;
506
507 if (rep || !tty)
508 return;
509
510 /*
511 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
512 * these routines are also activated by ^S/^Q.
513 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
514 */
515 if (tty->stopped)
516 start_tty(tty);
517 else
518 stop_tty(tty);
519 }
520
521 static void fn_num(struct vc_data *vc)
522 {
523 if (vc_kbd_mode(kbd, VC_APPLIC))
524 applkey(vc, 'P', 1);
525 else
526 fn_bare_num(vc);
527 }
528
529 /*
530 * Bind this to Shift-NumLock if you work in application keypad mode
531 * but want to be able to change the NumLock flag.
532 * Bind this to NumLock if you prefer that the NumLock key always
533 * changes the NumLock flag.
534 */
535 static void fn_bare_num(struct vc_data *vc)
536 {
537 if (!rep)
538 chg_vc_kbd_led(kbd, VC_NUMLOCK);
539 }
540
541 static void fn_lastcons(struct vc_data *vc)
542 {
543 /* switch to the last used console, ChN */
544 set_console(last_console);
545 }
546
547 static void fn_dec_console(struct vc_data *vc)
548 {
549 int i, cur = fg_console;
550
551 /* Currently switching? Queue this next switch relative to that. */
552 if (want_console != -1)
553 cur = want_console;
554
555 for (i = cur - 1; i != cur; i--) {
556 if (i == -1)
557 i = MAX_NR_CONSOLES - 1;
558 if (vc_cons_allocated(i))
559 break;
560 }
561 set_console(i);
562 }
563
564 static void fn_inc_console(struct vc_data *vc)
565 {
566 int i, cur = fg_console;
567
568 /* Currently switching? Queue this next switch relative to that. */
569 if (want_console != -1)
570 cur = want_console;
571
572 for (i = cur+1; i != cur; i++) {
573 if (i == MAX_NR_CONSOLES)
574 i = 0;
575 if (vc_cons_allocated(i))
576 break;
577 }
578 set_console(i);
579 }
580
581 static void fn_send_intr(struct vc_data *vc)
582 {
583 struct tty_struct *tty = vc->port.tty;
584
585 if (!tty)
586 return;
587 tty_insert_flip_char(tty, 0, TTY_BREAK);
588 con_schedule_flip(tty);
589 }
590
591 static void fn_scroll_forw(struct vc_data *vc)
592 {
593 scrollfront(vc, 0);
594 }
595
596 static void fn_scroll_back(struct vc_data *vc)
597 {
598 scrollback(vc, 0);
599 }
600
601 static void fn_show_mem(struct vc_data *vc)
602 {
603 show_mem();
604 }
605
606 static void fn_show_state(struct vc_data *vc)
607 {
608 show_state();
609 }
610
611 static void fn_boot_it(struct vc_data *vc)
612 {
613 ctrl_alt_del();
614 }
615
616 static void fn_compose(struct vc_data *vc)
617 {
618 dead_key_next = true;
619 }
620
621 static void fn_spawn_con(struct vc_data *vc)
622 {
623 spin_lock(&vt_spawn_con.lock);
624 if (vt_spawn_con.pid)
625 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
626 put_pid(vt_spawn_con.pid);
627 vt_spawn_con.pid = NULL;
628 }
629 spin_unlock(&vt_spawn_con.lock);
630 }
631
632 static void fn_SAK(struct vc_data *vc)
633 {
634 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
635 schedule_work(SAK_work);
636 }
637
638 static void fn_null(struct vc_data *vc)
639 {
640 compute_shiftstate();
641 }
642
643 /*
644 * Special key handlers
645 */
646 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
647 {
648 }
649
650 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
651 {
652 if (up_flag)
653 return;
654 if (value >= ARRAY_SIZE(fn_handler))
655 return;
656 if ((kbd->kbdmode == VC_RAW ||
657 kbd->kbdmode == VC_MEDIUMRAW) &&
658 value != KVAL(K_SAK))
659 return; /* SAK is allowed even in raw mode */
660 fn_handler[value](vc);
661 }
662
663 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
664 {
665 pr_err("k_lowercase was called - impossible\n");
666 }
667
668 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
669 {
670 if (up_flag)
671 return; /* no action, if this is a key release */
672
673 if (diacr)
674 value = handle_diacr(vc, value);
675
676 if (dead_key_next) {
677 dead_key_next = false;
678 diacr = value;
679 return;
680 }
681 if (kbd->kbdmode == VC_UNICODE)
682 to_utf8(vc, value);
683 else {
684 int c = conv_uni_to_8bit(value);
685 if (c != -1)
686 put_queue(vc, c);
687 }
688 }
689
690 /*
691 * Handle dead key. Note that we now may have several
692 * dead keys modifying the same character. Very useful
693 * for Vietnamese.
694 */
695 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
696 {
697 if (up_flag)
698 return;
699
700 diacr = (diacr ? handle_diacr(vc, value) : value);
701 }
702
703 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
704 {
705 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
706 }
707
708 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
709 {
710 k_deadunicode(vc, value, up_flag);
711 }
712
713 /*
714 * Obsolete - for backwards compatibility only
715 */
716 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
717 {
718 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
719
720 k_deadunicode(vc, ret_diacr[value], up_flag);
721 }
722
723 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
724 {
725 if (up_flag)
726 return;
727
728 set_console(value);
729 }
730
731 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
732 {
733 if (up_flag)
734 return;
735
736 if ((unsigned)value < ARRAY_SIZE(func_table)) {
737 if (func_table[value])
738 puts_queue(vc, func_table[value]);
739 } else
740 pr_err("k_fn called with value=%d\n", value);
741 }
742
743 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
744 {
745 static const char cur_chars[] = "BDCA";
746
747 if (up_flag)
748 return;
749
750 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
751 }
752
753 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
754 {
755 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
756 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
757
758 if (up_flag)
759 return; /* no action, if this is a key release */
760
761 /* kludge... shift forces cursor/number keys */
762 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
763 applkey(vc, app_map[value], 1);
764 return;
765 }
766
767 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
768
769 switch (value) {
770 case KVAL(K_PCOMMA):
771 case KVAL(K_PDOT):
772 k_fn(vc, KVAL(K_REMOVE), 0);
773 return;
774 case KVAL(K_P0):
775 k_fn(vc, KVAL(K_INSERT), 0);
776 return;
777 case KVAL(K_P1):
778 k_fn(vc, KVAL(K_SELECT), 0);
779 return;
780 case KVAL(K_P2):
781 k_cur(vc, KVAL(K_DOWN), 0);
782 return;
783 case KVAL(K_P3):
784 k_fn(vc, KVAL(K_PGDN), 0);
785 return;
786 case KVAL(K_P4):
787 k_cur(vc, KVAL(K_LEFT), 0);
788 return;
789 case KVAL(K_P6):
790 k_cur(vc, KVAL(K_RIGHT), 0);
791 return;
792 case KVAL(K_P7):
793 k_fn(vc, KVAL(K_FIND), 0);
794 return;
795 case KVAL(K_P8):
796 k_cur(vc, KVAL(K_UP), 0);
797 return;
798 case KVAL(K_P9):
799 k_fn(vc, KVAL(K_PGUP), 0);
800 return;
801 case KVAL(K_P5):
802 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
803 return;
804 }
805 }
806
807 put_queue(vc, pad_chars[value]);
808 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
809 put_queue(vc, 10);
810 }
811
812 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
813 {
814 int old_state = shift_state;
815
816 if (rep)
817 return;
818 /*
819 * Mimic typewriter:
820 * a CapsShift key acts like Shift but undoes CapsLock
821 */
822 if (value == KVAL(K_CAPSSHIFT)) {
823 value = KVAL(K_SHIFT);
824 if (!up_flag)
825 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
826 }
827
828 if (up_flag) {
829 /*
830 * handle the case that two shift or control
831 * keys are depressed simultaneously
832 */
833 if (shift_down[value])
834 shift_down[value]--;
835 } else
836 shift_down[value]++;
837
838 if (shift_down[value])
839 shift_state |= (1 << value);
840 else
841 shift_state &= ~(1 << value);
842
843 /* kludge */
844 if (up_flag && shift_state != old_state && npadch != -1) {
845 if (kbd->kbdmode == VC_UNICODE)
846 to_utf8(vc, npadch);
847 else
848 put_queue(vc, npadch & 0xff);
849 npadch = -1;
850 }
851 }
852
853 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
854 {
855 if (up_flag)
856 return;
857
858 if (vc_kbd_mode(kbd, VC_META)) {
859 put_queue(vc, '\033');
860 put_queue(vc, value);
861 } else
862 put_queue(vc, value | 0x80);
863 }
864
865 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
866 {
867 int base;
868
869 if (up_flag)
870 return;
871
872 if (value < 10) {
873 /* decimal input of code, while Alt depressed */
874 base = 10;
875 } else {
876 /* hexadecimal input of code, while AltGr depressed */
877 value -= 10;
878 base = 16;
879 }
880
881 if (npadch == -1)
882 npadch = value;
883 else
884 npadch = npadch * base + value;
885 }
886
887 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
888 {
889 if (up_flag || rep)
890 return;
891
892 chg_vc_kbd_lock(kbd, value);
893 }
894
895 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
896 {
897 k_shift(vc, value, up_flag);
898 if (up_flag || rep)
899 return;
900
901 chg_vc_kbd_slock(kbd, value);
902 /* try to make Alt, oops, AltGr and such work */
903 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
904 kbd->slockstate = 0;
905 chg_vc_kbd_slock(kbd, value);
906 }
907 }
908
909 /* by default, 300ms interval for combination release */
910 static unsigned brl_timeout = 300;
911 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
912 module_param(brl_timeout, uint, 0644);
913
914 static unsigned brl_nbchords = 1;
915 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
916 module_param(brl_nbchords, uint, 0644);
917
918 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
919 {
920 static unsigned long chords;
921 static unsigned committed;
922
923 if (!brl_nbchords)
924 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
925 else {
926 committed |= pattern;
927 chords++;
928 if (chords == brl_nbchords) {
929 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
930 chords = 0;
931 committed = 0;
932 }
933 }
934 }
935
936 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
937 {
938 static unsigned pressed, committing;
939 static unsigned long releasestart;
940
941 if (kbd->kbdmode != VC_UNICODE) {
942 if (!up_flag)
943 pr_warning("keyboard mode must be unicode for braille patterns\n");
944 return;
945 }
946
947 if (!value) {
948 k_unicode(vc, BRL_UC_ROW, up_flag);
949 return;
950 }
951
952 if (value > 8)
953 return;
954
955 if (!up_flag) {
956 pressed |= 1 << (value - 1);
957 if (!brl_timeout)
958 committing = pressed;
959 } else if (brl_timeout) {
960 if (!committing ||
961 time_after(jiffies,
962 releasestart + msecs_to_jiffies(brl_timeout))) {
963 committing = pressed;
964 releasestart = jiffies;
965 }
966 pressed &= ~(1 << (value - 1));
967 if (!pressed && committing) {
968 k_brlcommit(vc, committing, 0);
969 committing = 0;
970 }
971 } else {
972 if (committing) {
973 k_brlcommit(vc, committing, 0);
974 committing = 0;
975 }
976 pressed &= ~(1 << (value - 1));
977 }
978 }
979
980 /*
981 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
982 * or (ii) whatever pattern of lights people want to show using KDSETLED,
983 * or (iii) specified bits of specified words in kernel memory.
984 */
985 unsigned char getledstate(void)
986 {
987 return ledstate;
988 }
989
990 void setledstate(struct kbd_struct *kbd, unsigned int led)
991 {
992 if (!(led & ~7)) {
993 ledioctl = led;
994 kbd->ledmode = LED_SHOW_IOCTL;
995 } else
996 kbd->ledmode = LED_SHOW_FLAGS;
997
998 set_leds();
999 }
1000
1001 static inline unsigned char getleds(void)
1002 {
1003 struct kbd_struct *kbd = kbd_table + fg_console;
1004 unsigned char leds;
1005 int i;
1006
1007 if (kbd->ledmode == LED_SHOW_IOCTL)
1008 return ledioctl;
1009
1010 leds = kbd->ledflagstate;
1011
1012 if (kbd->ledmode == LED_SHOW_MEM) {
1013 for (i = 0; i < 3; i++)
1014 if (ledptrs[i].valid) {
1015 if (*ledptrs[i].addr & ledptrs[i].mask)
1016 leds |= (1 << i);
1017 else
1018 leds &= ~(1 << i);
1019 }
1020 }
1021 return leds;
1022 }
1023
1024 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1025 {
1026 unsigned char leds = *(unsigned char *)data;
1027
1028 if (test_bit(EV_LED, handle->dev->evbit)) {
1029 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1030 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1031 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1032 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1033 }
1034
1035 return 0;
1036 }
1037
1038 /*
1039 * This is the tasklet that updates LED state on all keyboards
1040 * attached to the box. The reason we use tasklet is that we
1041 * need to handle the scenario when keyboard handler is not
1042 * registered yet but we already getting updates form VT to
1043 * update led state.
1044 */
1045 static void kbd_bh(unsigned long dummy)
1046 {
1047 unsigned char leds = getleds();
1048
1049 if (leds != ledstate) {
1050 input_handler_for_each_handle(&kbd_handler, &leds,
1051 kbd_update_leds_helper);
1052 ledstate = leds;
1053 }
1054 }
1055
1056 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1057
1058 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1059 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1060 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1061 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1062 defined(CONFIG_AVR32)
1063
1064 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1065 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1066
1067 static const unsigned short x86_keycodes[256] =
1068 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1069 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1070 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1071 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1072 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1073 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1074 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1075 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1076 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1077 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1078 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1079 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1080 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1081 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1082 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1083
1084 #ifdef CONFIG_SPARC
1085 static int sparc_l1_a_state;
1086 extern void sun_do_break(void);
1087 #endif
1088
1089 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1090 unsigned char up_flag)
1091 {
1092 int code;
1093
1094 switch (keycode) {
1095
1096 case KEY_PAUSE:
1097 put_queue(vc, 0xe1);
1098 put_queue(vc, 0x1d | up_flag);
1099 put_queue(vc, 0x45 | up_flag);
1100 break;
1101
1102 case KEY_HANGEUL:
1103 if (!up_flag)
1104 put_queue(vc, 0xf2);
1105 break;
1106
1107 case KEY_HANJA:
1108 if (!up_flag)
1109 put_queue(vc, 0xf1);
1110 break;
1111
1112 case KEY_SYSRQ:
1113 /*
1114 * Real AT keyboards (that's what we're trying
1115 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1116 * pressing PrtSc/SysRq alone, but simply 0x54
1117 * when pressing Alt+PrtSc/SysRq.
1118 */
1119 if (test_bit(KEY_LEFTALT, key_down) ||
1120 test_bit(KEY_RIGHTALT, key_down)) {
1121 put_queue(vc, 0x54 | up_flag);
1122 } else {
1123 put_queue(vc, 0xe0);
1124 put_queue(vc, 0x2a | up_flag);
1125 put_queue(vc, 0xe0);
1126 put_queue(vc, 0x37 | up_flag);
1127 }
1128 break;
1129
1130 default:
1131 if (keycode > 255)
1132 return -1;
1133
1134 code = x86_keycodes[keycode];
1135 if (!code)
1136 return -1;
1137
1138 if (code & 0x100)
1139 put_queue(vc, 0xe0);
1140 put_queue(vc, (code & 0x7f) | up_flag);
1141
1142 break;
1143 }
1144
1145 return 0;
1146 }
1147
1148 #else
1149
1150 #define HW_RAW(dev) 0
1151
1152 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1153 {
1154 if (keycode > 127)
1155 return -1;
1156
1157 put_queue(vc, keycode | up_flag);
1158 return 0;
1159 }
1160 #endif
1161
1162 static void kbd_rawcode(unsigned char data)
1163 {
1164 struct vc_data *vc = vc_cons[fg_console].d;
1165
1166 kbd = kbd_table + vc->vc_num;
1167 if (kbd->kbdmode == VC_RAW)
1168 put_queue(vc, data);
1169 }
1170
1171 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1172 {
1173 struct vc_data *vc = vc_cons[fg_console].d;
1174 unsigned short keysym, *key_map;
1175 unsigned char type;
1176 bool raw_mode;
1177 struct tty_struct *tty;
1178 int shift_final;
1179 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1180 int rc;
1181
1182 tty = vc->port.tty;
1183
1184 if (tty && (!tty->driver_data)) {
1185 /* No driver data? Strange. Okay we fix it then. */
1186 tty->driver_data = vc;
1187 }
1188
1189 kbd = kbd_table + vc->vc_num;
1190
1191 #ifdef CONFIG_SPARC
1192 if (keycode == KEY_STOP)
1193 sparc_l1_a_state = down;
1194 #endif
1195
1196 rep = (down == 2);
1197
1198 raw_mode = (kbd->kbdmode == VC_RAW);
1199 if (raw_mode && !hw_raw)
1200 if (emulate_raw(vc, keycode, !down << 7))
1201 if (keycode < BTN_MISC && printk_ratelimit())
1202 pr_warning("can't emulate rawmode for keycode %d\n",
1203 keycode);
1204
1205 #ifdef CONFIG_SPARC
1206 if (keycode == KEY_A && sparc_l1_a_state) {
1207 sparc_l1_a_state = false;
1208 sun_do_break();
1209 }
1210 #endif
1211
1212 if (kbd->kbdmode == VC_MEDIUMRAW) {
1213 /*
1214 * This is extended medium raw mode, with keys above 127
1215 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1216 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1217 * interfere with anything else. The two bytes after 0 will
1218 * always have the up flag set not to interfere with older
1219 * applications. This allows for 16384 different keycodes,
1220 * which should be enough.
1221 */
1222 if (keycode < 128) {
1223 put_queue(vc, keycode | (!down << 7));
1224 } else {
1225 put_queue(vc, !down << 7);
1226 put_queue(vc, (keycode >> 7) | 0x80);
1227 put_queue(vc, keycode | 0x80);
1228 }
1229 raw_mode = true;
1230 }
1231
1232 if (down)
1233 set_bit(keycode, key_down);
1234 else
1235 clear_bit(keycode, key_down);
1236
1237 if (rep &&
1238 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1239 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1240 /*
1241 * Don't repeat a key if the input buffers are not empty and the
1242 * characters get aren't echoed locally. This makes key repeat
1243 * usable with slow applications and under heavy loads.
1244 */
1245 return;
1246 }
1247
1248 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1249 param.ledstate = kbd->ledflagstate;
1250 key_map = key_maps[shift_final];
1251
1252 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1253 KBD_KEYCODE, &param);
1254 if (rc == NOTIFY_STOP || !key_map) {
1255 atomic_notifier_call_chain(&keyboard_notifier_list,
1256 KBD_UNBOUND_KEYCODE, &param);
1257 compute_shiftstate();
1258 kbd->slockstate = 0;
1259 return;
1260 }
1261
1262 if (keycode < NR_KEYS)
1263 keysym = key_map[keycode];
1264 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1265 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1266 else
1267 return;
1268
1269 type = KTYP(keysym);
1270
1271 if (type < 0xf0) {
1272 param.value = keysym;
1273 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1274 KBD_UNICODE, &param);
1275 if (rc != NOTIFY_STOP)
1276 if (down && !raw_mode)
1277 to_utf8(vc, keysym);
1278 return;
1279 }
1280
1281 type -= 0xf0;
1282
1283 if (type == KT_LETTER) {
1284 type = KT_LATIN;
1285 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1286 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1287 if (key_map)
1288 keysym = key_map[keycode];
1289 }
1290 }
1291
1292 param.value = keysym;
1293 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1294 KBD_KEYSYM, &param);
1295 if (rc == NOTIFY_STOP)
1296 return;
1297
1298 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1299 return;
1300
1301 (*k_handler[type])(vc, keysym & 0xff, !down);
1302
1303 param.ledstate = kbd->ledflagstate;
1304 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1305
1306 if (type != KT_SLOCK)
1307 kbd->slockstate = 0;
1308 }
1309
1310 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1311 unsigned int event_code, int value)
1312 {
1313 /* We are called with interrupts disabled, just take the lock */
1314 spin_lock(&kbd_event_lock);
1315
1316 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1317 kbd_rawcode(value);
1318 if (event_type == EV_KEY)
1319 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1320
1321 spin_unlock(&kbd_event_lock);
1322
1323 tasklet_schedule(&keyboard_tasklet);
1324 do_poke_blanked_console = 1;
1325 schedule_console_callback();
1326 }
1327
1328 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1329 {
1330 int i;
1331
1332 if (test_bit(EV_SND, dev->evbit))
1333 return true;
1334
1335 if (test_bit(EV_KEY, dev->evbit)) {
1336 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1337 if (test_bit(i, dev->keybit))
1338 return true;
1339 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1340 if (test_bit(i, dev->keybit))
1341 return true;
1342 }
1343
1344 return false;
1345 }
1346
1347 /*
1348 * When a keyboard (or other input device) is found, the kbd_connect
1349 * function is called. The function then looks at the device, and if it
1350 * likes it, it can open it and get events from it. In this (kbd_connect)
1351 * function, we should decide which VT to bind that keyboard to initially.
1352 */
1353 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1354 const struct input_device_id *id)
1355 {
1356 struct input_handle *handle;
1357 int error;
1358
1359 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1360 if (!handle)
1361 return -ENOMEM;
1362
1363 handle->dev = dev;
1364 handle->handler = handler;
1365 handle->name = "kbd";
1366
1367 error = input_register_handle(handle);
1368 if (error)
1369 goto err_free_handle;
1370
1371 error = input_open_device(handle);
1372 if (error)
1373 goto err_unregister_handle;
1374
1375 return 0;
1376
1377 err_unregister_handle:
1378 input_unregister_handle(handle);
1379 err_free_handle:
1380 kfree(handle);
1381 return error;
1382 }
1383
1384 static void kbd_disconnect(struct input_handle *handle)
1385 {
1386 input_close_device(handle);
1387 input_unregister_handle(handle);
1388 kfree(handle);
1389 }
1390
1391 /*
1392 * Start keyboard handler on the new keyboard by refreshing LED state to
1393 * match the rest of the system.
1394 */
1395 static void kbd_start(struct input_handle *handle)
1396 {
1397 tasklet_disable(&keyboard_tasklet);
1398
1399 if (ledstate != 0xff)
1400 kbd_update_leds_helper(handle, &ledstate);
1401
1402 tasklet_enable(&keyboard_tasklet);
1403 }
1404
1405 static const struct input_device_id kbd_ids[] = {
1406 {
1407 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1408 .evbit = { BIT_MASK(EV_KEY) },
1409 },
1410
1411 {
1412 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1413 .evbit = { BIT_MASK(EV_SND) },
1414 },
1415
1416 { }, /* Terminating entry */
1417 };
1418
1419 MODULE_DEVICE_TABLE(input, kbd_ids);
1420
1421 static struct input_handler kbd_handler = {
1422 .event = kbd_event,
1423 .match = kbd_match,
1424 .connect = kbd_connect,
1425 .disconnect = kbd_disconnect,
1426 .start = kbd_start,
1427 .name = "kbd",
1428 .id_table = kbd_ids,
1429 };
1430
1431 int __init kbd_init(void)
1432 {
1433 int i;
1434 int error;
1435
1436 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1437 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1438 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1439 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1440 kbd_table[i].lockstate = KBD_DEFLOCK;
1441 kbd_table[i].slockstate = 0;
1442 kbd_table[i].modeflags = KBD_DEFMODE;
1443 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1444 }
1445
1446 error = input_register_handler(&kbd_handler);
1447 if (error)
1448 return error;
1449
1450 tasklet_enable(&keyboard_tasklet);
1451 tasklet_schedule(&keyboard_tasklet);
1452
1453 return 0;
1454 }
This page took 0.084931 seconds and 5 git commands to generate.