Merge branch 'x86-64'
[deliverable/linux.git] / drivers / char / keyboard.c
1 /*
2 * linux/drivers/char/keyboard.c
3 *
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
6 *
7 * Some additional features added by Christoph Niemann (ChN), March 1993
8 *
9 * Loadable keymaps by Risto Kankkunen, May 1993
10 *
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
15 *
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
17 *
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
21 *
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
25 */
26
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36
37 #include <linux/kbd_kern.h>
38 #include <linux/kbd_diacr.h>
39 #include <linux/vt_kern.h>
40 #include <linux/sysrq.h>
41 #include <linux/input.h>
42 #include <linux/reboot.h>
43
44 static void kbd_disconnect(struct input_handle *handle);
45 extern void ctrl_alt_del(void);
46
47 /*
48 * Exported functions/variables
49 */
50
51 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
52
53 /*
54 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
55 * This seems a good reason to start with NumLock off. On HIL keyboards
56 * of PARISC machines however there is no NumLock key and everyone expects the keypad
57 * to be used for numbers.
58 */
59
60 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
61 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
62 #else
63 #define KBD_DEFLEDS 0
64 #endif
65
66 #define KBD_DEFLOCK 0
67
68 void compute_shiftstate(void);
69
70 /*
71 * Handler Tables.
72 */
73
74 #define K_HANDLERS\
75 k_self, k_fn, k_spec, k_pad,\
76 k_dead, k_cons, k_cur, k_shift,\
77 k_meta, k_ascii, k_lock, k_lowercase,\
78 k_slock, k_dead2, k_brl, k_ignore
79
80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 char up_flag, struct pt_regs *regs);
82 static k_handler_fn K_HANDLERS;
83 static k_handler_fn *k_handler[16] = { K_HANDLERS };
84
85 #define FN_HANDLERS\
86 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
87 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
88 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
89 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
90 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
91
92 typedef void (fn_handler_fn)(struct vc_data *vc, struct pt_regs *regs);
93 static fn_handler_fn FN_HANDLERS;
94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95
96 /*
97 * Variables exported for vt_ioctl.c
98 */
99
100 /* maximum values each key_handler can handle */
101 const int max_vals[] = {
102 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
103 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
104 255, NR_LOCK - 1, 255, NR_BRL - 1
105 };
106
107 const int NR_TYPES = ARRAY_SIZE(max_vals);
108
109 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
110 static struct kbd_struct *kbd = kbd_table;
111 static struct kbd_struct kbd0;
112
113 int spawnpid, spawnsig;
114
115 /*
116 * Variables exported for vt.c
117 */
118
119 int shift_state = 0;
120
121 /*
122 * Internal Data.
123 */
124
125 static struct input_handler kbd_handler;
126 static unsigned long key_down[NBITS(KEY_MAX)]; /* keyboard key bitmap */
127 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
128 static int dead_key_next;
129 static int npadch = -1; /* -1 or number assembled on pad */
130 static unsigned int diacr;
131 static char rep; /* flag telling character repeat */
132
133 static unsigned char ledstate = 0xff; /* undefined */
134 static unsigned char ledioctl;
135
136 static struct ledptr {
137 unsigned int *addr;
138 unsigned int mask;
139 unsigned char valid:1;
140 } ledptrs[3];
141
142 /* Simple translation table for the SysRq keys */
143
144 #ifdef CONFIG_MAGIC_SYSRQ
145 unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
146 "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
147 "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
148 "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
149 "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
150 "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
151 "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
152 "\r\000/"; /* 0x60 - 0x6f */
153 static int sysrq_down;
154 static int sysrq_alt_use;
155 #endif
156 static int sysrq_alt;
157
158 /*
159 * Translation of scancodes to keycodes. We set them on only the first attached
160 * keyboard - for per-keyboard setting, /dev/input/event is more useful.
161 */
162 int getkeycode(unsigned int scancode)
163 {
164 struct list_head *node;
165 struct input_dev *dev = NULL;
166
167 list_for_each(node, &kbd_handler.h_list) {
168 struct input_handle *handle = to_handle_h(node);
169 if (handle->dev->keycodesize) {
170 dev = handle->dev;
171 break;
172 }
173 }
174
175 if (!dev)
176 return -ENODEV;
177
178 if (scancode >= dev->keycodemax)
179 return -EINVAL;
180
181 return INPUT_KEYCODE(dev, scancode);
182 }
183
184 int setkeycode(unsigned int scancode, unsigned int keycode)
185 {
186 struct list_head *node;
187 struct input_dev *dev = NULL;
188 unsigned int i, oldkey;
189
190 list_for_each(node, &kbd_handler.h_list) {
191 struct input_handle *handle = to_handle_h(node);
192 if (handle->dev->keycodesize) {
193 dev = handle->dev;
194 break;
195 }
196 }
197
198 if (!dev)
199 return -ENODEV;
200
201 if (scancode >= dev->keycodemax)
202 return -EINVAL;
203 if (keycode < 0 || keycode > KEY_MAX)
204 return -EINVAL;
205 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
206 return -EINVAL;
207
208 oldkey = SET_INPUT_KEYCODE(dev, scancode, keycode);
209
210 clear_bit(oldkey, dev->keybit);
211 set_bit(keycode, dev->keybit);
212
213 for (i = 0; i < dev->keycodemax; i++)
214 if (INPUT_KEYCODE(dev,i) == oldkey)
215 set_bit(oldkey, dev->keybit);
216
217 return 0;
218 }
219
220 /*
221 * Making beeps and bells.
222 */
223 static void kd_nosound(unsigned long ignored)
224 {
225 struct list_head *node;
226
227 list_for_each(node,&kbd_handler.h_list) {
228 struct input_handle *handle = to_handle_h(node);
229 if (test_bit(EV_SND, handle->dev->evbit)) {
230 if (test_bit(SND_TONE, handle->dev->sndbit))
231 input_event(handle->dev, EV_SND, SND_TONE, 0);
232 if (test_bit(SND_BELL, handle->dev->sndbit))
233 input_event(handle->dev, EV_SND, SND_BELL, 0);
234 }
235 }
236 }
237
238 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
239
240 void kd_mksound(unsigned int hz, unsigned int ticks)
241 {
242 struct list_head *node;
243
244 del_timer(&kd_mksound_timer);
245
246 if (hz) {
247 list_for_each_prev(node, &kbd_handler.h_list) {
248 struct input_handle *handle = to_handle_h(node);
249 if (test_bit(EV_SND, handle->dev->evbit)) {
250 if (test_bit(SND_TONE, handle->dev->sndbit)) {
251 input_event(handle->dev, EV_SND, SND_TONE, hz);
252 break;
253 }
254 if (test_bit(SND_BELL, handle->dev->sndbit)) {
255 input_event(handle->dev, EV_SND, SND_BELL, 1);
256 break;
257 }
258 }
259 }
260 if (ticks)
261 mod_timer(&kd_mksound_timer, jiffies + ticks);
262 } else
263 kd_nosound(0);
264 }
265
266 /*
267 * Setting the keyboard rate.
268 */
269
270 int kbd_rate(struct kbd_repeat *rep)
271 {
272 struct list_head *node;
273 unsigned int d = 0;
274 unsigned int p = 0;
275
276 list_for_each(node,&kbd_handler.h_list) {
277 struct input_handle *handle = to_handle_h(node);
278 struct input_dev *dev = handle->dev;
279
280 if (test_bit(EV_REP, dev->evbit)) {
281 if (rep->delay > 0)
282 input_event(dev, EV_REP, REP_DELAY, rep->delay);
283 if (rep->period > 0)
284 input_event(dev, EV_REP, REP_PERIOD, rep->period);
285 d = dev->rep[REP_DELAY];
286 p = dev->rep[REP_PERIOD];
287 }
288 }
289 rep->delay = d;
290 rep->period = p;
291 return 0;
292 }
293
294 /*
295 * Helper Functions.
296 */
297 static void put_queue(struct vc_data *vc, int ch)
298 {
299 struct tty_struct *tty = vc->vc_tty;
300
301 if (tty) {
302 tty_insert_flip_char(tty, ch, 0);
303 con_schedule_flip(tty);
304 }
305 }
306
307 static void puts_queue(struct vc_data *vc, char *cp)
308 {
309 struct tty_struct *tty = vc->vc_tty;
310
311 if (!tty)
312 return;
313
314 while (*cp) {
315 tty_insert_flip_char(tty, *cp, 0);
316 cp++;
317 }
318 con_schedule_flip(tty);
319 }
320
321 static void applkey(struct vc_data *vc, int key, char mode)
322 {
323 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
324
325 buf[1] = (mode ? 'O' : '[');
326 buf[2] = key;
327 puts_queue(vc, buf);
328 }
329
330 /*
331 * Many other routines do put_queue, but I think either
332 * they produce ASCII, or they produce some user-assigned
333 * string, and in both cases we might assume that it is
334 * in utf-8 already. UTF-8 is defined for words of up to 31 bits,
335 * but we need only 16 bits here
336 */
337 static void to_utf8(struct vc_data *vc, ushort c)
338 {
339 if (c < 0x80)
340 /* 0******* */
341 put_queue(vc, c);
342 else if (c < 0x800) {
343 /* 110***** 10****** */
344 put_queue(vc, 0xc0 | (c >> 6));
345 put_queue(vc, 0x80 | (c & 0x3f));
346 } else {
347 /* 1110**** 10****** 10****** */
348 put_queue(vc, 0xe0 | (c >> 12));
349 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
350 put_queue(vc, 0x80 | (c & 0x3f));
351 }
352 }
353
354 /*
355 * Called after returning from RAW mode or when changing consoles - recompute
356 * shift_down[] and shift_state from key_down[] maybe called when keymap is
357 * undefined, so that shiftkey release is seen
358 */
359 void compute_shiftstate(void)
360 {
361 unsigned int i, j, k, sym, val;
362
363 shift_state = 0;
364 memset(shift_down, 0, sizeof(shift_down));
365
366 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
367
368 if (!key_down[i])
369 continue;
370
371 k = i * BITS_PER_LONG;
372
373 for (j = 0; j < BITS_PER_LONG; j++, k++) {
374
375 if (!test_bit(k, key_down))
376 continue;
377
378 sym = U(key_maps[0][k]);
379 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
380 continue;
381
382 val = KVAL(sym);
383 if (val == KVAL(K_CAPSSHIFT))
384 val = KVAL(K_SHIFT);
385
386 shift_down[val]++;
387 shift_state |= (1 << val);
388 }
389 }
390 }
391
392 /*
393 * We have a combining character DIACR here, followed by the character CH.
394 * If the combination occurs in the table, return the corresponding value.
395 * Otherwise, if CH is a space or equals DIACR, return DIACR.
396 * Otherwise, conclude that DIACR was not combining after all,
397 * queue it and return CH.
398 */
399 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
400 {
401 unsigned int d = diacr;
402 unsigned int i;
403
404 diacr = 0;
405
406 if ((d & ~0xff) == BRL_UC_ROW) {
407 if ((ch & ~0xff) == BRL_UC_ROW)
408 return d | ch;
409 } else {
410 for (i = 0; i < accent_table_size; i++)
411 if (accent_table[i].diacr == d && accent_table[i].base == ch)
412 return accent_table[i].result;
413 }
414
415 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
416 return d;
417
418 if (kbd->kbdmode == VC_UNICODE)
419 to_utf8(vc, d);
420 else if (d < 0x100)
421 put_queue(vc, d);
422
423 return ch;
424 }
425
426 /*
427 * Special function handlers
428 */
429 static void fn_enter(struct vc_data *vc, struct pt_regs *regs)
430 {
431 if (diacr) {
432 if (kbd->kbdmode == VC_UNICODE)
433 to_utf8(vc, diacr);
434 else if (diacr < 0x100)
435 put_queue(vc, diacr);
436 diacr = 0;
437 }
438 put_queue(vc, 13);
439 if (vc_kbd_mode(kbd, VC_CRLF))
440 put_queue(vc, 10);
441 }
442
443 static void fn_caps_toggle(struct vc_data *vc, struct pt_regs *regs)
444 {
445 if (rep)
446 return;
447 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
448 }
449
450 static void fn_caps_on(struct vc_data *vc, struct pt_regs *regs)
451 {
452 if (rep)
453 return;
454 set_vc_kbd_led(kbd, VC_CAPSLOCK);
455 }
456
457 static void fn_show_ptregs(struct vc_data *vc, struct pt_regs *regs)
458 {
459 if (regs)
460 show_regs(regs);
461 }
462
463 static void fn_hold(struct vc_data *vc, struct pt_regs *regs)
464 {
465 struct tty_struct *tty = vc->vc_tty;
466
467 if (rep || !tty)
468 return;
469
470 /*
471 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
472 * these routines are also activated by ^S/^Q.
473 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
474 */
475 if (tty->stopped)
476 start_tty(tty);
477 else
478 stop_tty(tty);
479 }
480
481 static void fn_num(struct vc_data *vc, struct pt_regs *regs)
482 {
483 if (vc_kbd_mode(kbd,VC_APPLIC))
484 applkey(vc, 'P', 1);
485 else
486 fn_bare_num(vc, regs);
487 }
488
489 /*
490 * Bind this to Shift-NumLock if you work in application keypad mode
491 * but want to be able to change the NumLock flag.
492 * Bind this to NumLock if you prefer that the NumLock key always
493 * changes the NumLock flag.
494 */
495 static void fn_bare_num(struct vc_data *vc, struct pt_regs *regs)
496 {
497 if (!rep)
498 chg_vc_kbd_led(kbd, VC_NUMLOCK);
499 }
500
501 static void fn_lastcons(struct vc_data *vc, struct pt_regs *regs)
502 {
503 /* switch to the last used console, ChN */
504 set_console(last_console);
505 }
506
507 static void fn_dec_console(struct vc_data *vc, struct pt_regs *regs)
508 {
509 int i, cur = fg_console;
510
511 /* Currently switching? Queue this next switch relative to that. */
512 if (want_console != -1)
513 cur = want_console;
514
515 for (i = cur - 1; i != cur; i--) {
516 if (i == -1)
517 i = MAX_NR_CONSOLES - 1;
518 if (vc_cons_allocated(i))
519 break;
520 }
521 set_console(i);
522 }
523
524 static void fn_inc_console(struct vc_data *vc, struct pt_regs *regs)
525 {
526 int i, cur = fg_console;
527
528 /* Currently switching? Queue this next switch relative to that. */
529 if (want_console != -1)
530 cur = want_console;
531
532 for (i = cur+1; i != cur; i++) {
533 if (i == MAX_NR_CONSOLES)
534 i = 0;
535 if (vc_cons_allocated(i))
536 break;
537 }
538 set_console(i);
539 }
540
541 static void fn_send_intr(struct vc_data *vc, struct pt_regs *regs)
542 {
543 struct tty_struct *tty = vc->vc_tty;
544
545 if (!tty)
546 return;
547 tty_insert_flip_char(tty, 0, TTY_BREAK);
548 con_schedule_flip(tty);
549 }
550
551 static void fn_scroll_forw(struct vc_data *vc, struct pt_regs *regs)
552 {
553 scrollfront(vc, 0);
554 }
555
556 static void fn_scroll_back(struct vc_data *vc, struct pt_regs *regs)
557 {
558 scrollback(vc, 0);
559 }
560
561 static void fn_show_mem(struct vc_data *vc, struct pt_regs *regs)
562 {
563 show_mem();
564 }
565
566 static void fn_show_state(struct vc_data *vc, struct pt_regs *regs)
567 {
568 show_state();
569 }
570
571 static void fn_boot_it(struct vc_data *vc, struct pt_regs *regs)
572 {
573 ctrl_alt_del();
574 }
575
576 static void fn_compose(struct vc_data *vc, struct pt_regs *regs)
577 {
578 dead_key_next = 1;
579 }
580
581 static void fn_spawn_con(struct vc_data *vc, struct pt_regs *regs)
582 {
583 if (spawnpid)
584 if (kill_proc(spawnpid, spawnsig, 1))
585 spawnpid = 0;
586 }
587
588 static void fn_SAK(struct vc_data *vc, struct pt_regs *regs)
589 {
590 struct tty_struct *tty = vc->vc_tty;
591
592 /*
593 * SAK should also work in all raw modes and reset
594 * them properly.
595 */
596 if (tty)
597 do_SAK(tty);
598 reset_vc(vc);
599 }
600
601 static void fn_null(struct vc_data *vc, struct pt_regs *regs)
602 {
603 compute_shiftstate();
604 }
605
606 /*
607 * Special key handlers
608 */
609 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
610 {
611 }
612
613 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
614 {
615 if (up_flag)
616 return;
617 if (value >= ARRAY_SIZE(fn_handler))
618 return;
619 if ((kbd->kbdmode == VC_RAW ||
620 kbd->kbdmode == VC_MEDIUMRAW) &&
621 value != KVAL(K_SAK))
622 return; /* SAK is allowed even in raw mode */
623 fn_handler[value](vc, regs);
624 }
625
626 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
627 {
628 printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
629 }
630
631 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag, struct pt_regs *regs)
632 {
633 if (up_flag)
634 return; /* no action, if this is a key release */
635
636 if (diacr)
637 value = handle_diacr(vc, value);
638
639 if (dead_key_next) {
640 dead_key_next = 0;
641 diacr = value;
642 return;
643 }
644 if (kbd->kbdmode == VC_UNICODE)
645 to_utf8(vc, value);
646 else if (value < 0x100)
647 put_queue(vc, value);
648 }
649
650 /*
651 * Handle dead key. Note that we now may have several
652 * dead keys modifying the same character. Very useful
653 * for Vietnamese.
654 */
655 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag, struct pt_regs *regs)
656 {
657 if (up_flag)
658 return;
659 diacr = (diacr ? handle_diacr(vc, value) : value);
660 }
661
662 static void k_self(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
663 {
664 k_unicode(vc, value, up_flag, regs);
665 }
666
667 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
668 {
669 k_deadunicode(vc, value, up_flag, regs);
670 }
671
672 /*
673 * Obsolete - for backwards compatibility only
674 */
675 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
676 {
677 static unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
678 value = ret_diacr[value];
679 k_deadunicode(vc, value, up_flag, regs);
680 }
681
682 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
683 {
684 if (up_flag)
685 return;
686 set_console(value);
687 }
688
689 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
690 {
691 unsigned v;
692
693 if (up_flag)
694 return;
695 v = value;
696 if (v < ARRAY_SIZE(func_table)) {
697 if (func_table[value])
698 puts_queue(vc, func_table[value]);
699 } else
700 printk(KERN_ERR "k_fn called with value=%d\n", value);
701 }
702
703 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
704 {
705 static const char *cur_chars = "BDCA";
706
707 if (up_flag)
708 return;
709 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
710 }
711
712 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
713 {
714 static const char *pad_chars = "0123456789+-*/\015,.?()#";
715 static const char *app_map = "pqrstuvwxylSRQMnnmPQS";
716
717 if (up_flag)
718 return; /* no action, if this is a key release */
719
720 /* kludge... shift forces cursor/number keys */
721 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
722 applkey(vc, app_map[value], 1);
723 return;
724 }
725
726 if (!vc_kbd_led(kbd, VC_NUMLOCK))
727 switch (value) {
728 case KVAL(K_PCOMMA):
729 case KVAL(K_PDOT):
730 k_fn(vc, KVAL(K_REMOVE), 0, regs);
731 return;
732 case KVAL(K_P0):
733 k_fn(vc, KVAL(K_INSERT), 0, regs);
734 return;
735 case KVAL(K_P1):
736 k_fn(vc, KVAL(K_SELECT), 0, regs);
737 return;
738 case KVAL(K_P2):
739 k_cur(vc, KVAL(K_DOWN), 0, regs);
740 return;
741 case KVAL(K_P3):
742 k_fn(vc, KVAL(K_PGDN), 0, regs);
743 return;
744 case KVAL(K_P4):
745 k_cur(vc, KVAL(K_LEFT), 0, regs);
746 return;
747 case KVAL(K_P6):
748 k_cur(vc, KVAL(K_RIGHT), 0, regs);
749 return;
750 case KVAL(K_P7):
751 k_fn(vc, KVAL(K_FIND), 0, regs);
752 return;
753 case KVAL(K_P8):
754 k_cur(vc, KVAL(K_UP), 0, regs);
755 return;
756 case KVAL(K_P9):
757 k_fn(vc, KVAL(K_PGUP), 0, regs);
758 return;
759 case KVAL(K_P5):
760 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
761 return;
762 }
763
764 put_queue(vc, pad_chars[value]);
765 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
766 put_queue(vc, 10);
767 }
768
769 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
770 {
771 int old_state = shift_state;
772
773 if (rep)
774 return;
775 /*
776 * Mimic typewriter:
777 * a CapsShift key acts like Shift but undoes CapsLock
778 */
779 if (value == KVAL(K_CAPSSHIFT)) {
780 value = KVAL(K_SHIFT);
781 if (!up_flag)
782 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
783 }
784
785 if (up_flag) {
786 /*
787 * handle the case that two shift or control
788 * keys are depressed simultaneously
789 */
790 if (shift_down[value])
791 shift_down[value]--;
792 } else
793 shift_down[value]++;
794
795 if (shift_down[value])
796 shift_state |= (1 << value);
797 else
798 shift_state &= ~(1 << value);
799
800 /* kludge */
801 if (up_flag && shift_state != old_state && npadch != -1) {
802 if (kbd->kbdmode == VC_UNICODE)
803 to_utf8(vc, npadch & 0xffff);
804 else
805 put_queue(vc, npadch & 0xff);
806 npadch = -1;
807 }
808 }
809
810 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
811 {
812 if (up_flag)
813 return;
814
815 if (vc_kbd_mode(kbd, VC_META)) {
816 put_queue(vc, '\033');
817 put_queue(vc, value);
818 } else
819 put_queue(vc, value | 0x80);
820 }
821
822 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
823 {
824 int base;
825
826 if (up_flag)
827 return;
828
829 if (value < 10) {
830 /* decimal input of code, while Alt depressed */
831 base = 10;
832 } else {
833 /* hexadecimal input of code, while AltGr depressed */
834 value -= 10;
835 base = 16;
836 }
837
838 if (npadch == -1)
839 npadch = value;
840 else
841 npadch = npadch * base + value;
842 }
843
844 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
845 {
846 if (up_flag || rep)
847 return;
848 chg_vc_kbd_lock(kbd, value);
849 }
850
851 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
852 {
853 k_shift(vc, value, up_flag, regs);
854 if (up_flag || rep)
855 return;
856 chg_vc_kbd_slock(kbd, value);
857 /* try to make Alt, oops, AltGr and such work */
858 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
859 kbd->slockstate = 0;
860 chg_vc_kbd_slock(kbd, value);
861 }
862 }
863
864 /* by default, 300ms interval for combination release */
865 static unsigned brl_timeout = 300;
866 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
867 module_param(brl_timeout, uint, 0644);
868
869 static unsigned brl_nbchords = 1;
870 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
871 module_param(brl_nbchords, uint, 0644);
872
873 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag, struct pt_regs *regs)
874 {
875 static unsigned long chords;
876 static unsigned committed;
877
878 if (!brl_nbchords)
879 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag, regs);
880 else {
881 committed |= pattern;
882 chords++;
883 if (chords == brl_nbchords) {
884 k_unicode(vc, BRL_UC_ROW | committed, up_flag, regs);
885 chords = 0;
886 committed = 0;
887 }
888 }
889 }
890
891 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
892 {
893 static unsigned pressed,committing;
894 static unsigned long releasestart;
895
896 if (kbd->kbdmode != VC_UNICODE) {
897 if (!up_flag)
898 printk("keyboard mode must be unicode for braille patterns\n");
899 return;
900 }
901
902 if (!value) {
903 k_unicode(vc, BRL_UC_ROW, up_flag, regs);
904 return;
905 }
906
907 if (value > 8)
908 return;
909
910 if (up_flag) {
911 if (brl_timeout) {
912 if (!committing ||
913 jiffies - releasestart > (brl_timeout * HZ) / 1000) {
914 committing = pressed;
915 releasestart = jiffies;
916 }
917 pressed &= ~(1 << (value - 1));
918 if (!pressed) {
919 if (committing) {
920 k_brlcommit(vc, committing, 0, regs);
921 committing = 0;
922 }
923 }
924 } else {
925 if (committing) {
926 k_brlcommit(vc, committing, 0, regs);
927 committing = 0;
928 }
929 pressed &= ~(1 << (value - 1));
930 }
931 } else {
932 pressed |= 1 << (value - 1);
933 if (!brl_timeout)
934 committing = pressed;
935 }
936 }
937
938 /*
939 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
940 * or (ii) whatever pattern of lights people want to show using KDSETLED,
941 * or (iii) specified bits of specified words in kernel memory.
942 */
943 unsigned char getledstate(void)
944 {
945 return ledstate;
946 }
947
948 void setledstate(struct kbd_struct *kbd, unsigned int led)
949 {
950 if (!(led & ~7)) {
951 ledioctl = led;
952 kbd->ledmode = LED_SHOW_IOCTL;
953 } else
954 kbd->ledmode = LED_SHOW_FLAGS;
955 set_leds();
956 }
957
958 static inline unsigned char getleds(void)
959 {
960 struct kbd_struct *kbd = kbd_table + fg_console;
961 unsigned char leds;
962 int i;
963
964 if (kbd->ledmode == LED_SHOW_IOCTL)
965 return ledioctl;
966
967 leds = kbd->ledflagstate;
968
969 if (kbd->ledmode == LED_SHOW_MEM) {
970 for (i = 0; i < 3; i++)
971 if (ledptrs[i].valid) {
972 if (*ledptrs[i].addr & ledptrs[i].mask)
973 leds |= (1 << i);
974 else
975 leds &= ~(1 << i);
976 }
977 }
978 return leds;
979 }
980
981 /*
982 * This routine is the bottom half of the keyboard interrupt
983 * routine, and runs with all interrupts enabled. It does
984 * console changing, led setting and copy_to_cooked, which can
985 * take a reasonably long time.
986 *
987 * Aside from timing (which isn't really that important for
988 * keyboard interrupts as they happen often), using the software
989 * interrupt routines for this thing allows us to easily mask
990 * this when we don't want any of the above to happen.
991 * This allows for easy and efficient race-condition prevention
992 * for kbd_refresh_leds => input_event(dev, EV_LED, ...) => ...
993 */
994
995 static void kbd_bh(unsigned long dummy)
996 {
997 struct list_head *node;
998 unsigned char leds = getleds();
999
1000 if (leds != ledstate) {
1001 list_for_each(node, &kbd_handler.h_list) {
1002 struct input_handle * handle = to_handle_h(node);
1003 input_event(handle->dev, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1004 input_event(handle->dev, EV_LED, LED_NUML, !!(leds & 0x02));
1005 input_event(handle->dev, EV_LED, LED_CAPSL, !!(leds & 0x04));
1006 input_sync(handle->dev);
1007 }
1008 }
1009
1010 ledstate = leds;
1011 }
1012
1013 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1014
1015 /*
1016 * This allows a newly plugged keyboard to pick the LED state.
1017 */
1018 static void kbd_refresh_leds(struct input_handle *handle)
1019 {
1020 unsigned char leds = ledstate;
1021
1022 tasklet_disable(&keyboard_tasklet);
1023 if (leds != 0xff) {
1024 input_event(handle->dev, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1025 input_event(handle->dev, EV_LED, LED_NUML, !!(leds & 0x02));
1026 input_event(handle->dev, EV_LED, LED_CAPSL, !!(leds & 0x04));
1027 input_sync(handle->dev);
1028 }
1029 tasklet_enable(&keyboard_tasklet);
1030 }
1031
1032 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1033 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1034 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1035 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1036
1037 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1038 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1039
1040 static unsigned short x86_keycodes[256] =
1041 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1042 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1043 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1044 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1045 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1046 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1047 284,285,309,298,312, 91,327,328,329,331,333,335,336,337,338,339,
1048 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1049 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1050 103,104,105,275,287,279,306,106,274,107,294,364,358,363,362,361,
1051 291,108,381,281,290,272,292,305,280, 99,112,257,258,359,113,114,
1052 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1053 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1054 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1055 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1056
1057 #ifdef CONFIG_MAC_EMUMOUSEBTN
1058 extern int mac_hid_mouse_emulate_buttons(int, int, int);
1059 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1060
1061 #ifdef CONFIG_SPARC
1062 static int sparc_l1_a_state = 0;
1063 extern void sun_do_break(void);
1064 #endif
1065
1066 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1067 unsigned char up_flag)
1068 {
1069 if (keycode > 255 || !x86_keycodes[keycode])
1070 return -1;
1071
1072 switch (keycode) {
1073 case KEY_PAUSE:
1074 put_queue(vc, 0xe1);
1075 put_queue(vc, 0x1d | up_flag);
1076 put_queue(vc, 0x45 | up_flag);
1077 return 0;
1078 case KEY_HANGUEL:
1079 if (!up_flag) put_queue(vc, 0xf1);
1080 return 0;
1081 case KEY_HANJA:
1082 if (!up_flag) put_queue(vc, 0xf2);
1083 return 0;
1084 }
1085
1086 if (keycode == KEY_SYSRQ && sysrq_alt) {
1087 put_queue(vc, 0x54 | up_flag);
1088 return 0;
1089 }
1090
1091 if (x86_keycodes[keycode] & 0x100)
1092 put_queue(vc, 0xe0);
1093
1094 put_queue(vc, (x86_keycodes[keycode] & 0x7f) | up_flag);
1095
1096 if (keycode == KEY_SYSRQ) {
1097 put_queue(vc, 0xe0);
1098 put_queue(vc, 0x37 | up_flag);
1099 }
1100
1101 return 0;
1102 }
1103
1104 #else
1105
1106 #define HW_RAW(dev) 0
1107
1108 #warning "Cannot generate rawmode keyboard for your architecture yet."
1109
1110 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1111 {
1112 if (keycode > 127)
1113 return -1;
1114
1115 put_queue(vc, keycode | up_flag);
1116 return 0;
1117 }
1118 #endif
1119
1120 static void kbd_rawcode(unsigned char data)
1121 {
1122 struct vc_data *vc = vc_cons[fg_console].d;
1123 kbd = kbd_table + fg_console;
1124 if (kbd->kbdmode == VC_RAW)
1125 put_queue(vc, data);
1126 }
1127
1128 static void kbd_keycode(unsigned int keycode, int down,
1129 int hw_raw, struct pt_regs *regs)
1130 {
1131 struct vc_data *vc = vc_cons[fg_console].d;
1132 unsigned short keysym, *key_map;
1133 unsigned char type, raw_mode;
1134 struct tty_struct *tty;
1135 int shift_final;
1136
1137 tty = vc->vc_tty;
1138
1139 if (tty && (!tty->driver_data)) {
1140 /* No driver data? Strange. Okay we fix it then. */
1141 tty->driver_data = vc;
1142 }
1143
1144 kbd = kbd_table + fg_console;
1145
1146 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
1147 sysrq_alt = down ? keycode : 0;
1148 #ifdef CONFIG_SPARC
1149 if (keycode == KEY_STOP)
1150 sparc_l1_a_state = down;
1151 #endif
1152
1153 rep = (down == 2);
1154
1155 #ifdef CONFIG_MAC_EMUMOUSEBTN
1156 if (mac_hid_mouse_emulate_buttons(1, keycode, down))
1157 return;
1158 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1159
1160 if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
1161 if (emulate_raw(vc, keycode, !down << 7))
1162 if (keycode < BTN_MISC)
1163 printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
1164
1165 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
1166 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
1167 if (!sysrq_down) {
1168 sysrq_down = down;
1169 sysrq_alt_use = sysrq_alt;
1170 }
1171 return;
1172 }
1173 if (sysrq_down && !down && keycode == sysrq_alt_use)
1174 sysrq_down = 0;
1175 if (sysrq_down && down && !rep) {
1176 handle_sysrq(kbd_sysrq_xlate[keycode], regs, tty);
1177 return;
1178 }
1179 #endif
1180 #ifdef CONFIG_SPARC
1181 if (keycode == KEY_A && sparc_l1_a_state) {
1182 sparc_l1_a_state = 0;
1183 sun_do_break();
1184 }
1185 #endif
1186
1187 if (kbd->kbdmode == VC_MEDIUMRAW) {
1188 /*
1189 * This is extended medium raw mode, with keys above 127
1190 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1191 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1192 * interfere with anything else. The two bytes after 0 will
1193 * always have the up flag set not to interfere with older
1194 * applications. This allows for 16384 different keycodes,
1195 * which should be enough.
1196 */
1197 if (keycode < 128) {
1198 put_queue(vc, keycode | (!down << 7));
1199 } else {
1200 put_queue(vc, !down << 7);
1201 put_queue(vc, (keycode >> 7) | 0x80);
1202 put_queue(vc, keycode | 0x80);
1203 }
1204 raw_mode = 1;
1205 }
1206
1207 if (down)
1208 set_bit(keycode, key_down);
1209 else
1210 clear_bit(keycode, key_down);
1211
1212 if (rep &&
1213 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1214 (tty && !L_ECHO(tty) && tty->driver->chars_in_buffer(tty)))) {
1215 /*
1216 * Don't repeat a key if the input buffers are not empty and the
1217 * characters get aren't echoed locally. This makes key repeat
1218 * usable with slow applications and under heavy loads.
1219 */
1220 return;
1221 }
1222
1223 shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1224 key_map = key_maps[shift_final];
1225
1226 if (!key_map) {
1227 compute_shiftstate();
1228 kbd->slockstate = 0;
1229 return;
1230 }
1231
1232 if (keycode > NR_KEYS)
1233 if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1234 keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
1235 else
1236 return;
1237 else
1238 keysym = key_map[keycode];
1239
1240 type = KTYP(keysym);
1241
1242 if (type < 0xf0) {
1243 if (down && !raw_mode)
1244 to_utf8(vc, keysym);
1245 return;
1246 }
1247
1248 type -= 0xf0;
1249
1250 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1251 return;
1252
1253 if (type == KT_LETTER) {
1254 type = KT_LATIN;
1255 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1256 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1257 if (key_map)
1258 keysym = key_map[keycode];
1259 }
1260 }
1261
1262 (*k_handler[type])(vc, keysym & 0xff, !down, regs);
1263
1264 if (type != KT_SLOCK)
1265 kbd->slockstate = 0;
1266 }
1267
1268 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1269 unsigned int event_code, int value)
1270 {
1271 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1272 kbd_rawcode(value);
1273 if (event_type == EV_KEY)
1274 kbd_keycode(event_code, value, HW_RAW(handle->dev), handle->dev->regs);
1275 tasklet_schedule(&keyboard_tasklet);
1276 do_poke_blanked_console = 1;
1277 schedule_console_callback();
1278 }
1279
1280 /*
1281 * When a keyboard (or other input device) is found, the kbd_connect
1282 * function is called. The function then looks at the device, and if it
1283 * likes it, it can open it and get events from it. In this (kbd_connect)
1284 * function, we should decide which VT to bind that keyboard to initially.
1285 */
1286 static struct input_handle *kbd_connect(struct input_handler *handler,
1287 struct input_dev *dev,
1288 struct input_device_id *id)
1289 {
1290 struct input_handle *handle;
1291 int i;
1292
1293 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1294 if (test_bit(i, dev->keybit))
1295 break;
1296
1297 if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
1298 return NULL;
1299
1300 if (!(handle = kmalloc(sizeof(struct input_handle), GFP_KERNEL)))
1301 return NULL;
1302 memset(handle, 0, sizeof(struct input_handle));
1303
1304 handle->dev = dev;
1305 handle->handler = handler;
1306 handle->name = "kbd";
1307
1308 input_open_device(handle);
1309 kbd_refresh_leds(handle);
1310
1311 return handle;
1312 }
1313
1314 static void kbd_disconnect(struct input_handle *handle)
1315 {
1316 input_close_device(handle);
1317 kfree(handle);
1318 }
1319
1320 static struct input_device_id kbd_ids[] = {
1321 {
1322 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1323 .evbit = { BIT(EV_KEY) },
1324 },
1325
1326 {
1327 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1328 .evbit = { BIT(EV_SND) },
1329 },
1330
1331 { }, /* Terminating entry */
1332 };
1333
1334 MODULE_DEVICE_TABLE(input, kbd_ids);
1335
1336 static struct input_handler kbd_handler = {
1337 .event = kbd_event,
1338 .connect = kbd_connect,
1339 .disconnect = kbd_disconnect,
1340 .name = "kbd",
1341 .id_table = kbd_ids,
1342 };
1343
1344 int __init kbd_init(void)
1345 {
1346 int i;
1347
1348 kbd0.ledflagstate = kbd0.default_ledflagstate = KBD_DEFLEDS;
1349 kbd0.ledmode = LED_SHOW_FLAGS;
1350 kbd0.lockstate = KBD_DEFLOCK;
1351 kbd0.slockstate = 0;
1352 kbd0.modeflags = KBD_DEFMODE;
1353 kbd0.kbdmode = VC_XLATE;
1354
1355 for (i = 0 ; i < MAX_NR_CONSOLES ; i++)
1356 kbd_table[i] = kbd0;
1357
1358 input_register_handler(&kbd_handler);
1359
1360 tasklet_enable(&keyboard_tasklet);
1361 tasklet_schedule(&keyboard_tasklet);
1362
1363 return 0;
1364 }
This page took 0.062898 seconds and 6 git commands to generate.