[media] rtl2832: add support for slave ts pid filter
[deliverable/linux.git] / drivers / char / random.c
1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42 /*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/kthread.h>
254 #include <linux/percpu.h>
255 #include <linux/cryptohash.h>
256 #include <linux/fips.h>
257 #include <linux/ptrace.h>
258 #include <linux/kmemcheck.h>
259 #include <linux/workqueue.h>
260 #include <linux/irq.h>
261 #include <linux/syscalls.h>
262 #include <linux/completion.h>
263 #include <linux/uuid.h>
264
265 #include <asm/processor.h>
266 #include <asm/uaccess.h>
267 #include <asm/irq.h>
268 #include <asm/irq_regs.h>
269 #include <asm/io.h>
270
271 #define CREATE_TRACE_POINTS
272 #include <trace/events/random.h>
273
274 /* #define ADD_INTERRUPT_BENCH */
275
276 /*
277 * Configuration information
278 */
279 #define INPUT_POOL_SHIFT 12
280 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
281 #define OUTPUT_POOL_SHIFT 10
282 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
283 #define SEC_XFER_SIZE 512
284 #define EXTRACT_SIZE 10
285
286 #define DEBUG_RANDOM_BOOT 0
287
288 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
289
290 /*
291 * To allow fractional bits to be tracked, the entropy_count field is
292 * denominated in units of 1/8th bits.
293 *
294 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
295 * credit_entropy_bits() needs to be 64 bits wide.
296 */
297 #define ENTROPY_SHIFT 3
298 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
299
300 /*
301 * The minimum number of bits of entropy before we wake up a read on
302 * /dev/random. Should be enough to do a significant reseed.
303 */
304 static int random_read_wakeup_bits = 64;
305
306 /*
307 * If the entropy count falls under this number of bits, then we
308 * should wake up processes which are selecting or polling on write
309 * access to /dev/random.
310 */
311 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
312
313 /*
314 * The minimum number of seconds between urandom pool reseeding. We
315 * do this to limit the amount of entropy that can be drained from the
316 * input pool even if there are heavy demands on /dev/urandom.
317 */
318 static int random_min_urandom_seed = 60;
319
320 /*
321 * Originally, we used a primitive polynomial of degree .poolwords
322 * over GF(2). The taps for various sizes are defined below. They
323 * were chosen to be evenly spaced except for the last tap, which is 1
324 * to get the twisting happening as fast as possible.
325 *
326 * For the purposes of better mixing, we use the CRC-32 polynomial as
327 * well to make a (modified) twisted Generalized Feedback Shift
328 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
329 * generators. ACM Transactions on Modeling and Computer Simulation
330 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
331 * GFSR generators II. ACM Transactions on Modeling and Computer
332 * Simulation 4:254-266)
333 *
334 * Thanks to Colin Plumb for suggesting this.
335 *
336 * The mixing operation is much less sensitive than the output hash,
337 * where we use SHA-1. All that we want of mixing operation is that
338 * it be a good non-cryptographic hash; i.e. it not produce collisions
339 * when fed "random" data of the sort we expect to see. As long as
340 * the pool state differs for different inputs, we have preserved the
341 * input entropy and done a good job. The fact that an intelligent
342 * attacker can construct inputs that will produce controlled
343 * alterations to the pool's state is not important because we don't
344 * consider such inputs to contribute any randomness. The only
345 * property we need with respect to them is that the attacker can't
346 * increase his/her knowledge of the pool's state. Since all
347 * additions are reversible (knowing the final state and the input,
348 * you can reconstruct the initial state), if an attacker has any
349 * uncertainty about the initial state, he/she can only shuffle that
350 * uncertainty about, but never cause any collisions (which would
351 * decrease the uncertainty).
352 *
353 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
354 * Videau in their paper, "The Linux Pseudorandom Number Generator
355 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
356 * paper, they point out that we are not using a true Twisted GFSR,
357 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
358 * is, with only three taps, instead of the six that we are using).
359 * As a result, the resulting polynomial is neither primitive nor
360 * irreducible, and hence does not have a maximal period over
361 * GF(2**32). They suggest a slight change to the generator
362 * polynomial which improves the resulting TGFSR polynomial to be
363 * irreducible, which we have made here.
364 */
365 static struct poolinfo {
366 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
367 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
368 int tap1, tap2, tap3, tap4, tap5;
369 } poolinfo_table[] = {
370 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
371 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
372 { S(128), 104, 76, 51, 25, 1 },
373 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
374 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
375 { S(32), 26, 19, 14, 7, 1 },
376 #if 0
377 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
378 { S(2048), 1638, 1231, 819, 411, 1 },
379
380 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
381 { S(1024), 817, 615, 412, 204, 1 },
382
383 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
384 { S(1024), 819, 616, 410, 207, 2 },
385
386 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
387 { S(512), 411, 308, 208, 104, 1 },
388
389 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
390 { S(512), 409, 307, 206, 102, 2 },
391 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
392 { S(512), 409, 309, 205, 103, 2 },
393
394 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
395 { S(256), 205, 155, 101, 52, 1 },
396
397 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
398 { S(128), 103, 78, 51, 27, 2 },
399
400 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
401 { S(64), 52, 39, 26, 14, 1 },
402 #endif
403 };
404
405 /*
406 * Static global variables
407 */
408 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
409 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
410 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
411 static struct fasync_struct *fasync;
412
413 static DEFINE_SPINLOCK(random_ready_list_lock);
414 static LIST_HEAD(random_ready_list);
415
416 /**********************************************************************
417 *
418 * OS independent entropy store. Here are the functions which handle
419 * storing entropy in an entropy pool.
420 *
421 **********************************************************************/
422
423 struct entropy_store;
424 struct entropy_store {
425 /* read-only data: */
426 const struct poolinfo *poolinfo;
427 __u32 *pool;
428 const char *name;
429 struct entropy_store *pull;
430 struct work_struct push_work;
431
432 /* read-write data: */
433 unsigned long last_pulled;
434 spinlock_t lock;
435 unsigned short add_ptr;
436 unsigned short input_rotate;
437 int entropy_count;
438 int entropy_total;
439 unsigned int initialized:1;
440 unsigned int limit:1;
441 unsigned int last_data_init:1;
442 __u8 last_data[EXTRACT_SIZE];
443 };
444
445 static void push_to_pool(struct work_struct *work);
446 static __u32 input_pool_data[INPUT_POOL_WORDS];
447 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
448 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
449
450 static struct entropy_store input_pool = {
451 .poolinfo = &poolinfo_table[0],
452 .name = "input",
453 .limit = 1,
454 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
455 .pool = input_pool_data
456 };
457
458 static struct entropy_store blocking_pool = {
459 .poolinfo = &poolinfo_table[1],
460 .name = "blocking",
461 .limit = 1,
462 .pull = &input_pool,
463 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
464 .pool = blocking_pool_data,
465 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
466 push_to_pool),
467 };
468
469 static struct entropy_store nonblocking_pool = {
470 .poolinfo = &poolinfo_table[1],
471 .name = "nonblocking",
472 .pull = &input_pool,
473 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
474 .pool = nonblocking_pool_data,
475 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
476 push_to_pool),
477 };
478
479 static __u32 const twist_table[8] = {
480 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
481 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
482
483 /*
484 * This function adds bytes into the entropy "pool". It does not
485 * update the entropy estimate. The caller should call
486 * credit_entropy_bits if this is appropriate.
487 *
488 * The pool is stirred with a primitive polynomial of the appropriate
489 * degree, and then twisted. We twist by three bits at a time because
490 * it's cheap to do so and helps slightly in the expected case where
491 * the entropy is concentrated in the low-order bits.
492 */
493 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
494 int nbytes)
495 {
496 unsigned long i, tap1, tap2, tap3, tap4, tap5;
497 int input_rotate;
498 int wordmask = r->poolinfo->poolwords - 1;
499 const char *bytes = in;
500 __u32 w;
501
502 tap1 = r->poolinfo->tap1;
503 tap2 = r->poolinfo->tap2;
504 tap3 = r->poolinfo->tap3;
505 tap4 = r->poolinfo->tap4;
506 tap5 = r->poolinfo->tap5;
507
508 input_rotate = r->input_rotate;
509 i = r->add_ptr;
510
511 /* mix one byte at a time to simplify size handling and churn faster */
512 while (nbytes--) {
513 w = rol32(*bytes++, input_rotate);
514 i = (i - 1) & wordmask;
515
516 /* XOR in the various taps */
517 w ^= r->pool[i];
518 w ^= r->pool[(i + tap1) & wordmask];
519 w ^= r->pool[(i + tap2) & wordmask];
520 w ^= r->pool[(i + tap3) & wordmask];
521 w ^= r->pool[(i + tap4) & wordmask];
522 w ^= r->pool[(i + tap5) & wordmask];
523
524 /* Mix the result back in with a twist */
525 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
526
527 /*
528 * Normally, we add 7 bits of rotation to the pool.
529 * At the beginning of the pool, add an extra 7 bits
530 * rotation, so that successive passes spread the
531 * input bits across the pool evenly.
532 */
533 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
534 }
535
536 r->input_rotate = input_rotate;
537 r->add_ptr = i;
538 }
539
540 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
541 int nbytes)
542 {
543 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
544 _mix_pool_bytes(r, in, nbytes);
545 }
546
547 static void mix_pool_bytes(struct entropy_store *r, const void *in,
548 int nbytes)
549 {
550 unsigned long flags;
551
552 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
553 spin_lock_irqsave(&r->lock, flags);
554 _mix_pool_bytes(r, in, nbytes);
555 spin_unlock_irqrestore(&r->lock, flags);
556 }
557
558 struct fast_pool {
559 __u32 pool[4];
560 unsigned long last;
561 unsigned short reg_idx;
562 unsigned char count;
563 };
564
565 /*
566 * This is a fast mixing routine used by the interrupt randomness
567 * collector. It's hardcoded for an 128 bit pool and assumes that any
568 * locks that might be needed are taken by the caller.
569 */
570 static void fast_mix(struct fast_pool *f)
571 {
572 __u32 a = f->pool[0], b = f->pool[1];
573 __u32 c = f->pool[2], d = f->pool[3];
574
575 a += b; c += d;
576 b = rol32(b, 6); d = rol32(d, 27);
577 d ^= a; b ^= c;
578
579 a += b; c += d;
580 b = rol32(b, 16); d = rol32(d, 14);
581 d ^= a; b ^= c;
582
583 a += b; c += d;
584 b = rol32(b, 6); d = rol32(d, 27);
585 d ^= a; b ^= c;
586
587 a += b; c += d;
588 b = rol32(b, 16); d = rol32(d, 14);
589 d ^= a; b ^= c;
590
591 f->pool[0] = a; f->pool[1] = b;
592 f->pool[2] = c; f->pool[3] = d;
593 f->count++;
594 }
595
596 static void process_random_ready_list(void)
597 {
598 unsigned long flags;
599 struct random_ready_callback *rdy, *tmp;
600
601 spin_lock_irqsave(&random_ready_list_lock, flags);
602 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
603 struct module *owner = rdy->owner;
604
605 list_del_init(&rdy->list);
606 rdy->func(rdy);
607 module_put(owner);
608 }
609 spin_unlock_irqrestore(&random_ready_list_lock, flags);
610 }
611
612 /*
613 * Credit (or debit) the entropy store with n bits of entropy.
614 * Use credit_entropy_bits_safe() if the value comes from userspace
615 * or otherwise should be checked for extreme values.
616 */
617 static void credit_entropy_bits(struct entropy_store *r, int nbits)
618 {
619 int entropy_count, orig;
620 const int pool_size = r->poolinfo->poolfracbits;
621 int nfrac = nbits << ENTROPY_SHIFT;
622
623 if (!nbits)
624 return;
625
626 retry:
627 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
628 if (nfrac < 0) {
629 /* Debit */
630 entropy_count += nfrac;
631 } else {
632 /*
633 * Credit: we have to account for the possibility of
634 * overwriting already present entropy. Even in the
635 * ideal case of pure Shannon entropy, new contributions
636 * approach the full value asymptotically:
637 *
638 * entropy <- entropy + (pool_size - entropy) *
639 * (1 - exp(-add_entropy/pool_size))
640 *
641 * For add_entropy <= pool_size/2 then
642 * (1 - exp(-add_entropy/pool_size)) >=
643 * (add_entropy/pool_size)*0.7869...
644 * so we can approximate the exponential with
645 * 3/4*add_entropy/pool_size and still be on the
646 * safe side by adding at most pool_size/2 at a time.
647 *
648 * The use of pool_size-2 in the while statement is to
649 * prevent rounding artifacts from making the loop
650 * arbitrarily long; this limits the loop to log2(pool_size)*2
651 * turns no matter how large nbits is.
652 */
653 int pnfrac = nfrac;
654 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
655 /* The +2 corresponds to the /4 in the denominator */
656
657 do {
658 unsigned int anfrac = min(pnfrac, pool_size/2);
659 unsigned int add =
660 ((pool_size - entropy_count)*anfrac*3) >> s;
661
662 entropy_count += add;
663 pnfrac -= anfrac;
664 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
665 }
666
667 if (unlikely(entropy_count < 0)) {
668 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
669 r->name, entropy_count);
670 WARN_ON(1);
671 entropy_count = 0;
672 } else if (entropy_count > pool_size)
673 entropy_count = pool_size;
674 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
675 goto retry;
676
677 r->entropy_total += nbits;
678 if (!r->initialized && r->entropy_total > 128) {
679 r->initialized = 1;
680 r->entropy_total = 0;
681 if (r == &nonblocking_pool) {
682 prandom_reseed_late();
683 process_random_ready_list();
684 wake_up_all(&urandom_init_wait);
685 pr_notice("random: %s pool is initialized\n", r->name);
686 }
687 }
688
689 trace_credit_entropy_bits(r->name, nbits,
690 entropy_count >> ENTROPY_SHIFT,
691 r->entropy_total, _RET_IP_);
692
693 if (r == &input_pool) {
694 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
695
696 /* should we wake readers? */
697 if (entropy_bits >= random_read_wakeup_bits) {
698 wake_up_interruptible(&random_read_wait);
699 kill_fasync(&fasync, SIGIO, POLL_IN);
700 }
701 /* If the input pool is getting full, send some
702 * entropy to the two output pools, flipping back and
703 * forth between them, until the output pools are 75%
704 * full.
705 */
706 if (entropy_bits > random_write_wakeup_bits &&
707 r->initialized &&
708 r->entropy_total >= 2*random_read_wakeup_bits) {
709 static struct entropy_store *last = &blocking_pool;
710 struct entropy_store *other = &blocking_pool;
711
712 if (last == &blocking_pool)
713 other = &nonblocking_pool;
714 if (other->entropy_count <=
715 3 * other->poolinfo->poolfracbits / 4)
716 last = other;
717 if (last->entropy_count <=
718 3 * last->poolinfo->poolfracbits / 4) {
719 schedule_work(&last->push_work);
720 r->entropy_total = 0;
721 }
722 }
723 }
724 }
725
726 static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
727 {
728 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
729
730 /* Cap the value to avoid overflows */
731 nbits = min(nbits, nbits_max);
732 nbits = max(nbits, -nbits_max);
733
734 credit_entropy_bits(r, nbits);
735 }
736
737 /*********************************************************************
738 *
739 * Entropy input management
740 *
741 *********************************************************************/
742
743 /* There is one of these per entropy source */
744 struct timer_rand_state {
745 cycles_t last_time;
746 long last_delta, last_delta2;
747 unsigned dont_count_entropy:1;
748 };
749
750 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
751
752 /*
753 * Add device- or boot-specific data to the input and nonblocking
754 * pools to help initialize them to unique values.
755 *
756 * None of this adds any entropy, it is meant to avoid the
757 * problem of the nonblocking pool having similar initial state
758 * across largely identical devices.
759 */
760 void add_device_randomness(const void *buf, unsigned int size)
761 {
762 unsigned long time = random_get_entropy() ^ jiffies;
763 unsigned long flags;
764
765 trace_add_device_randomness(size, _RET_IP_);
766 spin_lock_irqsave(&input_pool.lock, flags);
767 _mix_pool_bytes(&input_pool, buf, size);
768 _mix_pool_bytes(&input_pool, &time, sizeof(time));
769 spin_unlock_irqrestore(&input_pool.lock, flags);
770
771 spin_lock_irqsave(&nonblocking_pool.lock, flags);
772 _mix_pool_bytes(&nonblocking_pool, buf, size);
773 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
774 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
775 }
776 EXPORT_SYMBOL(add_device_randomness);
777
778 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
779
780 /*
781 * This function adds entropy to the entropy "pool" by using timing
782 * delays. It uses the timer_rand_state structure to make an estimate
783 * of how many bits of entropy this call has added to the pool.
784 *
785 * The number "num" is also added to the pool - it should somehow describe
786 * the type of event which just happened. This is currently 0-255 for
787 * keyboard scan codes, and 256 upwards for interrupts.
788 *
789 */
790 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
791 {
792 struct entropy_store *r;
793 struct {
794 long jiffies;
795 unsigned cycles;
796 unsigned num;
797 } sample;
798 long delta, delta2, delta3;
799
800 preempt_disable();
801
802 sample.jiffies = jiffies;
803 sample.cycles = random_get_entropy();
804 sample.num = num;
805 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
806 mix_pool_bytes(r, &sample, sizeof(sample));
807
808 /*
809 * Calculate number of bits of randomness we probably added.
810 * We take into account the first, second and third-order deltas
811 * in order to make our estimate.
812 */
813
814 if (!state->dont_count_entropy) {
815 delta = sample.jiffies - state->last_time;
816 state->last_time = sample.jiffies;
817
818 delta2 = delta - state->last_delta;
819 state->last_delta = delta;
820
821 delta3 = delta2 - state->last_delta2;
822 state->last_delta2 = delta2;
823
824 if (delta < 0)
825 delta = -delta;
826 if (delta2 < 0)
827 delta2 = -delta2;
828 if (delta3 < 0)
829 delta3 = -delta3;
830 if (delta > delta2)
831 delta = delta2;
832 if (delta > delta3)
833 delta = delta3;
834
835 /*
836 * delta is now minimum absolute delta.
837 * Round down by 1 bit on general principles,
838 * and limit entropy entimate to 12 bits.
839 */
840 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
841 }
842 preempt_enable();
843 }
844
845 void add_input_randomness(unsigned int type, unsigned int code,
846 unsigned int value)
847 {
848 static unsigned char last_value;
849
850 /* ignore autorepeat and the like */
851 if (value == last_value)
852 return;
853
854 last_value = value;
855 add_timer_randomness(&input_timer_state,
856 (type << 4) ^ code ^ (code >> 4) ^ value);
857 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
858 }
859 EXPORT_SYMBOL_GPL(add_input_randomness);
860
861 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
862
863 #ifdef ADD_INTERRUPT_BENCH
864 static unsigned long avg_cycles, avg_deviation;
865
866 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
867 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
868
869 static void add_interrupt_bench(cycles_t start)
870 {
871 long delta = random_get_entropy() - start;
872
873 /* Use a weighted moving average */
874 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
875 avg_cycles += delta;
876 /* And average deviation */
877 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
878 avg_deviation += delta;
879 }
880 #else
881 #define add_interrupt_bench(x)
882 #endif
883
884 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
885 {
886 __u32 *ptr = (__u32 *) regs;
887
888 if (regs == NULL)
889 return 0;
890 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
891 f->reg_idx = 0;
892 return *(ptr + f->reg_idx++);
893 }
894
895 void add_interrupt_randomness(int irq, int irq_flags)
896 {
897 struct entropy_store *r;
898 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
899 struct pt_regs *regs = get_irq_regs();
900 unsigned long now = jiffies;
901 cycles_t cycles = random_get_entropy();
902 __u32 c_high, j_high;
903 __u64 ip;
904 unsigned long seed;
905 int credit = 0;
906
907 if (cycles == 0)
908 cycles = get_reg(fast_pool, regs);
909 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
910 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
911 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
912 fast_pool->pool[1] ^= now ^ c_high;
913 ip = regs ? instruction_pointer(regs) : _RET_IP_;
914 fast_pool->pool[2] ^= ip;
915 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
916 get_reg(fast_pool, regs);
917
918 fast_mix(fast_pool);
919 add_interrupt_bench(cycles);
920
921 if ((fast_pool->count < 64) &&
922 !time_after(now, fast_pool->last + HZ))
923 return;
924
925 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
926 if (!spin_trylock(&r->lock))
927 return;
928
929 fast_pool->last = now;
930 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
931
932 /*
933 * If we have architectural seed generator, produce a seed and
934 * add it to the pool. For the sake of paranoia don't let the
935 * architectural seed generator dominate the input from the
936 * interrupt noise.
937 */
938 if (arch_get_random_seed_long(&seed)) {
939 __mix_pool_bytes(r, &seed, sizeof(seed));
940 credit = 1;
941 }
942 spin_unlock(&r->lock);
943
944 fast_pool->count = 0;
945
946 /* award one bit for the contents of the fast pool */
947 credit_entropy_bits(r, credit + 1);
948 }
949
950 #ifdef CONFIG_BLOCK
951 void add_disk_randomness(struct gendisk *disk)
952 {
953 if (!disk || !disk->random)
954 return;
955 /* first major is 1, so we get >= 0x200 here */
956 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
957 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
958 }
959 EXPORT_SYMBOL_GPL(add_disk_randomness);
960 #endif
961
962 /*********************************************************************
963 *
964 * Entropy extraction routines
965 *
966 *********************************************************************/
967
968 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
969 size_t nbytes, int min, int rsvd);
970
971 /*
972 * This utility inline function is responsible for transferring entropy
973 * from the primary pool to the secondary extraction pool. We make
974 * sure we pull enough for a 'catastrophic reseed'.
975 */
976 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
977 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
978 {
979 if (!r->pull ||
980 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
981 r->entropy_count > r->poolinfo->poolfracbits)
982 return;
983
984 if (r->limit == 0 && random_min_urandom_seed) {
985 unsigned long now = jiffies;
986
987 if (time_before(now,
988 r->last_pulled + random_min_urandom_seed * HZ))
989 return;
990 r->last_pulled = now;
991 }
992
993 _xfer_secondary_pool(r, nbytes);
994 }
995
996 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
997 {
998 __u32 tmp[OUTPUT_POOL_WORDS];
999
1000 /* For /dev/random's pool, always leave two wakeups' worth */
1001 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1002 int bytes = nbytes;
1003
1004 /* pull at least as much as a wakeup */
1005 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1006 /* but never more than the buffer size */
1007 bytes = min_t(int, bytes, sizeof(tmp));
1008
1009 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1010 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1011 bytes = extract_entropy(r->pull, tmp, bytes,
1012 random_read_wakeup_bits / 8, rsvd_bytes);
1013 mix_pool_bytes(r, tmp, bytes);
1014 credit_entropy_bits(r, bytes*8);
1015 }
1016
1017 /*
1018 * Used as a workqueue function so that when the input pool is getting
1019 * full, we can "spill over" some entropy to the output pools. That
1020 * way the output pools can store some of the excess entropy instead
1021 * of letting it go to waste.
1022 */
1023 static void push_to_pool(struct work_struct *work)
1024 {
1025 struct entropy_store *r = container_of(work, struct entropy_store,
1026 push_work);
1027 BUG_ON(!r);
1028 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1029 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1030 r->pull->entropy_count >> ENTROPY_SHIFT);
1031 }
1032
1033 /*
1034 * This function decides how many bytes to actually take from the
1035 * given pool, and also debits the entropy count accordingly.
1036 */
1037 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1038 int reserved)
1039 {
1040 int entropy_count, orig;
1041 size_t ibytes, nfrac;
1042
1043 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1044
1045 /* Can we pull enough? */
1046 retry:
1047 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1048 ibytes = nbytes;
1049 /* If limited, never pull more than available */
1050 if (r->limit) {
1051 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1052
1053 if ((have_bytes -= reserved) < 0)
1054 have_bytes = 0;
1055 ibytes = min_t(size_t, ibytes, have_bytes);
1056 }
1057 if (ibytes < min)
1058 ibytes = 0;
1059
1060 if (unlikely(entropy_count < 0)) {
1061 pr_warn("random: negative entropy count: pool %s count %d\n",
1062 r->name, entropy_count);
1063 WARN_ON(1);
1064 entropy_count = 0;
1065 }
1066 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1067 if ((size_t) entropy_count > nfrac)
1068 entropy_count -= nfrac;
1069 else
1070 entropy_count = 0;
1071
1072 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1073 goto retry;
1074
1075 trace_debit_entropy(r->name, 8 * ibytes);
1076 if (ibytes &&
1077 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1078 wake_up_interruptible(&random_write_wait);
1079 kill_fasync(&fasync, SIGIO, POLL_OUT);
1080 }
1081
1082 return ibytes;
1083 }
1084
1085 /*
1086 * This function does the actual extraction for extract_entropy and
1087 * extract_entropy_user.
1088 *
1089 * Note: we assume that .poolwords is a multiple of 16 words.
1090 */
1091 static void extract_buf(struct entropy_store *r, __u8 *out)
1092 {
1093 int i;
1094 union {
1095 __u32 w[5];
1096 unsigned long l[LONGS(20)];
1097 } hash;
1098 __u32 workspace[SHA_WORKSPACE_WORDS];
1099 unsigned long flags;
1100
1101 /*
1102 * If we have an architectural hardware random number
1103 * generator, use it for SHA's initial vector
1104 */
1105 sha_init(hash.w);
1106 for (i = 0; i < LONGS(20); i++) {
1107 unsigned long v;
1108 if (!arch_get_random_long(&v))
1109 break;
1110 hash.l[i] = v;
1111 }
1112
1113 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1114 spin_lock_irqsave(&r->lock, flags);
1115 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1116 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1117
1118 /*
1119 * We mix the hash back into the pool to prevent backtracking
1120 * attacks (where the attacker knows the state of the pool
1121 * plus the current outputs, and attempts to find previous
1122 * ouputs), unless the hash function can be inverted. By
1123 * mixing at least a SHA1 worth of hash data back, we make
1124 * brute-forcing the feedback as hard as brute-forcing the
1125 * hash.
1126 */
1127 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1128 spin_unlock_irqrestore(&r->lock, flags);
1129
1130 memzero_explicit(workspace, sizeof(workspace));
1131
1132 /*
1133 * In case the hash function has some recognizable output
1134 * pattern, we fold it in half. Thus, we always feed back
1135 * twice as much data as we output.
1136 */
1137 hash.w[0] ^= hash.w[3];
1138 hash.w[1] ^= hash.w[4];
1139 hash.w[2] ^= rol32(hash.w[2], 16);
1140
1141 memcpy(out, &hash, EXTRACT_SIZE);
1142 memzero_explicit(&hash, sizeof(hash));
1143 }
1144
1145 /*
1146 * This function extracts randomness from the "entropy pool", and
1147 * returns it in a buffer.
1148 *
1149 * The min parameter specifies the minimum amount we can pull before
1150 * failing to avoid races that defeat catastrophic reseeding while the
1151 * reserved parameter indicates how much entropy we must leave in the
1152 * pool after each pull to avoid starving other readers.
1153 */
1154 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1155 size_t nbytes, int min, int reserved)
1156 {
1157 ssize_t ret = 0, i;
1158 __u8 tmp[EXTRACT_SIZE];
1159 unsigned long flags;
1160
1161 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1162 if (fips_enabled) {
1163 spin_lock_irqsave(&r->lock, flags);
1164 if (!r->last_data_init) {
1165 r->last_data_init = 1;
1166 spin_unlock_irqrestore(&r->lock, flags);
1167 trace_extract_entropy(r->name, EXTRACT_SIZE,
1168 ENTROPY_BITS(r), _RET_IP_);
1169 xfer_secondary_pool(r, EXTRACT_SIZE);
1170 extract_buf(r, tmp);
1171 spin_lock_irqsave(&r->lock, flags);
1172 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1173 }
1174 spin_unlock_irqrestore(&r->lock, flags);
1175 }
1176
1177 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1178 xfer_secondary_pool(r, nbytes);
1179 nbytes = account(r, nbytes, min, reserved);
1180
1181 while (nbytes) {
1182 extract_buf(r, tmp);
1183
1184 if (fips_enabled) {
1185 spin_lock_irqsave(&r->lock, flags);
1186 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1187 panic("Hardware RNG duplicated output!\n");
1188 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1189 spin_unlock_irqrestore(&r->lock, flags);
1190 }
1191 i = min_t(int, nbytes, EXTRACT_SIZE);
1192 memcpy(buf, tmp, i);
1193 nbytes -= i;
1194 buf += i;
1195 ret += i;
1196 }
1197
1198 /* Wipe data just returned from memory */
1199 memzero_explicit(tmp, sizeof(tmp));
1200
1201 return ret;
1202 }
1203
1204 /*
1205 * This function extracts randomness from the "entropy pool", and
1206 * returns it in a userspace buffer.
1207 */
1208 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1209 size_t nbytes)
1210 {
1211 ssize_t ret = 0, i;
1212 __u8 tmp[EXTRACT_SIZE];
1213 int large_request = (nbytes > 256);
1214
1215 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1216 xfer_secondary_pool(r, nbytes);
1217 nbytes = account(r, nbytes, 0, 0);
1218
1219 while (nbytes) {
1220 if (large_request && need_resched()) {
1221 if (signal_pending(current)) {
1222 if (ret == 0)
1223 ret = -ERESTARTSYS;
1224 break;
1225 }
1226 schedule();
1227 }
1228
1229 extract_buf(r, tmp);
1230 i = min_t(int, nbytes, EXTRACT_SIZE);
1231 if (copy_to_user(buf, tmp, i)) {
1232 ret = -EFAULT;
1233 break;
1234 }
1235
1236 nbytes -= i;
1237 buf += i;
1238 ret += i;
1239 }
1240
1241 /* Wipe data just returned from memory */
1242 memzero_explicit(tmp, sizeof(tmp));
1243
1244 return ret;
1245 }
1246
1247 /*
1248 * This function is the exported kernel interface. It returns some
1249 * number of good random numbers, suitable for key generation, seeding
1250 * TCP sequence numbers, etc. It does not rely on the hardware random
1251 * number generator. For random bytes direct from the hardware RNG
1252 * (when available), use get_random_bytes_arch().
1253 */
1254 void get_random_bytes(void *buf, int nbytes)
1255 {
1256 #if DEBUG_RANDOM_BOOT > 0
1257 if (unlikely(nonblocking_pool.initialized == 0))
1258 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1259 "with %d bits of entropy available\n",
1260 (void *) _RET_IP_,
1261 nonblocking_pool.entropy_total);
1262 #endif
1263 trace_get_random_bytes(nbytes, _RET_IP_);
1264 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1265 }
1266 EXPORT_SYMBOL(get_random_bytes);
1267
1268 /*
1269 * Add a callback function that will be invoked when the nonblocking
1270 * pool is initialised.
1271 *
1272 * returns: 0 if callback is successfully added
1273 * -EALREADY if pool is already initialised (callback not called)
1274 * -ENOENT if module for callback is not alive
1275 */
1276 int add_random_ready_callback(struct random_ready_callback *rdy)
1277 {
1278 struct module *owner;
1279 unsigned long flags;
1280 int err = -EALREADY;
1281
1282 if (likely(nonblocking_pool.initialized))
1283 return err;
1284
1285 owner = rdy->owner;
1286 if (!try_module_get(owner))
1287 return -ENOENT;
1288
1289 spin_lock_irqsave(&random_ready_list_lock, flags);
1290 if (nonblocking_pool.initialized)
1291 goto out;
1292
1293 owner = NULL;
1294
1295 list_add(&rdy->list, &random_ready_list);
1296 err = 0;
1297
1298 out:
1299 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1300
1301 module_put(owner);
1302
1303 return err;
1304 }
1305 EXPORT_SYMBOL(add_random_ready_callback);
1306
1307 /*
1308 * Delete a previously registered readiness callback function.
1309 */
1310 void del_random_ready_callback(struct random_ready_callback *rdy)
1311 {
1312 unsigned long flags;
1313 struct module *owner = NULL;
1314
1315 spin_lock_irqsave(&random_ready_list_lock, flags);
1316 if (!list_empty(&rdy->list)) {
1317 list_del_init(&rdy->list);
1318 owner = rdy->owner;
1319 }
1320 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1321
1322 module_put(owner);
1323 }
1324 EXPORT_SYMBOL(del_random_ready_callback);
1325
1326 /*
1327 * This function will use the architecture-specific hardware random
1328 * number generator if it is available. The arch-specific hw RNG will
1329 * almost certainly be faster than what we can do in software, but it
1330 * is impossible to verify that it is implemented securely (as
1331 * opposed, to, say, the AES encryption of a sequence number using a
1332 * key known by the NSA). So it's useful if we need the speed, but
1333 * only if we're willing to trust the hardware manufacturer not to
1334 * have put in a back door.
1335 */
1336 void get_random_bytes_arch(void *buf, int nbytes)
1337 {
1338 char *p = buf;
1339
1340 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1341 while (nbytes) {
1342 unsigned long v;
1343 int chunk = min(nbytes, (int)sizeof(unsigned long));
1344
1345 if (!arch_get_random_long(&v))
1346 break;
1347
1348 memcpy(p, &v, chunk);
1349 p += chunk;
1350 nbytes -= chunk;
1351 }
1352
1353 if (nbytes)
1354 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1355 }
1356 EXPORT_SYMBOL(get_random_bytes_arch);
1357
1358
1359 /*
1360 * init_std_data - initialize pool with system data
1361 *
1362 * @r: pool to initialize
1363 *
1364 * This function clears the pool's entropy count and mixes some system
1365 * data into the pool to prepare it for use. The pool is not cleared
1366 * as that can only decrease the entropy in the pool.
1367 */
1368 static void init_std_data(struct entropy_store *r)
1369 {
1370 int i;
1371 ktime_t now = ktime_get_real();
1372 unsigned long rv;
1373
1374 r->last_pulled = jiffies;
1375 mix_pool_bytes(r, &now, sizeof(now));
1376 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1377 if (!arch_get_random_seed_long(&rv) &&
1378 !arch_get_random_long(&rv))
1379 rv = random_get_entropy();
1380 mix_pool_bytes(r, &rv, sizeof(rv));
1381 }
1382 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1383 }
1384
1385 /*
1386 * Note that setup_arch() may call add_device_randomness()
1387 * long before we get here. This allows seeding of the pools
1388 * with some platform dependent data very early in the boot
1389 * process. But it limits our options here. We must use
1390 * statically allocated structures that already have all
1391 * initializations complete at compile time. We should also
1392 * take care not to overwrite the precious per platform data
1393 * we were given.
1394 */
1395 static int rand_initialize(void)
1396 {
1397 init_std_data(&input_pool);
1398 init_std_data(&blocking_pool);
1399 init_std_data(&nonblocking_pool);
1400 return 0;
1401 }
1402 early_initcall(rand_initialize);
1403
1404 #ifdef CONFIG_BLOCK
1405 void rand_initialize_disk(struct gendisk *disk)
1406 {
1407 struct timer_rand_state *state;
1408
1409 /*
1410 * If kzalloc returns null, we just won't use that entropy
1411 * source.
1412 */
1413 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1414 if (state) {
1415 state->last_time = INITIAL_JIFFIES;
1416 disk->random = state;
1417 }
1418 }
1419 #endif
1420
1421 static ssize_t
1422 _random_read(int nonblock, char __user *buf, size_t nbytes)
1423 {
1424 ssize_t n;
1425
1426 if (nbytes == 0)
1427 return 0;
1428
1429 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1430 while (1) {
1431 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1432 if (n < 0)
1433 return n;
1434 trace_random_read(n*8, (nbytes-n)*8,
1435 ENTROPY_BITS(&blocking_pool),
1436 ENTROPY_BITS(&input_pool));
1437 if (n > 0)
1438 return n;
1439
1440 /* Pool is (near) empty. Maybe wait and retry. */
1441 if (nonblock)
1442 return -EAGAIN;
1443
1444 wait_event_interruptible(random_read_wait,
1445 ENTROPY_BITS(&input_pool) >=
1446 random_read_wakeup_bits);
1447 if (signal_pending(current))
1448 return -ERESTARTSYS;
1449 }
1450 }
1451
1452 static ssize_t
1453 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1454 {
1455 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1456 }
1457
1458 static ssize_t
1459 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1460 {
1461 int ret;
1462
1463 if (unlikely(nonblocking_pool.initialized == 0))
1464 printk_once(KERN_NOTICE "random: %s urandom read "
1465 "with %d bits of entropy available\n",
1466 current->comm, nonblocking_pool.entropy_total);
1467
1468 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1469 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1470
1471 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1472 ENTROPY_BITS(&input_pool));
1473 return ret;
1474 }
1475
1476 static unsigned int
1477 random_poll(struct file *file, poll_table * wait)
1478 {
1479 unsigned int mask;
1480
1481 poll_wait(file, &random_read_wait, wait);
1482 poll_wait(file, &random_write_wait, wait);
1483 mask = 0;
1484 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1485 mask |= POLLIN | POLLRDNORM;
1486 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1487 mask |= POLLOUT | POLLWRNORM;
1488 return mask;
1489 }
1490
1491 static int
1492 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1493 {
1494 size_t bytes;
1495 __u32 buf[16];
1496 const char __user *p = buffer;
1497
1498 while (count > 0) {
1499 bytes = min(count, sizeof(buf));
1500 if (copy_from_user(&buf, p, bytes))
1501 return -EFAULT;
1502
1503 count -= bytes;
1504 p += bytes;
1505
1506 mix_pool_bytes(r, buf, bytes);
1507 cond_resched();
1508 }
1509
1510 return 0;
1511 }
1512
1513 static ssize_t random_write(struct file *file, const char __user *buffer,
1514 size_t count, loff_t *ppos)
1515 {
1516 size_t ret;
1517
1518 ret = write_pool(&blocking_pool, buffer, count);
1519 if (ret)
1520 return ret;
1521 ret = write_pool(&nonblocking_pool, buffer, count);
1522 if (ret)
1523 return ret;
1524
1525 return (ssize_t)count;
1526 }
1527
1528 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1529 {
1530 int size, ent_count;
1531 int __user *p = (int __user *)arg;
1532 int retval;
1533
1534 switch (cmd) {
1535 case RNDGETENTCNT:
1536 /* inherently racy, no point locking */
1537 ent_count = ENTROPY_BITS(&input_pool);
1538 if (put_user(ent_count, p))
1539 return -EFAULT;
1540 return 0;
1541 case RNDADDTOENTCNT:
1542 if (!capable(CAP_SYS_ADMIN))
1543 return -EPERM;
1544 if (get_user(ent_count, p))
1545 return -EFAULT;
1546 credit_entropy_bits_safe(&input_pool, ent_count);
1547 return 0;
1548 case RNDADDENTROPY:
1549 if (!capable(CAP_SYS_ADMIN))
1550 return -EPERM;
1551 if (get_user(ent_count, p++))
1552 return -EFAULT;
1553 if (ent_count < 0)
1554 return -EINVAL;
1555 if (get_user(size, p++))
1556 return -EFAULT;
1557 retval = write_pool(&input_pool, (const char __user *)p,
1558 size);
1559 if (retval < 0)
1560 return retval;
1561 credit_entropy_bits_safe(&input_pool, ent_count);
1562 return 0;
1563 case RNDZAPENTCNT:
1564 case RNDCLEARPOOL:
1565 /*
1566 * Clear the entropy pool counters. We no longer clear
1567 * the entropy pool, as that's silly.
1568 */
1569 if (!capable(CAP_SYS_ADMIN))
1570 return -EPERM;
1571 input_pool.entropy_count = 0;
1572 nonblocking_pool.entropy_count = 0;
1573 blocking_pool.entropy_count = 0;
1574 return 0;
1575 default:
1576 return -EINVAL;
1577 }
1578 }
1579
1580 static int random_fasync(int fd, struct file *filp, int on)
1581 {
1582 return fasync_helper(fd, filp, on, &fasync);
1583 }
1584
1585 const struct file_operations random_fops = {
1586 .read = random_read,
1587 .write = random_write,
1588 .poll = random_poll,
1589 .unlocked_ioctl = random_ioctl,
1590 .fasync = random_fasync,
1591 .llseek = noop_llseek,
1592 };
1593
1594 const struct file_operations urandom_fops = {
1595 .read = urandom_read,
1596 .write = random_write,
1597 .unlocked_ioctl = random_ioctl,
1598 .fasync = random_fasync,
1599 .llseek = noop_llseek,
1600 };
1601
1602 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1603 unsigned int, flags)
1604 {
1605 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1606 return -EINVAL;
1607
1608 if (count > INT_MAX)
1609 count = INT_MAX;
1610
1611 if (flags & GRND_RANDOM)
1612 return _random_read(flags & GRND_NONBLOCK, buf, count);
1613
1614 if (unlikely(nonblocking_pool.initialized == 0)) {
1615 if (flags & GRND_NONBLOCK)
1616 return -EAGAIN;
1617 wait_event_interruptible(urandom_init_wait,
1618 nonblocking_pool.initialized);
1619 if (signal_pending(current))
1620 return -ERESTARTSYS;
1621 }
1622 return urandom_read(NULL, buf, count, NULL);
1623 }
1624
1625 /********************************************************************
1626 *
1627 * Sysctl interface
1628 *
1629 ********************************************************************/
1630
1631 #ifdef CONFIG_SYSCTL
1632
1633 #include <linux/sysctl.h>
1634
1635 static int min_read_thresh = 8, min_write_thresh;
1636 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1637 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1638 static char sysctl_bootid[16];
1639
1640 /*
1641 * This function is used to return both the bootid UUID, and random
1642 * UUID. The difference is in whether table->data is NULL; if it is,
1643 * then a new UUID is generated and returned to the user.
1644 *
1645 * If the user accesses this via the proc interface, the UUID will be
1646 * returned as an ASCII string in the standard UUID format; if via the
1647 * sysctl system call, as 16 bytes of binary data.
1648 */
1649 static int proc_do_uuid(struct ctl_table *table, int write,
1650 void __user *buffer, size_t *lenp, loff_t *ppos)
1651 {
1652 struct ctl_table fake_table;
1653 unsigned char buf[64], tmp_uuid[16], *uuid;
1654
1655 uuid = table->data;
1656 if (!uuid) {
1657 uuid = tmp_uuid;
1658 generate_random_uuid(uuid);
1659 } else {
1660 static DEFINE_SPINLOCK(bootid_spinlock);
1661
1662 spin_lock(&bootid_spinlock);
1663 if (!uuid[8])
1664 generate_random_uuid(uuid);
1665 spin_unlock(&bootid_spinlock);
1666 }
1667
1668 sprintf(buf, "%pU", uuid);
1669
1670 fake_table.data = buf;
1671 fake_table.maxlen = sizeof(buf);
1672
1673 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1674 }
1675
1676 /*
1677 * Return entropy available scaled to integral bits
1678 */
1679 static int proc_do_entropy(struct ctl_table *table, int write,
1680 void __user *buffer, size_t *lenp, loff_t *ppos)
1681 {
1682 struct ctl_table fake_table;
1683 int entropy_count;
1684
1685 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1686
1687 fake_table.data = &entropy_count;
1688 fake_table.maxlen = sizeof(entropy_count);
1689
1690 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1691 }
1692
1693 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1694 extern struct ctl_table random_table[];
1695 struct ctl_table random_table[] = {
1696 {
1697 .procname = "poolsize",
1698 .data = &sysctl_poolsize,
1699 .maxlen = sizeof(int),
1700 .mode = 0444,
1701 .proc_handler = proc_dointvec,
1702 },
1703 {
1704 .procname = "entropy_avail",
1705 .maxlen = sizeof(int),
1706 .mode = 0444,
1707 .proc_handler = proc_do_entropy,
1708 .data = &input_pool.entropy_count,
1709 },
1710 {
1711 .procname = "read_wakeup_threshold",
1712 .data = &random_read_wakeup_bits,
1713 .maxlen = sizeof(int),
1714 .mode = 0644,
1715 .proc_handler = proc_dointvec_minmax,
1716 .extra1 = &min_read_thresh,
1717 .extra2 = &max_read_thresh,
1718 },
1719 {
1720 .procname = "write_wakeup_threshold",
1721 .data = &random_write_wakeup_bits,
1722 .maxlen = sizeof(int),
1723 .mode = 0644,
1724 .proc_handler = proc_dointvec_minmax,
1725 .extra1 = &min_write_thresh,
1726 .extra2 = &max_write_thresh,
1727 },
1728 {
1729 .procname = "urandom_min_reseed_secs",
1730 .data = &random_min_urandom_seed,
1731 .maxlen = sizeof(int),
1732 .mode = 0644,
1733 .proc_handler = proc_dointvec,
1734 },
1735 {
1736 .procname = "boot_id",
1737 .data = &sysctl_bootid,
1738 .maxlen = 16,
1739 .mode = 0444,
1740 .proc_handler = proc_do_uuid,
1741 },
1742 {
1743 .procname = "uuid",
1744 .maxlen = 16,
1745 .mode = 0444,
1746 .proc_handler = proc_do_uuid,
1747 },
1748 #ifdef ADD_INTERRUPT_BENCH
1749 {
1750 .procname = "add_interrupt_avg_cycles",
1751 .data = &avg_cycles,
1752 .maxlen = sizeof(avg_cycles),
1753 .mode = 0444,
1754 .proc_handler = proc_doulongvec_minmax,
1755 },
1756 {
1757 .procname = "add_interrupt_avg_deviation",
1758 .data = &avg_deviation,
1759 .maxlen = sizeof(avg_deviation),
1760 .mode = 0444,
1761 .proc_handler = proc_doulongvec_minmax,
1762 },
1763 #endif
1764 { }
1765 };
1766 #endif /* CONFIG_SYSCTL */
1767
1768 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1769
1770 int random_int_secret_init(void)
1771 {
1772 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1773 return 0;
1774 }
1775
1776 /*
1777 * Get a random word for internal kernel use only. Similar to urandom but
1778 * with the goal of minimal entropy pool depletion. As a result, the random
1779 * value is not cryptographically secure but for several uses the cost of
1780 * depleting entropy is too high
1781 */
1782 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1783 unsigned int get_random_int(void)
1784 {
1785 __u32 *hash;
1786 unsigned int ret;
1787
1788 if (arch_get_random_int(&ret))
1789 return ret;
1790
1791 hash = get_cpu_var(get_random_int_hash);
1792
1793 hash[0] += current->pid + jiffies + random_get_entropy();
1794 md5_transform(hash, random_int_secret);
1795 ret = hash[0];
1796 put_cpu_var(get_random_int_hash);
1797
1798 return ret;
1799 }
1800 EXPORT_SYMBOL(get_random_int);
1801
1802 /*
1803 * Same as get_random_int(), but returns unsigned long.
1804 */
1805 unsigned long get_random_long(void)
1806 {
1807 __u32 *hash;
1808 unsigned long ret;
1809
1810 if (arch_get_random_long(&ret))
1811 return ret;
1812
1813 hash = get_cpu_var(get_random_int_hash);
1814
1815 hash[0] += current->pid + jiffies + random_get_entropy();
1816 md5_transform(hash, random_int_secret);
1817 ret = *(unsigned long *)hash;
1818 put_cpu_var(get_random_int_hash);
1819
1820 return ret;
1821 }
1822 EXPORT_SYMBOL(get_random_long);
1823
1824 /*
1825 * randomize_range() returns a start address such that
1826 *
1827 * [...... <range> .....]
1828 * start end
1829 *
1830 * a <range> with size "len" starting at the return value is inside in the
1831 * area defined by [start, end], but is otherwise randomized.
1832 */
1833 unsigned long
1834 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1835 {
1836 unsigned long range = end - len - start;
1837
1838 if (end <= start + len)
1839 return 0;
1840 return PAGE_ALIGN(get_random_int() % range + start);
1841 }
1842
1843 /* Interface for in-kernel drivers of true hardware RNGs.
1844 * Those devices may produce endless random bits and will be throttled
1845 * when our pool is full.
1846 */
1847 void add_hwgenerator_randomness(const char *buffer, size_t count,
1848 size_t entropy)
1849 {
1850 struct entropy_store *poolp = &input_pool;
1851
1852 /* Suspend writing if we're above the trickle threshold.
1853 * We'll be woken up again once below random_write_wakeup_thresh,
1854 * or when the calling thread is about to terminate.
1855 */
1856 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
1857 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
1858 mix_pool_bytes(poolp, buffer, count);
1859 credit_entropy_bits(poolp, entropy);
1860 }
1861 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
This page took 0.093478 seconds and 5 git commands to generate.