drm: drop drm_buf_t typedef
[deliverable/linux.git] / drivers / char / stallion.c
1 /*****************************************************************************/
2
3 /*
4 * stallion.c -- stallion multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 /*****************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
45
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48
49 #include <linux/pci.h>
50
51 /*****************************************************************************/
52
53 /*
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
57 */
58 #define BRD_EASYIO 20
59 #define BRD_ECH 21
60 #define BRD_ECHMC 22
61 #define BRD_ECHPCI 26
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
64
65 struct stlconf {
66 unsigned int brdtype;
67 int ioaddr1;
68 int ioaddr2;
69 unsigned long memaddr;
70 int irq;
71 int irqtype;
72 };
73
74 static unsigned int stl_nrbrds;
75
76 /*****************************************************************************/
77
78 /*
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
81 */
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
84 #endif
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
87 #endif
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
90 #endif
91
92 /*
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
95 */
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
98
99 /*****************************************************************************/
100
101 /*
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
104 */
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
108
109 static struct tty_driver *stl_serial;
110
111 /*
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
115 */
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 9600,
120 .c_ospeed = 9600,
121 };
122
123 /*
124 * Define global place to put buffer overflow characters.
125 */
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
127
128 /*****************************************************************************/
129
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
132
133 /*
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
136 */
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
139
140
141 /*
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
145 */
146 #define ASYI_TXBUSY 1
147 #define ASYI_TXLOW 2
148 #define ASYI_DCDCHANGE 3
149 #define ASYI_TXFLOWED 4
150
151 /*
152 * Define an array of board names as printable strings. Handy for
153 * referencing boards when printing trace and stuff.
154 */
155 static char *stl_brdnames[] = {
156 NULL,
157 NULL,
158 NULL,
159 NULL,
160 NULL,
161 NULL,
162 NULL,
163 NULL,
164 NULL,
165 NULL,
166 NULL,
167 NULL,
168 NULL,
169 NULL,
170 NULL,
171 NULL,
172 NULL,
173 NULL,
174 NULL,
175 NULL,
176 "EasyIO",
177 "EC8/32-AT",
178 "EC8/32-MC",
179 NULL,
180 NULL,
181 NULL,
182 "EC8/32-PCI",
183 "EC8/64-PCI",
184 "EasyIO-PCI",
185 };
186
187 /*****************************************************************************/
188
189 /*
190 * Define some string labels for arguments passed from the module
191 * load line. These allow for easy board definitions, and easy
192 * modification of the io, memory and irq resoucres.
193 */
194 static unsigned int stl_nargs;
195 static char *board0[4];
196 static char *board1[4];
197 static char *board2[4];
198 static char *board3[4];
199
200 static char **stl_brdsp[] = {
201 (char **) &board0,
202 (char **) &board1,
203 (char **) &board2,
204 (char **) &board3
205 };
206
207 /*
208 * Define a set of common board names, and types. This is used to
209 * parse any module arguments.
210 */
211
212 static struct {
213 char *name;
214 int type;
215 } stl_brdstr[] = {
216 { "easyio", BRD_EASYIO },
217 { "eio", BRD_EASYIO },
218 { "20", BRD_EASYIO },
219 { "ec8/32", BRD_ECH },
220 { "ec8/32-at", BRD_ECH },
221 { "ec8/32-isa", BRD_ECH },
222 { "ech", BRD_ECH },
223 { "echat", BRD_ECH },
224 { "21", BRD_ECH },
225 { "ec8/32-mc", BRD_ECHMC },
226 { "ec8/32-mca", BRD_ECHMC },
227 { "echmc", BRD_ECHMC },
228 { "echmca", BRD_ECHMC },
229 { "22", BRD_ECHMC },
230 { "ec8/32-pc", BRD_ECHPCI },
231 { "ec8/32-pci", BRD_ECHPCI },
232 { "26", BRD_ECHPCI },
233 { "ec8/64-pc", BRD_ECH64PCI },
234 { "ec8/64-pci", BRD_ECH64PCI },
235 { "ech-pci", BRD_ECH64PCI },
236 { "echpci", BRD_ECH64PCI },
237 { "echpc", BRD_ECH64PCI },
238 { "27", BRD_ECH64PCI },
239 { "easyio-pc", BRD_EASYIOPCI },
240 { "easyio-pci", BRD_EASYIOPCI },
241 { "eio-pci", BRD_EASYIOPCI },
242 { "eiopci", BRD_EASYIOPCI },
243 { "28", BRD_EASYIOPCI },
244 };
245
246 /*
247 * Define the module agruments.
248 */
249
250 module_param_array(board0, charp, &stl_nargs, 0);
251 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
252 module_param_array(board1, charp, &stl_nargs, 0);
253 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
254 module_param_array(board2, charp, &stl_nargs, 0);
255 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
256 module_param_array(board3, charp, &stl_nargs, 0);
257 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
258
259 /*****************************************************************************/
260
261 /*
262 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
263 * to the directly accessible io ports of these boards (not the uarts -
264 * they are in cd1400.h and sc26198.h).
265 */
266 #define EIO_8PORTRS 0x04
267 #define EIO_4PORTRS 0x05
268 #define EIO_8PORTDI 0x00
269 #define EIO_8PORTM 0x06
270 #define EIO_MK3 0x03
271 #define EIO_IDBITMASK 0x07
272
273 #define EIO_BRDMASK 0xf0
274 #define ID_BRD4 0x10
275 #define ID_BRD8 0x20
276 #define ID_BRD16 0x30
277
278 #define EIO_INTRPEND 0x08
279 #define EIO_INTEDGE 0x00
280 #define EIO_INTLEVEL 0x08
281 #define EIO_0WS 0x10
282
283 #define ECH_ID 0xa0
284 #define ECH_IDBITMASK 0xe0
285 #define ECH_BRDENABLE 0x08
286 #define ECH_BRDDISABLE 0x00
287 #define ECH_INTENABLE 0x01
288 #define ECH_INTDISABLE 0x00
289 #define ECH_INTLEVEL 0x02
290 #define ECH_INTEDGE 0x00
291 #define ECH_INTRPEND 0x01
292 #define ECH_BRDRESET 0x01
293
294 #define ECHMC_INTENABLE 0x01
295 #define ECHMC_BRDRESET 0x02
296
297 #define ECH_PNLSTATUS 2
298 #define ECH_PNL16PORT 0x20
299 #define ECH_PNLIDMASK 0x07
300 #define ECH_PNLXPID 0x40
301 #define ECH_PNLINTRPEND 0x80
302
303 #define ECH_ADDR2MASK 0x1e0
304
305 /*
306 * Define the vector mapping bits for the programmable interrupt board
307 * hardware. These bits encode the interrupt for the board to use - it
308 * is software selectable (except the EIO-8M).
309 */
310 static unsigned char stl_vecmap[] = {
311 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
312 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
313 };
314
315 /*
316 * Lock ordering is that you may not take stallion_lock holding
317 * brd_lock.
318 */
319
320 static spinlock_t brd_lock; /* Guard the board mapping */
321 static spinlock_t stallion_lock; /* Guard the tty driver */
322
323 /*
324 * Set up enable and disable macros for the ECH boards. They require
325 * the secondary io address space to be activated and deactivated.
326 * This way all ECH boards can share their secondary io region.
327 * If this is an ECH-PCI board then also need to set the page pointer
328 * to point to the correct page.
329 */
330 #define BRDENABLE(brdnr,pagenr) \
331 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
332 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
333 stl_brds[(brdnr)]->ioctrl); \
334 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
335 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
336
337 #define BRDDISABLE(brdnr) \
338 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
339 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
340 stl_brds[(brdnr)]->ioctrl);
341
342 #define STL_CD1400MAXBAUD 230400
343 #define STL_SC26198MAXBAUD 460800
344
345 #define STL_BAUDBASE 115200
346 #define STL_CLOSEDELAY (5 * HZ / 10)
347
348 /*****************************************************************************/
349
350 /*
351 * Define the Stallion PCI vendor and device IDs.
352 */
353 #ifndef PCI_VENDOR_ID_STALLION
354 #define PCI_VENDOR_ID_STALLION 0x124d
355 #endif
356 #ifndef PCI_DEVICE_ID_ECHPCI832
357 #define PCI_DEVICE_ID_ECHPCI832 0x0000
358 #endif
359 #ifndef PCI_DEVICE_ID_ECHPCI864
360 #define PCI_DEVICE_ID_ECHPCI864 0x0002
361 #endif
362 #ifndef PCI_DEVICE_ID_EIOPCI
363 #define PCI_DEVICE_ID_EIOPCI 0x0003
364 #endif
365
366 /*
367 * Define structure to hold all Stallion PCI boards.
368 */
369
370 static struct pci_device_id stl_pcibrds[] = {
371 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
372 .driver_data = BRD_ECH64PCI },
373 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
374 .driver_data = BRD_EASYIOPCI },
375 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
376 .driver_data = BRD_ECHPCI },
377 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
378 .driver_data = BRD_ECHPCI },
379 { }
380 };
381 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
382
383 /*****************************************************************************/
384
385 /*
386 * Define macros to extract a brd/port number from a minor number.
387 */
388 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
389 #define MINOR2PORT(min) ((min) & 0x3f)
390
391 /*
392 * Define a baud rate table that converts termios baud rate selector
393 * into the actual baud rate value. All baud rate calculations are
394 * based on the actual baud rate required.
395 */
396 static unsigned int stl_baudrates[] = {
397 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
398 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
399 };
400
401 /*****************************************************************************/
402
403 /*
404 * Declare all those functions in this driver!
405 */
406
407 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
408 static int stl_brdinit(struct stlbrd *brdp);
409 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp);
410 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
411 static int stl_waitcarrier(struct stlport *portp, struct file *filp);
412
413 /*
414 * CD1400 uart specific handling functions.
415 */
416 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
417 static int stl_cd1400getreg(struct stlport *portp, int regnr);
418 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
419 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
420 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
421 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
422 static int stl_cd1400getsignals(struct stlport *portp);
423 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
424 static void stl_cd1400ccrwait(struct stlport *portp);
425 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
427 static void stl_cd1400disableintrs(struct stlport *portp);
428 static void stl_cd1400sendbreak(struct stlport *portp, int len);
429 static void stl_cd1400flowctrl(struct stlport *portp, int state);
430 static void stl_cd1400sendflow(struct stlport *portp, int state);
431 static void stl_cd1400flush(struct stlport *portp);
432 static int stl_cd1400datastate(struct stlport *portp);
433 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
435 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
437 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
438
439 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
440
441 /*
442 * SC26198 uart specific handling functions.
443 */
444 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
445 static int stl_sc26198getreg(struct stlport *portp, int regnr);
446 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
447 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
448 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
449 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
450 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
451 static int stl_sc26198getsignals(struct stlport *portp);
452 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
453 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
455 static void stl_sc26198disableintrs(struct stlport *portp);
456 static void stl_sc26198sendbreak(struct stlport *portp, int len);
457 static void stl_sc26198flowctrl(struct stlport *portp, int state);
458 static void stl_sc26198sendflow(struct stlport *portp, int state);
459 static void stl_sc26198flush(struct stlport *portp);
460 static int stl_sc26198datastate(struct stlport *portp);
461 static void stl_sc26198wait(struct stlport *portp);
462 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
463 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
464 static void stl_sc26198txisr(struct stlport *port);
465 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
466 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
467 static void stl_sc26198rxbadchars(struct stlport *portp);
468 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
469
470 /*****************************************************************************/
471
472 /*
473 * Generic UART support structure.
474 */
475 typedef struct uart {
476 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
477 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
478 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
479 int (*getsignals)(struct stlport *portp);
480 void (*setsignals)(struct stlport *portp, int dtr, int rts);
481 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
482 void (*startrxtx)(struct stlport *portp, int rx, int tx);
483 void (*disableintrs)(struct stlport *portp);
484 void (*sendbreak)(struct stlport *portp, int len);
485 void (*flowctrl)(struct stlport *portp, int state);
486 void (*sendflow)(struct stlport *portp, int state);
487 void (*flush)(struct stlport *portp);
488 int (*datastate)(struct stlport *portp);
489 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
490 } uart_t;
491
492 /*
493 * Define some macros to make calling these functions nice and clean.
494 */
495 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
496 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
497 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
498 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
499 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
500 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
501 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
502 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
503 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
504 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
505 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
506 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
507 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
508
509 /*****************************************************************************/
510
511 /*
512 * CD1400 UART specific data initialization.
513 */
514 static uart_t stl_cd1400uart = {
515 stl_cd1400panelinit,
516 stl_cd1400portinit,
517 stl_cd1400setport,
518 stl_cd1400getsignals,
519 stl_cd1400setsignals,
520 stl_cd1400enablerxtx,
521 stl_cd1400startrxtx,
522 stl_cd1400disableintrs,
523 stl_cd1400sendbreak,
524 stl_cd1400flowctrl,
525 stl_cd1400sendflow,
526 stl_cd1400flush,
527 stl_cd1400datastate,
528 stl_cd1400eiointr
529 };
530
531 /*
532 * Define the offsets within the register bank of a cd1400 based panel.
533 * These io address offsets are common to the EasyIO board as well.
534 */
535 #define EREG_ADDR 0
536 #define EREG_DATA 4
537 #define EREG_RXACK 5
538 #define EREG_TXACK 6
539 #define EREG_MDACK 7
540
541 #define EREG_BANKSIZE 8
542
543 #define CD1400_CLK 25000000
544 #define CD1400_CLK8M 20000000
545
546 /*
547 * Define the cd1400 baud rate clocks. These are used when calculating
548 * what clock and divisor to use for the required baud rate. Also
549 * define the maximum baud rate allowed, and the default base baud.
550 */
551 static int stl_cd1400clkdivs[] = {
552 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
553 };
554
555 /*****************************************************************************/
556
557 /*
558 * SC26198 UART specific data initization.
559 */
560 static uart_t stl_sc26198uart = {
561 stl_sc26198panelinit,
562 stl_sc26198portinit,
563 stl_sc26198setport,
564 stl_sc26198getsignals,
565 stl_sc26198setsignals,
566 stl_sc26198enablerxtx,
567 stl_sc26198startrxtx,
568 stl_sc26198disableintrs,
569 stl_sc26198sendbreak,
570 stl_sc26198flowctrl,
571 stl_sc26198sendflow,
572 stl_sc26198flush,
573 stl_sc26198datastate,
574 stl_sc26198intr
575 };
576
577 /*
578 * Define the offsets within the register bank of a sc26198 based panel.
579 */
580 #define XP_DATA 0
581 #define XP_ADDR 1
582 #define XP_MODID 2
583 #define XP_STATUS 2
584 #define XP_IACK 3
585
586 #define XP_BANKSIZE 4
587
588 /*
589 * Define the sc26198 baud rate table. Offsets within the table
590 * represent the actual baud rate selector of sc26198 registers.
591 */
592 static unsigned int sc26198_baudtable[] = {
593 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
594 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
595 230400, 460800, 921600
596 };
597
598 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
599
600 /*****************************************************************************/
601
602 /*
603 * Define the driver info for a user level control device. Used mainly
604 * to get at port stats - only not using the port device itself.
605 */
606 static const struct file_operations stl_fsiomem = {
607 .owner = THIS_MODULE,
608 .ioctl = stl_memioctl,
609 };
610
611 static struct class *stallion_class;
612
613 /*
614 * Check for any arguments passed in on the module load command line.
615 */
616
617 /*****************************************************************************/
618
619 /*
620 * Parse the supplied argument string, into the board conf struct.
621 */
622
623 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
624 {
625 char *sp;
626 unsigned int i;
627
628 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
629
630 if ((argp[0] == NULL) || (*argp[0] == 0))
631 return 0;
632
633 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
634 *sp = tolower(*sp);
635
636 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
637 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
638 break;
639
640 if (i == ARRAY_SIZE(stl_brdstr)) {
641 printk("STALLION: unknown board name, %s?\n", argp[0]);
642 return 0;
643 }
644
645 confp->brdtype = stl_brdstr[i].type;
646
647 i = 1;
648 if ((argp[i] != NULL) && (*argp[i] != 0))
649 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
650 i++;
651 if (confp->brdtype == BRD_ECH) {
652 if ((argp[i] != NULL) && (*argp[i] != 0))
653 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
654 i++;
655 }
656 if ((argp[i] != NULL) && (*argp[i] != 0))
657 confp->irq = simple_strtoul(argp[i], NULL, 0);
658 return 1;
659 }
660
661 /*****************************************************************************/
662
663 /*
664 * Allocate a new board structure. Fill out the basic info in it.
665 */
666
667 static struct stlbrd *stl_allocbrd(void)
668 {
669 struct stlbrd *brdp;
670
671 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
672 if (!brdp) {
673 printk("STALLION: failed to allocate memory (size=%Zd)\n",
674 sizeof(struct stlbrd));
675 return NULL;
676 }
677
678 brdp->magic = STL_BOARDMAGIC;
679 return brdp;
680 }
681
682 /*****************************************************************************/
683
684 static int stl_open(struct tty_struct *tty, struct file *filp)
685 {
686 struct stlport *portp;
687 struct stlbrd *brdp;
688 unsigned int minordev, brdnr, panelnr;
689 int portnr, rc;
690
691 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
692
693 minordev = tty->index;
694 brdnr = MINOR2BRD(minordev);
695 if (brdnr >= stl_nrbrds)
696 return -ENODEV;
697 brdp = stl_brds[brdnr];
698 if (brdp == NULL)
699 return -ENODEV;
700 minordev = MINOR2PORT(minordev);
701 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
702 if (brdp->panels[panelnr] == NULL)
703 break;
704 if (minordev < brdp->panels[panelnr]->nrports) {
705 portnr = minordev;
706 break;
707 }
708 minordev -= brdp->panels[panelnr]->nrports;
709 }
710 if (portnr < 0)
711 return -ENODEV;
712
713 portp = brdp->panels[panelnr]->ports[portnr];
714 if (portp == NULL)
715 return -ENODEV;
716
717 /*
718 * On the first open of the device setup the port hardware, and
719 * initialize the per port data structure.
720 */
721 portp->tty = tty;
722 tty->driver_data = portp;
723 portp->refcount++;
724
725 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
726 if (!portp->tx.buf) {
727 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
728 if (!portp->tx.buf)
729 return -ENOMEM;
730 portp->tx.head = portp->tx.buf;
731 portp->tx.tail = portp->tx.buf;
732 }
733 stl_setport(portp, tty->termios);
734 portp->sigs = stl_getsignals(portp);
735 stl_setsignals(portp, 1, 1);
736 stl_enablerxtx(portp, 1, 1);
737 stl_startrxtx(portp, 1, 0);
738 clear_bit(TTY_IO_ERROR, &tty->flags);
739 portp->flags |= ASYNC_INITIALIZED;
740 }
741
742 /*
743 * Check if this port is in the middle of closing. If so then wait
744 * until it is closed then return error status, based on flag settings.
745 * The sleep here does not need interrupt protection since the wakeup
746 * for it is done with the same context.
747 */
748 if (portp->flags & ASYNC_CLOSING) {
749 interruptible_sleep_on(&portp->close_wait);
750 if (portp->flags & ASYNC_HUP_NOTIFY)
751 return -EAGAIN;
752 return -ERESTARTSYS;
753 }
754
755 /*
756 * Based on type of open being done check if it can overlap with any
757 * previous opens still in effect. If we are a normal serial device
758 * then also we might have to wait for carrier.
759 */
760 if (!(filp->f_flags & O_NONBLOCK))
761 if ((rc = stl_waitcarrier(portp, filp)) != 0)
762 return rc;
763
764 portp->flags |= ASYNC_NORMAL_ACTIVE;
765
766 return 0;
767 }
768
769 /*****************************************************************************/
770
771 /*
772 * Possibly need to wait for carrier (DCD signal) to come high. Say
773 * maybe because if we are clocal then we don't need to wait...
774 */
775
776 static int stl_waitcarrier(struct stlport *portp, struct file *filp)
777 {
778 unsigned long flags;
779 int rc, doclocal;
780
781 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
782
783 rc = 0;
784 doclocal = 0;
785
786 spin_lock_irqsave(&stallion_lock, flags);
787
788 if (portp->tty->termios->c_cflag & CLOCAL)
789 doclocal++;
790
791 portp->openwaitcnt++;
792 if (! tty_hung_up_p(filp))
793 portp->refcount--;
794
795 for (;;) {
796 /* Takes brd_lock internally */
797 stl_setsignals(portp, 1, 1);
798 if (tty_hung_up_p(filp) ||
799 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
800 if (portp->flags & ASYNC_HUP_NOTIFY)
801 rc = -EBUSY;
802 else
803 rc = -ERESTARTSYS;
804 break;
805 }
806 if (((portp->flags & ASYNC_CLOSING) == 0) &&
807 (doclocal || (portp->sigs & TIOCM_CD)))
808 break;
809 if (signal_pending(current)) {
810 rc = -ERESTARTSYS;
811 break;
812 }
813 /* FIXME */
814 interruptible_sleep_on(&portp->open_wait);
815 }
816
817 if (! tty_hung_up_p(filp))
818 portp->refcount++;
819 portp->openwaitcnt--;
820 spin_unlock_irqrestore(&stallion_lock, flags);
821
822 return rc;
823 }
824
825 /*****************************************************************************/
826
827 static void stl_flushbuffer(struct tty_struct *tty)
828 {
829 struct stlport *portp;
830
831 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
832
833 if (tty == NULL)
834 return;
835 portp = tty->driver_data;
836 if (portp == NULL)
837 return;
838
839 stl_flush(portp);
840 tty_wakeup(tty);
841 }
842
843 /*****************************************************************************/
844
845 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
846 {
847 struct stlport *portp;
848 unsigned long tend;
849
850 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
851
852 if (tty == NULL)
853 return;
854 portp = tty->driver_data;
855 if (portp == NULL)
856 return;
857
858 if (timeout == 0)
859 timeout = HZ;
860 tend = jiffies + timeout;
861
862 while (stl_datastate(portp)) {
863 if (signal_pending(current))
864 break;
865 msleep_interruptible(20);
866 if (time_after_eq(jiffies, tend))
867 break;
868 }
869 }
870
871 /*****************************************************************************/
872
873 static void stl_close(struct tty_struct *tty, struct file *filp)
874 {
875 struct stlport *portp;
876 unsigned long flags;
877
878 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
879
880 portp = tty->driver_data;
881 if (portp == NULL)
882 return;
883
884 spin_lock_irqsave(&stallion_lock, flags);
885 if (tty_hung_up_p(filp)) {
886 spin_unlock_irqrestore(&stallion_lock, flags);
887 return;
888 }
889 if ((tty->count == 1) && (portp->refcount != 1))
890 portp->refcount = 1;
891 if (portp->refcount-- > 1) {
892 spin_unlock_irqrestore(&stallion_lock, flags);
893 return;
894 }
895
896 portp->refcount = 0;
897 portp->flags |= ASYNC_CLOSING;
898
899 /*
900 * May want to wait for any data to drain before closing. The BUSY
901 * flag keeps track of whether we are still sending or not - it is
902 * very accurate for the cd1400, not quite so for the sc26198.
903 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
904 */
905 tty->closing = 1;
906
907 spin_unlock_irqrestore(&stallion_lock, flags);
908
909 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
910 tty_wait_until_sent(tty, portp->closing_wait);
911 stl_waituntilsent(tty, (HZ / 2));
912
913
914 spin_lock_irqsave(&stallion_lock, flags);
915 portp->flags &= ~ASYNC_INITIALIZED;
916 spin_unlock_irqrestore(&stallion_lock, flags);
917
918 stl_disableintrs(portp);
919 if (tty->termios->c_cflag & HUPCL)
920 stl_setsignals(portp, 0, 0);
921 stl_enablerxtx(portp, 0, 0);
922 stl_flushbuffer(tty);
923 portp->istate = 0;
924 if (portp->tx.buf != NULL) {
925 kfree(portp->tx.buf);
926 portp->tx.buf = NULL;
927 portp->tx.head = NULL;
928 portp->tx.tail = NULL;
929 }
930 set_bit(TTY_IO_ERROR, &tty->flags);
931 tty_ldisc_flush(tty);
932
933 tty->closing = 0;
934 portp->tty = NULL;
935
936 if (portp->openwaitcnt) {
937 if (portp->close_delay)
938 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
939 wake_up_interruptible(&portp->open_wait);
940 }
941
942 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
943 wake_up_interruptible(&portp->close_wait);
944 }
945
946 /*****************************************************************************/
947
948 /*
949 * Write routine. Take data and stuff it in to the TX ring queue.
950 * If transmit interrupts are not running then start them.
951 */
952
953 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
954 {
955 struct stlport *portp;
956 unsigned int len, stlen;
957 unsigned char *chbuf;
958 char *head, *tail;
959
960 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
961
962 portp = tty->driver_data;
963 if (portp == NULL)
964 return 0;
965 if (portp->tx.buf == NULL)
966 return 0;
967
968 /*
969 * If copying direct from user space we must cater for page faults,
970 * causing us to "sleep" here for a while. To handle this copy in all
971 * the data we need now, into a local buffer. Then when we got it all
972 * copy it into the TX buffer.
973 */
974 chbuf = (unsigned char *) buf;
975
976 head = portp->tx.head;
977 tail = portp->tx.tail;
978 if (head >= tail) {
979 len = STL_TXBUFSIZE - (head - tail) - 1;
980 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
981 } else {
982 len = tail - head - 1;
983 stlen = len;
984 }
985
986 len = min(len, (unsigned int)count);
987 count = 0;
988 while (len > 0) {
989 stlen = min(len, stlen);
990 memcpy(head, chbuf, stlen);
991 len -= stlen;
992 chbuf += stlen;
993 count += stlen;
994 head += stlen;
995 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
996 head = portp->tx.buf;
997 stlen = tail - head;
998 }
999 }
1000 portp->tx.head = head;
1001
1002 clear_bit(ASYI_TXLOW, &portp->istate);
1003 stl_startrxtx(portp, -1, 1);
1004
1005 return count;
1006 }
1007
1008 /*****************************************************************************/
1009
1010 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1011 {
1012 struct stlport *portp;
1013 unsigned int len;
1014 char *head, *tail;
1015
1016 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1017
1018 if (tty == NULL)
1019 return;
1020 portp = tty->driver_data;
1021 if (portp == NULL)
1022 return;
1023 if (portp->tx.buf == NULL)
1024 return;
1025
1026 head = portp->tx.head;
1027 tail = portp->tx.tail;
1028
1029 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1030 len--;
1031
1032 if (len > 0) {
1033 *head++ = ch;
1034 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1035 head = portp->tx.buf;
1036 }
1037 portp->tx.head = head;
1038 }
1039
1040 /*****************************************************************************/
1041
1042 /*
1043 * If there are any characters in the buffer then make sure that TX
1044 * interrupts are on and get'em out. Normally used after the putchar
1045 * routine has been called.
1046 */
1047
1048 static void stl_flushchars(struct tty_struct *tty)
1049 {
1050 struct stlport *portp;
1051
1052 pr_debug("stl_flushchars(tty=%p)\n", tty);
1053
1054 if (tty == NULL)
1055 return;
1056 portp = tty->driver_data;
1057 if (portp == NULL)
1058 return;
1059 if (portp->tx.buf == NULL)
1060 return;
1061
1062 stl_startrxtx(portp, -1, 1);
1063 }
1064
1065 /*****************************************************************************/
1066
1067 static int stl_writeroom(struct tty_struct *tty)
1068 {
1069 struct stlport *portp;
1070 char *head, *tail;
1071
1072 pr_debug("stl_writeroom(tty=%p)\n", tty);
1073
1074 if (tty == NULL)
1075 return 0;
1076 portp = tty->driver_data;
1077 if (portp == NULL)
1078 return 0;
1079 if (portp->tx.buf == NULL)
1080 return 0;
1081
1082 head = portp->tx.head;
1083 tail = portp->tx.tail;
1084 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1085 }
1086
1087 /*****************************************************************************/
1088
1089 /*
1090 * Return number of chars in the TX buffer. Normally we would just
1091 * calculate the number of chars in the buffer and return that, but if
1092 * the buffer is empty and TX interrupts are still on then we return
1093 * that the buffer still has 1 char in it. This way whoever called us
1094 * will not think that ALL chars have drained - since the UART still
1095 * must have some chars in it (we are busy after all).
1096 */
1097
1098 static int stl_charsinbuffer(struct tty_struct *tty)
1099 {
1100 struct stlport *portp;
1101 unsigned int size;
1102 char *head, *tail;
1103
1104 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1105
1106 if (tty == NULL)
1107 return 0;
1108 portp = tty->driver_data;
1109 if (portp == NULL)
1110 return 0;
1111 if (portp->tx.buf == NULL)
1112 return 0;
1113
1114 head = portp->tx.head;
1115 tail = portp->tx.tail;
1116 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1117 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1118 size = 1;
1119 return size;
1120 }
1121
1122 /*****************************************************************************/
1123
1124 /*
1125 * Generate the serial struct info.
1126 */
1127
1128 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1129 {
1130 struct serial_struct sio;
1131 struct stlbrd *brdp;
1132
1133 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1134
1135 memset(&sio, 0, sizeof(struct serial_struct));
1136 sio.line = portp->portnr;
1137 sio.port = portp->ioaddr;
1138 sio.flags = portp->flags;
1139 sio.baud_base = portp->baud_base;
1140 sio.close_delay = portp->close_delay;
1141 sio.closing_wait = portp->closing_wait;
1142 sio.custom_divisor = portp->custom_divisor;
1143 sio.hub6 = 0;
1144 if (portp->uartp == &stl_cd1400uart) {
1145 sio.type = PORT_CIRRUS;
1146 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1147 } else {
1148 sio.type = PORT_UNKNOWN;
1149 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1150 }
1151
1152 brdp = stl_brds[portp->brdnr];
1153 if (brdp != NULL)
1154 sio.irq = brdp->irq;
1155
1156 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1157 }
1158
1159 /*****************************************************************************/
1160
1161 /*
1162 * Set port according to the serial struct info.
1163 * At this point we do not do any auto-configure stuff, so we will
1164 * just quietly ignore any requests to change irq, etc.
1165 */
1166
1167 static int stl_setserial(struct stlport *portp, struct serial_struct __user *sp)
1168 {
1169 struct serial_struct sio;
1170
1171 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1172
1173 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1174 return -EFAULT;
1175 if (!capable(CAP_SYS_ADMIN)) {
1176 if ((sio.baud_base != portp->baud_base) ||
1177 (sio.close_delay != portp->close_delay) ||
1178 ((sio.flags & ~ASYNC_USR_MASK) !=
1179 (portp->flags & ~ASYNC_USR_MASK)))
1180 return -EPERM;
1181 }
1182
1183 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1184 (sio.flags & ASYNC_USR_MASK);
1185 portp->baud_base = sio.baud_base;
1186 portp->close_delay = sio.close_delay;
1187 portp->closing_wait = sio.closing_wait;
1188 portp->custom_divisor = sio.custom_divisor;
1189 stl_setport(portp, portp->tty->termios);
1190 return 0;
1191 }
1192
1193 /*****************************************************************************/
1194
1195 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1196 {
1197 struct stlport *portp;
1198
1199 if (tty == NULL)
1200 return -ENODEV;
1201 portp = tty->driver_data;
1202 if (portp == NULL)
1203 return -ENODEV;
1204 if (tty->flags & (1 << TTY_IO_ERROR))
1205 return -EIO;
1206
1207 return stl_getsignals(portp);
1208 }
1209
1210 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1211 unsigned int set, unsigned int clear)
1212 {
1213 struct stlport *portp;
1214 int rts = -1, dtr = -1;
1215
1216 if (tty == NULL)
1217 return -ENODEV;
1218 portp = tty->driver_data;
1219 if (portp == NULL)
1220 return -ENODEV;
1221 if (tty->flags & (1 << TTY_IO_ERROR))
1222 return -EIO;
1223
1224 if (set & TIOCM_RTS)
1225 rts = 1;
1226 if (set & TIOCM_DTR)
1227 dtr = 1;
1228 if (clear & TIOCM_RTS)
1229 rts = 0;
1230 if (clear & TIOCM_DTR)
1231 dtr = 0;
1232
1233 stl_setsignals(portp, dtr, rts);
1234 return 0;
1235 }
1236
1237 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1238 {
1239 struct stlport *portp;
1240 unsigned int ival;
1241 int rc;
1242 void __user *argp = (void __user *)arg;
1243
1244 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1245 arg);
1246
1247 if (tty == NULL)
1248 return -ENODEV;
1249 portp = tty->driver_data;
1250 if (portp == NULL)
1251 return -ENODEV;
1252
1253 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1254 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1255 if (tty->flags & (1 << TTY_IO_ERROR))
1256 return -EIO;
1257
1258 rc = 0;
1259
1260 switch (cmd) {
1261 case TIOCGSOFTCAR:
1262 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1263 (unsigned __user *) argp);
1264 break;
1265 case TIOCSSOFTCAR:
1266 if (get_user(ival, (unsigned int __user *) arg))
1267 return -EFAULT;
1268 tty->termios->c_cflag =
1269 (tty->termios->c_cflag & ~CLOCAL) |
1270 (ival ? CLOCAL : 0);
1271 break;
1272 case TIOCGSERIAL:
1273 rc = stl_getserial(portp, argp);
1274 break;
1275 case TIOCSSERIAL:
1276 rc = stl_setserial(portp, argp);
1277 break;
1278 case COM_GETPORTSTATS:
1279 rc = stl_getportstats(portp, argp);
1280 break;
1281 case COM_CLRPORTSTATS:
1282 rc = stl_clrportstats(portp, argp);
1283 break;
1284 case TIOCSERCONFIG:
1285 case TIOCSERGWILD:
1286 case TIOCSERSWILD:
1287 case TIOCSERGETLSR:
1288 case TIOCSERGSTRUCT:
1289 case TIOCSERGETMULTI:
1290 case TIOCSERSETMULTI:
1291 default:
1292 rc = -ENOIOCTLCMD;
1293 break;
1294 }
1295
1296 return rc;
1297 }
1298
1299 /*****************************************************************************/
1300
1301 /*
1302 * Start the transmitter again. Just turn TX interrupts back on.
1303 */
1304
1305 static void stl_start(struct tty_struct *tty)
1306 {
1307 struct stlport *portp;
1308
1309 pr_debug("stl_start(tty=%p)\n", tty);
1310
1311 if (tty == NULL)
1312 return;
1313 portp = tty->driver_data;
1314 if (portp == NULL)
1315 return;
1316 stl_startrxtx(portp, -1, 1);
1317 }
1318
1319 /*****************************************************************************/
1320
1321 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1322 {
1323 struct stlport *portp;
1324 struct ktermios *tiosp;
1325
1326 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1327
1328 if (tty == NULL)
1329 return;
1330 portp = tty->driver_data;
1331 if (portp == NULL)
1332 return;
1333
1334 tiosp = tty->termios;
1335 if ((tiosp->c_cflag == old->c_cflag) &&
1336 (tiosp->c_iflag == old->c_iflag))
1337 return;
1338
1339 stl_setport(portp, tiosp);
1340 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1341 -1);
1342 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1343 tty->hw_stopped = 0;
1344 stl_start(tty);
1345 }
1346 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1347 wake_up_interruptible(&portp->open_wait);
1348 }
1349
1350 /*****************************************************************************/
1351
1352 /*
1353 * Attempt to flow control who ever is sending us data. Based on termios
1354 * settings use software or/and hardware flow control.
1355 */
1356
1357 static void stl_throttle(struct tty_struct *tty)
1358 {
1359 struct stlport *portp;
1360
1361 pr_debug("stl_throttle(tty=%p)\n", tty);
1362
1363 if (tty == NULL)
1364 return;
1365 portp = tty->driver_data;
1366 if (portp == NULL)
1367 return;
1368 stl_flowctrl(portp, 0);
1369 }
1370
1371 /*****************************************************************************/
1372
1373 /*
1374 * Unflow control the device sending us data...
1375 */
1376
1377 static void stl_unthrottle(struct tty_struct *tty)
1378 {
1379 struct stlport *portp;
1380
1381 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1382
1383 if (tty == NULL)
1384 return;
1385 portp = tty->driver_data;
1386 if (portp == NULL)
1387 return;
1388 stl_flowctrl(portp, 1);
1389 }
1390
1391 /*****************************************************************************/
1392
1393 /*
1394 * Stop the transmitter. Basically to do this we will just turn TX
1395 * interrupts off.
1396 */
1397
1398 static void stl_stop(struct tty_struct *tty)
1399 {
1400 struct stlport *portp;
1401
1402 pr_debug("stl_stop(tty=%p)\n", tty);
1403
1404 if (tty == NULL)
1405 return;
1406 portp = tty->driver_data;
1407 if (portp == NULL)
1408 return;
1409 stl_startrxtx(portp, -1, 0);
1410 }
1411
1412 /*****************************************************************************/
1413
1414 /*
1415 * Hangup this port. This is pretty much like closing the port, only
1416 * a little more brutal. No waiting for data to drain. Shutdown the
1417 * port and maybe drop signals.
1418 */
1419
1420 static void stl_hangup(struct tty_struct *tty)
1421 {
1422 struct stlport *portp;
1423
1424 pr_debug("stl_hangup(tty=%p)\n", tty);
1425
1426 if (tty == NULL)
1427 return;
1428 portp = tty->driver_data;
1429 if (portp == NULL)
1430 return;
1431
1432 portp->flags &= ~ASYNC_INITIALIZED;
1433 stl_disableintrs(portp);
1434 if (tty->termios->c_cflag & HUPCL)
1435 stl_setsignals(portp, 0, 0);
1436 stl_enablerxtx(portp, 0, 0);
1437 stl_flushbuffer(tty);
1438 portp->istate = 0;
1439 set_bit(TTY_IO_ERROR, &tty->flags);
1440 if (portp->tx.buf != NULL) {
1441 kfree(portp->tx.buf);
1442 portp->tx.buf = NULL;
1443 portp->tx.head = NULL;
1444 portp->tx.tail = NULL;
1445 }
1446 portp->tty = NULL;
1447 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1448 portp->refcount = 0;
1449 wake_up_interruptible(&portp->open_wait);
1450 }
1451
1452 /*****************************************************************************/
1453
1454 static void stl_breakctl(struct tty_struct *tty, int state)
1455 {
1456 struct stlport *portp;
1457
1458 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1459
1460 if (tty == NULL)
1461 return;
1462 portp = tty->driver_data;
1463 if (portp == NULL)
1464 return;
1465
1466 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1467 }
1468
1469 /*****************************************************************************/
1470
1471 static void stl_sendxchar(struct tty_struct *tty, char ch)
1472 {
1473 struct stlport *portp;
1474
1475 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1476
1477 if (tty == NULL)
1478 return;
1479 portp = tty->driver_data;
1480 if (portp == NULL)
1481 return;
1482
1483 if (ch == STOP_CHAR(tty))
1484 stl_sendflow(portp, 0);
1485 else if (ch == START_CHAR(tty))
1486 stl_sendflow(portp, 1);
1487 else
1488 stl_putchar(tty, ch);
1489 }
1490
1491 /*****************************************************************************/
1492
1493 #define MAXLINE 80
1494
1495 /*
1496 * Format info for a specified port. The line is deliberately limited
1497 * to 80 characters. (If it is too long it will be truncated, if too
1498 * short then padded with spaces).
1499 */
1500
1501 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1502 {
1503 char *sp;
1504 int sigs, cnt;
1505
1506 sp = pos;
1507 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1508 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1509 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1510
1511 if (portp->stats.rxframing)
1512 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1513 if (portp->stats.rxparity)
1514 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1515 if (portp->stats.rxbreaks)
1516 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1517 if (portp->stats.rxoverrun)
1518 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1519
1520 sigs = stl_getsignals(portp);
1521 cnt = sprintf(sp, "%s%s%s%s%s ",
1522 (sigs & TIOCM_RTS) ? "|RTS" : "",
1523 (sigs & TIOCM_CTS) ? "|CTS" : "",
1524 (sigs & TIOCM_DTR) ? "|DTR" : "",
1525 (sigs & TIOCM_CD) ? "|DCD" : "",
1526 (sigs & TIOCM_DSR) ? "|DSR" : "");
1527 *sp = ' ';
1528 sp += cnt;
1529
1530 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1531 *sp++ = ' ';
1532 if (cnt >= MAXLINE)
1533 pos[(MAXLINE - 2)] = '+';
1534 pos[(MAXLINE - 1)] = '\n';
1535
1536 return MAXLINE;
1537 }
1538
1539 /*****************************************************************************/
1540
1541 /*
1542 * Port info, read from the /proc file system.
1543 */
1544
1545 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1546 {
1547 struct stlbrd *brdp;
1548 struct stlpanel *panelp;
1549 struct stlport *portp;
1550 unsigned int brdnr, panelnr, portnr;
1551 int totalport, curoff, maxoff;
1552 char *pos;
1553
1554 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1555 "data=%p\n", page, start, off, count, eof, data);
1556
1557 pos = page;
1558 totalport = 0;
1559 curoff = 0;
1560
1561 if (off == 0) {
1562 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1563 stl_drvversion);
1564 while (pos < (page + MAXLINE - 1))
1565 *pos++ = ' ';
1566 *pos++ = '\n';
1567 }
1568 curoff = MAXLINE;
1569
1570 /*
1571 * We scan through for each board, panel and port. The offset is
1572 * calculated on the fly, and irrelevant ports are skipped.
1573 */
1574 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1575 brdp = stl_brds[brdnr];
1576 if (brdp == NULL)
1577 continue;
1578 if (brdp->state == 0)
1579 continue;
1580
1581 maxoff = curoff + (brdp->nrports * MAXLINE);
1582 if (off >= maxoff) {
1583 curoff = maxoff;
1584 continue;
1585 }
1586
1587 totalport = brdnr * STL_MAXPORTS;
1588 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1589 panelp = brdp->panels[panelnr];
1590 if (panelp == NULL)
1591 continue;
1592
1593 maxoff = curoff + (panelp->nrports * MAXLINE);
1594 if (off >= maxoff) {
1595 curoff = maxoff;
1596 totalport += panelp->nrports;
1597 continue;
1598 }
1599
1600 for (portnr = 0; portnr < panelp->nrports; portnr++,
1601 totalport++) {
1602 portp = panelp->ports[portnr];
1603 if (portp == NULL)
1604 continue;
1605 if (off >= (curoff += MAXLINE))
1606 continue;
1607 if ((pos - page + MAXLINE) > count)
1608 goto stl_readdone;
1609 pos += stl_portinfo(portp, totalport, pos);
1610 }
1611 }
1612 }
1613
1614 *eof = 1;
1615
1616 stl_readdone:
1617 *start = page;
1618 return pos - page;
1619 }
1620
1621 /*****************************************************************************/
1622
1623 /*
1624 * All board interrupts are vectored through here first. This code then
1625 * calls off to the approrpriate board interrupt handlers.
1626 */
1627
1628 static irqreturn_t stl_intr(int irq, void *dev_id)
1629 {
1630 struct stlbrd *brdp = dev_id;
1631
1632 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, irq);
1633
1634 return IRQ_RETVAL((* brdp->isr)(brdp));
1635 }
1636
1637 /*****************************************************************************/
1638
1639 /*
1640 * Interrupt service routine for EasyIO board types.
1641 */
1642
1643 static int stl_eiointr(struct stlbrd *brdp)
1644 {
1645 struct stlpanel *panelp;
1646 unsigned int iobase;
1647 int handled = 0;
1648
1649 spin_lock(&brd_lock);
1650 panelp = brdp->panels[0];
1651 iobase = panelp->iobase;
1652 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1653 handled = 1;
1654 (* panelp->isr)(panelp, iobase);
1655 }
1656 spin_unlock(&brd_lock);
1657 return handled;
1658 }
1659
1660 /*****************************************************************************/
1661
1662 /*
1663 * Interrupt service routine for ECH-AT board types.
1664 */
1665
1666 static int stl_echatintr(struct stlbrd *brdp)
1667 {
1668 struct stlpanel *panelp;
1669 unsigned int ioaddr, bnknr;
1670 int handled = 0;
1671
1672 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1673
1674 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1675 handled = 1;
1676 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1677 ioaddr = brdp->bnkstataddr[bnknr];
1678 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1679 panelp = brdp->bnk2panel[bnknr];
1680 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1681 }
1682 }
1683 }
1684
1685 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1686
1687 return handled;
1688 }
1689
1690 /*****************************************************************************/
1691
1692 /*
1693 * Interrupt service routine for ECH-MCA board types.
1694 */
1695
1696 static int stl_echmcaintr(struct stlbrd *brdp)
1697 {
1698 struct stlpanel *panelp;
1699 unsigned int ioaddr, bnknr;
1700 int handled = 0;
1701
1702 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1703 handled = 1;
1704 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1705 ioaddr = brdp->bnkstataddr[bnknr];
1706 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1707 panelp = brdp->bnk2panel[bnknr];
1708 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1709 }
1710 }
1711 }
1712 return handled;
1713 }
1714
1715 /*****************************************************************************/
1716
1717 /*
1718 * Interrupt service routine for ECH-PCI board types.
1719 */
1720
1721 static int stl_echpciintr(struct stlbrd *brdp)
1722 {
1723 struct stlpanel *panelp;
1724 unsigned int ioaddr, bnknr, recheck;
1725 int handled = 0;
1726
1727 while (1) {
1728 recheck = 0;
1729 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1730 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1731 ioaddr = brdp->bnkstataddr[bnknr];
1732 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1733 panelp = brdp->bnk2panel[bnknr];
1734 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1735 recheck++;
1736 handled = 1;
1737 }
1738 }
1739 if (! recheck)
1740 break;
1741 }
1742 return handled;
1743 }
1744
1745 /*****************************************************************************/
1746
1747 /*
1748 * Interrupt service routine for ECH-8/64-PCI board types.
1749 */
1750
1751 static int stl_echpci64intr(struct stlbrd *brdp)
1752 {
1753 struct stlpanel *panelp;
1754 unsigned int ioaddr, bnknr;
1755 int handled = 0;
1756
1757 while (inb(brdp->ioctrl) & 0x1) {
1758 handled = 1;
1759 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1760 ioaddr = brdp->bnkstataddr[bnknr];
1761 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1762 panelp = brdp->bnk2panel[bnknr];
1763 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1764 }
1765 }
1766 }
1767
1768 return handled;
1769 }
1770
1771 /*****************************************************************************/
1772
1773 /*
1774 * Service an off-level request for some channel.
1775 */
1776 static void stl_offintr(struct work_struct *work)
1777 {
1778 struct stlport *portp = container_of(work, struct stlport, tqueue);
1779 struct tty_struct *tty;
1780 unsigned int oldsigs;
1781
1782 pr_debug("stl_offintr(portp=%p)\n", portp);
1783
1784 if (portp == NULL)
1785 return;
1786
1787 tty = portp->tty;
1788 if (tty == NULL)
1789 return;
1790
1791 lock_kernel();
1792 if (test_bit(ASYI_TXLOW, &portp->istate))
1793 tty_wakeup(tty);
1794
1795 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
1796 clear_bit(ASYI_DCDCHANGE, &portp->istate);
1797 oldsigs = portp->sigs;
1798 portp->sigs = stl_getsignals(portp);
1799 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
1800 wake_up_interruptible(&portp->open_wait);
1801 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
1802 if (portp->flags & ASYNC_CHECK_CD)
1803 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
1804 }
1805 unlock_kernel();
1806 }
1807
1808 /*****************************************************************************/
1809
1810 /*
1811 * Initialize all the ports on a panel.
1812 */
1813
1814 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1815 {
1816 struct stlport *portp;
1817 unsigned int i;
1818 int chipmask;
1819
1820 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1821
1822 chipmask = stl_panelinit(brdp, panelp);
1823
1824 /*
1825 * All UART's are initialized (if found!). Now go through and setup
1826 * each ports data structures.
1827 */
1828 for (i = 0; i < panelp->nrports; i++) {
1829 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1830 if (!portp) {
1831 printk("STALLION: failed to allocate memory "
1832 "(size=%Zd)\n", sizeof(struct stlport));
1833 break;
1834 }
1835
1836 portp->magic = STL_PORTMAGIC;
1837 portp->portnr = i;
1838 portp->brdnr = panelp->brdnr;
1839 portp->panelnr = panelp->panelnr;
1840 portp->uartp = panelp->uartp;
1841 portp->clk = brdp->clk;
1842 portp->baud_base = STL_BAUDBASE;
1843 portp->close_delay = STL_CLOSEDELAY;
1844 portp->closing_wait = 30 * HZ;
1845 INIT_WORK(&portp->tqueue, stl_offintr);
1846 init_waitqueue_head(&portp->open_wait);
1847 init_waitqueue_head(&portp->close_wait);
1848 portp->stats.brd = portp->brdnr;
1849 portp->stats.panel = portp->panelnr;
1850 portp->stats.port = portp->portnr;
1851 panelp->ports[i] = portp;
1852 stl_portinit(brdp, panelp, portp);
1853 }
1854
1855 return 0;
1856 }
1857
1858 static void stl_cleanup_panels(struct stlbrd *brdp)
1859 {
1860 struct stlpanel *panelp;
1861 struct stlport *portp;
1862 unsigned int j, k;
1863
1864 for (j = 0; j < STL_MAXPANELS; j++) {
1865 panelp = brdp->panels[j];
1866 if (panelp == NULL)
1867 continue;
1868 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1869 portp = panelp->ports[k];
1870 if (portp == NULL)
1871 continue;
1872 if (portp->tty != NULL)
1873 stl_hangup(portp->tty);
1874 kfree(portp->tx.buf);
1875 kfree(portp);
1876 }
1877 kfree(panelp);
1878 }
1879 }
1880
1881 /*****************************************************************************/
1882
1883 /*
1884 * Try to find and initialize an EasyIO board.
1885 */
1886
1887 static int __devinit stl_initeio(struct stlbrd *brdp)
1888 {
1889 struct stlpanel *panelp;
1890 unsigned int status;
1891 char *name;
1892 int retval;
1893
1894 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1895
1896 brdp->ioctrl = brdp->ioaddr1 + 1;
1897 brdp->iostatus = brdp->ioaddr1 + 2;
1898
1899 status = inb(brdp->iostatus);
1900 if ((status & EIO_IDBITMASK) == EIO_MK3)
1901 brdp->ioctrl++;
1902
1903 /*
1904 * Handle board specific stuff now. The real difference is PCI
1905 * or not PCI.
1906 */
1907 if (brdp->brdtype == BRD_EASYIOPCI) {
1908 brdp->iosize1 = 0x80;
1909 brdp->iosize2 = 0x80;
1910 name = "serial(EIO-PCI)";
1911 outb(0x41, (brdp->ioaddr2 + 0x4c));
1912 } else {
1913 brdp->iosize1 = 8;
1914 name = "serial(EIO)";
1915 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1916 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1917 printk("STALLION: invalid irq=%d for brd=%d\n",
1918 brdp->irq, brdp->brdnr);
1919 retval = -EINVAL;
1920 goto err;
1921 }
1922 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1923 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1924 brdp->ioctrl);
1925 }
1926
1927 retval = -EBUSY;
1928 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1929 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1930 "%x conflicts with another device\n", brdp->brdnr,
1931 brdp->ioaddr1);
1932 goto err;
1933 }
1934
1935 if (brdp->iosize2 > 0)
1936 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1937 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1938 "address %x conflicts with another device\n",
1939 brdp->brdnr, brdp->ioaddr2);
1940 printk(KERN_WARNING "STALLION: Warning, also "
1941 "releasing board %d I/O address %x \n",
1942 brdp->brdnr, brdp->ioaddr1);
1943 goto err_rel1;
1944 }
1945
1946 /*
1947 * Everything looks OK, so let's go ahead and probe for the hardware.
1948 */
1949 brdp->clk = CD1400_CLK;
1950 brdp->isr = stl_eiointr;
1951
1952 retval = -ENODEV;
1953 switch (status & EIO_IDBITMASK) {
1954 case EIO_8PORTM:
1955 brdp->clk = CD1400_CLK8M;
1956 /* fall thru */
1957 case EIO_8PORTRS:
1958 case EIO_8PORTDI:
1959 brdp->nrports = 8;
1960 break;
1961 case EIO_4PORTRS:
1962 brdp->nrports = 4;
1963 break;
1964 case EIO_MK3:
1965 switch (status & EIO_BRDMASK) {
1966 case ID_BRD4:
1967 brdp->nrports = 4;
1968 break;
1969 case ID_BRD8:
1970 brdp->nrports = 8;
1971 break;
1972 case ID_BRD16:
1973 brdp->nrports = 16;
1974 break;
1975 default:
1976 goto err_rel2;
1977 }
1978 break;
1979 default:
1980 goto err_rel2;
1981 }
1982
1983 /*
1984 * We have verified that the board is actually present, so now we
1985 * can complete the setup.
1986 */
1987
1988 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1989 if (!panelp) {
1990 printk(KERN_WARNING "STALLION: failed to allocate memory "
1991 "(size=%Zd)\n", sizeof(struct stlpanel));
1992 retval = -ENOMEM;
1993 goto err_rel2;
1994 }
1995
1996 panelp->magic = STL_PANELMAGIC;
1997 panelp->brdnr = brdp->brdnr;
1998 panelp->panelnr = 0;
1999 panelp->nrports = brdp->nrports;
2000 panelp->iobase = brdp->ioaddr1;
2001 panelp->hwid = status;
2002 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2003 panelp->uartp = &stl_sc26198uart;
2004 panelp->isr = stl_sc26198intr;
2005 } else {
2006 panelp->uartp = &stl_cd1400uart;
2007 panelp->isr = stl_cd1400eiointr;
2008 }
2009
2010 brdp->panels[0] = panelp;
2011 brdp->nrpanels = 1;
2012 brdp->state |= BRD_FOUND;
2013 brdp->hwid = status;
2014 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2015 printk("STALLION: failed to register interrupt "
2016 "routine for %s irq=%d\n", name, brdp->irq);
2017 retval = -ENODEV;
2018 goto err_fr;
2019 }
2020
2021 return 0;
2022 err_fr:
2023 stl_cleanup_panels(brdp);
2024 err_rel2:
2025 if (brdp->iosize2 > 0)
2026 release_region(brdp->ioaddr2, brdp->iosize2);
2027 err_rel1:
2028 release_region(brdp->ioaddr1, brdp->iosize1);
2029 err:
2030 return retval;
2031 }
2032
2033 /*****************************************************************************/
2034
2035 /*
2036 * Try to find an ECH board and initialize it. This code is capable of
2037 * dealing with all types of ECH board.
2038 */
2039
2040 static int __devinit stl_initech(struct stlbrd *brdp)
2041 {
2042 struct stlpanel *panelp;
2043 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
2044 int retval;
2045 char *name;
2046
2047 pr_debug("stl_initech(brdp=%p)\n", brdp);
2048
2049 status = 0;
2050 conflict = 0;
2051
2052 /*
2053 * Set up the initial board register contents for boards. This varies a
2054 * bit between the different board types. So we need to handle each
2055 * separately. Also do a check that the supplied IRQ is good.
2056 */
2057 switch (brdp->brdtype) {
2058
2059 case BRD_ECH:
2060 brdp->isr = stl_echatintr;
2061 brdp->ioctrl = brdp->ioaddr1 + 1;
2062 brdp->iostatus = brdp->ioaddr1 + 1;
2063 status = inb(brdp->iostatus);
2064 if ((status & ECH_IDBITMASK) != ECH_ID) {
2065 retval = -ENODEV;
2066 goto err;
2067 }
2068 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2069 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2070 printk("STALLION: invalid irq=%d for brd=%d\n",
2071 brdp->irq, brdp->brdnr);
2072 retval = -EINVAL;
2073 goto err;
2074 }
2075 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2076 status |= (stl_vecmap[brdp->irq] << 1);
2077 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2078 brdp->ioctrlval = ECH_INTENABLE |
2079 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2080 for (i = 0; i < 10; i++)
2081 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2082 brdp->iosize1 = 2;
2083 brdp->iosize2 = 32;
2084 name = "serial(EC8/32)";
2085 outb(status, brdp->ioaddr1);
2086 break;
2087
2088 case BRD_ECHMC:
2089 brdp->isr = stl_echmcaintr;
2090 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2091 brdp->iostatus = brdp->ioctrl;
2092 status = inb(brdp->iostatus);
2093 if ((status & ECH_IDBITMASK) != ECH_ID) {
2094 retval = -ENODEV;
2095 goto err;
2096 }
2097 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2098 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2099 printk("STALLION: invalid irq=%d for brd=%d\n",
2100 brdp->irq, brdp->brdnr);
2101 retval = -EINVAL;
2102 goto err;
2103 }
2104 outb(ECHMC_BRDRESET, brdp->ioctrl);
2105 outb(ECHMC_INTENABLE, brdp->ioctrl);
2106 brdp->iosize1 = 64;
2107 name = "serial(EC8/32-MC)";
2108 break;
2109
2110 case BRD_ECHPCI:
2111 brdp->isr = stl_echpciintr;
2112 brdp->ioctrl = brdp->ioaddr1 + 2;
2113 brdp->iosize1 = 4;
2114 brdp->iosize2 = 8;
2115 name = "serial(EC8/32-PCI)";
2116 break;
2117
2118 case BRD_ECH64PCI:
2119 brdp->isr = stl_echpci64intr;
2120 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2121 outb(0x43, (brdp->ioaddr1 + 0x4c));
2122 brdp->iosize1 = 0x80;
2123 brdp->iosize2 = 0x80;
2124 name = "serial(EC8/64-PCI)";
2125 break;
2126
2127 default:
2128 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2129 retval = -EINVAL;
2130 goto err;
2131 }
2132
2133 /*
2134 * Check boards for possible IO address conflicts and return fail status
2135 * if an IO conflict found.
2136 */
2137 retval = -EBUSY;
2138 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2139 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2140 "%x conflicts with another device\n", brdp->brdnr,
2141 brdp->ioaddr1);
2142 goto err;
2143 }
2144
2145 if (brdp->iosize2 > 0)
2146 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2147 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2148 "address %x conflicts with another device\n",
2149 brdp->brdnr, brdp->ioaddr2);
2150 printk(KERN_WARNING "STALLION: Warning, also "
2151 "releasing board %d I/O address %x \n",
2152 brdp->brdnr, brdp->ioaddr1);
2153 goto err_rel1;
2154 }
2155
2156 /*
2157 * Scan through the secondary io address space looking for panels.
2158 * As we find'em allocate and initialize panel structures for each.
2159 */
2160 brdp->clk = CD1400_CLK;
2161 brdp->hwid = status;
2162
2163 ioaddr = brdp->ioaddr2;
2164 banknr = 0;
2165 panelnr = 0;
2166 nxtid = 0;
2167
2168 for (i = 0; i < STL_MAXPANELS; i++) {
2169 if (brdp->brdtype == BRD_ECHPCI) {
2170 outb(nxtid, brdp->ioctrl);
2171 ioaddr = brdp->ioaddr2;
2172 }
2173 status = inb(ioaddr + ECH_PNLSTATUS);
2174 if ((status & ECH_PNLIDMASK) != nxtid)
2175 break;
2176 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2177 if (!panelp) {
2178 printk("STALLION: failed to allocate memory "
2179 "(size=%Zd)\n", sizeof(struct stlpanel));
2180 retval = -ENOMEM;
2181 goto err_fr;
2182 }
2183 panelp->magic = STL_PANELMAGIC;
2184 panelp->brdnr = brdp->brdnr;
2185 panelp->panelnr = panelnr;
2186 panelp->iobase = ioaddr;
2187 panelp->pagenr = nxtid;
2188 panelp->hwid = status;
2189 brdp->bnk2panel[banknr] = panelp;
2190 brdp->bnkpageaddr[banknr] = nxtid;
2191 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2192
2193 if (status & ECH_PNLXPID) {
2194 panelp->uartp = &stl_sc26198uart;
2195 panelp->isr = stl_sc26198intr;
2196 if (status & ECH_PNL16PORT) {
2197 panelp->nrports = 16;
2198 brdp->bnk2panel[banknr] = panelp;
2199 brdp->bnkpageaddr[banknr] = nxtid;
2200 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2201 ECH_PNLSTATUS;
2202 } else
2203 panelp->nrports = 8;
2204 } else {
2205 panelp->uartp = &stl_cd1400uart;
2206 panelp->isr = stl_cd1400echintr;
2207 if (status & ECH_PNL16PORT) {
2208 panelp->nrports = 16;
2209 panelp->ackmask = 0x80;
2210 if (brdp->brdtype != BRD_ECHPCI)
2211 ioaddr += EREG_BANKSIZE;
2212 brdp->bnk2panel[banknr] = panelp;
2213 brdp->bnkpageaddr[banknr] = ++nxtid;
2214 brdp->bnkstataddr[banknr++] = ioaddr +
2215 ECH_PNLSTATUS;
2216 } else {
2217 panelp->nrports = 8;
2218 panelp->ackmask = 0xc0;
2219 }
2220 }
2221
2222 nxtid++;
2223 ioaddr += EREG_BANKSIZE;
2224 brdp->nrports += panelp->nrports;
2225 brdp->panels[panelnr++] = panelp;
2226 if ((brdp->brdtype != BRD_ECHPCI) &&
2227 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2228 retval = -EINVAL;
2229 goto err_fr;
2230 }
2231 }
2232
2233 brdp->nrpanels = panelnr;
2234 brdp->nrbnks = banknr;
2235 if (brdp->brdtype == BRD_ECH)
2236 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2237
2238 brdp->state |= BRD_FOUND;
2239 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2240 printk("STALLION: failed to register interrupt "
2241 "routine for %s irq=%d\n", name, brdp->irq);
2242 retval = -ENODEV;
2243 goto err_fr;
2244 }
2245
2246 return 0;
2247 err_fr:
2248 stl_cleanup_panels(brdp);
2249 if (brdp->iosize2 > 0)
2250 release_region(brdp->ioaddr2, brdp->iosize2);
2251 err_rel1:
2252 release_region(brdp->ioaddr1, brdp->iosize1);
2253 err:
2254 return retval;
2255 }
2256
2257 /*****************************************************************************/
2258
2259 /*
2260 * Initialize and configure the specified board.
2261 * Scan through all the boards in the configuration and see what we
2262 * can find. Handle EIO and the ECH boards a little differently here
2263 * since the initial search and setup is very different.
2264 */
2265
2266 static int __devinit stl_brdinit(struct stlbrd *brdp)
2267 {
2268 int i, retval;
2269
2270 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2271
2272 switch (brdp->brdtype) {
2273 case BRD_EASYIO:
2274 case BRD_EASYIOPCI:
2275 retval = stl_initeio(brdp);
2276 if (retval)
2277 goto err;
2278 break;
2279 case BRD_ECH:
2280 case BRD_ECHMC:
2281 case BRD_ECHPCI:
2282 case BRD_ECH64PCI:
2283 retval = stl_initech(brdp);
2284 if (retval)
2285 goto err;
2286 break;
2287 default:
2288 printk("STALLION: board=%d is unknown board type=%d\n",
2289 brdp->brdnr, brdp->brdtype);
2290 retval = -ENODEV;
2291 goto err;
2292 }
2293
2294 if ((brdp->state & BRD_FOUND) == 0) {
2295 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2296 stl_brdnames[brdp->brdtype], brdp->brdnr,
2297 brdp->ioaddr1, brdp->irq);
2298 goto err_free;
2299 }
2300
2301 for (i = 0; i < STL_MAXPANELS; i++)
2302 if (brdp->panels[i] != NULL)
2303 stl_initports(brdp, brdp->panels[i]);
2304
2305 printk("STALLION: %s found, board=%d io=%x irq=%d "
2306 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2307 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2308 brdp->nrports);
2309
2310 return 0;
2311 err_free:
2312 free_irq(brdp->irq, brdp);
2313
2314 stl_cleanup_panels(brdp);
2315
2316 release_region(brdp->ioaddr1, brdp->iosize1);
2317 if (brdp->iosize2 > 0)
2318 release_region(brdp->ioaddr2, brdp->iosize2);
2319 err:
2320 return retval;
2321 }
2322
2323 /*****************************************************************************/
2324
2325 /*
2326 * Find the next available board number that is free.
2327 */
2328
2329 static int __devinit stl_getbrdnr(void)
2330 {
2331 unsigned int i;
2332
2333 for (i = 0; i < STL_MAXBRDS; i++)
2334 if (stl_brds[i] == NULL) {
2335 if (i >= stl_nrbrds)
2336 stl_nrbrds = i + 1;
2337 return i;
2338 }
2339
2340 return -1;
2341 }
2342
2343 /*****************************************************************************/
2344 /*
2345 * We have a Stallion board. Allocate a board structure and
2346 * initialize it. Read its IO and IRQ resources from PCI
2347 * configuration space.
2348 */
2349
2350 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2351 const struct pci_device_id *ent)
2352 {
2353 struct stlbrd *brdp;
2354 unsigned int i, brdtype = ent->driver_data;
2355 int brdnr, retval = -ENODEV;
2356
2357 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2358 goto err;
2359
2360 dev_info(&pdev->dev, "please, report this to LKML: %x/%x/%x\n",
2361 pdev->vendor, pdev->device, pdev->class);
2362
2363 retval = pci_enable_device(pdev);
2364 if (retval)
2365 goto err;
2366 brdp = stl_allocbrd();
2367 if (brdp == NULL) {
2368 retval = -ENOMEM;
2369 goto err;
2370 }
2371 mutex_lock(&stl_brdslock);
2372 brdnr = stl_getbrdnr();
2373 if (brdnr < 0) {
2374 dev_err(&pdev->dev, "too many boards found, "
2375 "maximum supported %d\n", STL_MAXBRDS);
2376 mutex_unlock(&stl_brdslock);
2377 retval = -ENODEV;
2378 goto err_fr;
2379 }
2380 brdp->brdnr = (unsigned int)brdnr;
2381 stl_brds[brdp->brdnr] = brdp;
2382 mutex_unlock(&stl_brdslock);
2383
2384 brdp->brdtype = brdtype;
2385 brdp->state |= STL_PROBED;
2386
2387 /*
2388 * We have all resources from the board, so let's setup the actual
2389 * board structure now.
2390 */
2391 switch (brdtype) {
2392 case BRD_ECHPCI:
2393 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2394 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2395 break;
2396 case BRD_ECH64PCI:
2397 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2398 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2399 break;
2400 case BRD_EASYIOPCI:
2401 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2402 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2403 break;
2404 default:
2405 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2406 break;
2407 }
2408
2409 brdp->irq = pdev->irq;
2410 retval = stl_brdinit(brdp);
2411 if (retval)
2412 goto err_null;
2413
2414 pci_set_drvdata(pdev, brdp);
2415
2416 for (i = 0; i < brdp->nrports; i++)
2417 tty_register_device(stl_serial,
2418 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2419
2420 return 0;
2421 err_null:
2422 stl_brds[brdp->brdnr] = NULL;
2423 err_fr:
2424 kfree(brdp);
2425 err:
2426 return retval;
2427 }
2428
2429 static void __devexit stl_pciremove(struct pci_dev *pdev)
2430 {
2431 struct stlbrd *brdp = pci_get_drvdata(pdev);
2432 unsigned int i;
2433
2434 free_irq(brdp->irq, brdp);
2435
2436 stl_cleanup_panels(brdp);
2437
2438 release_region(brdp->ioaddr1, brdp->iosize1);
2439 if (brdp->iosize2 > 0)
2440 release_region(brdp->ioaddr2, brdp->iosize2);
2441
2442 for (i = 0; i < brdp->nrports; i++)
2443 tty_unregister_device(stl_serial,
2444 brdp->brdnr * STL_MAXPORTS + i);
2445
2446 stl_brds[brdp->brdnr] = NULL;
2447 kfree(brdp);
2448 }
2449
2450 static struct pci_driver stl_pcidriver = {
2451 .name = "stallion",
2452 .id_table = stl_pcibrds,
2453 .probe = stl_pciprobe,
2454 .remove = __devexit_p(stl_pciremove)
2455 };
2456
2457 /*****************************************************************************/
2458
2459 /*
2460 * Return the board stats structure to user app.
2461 */
2462
2463 static int stl_getbrdstats(combrd_t __user *bp)
2464 {
2465 combrd_t stl_brdstats;
2466 struct stlbrd *brdp;
2467 struct stlpanel *panelp;
2468 unsigned int i;
2469
2470 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2471 return -EFAULT;
2472 if (stl_brdstats.brd >= STL_MAXBRDS)
2473 return -ENODEV;
2474 brdp = stl_brds[stl_brdstats.brd];
2475 if (brdp == NULL)
2476 return -ENODEV;
2477
2478 memset(&stl_brdstats, 0, sizeof(combrd_t));
2479 stl_brdstats.brd = brdp->brdnr;
2480 stl_brdstats.type = brdp->brdtype;
2481 stl_brdstats.hwid = brdp->hwid;
2482 stl_brdstats.state = brdp->state;
2483 stl_brdstats.ioaddr = brdp->ioaddr1;
2484 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2485 stl_brdstats.irq = brdp->irq;
2486 stl_brdstats.nrpanels = brdp->nrpanels;
2487 stl_brdstats.nrports = brdp->nrports;
2488 for (i = 0; i < brdp->nrpanels; i++) {
2489 panelp = brdp->panels[i];
2490 stl_brdstats.panels[i].panel = i;
2491 stl_brdstats.panels[i].hwid = panelp->hwid;
2492 stl_brdstats.panels[i].nrports = panelp->nrports;
2493 }
2494
2495 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2496 }
2497
2498 /*****************************************************************************/
2499
2500 /*
2501 * Resolve the referenced port number into a port struct pointer.
2502 */
2503
2504 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2505 {
2506 struct stlbrd *brdp;
2507 struct stlpanel *panelp;
2508
2509 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2510 return NULL;
2511 brdp = stl_brds[brdnr];
2512 if (brdp == NULL)
2513 return NULL;
2514 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2515 return NULL;
2516 panelp = brdp->panels[panelnr];
2517 if (panelp == NULL)
2518 return NULL;
2519 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2520 return NULL;
2521 return panelp->ports[portnr];
2522 }
2523
2524 /*****************************************************************************/
2525
2526 /*
2527 * Return the port stats structure to user app. A NULL port struct
2528 * pointer passed in means that we need to find out from the app
2529 * what port to get stats for (used through board control device).
2530 */
2531
2532 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp)
2533 {
2534 comstats_t stl_comstats;
2535 unsigned char *head, *tail;
2536 unsigned long flags;
2537
2538 if (!portp) {
2539 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2540 return -EFAULT;
2541 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2542 stl_comstats.port);
2543 if (portp == NULL)
2544 return -ENODEV;
2545 }
2546
2547 portp->stats.state = portp->istate;
2548 portp->stats.flags = portp->flags;
2549 portp->stats.hwid = portp->hwid;
2550
2551 portp->stats.ttystate = 0;
2552 portp->stats.cflags = 0;
2553 portp->stats.iflags = 0;
2554 portp->stats.oflags = 0;
2555 portp->stats.lflags = 0;
2556 portp->stats.rxbuffered = 0;
2557
2558 spin_lock_irqsave(&stallion_lock, flags);
2559 if (portp->tty != NULL)
2560 if (portp->tty->driver_data == portp) {
2561 portp->stats.ttystate = portp->tty->flags;
2562 /* No longer available as a statistic */
2563 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2564 if (portp->tty->termios != NULL) {
2565 portp->stats.cflags = portp->tty->termios->c_cflag;
2566 portp->stats.iflags = portp->tty->termios->c_iflag;
2567 portp->stats.oflags = portp->tty->termios->c_oflag;
2568 portp->stats.lflags = portp->tty->termios->c_lflag;
2569 }
2570 }
2571 spin_unlock_irqrestore(&stallion_lock, flags);
2572
2573 head = portp->tx.head;
2574 tail = portp->tx.tail;
2575 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2576 (STL_TXBUFSIZE - (tail - head));
2577
2578 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2579
2580 return copy_to_user(cp, &portp->stats,
2581 sizeof(comstats_t)) ? -EFAULT : 0;
2582 }
2583
2584 /*****************************************************************************/
2585
2586 /*
2587 * Clear the port stats structure. We also return it zeroed out...
2588 */
2589
2590 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2591 {
2592 comstats_t stl_comstats;
2593
2594 if (!portp) {
2595 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2596 return -EFAULT;
2597 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2598 stl_comstats.port);
2599 if (portp == NULL)
2600 return -ENODEV;
2601 }
2602
2603 memset(&portp->stats, 0, sizeof(comstats_t));
2604 portp->stats.brd = portp->brdnr;
2605 portp->stats.panel = portp->panelnr;
2606 portp->stats.port = portp->portnr;
2607 return copy_to_user(cp, &portp->stats,
2608 sizeof(comstats_t)) ? -EFAULT : 0;
2609 }
2610
2611 /*****************************************************************************/
2612
2613 /*
2614 * Return the entire driver ports structure to a user app.
2615 */
2616
2617 static int stl_getportstruct(struct stlport __user *arg)
2618 {
2619 struct stlport stl_dummyport;
2620 struct stlport *portp;
2621
2622 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2623 return -EFAULT;
2624 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2625 stl_dummyport.portnr);
2626 if (!portp)
2627 return -ENODEV;
2628 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2629 }
2630
2631 /*****************************************************************************/
2632
2633 /*
2634 * Return the entire driver board structure to a user app.
2635 */
2636
2637 static int stl_getbrdstruct(struct stlbrd __user *arg)
2638 {
2639 struct stlbrd stl_dummybrd;
2640 struct stlbrd *brdp;
2641
2642 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2643 return -EFAULT;
2644 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2645 return -ENODEV;
2646 brdp = stl_brds[stl_dummybrd.brdnr];
2647 if (!brdp)
2648 return -ENODEV;
2649 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2650 }
2651
2652 /*****************************************************************************/
2653
2654 /*
2655 * The "staliomem" device is also required to do some special operations
2656 * on the board and/or ports. In this driver it is mostly used for stats
2657 * collection.
2658 */
2659
2660 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2661 {
2662 int brdnr, rc;
2663 void __user *argp = (void __user *)arg;
2664
2665 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2666
2667 brdnr = iminor(ip);
2668 if (brdnr >= STL_MAXBRDS)
2669 return -ENODEV;
2670 rc = 0;
2671
2672 switch (cmd) {
2673 case COM_GETPORTSTATS:
2674 rc = stl_getportstats(NULL, argp);
2675 break;
2676 case COM_CLRPORTSTATS:
2677 rc = stl_clrportstats(NULL, argp);
2678 break;
2679 case COM_GETBRDSTATS:
2680 rc = stl_getbrdstats(argp);
2681 break;
2682 case COM_READPORT:
2683 rc = stl_getportstruct(argp);
2684 break;
2685 case COM_READBOARD:
2686 rc = stl_getbrdstruct(argp);
2687 break;
2688 default:
2689 rc = -ENOIOCTLCMD;
2690 break;
2691 }
2692
2693 return rc;
2694 }
2695
2696 static const struct tty_operations stl_ops = {
2697 .open = stl_open,
2698 .close = stl_close,
2699 .write = stl_write,
2700 .put_char = stl_putchar,
2701 .flush_chars = stl_flushchars,
2702 .write_room = stl_writeroom,
2703 .chars_in_buffer = stl_charsinbuffer,
2704 .ioctl = stl_ioctl,
2705 .set_termios = stl_settermios,
2706 .throttle = stl_throttle,
2707 .unthrottle = stl_unthrottle,
2708 .stop = stl_stop,
2709 .start = stl_start,
2710 .hangup = stl_hangup,
2711 .flush_buffer = stl_flushbuffer,
2712 .break_ctl = stl_breakctl,
2713 .wait_until_sent = stl_waituntilsent,
2714 .send_xchar = stl_sendxchar,
2715 .read_proc = stl_readproc,
2716 .tiocmget = stl_tiocmget,
2717 .tiocmset = stl_tiocmset,
2718 };
2719
2720 /*****************************************************************************/
2721 /* CD1400 HARDWARE FUNCTIONS */
2722 /*****************************************************************************/
2723
2724 /*
2725 * These functions get/set/update the registers of the cd1400 UARTs.
2726 * Access to the cd1400 registers is via an address/data io port pair.
2727 * (Maybe should make this inline...)
2728 */
2729
2730 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2731 {
2732 outb((regnr + portp->uartaddr), portp->ioaddr);
2733 return inb(portp->ioaddr + EREG_DATA);
2734 }
2735
2736 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2737 {
2738 outb(regnr + portp->uartaddr, portp->ioaddr);
2739 outb(value, portp->ioaddr + EREG_DATA);
2740 }
2741
2742 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2743 {
2744 outb(regnr + portp->uartaddr, portp->ioaddr);
2745 if (inb(portp->ioaddr + EREG_DATA) != value) {
2746 outb(value, portp->ioaddr + EREG_DATA);
2747 return 1;
2748 }
2749 return 0;
2750 }
2751
2752 /*****************************************************************************/
2753
2754 /*
2755 * Inbitialize the UARTs in a panel. We don't care what sort of board
2756 * these ports are on - since the port io registers are almost
2757 * identical when dealing with ports.
2758 */
2759
2760 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2761 {
2762 unsigned int gfrcr;
2763 int chipmask, i, j;
2764 int nrchips, uartaddr, ioaddr;
2765 unsigned long flags;
2766
2767 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2768
2769 spin_lock_irqsave(&brd_lock, flags);
2770 BRDENABLE(panelp->brdnr, panelp->pagenr);
2771
2772 /*
2773 * Check that each chip is present and started up OK.
2774 */
2775 chipmask = 0;
2776 nrchips = panelp->nrports / CD1400_PORTS;
2777 for (i = 0; i < nrchips; i++) {
2778 if (brdp->brdtype == BRD_ECHPCI) {
2779 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2780 ioaddr = panelp->iobase;
2781 } else
2782 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2783 uartaddr = (i & 0x01) ? 0x080 : 0;
2784 outb((GFRCR + uartaddr), ioaddr);
2785 outb(0, (ioaddr + EREG_DATA));
2786 outb((CCR + uartaddr), ioaddr);
2787 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2788 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2789 outb((GFRCR + uartaddr), ioaddr);
2790 for (j = 0; j < CCR_MAXWAIT; j++)
2791 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2792 break;
2793
2794 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2795 printk("STALLION: cd1400 not responding, "
2796 "brd=%d panel=%d chip=%d\n",
2797 panelp->brdnr, panelp->panelnr, i);
2798 continue;
2799 }
2800 chipmask |= (0x1 << i);
2801 outb((PPR + uartaddr), ioaddr);
2802 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2803 }
2804
2805 BRDDISABLE(panelp->brdnr);
2806 spin_unlock_irqrestore(&brd_lock, flags);
2807 return chipmask;
2808 }
2809
2810 /*****************************************************************************/
2811
2812 /*
2813 * Initialize hardware specific port registers.
2814 */
2815
2816 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2817 {
2818 unsigned long flags;
2819 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2820 panelp, portp);
2821
2822 if ((brdp == NULL) || (panelp == NULL) ||
2823 (portp == NULL))
2824 return;
2825
2826 spin_lock_irqsave(&brd_lock, flags);
2827 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2828 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2829 portp->uartaddr = (portp->portnr & 0x04) << 5;
2830 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2831
2832 BRDENABLE(portp->brdnr, portp->pagenr);
2833 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2834 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2835 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2836 BRDDISABLE(portp->brdnr);
2837 spin_unlock_irqrestore(&brd_lock, flags);
2838 }
2839
2840 /*****************************************************************************/
2841
2842 /*
2843 * Wait for the command register to be ready. We will poll this,
2844 * since it won't usually take too long to be ready.
2845 */
2846
2847 static void stl_cd1400ccrwait(struct stlport *portp)
2848 {
2849 int i;
2850
2851 for (i = 0; i < CCR_MAXWAIT; i++)
2852 if (stl_cd1400getreg(portp, CCR) == 0)
2853 return;
2854
2855 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2856 portp->portnr, portp->panelnr, portp->brdnr);
2857 }
2858
2859 /*****************************************************************************/
2860
2861 /*
2862 * Set up the cd1400 registers for a port based on the termios port
2863 * settings.
2864 */
2865
2866 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2867 {
2868 struct stlbrd *brdp;
2869 unsigned long flags;
2870 unsigned int clkdiv, baudrate;
2871 unsigned char cor1, cor2, cor3;
2872 unsigned char cor4, cor5, ccr;
2873 unsigned char srer, sreron, sreroff;
2874 unsigned char mcor1, mcor2, rtpr;
2875 unsigned char clk, div;
2876
2877 cor1 = 0;
2878 cor2 = 0;
2879 cor3 = 0;
2880 cor4 = 0;
2881 cor5 = 0;
2882 ccr = 0;
2883 rtpr = 0;
2884 clk = 0;
2885 div = 0;
2886 mcor1 = 0;
2887 mcor2 = 0;
2888 sreron = 0;
2889 sreroff = 0;
2890
2891 brdp = stl_brds[portp->brdnr];
2892 if (brdp == NULL)
2893 return;
2894
2895 /*
2896 * Set up the RX char ignore mask with those RX error types we
2897 * can ignore. We can get the cd1400 to help us out a little here,
2898 * it will ignore parity errors and breaks for us.
2899 */
2900 portp->rxignoremsk = 0;
2901 if (tiosp->c_iflag & IGNPAR) {
2902 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2903 cor1 |= COR1_PARIGNORE;
2904 }
2905 if (tiosp->c_iflag & IGNBRK) {
2906 portp->rxignoremsk |= ST_BREAK;
2907 cor4 |= COR4_IGNBRK;
2908 }
2909
2910 portp->rxmarkmsk = ST_OVERRUN;
2911 if (tiosp->c_iflag & (INPCK | PARMRK))
2912 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2913 if (tiosp->c_iflag & BRKINT)
2914 portp->rxmarkmsk |= ST_BREAK;
2915
2916 /*
2917 * Go through the char size, parity and stop bits and set all the
2918 * option register appropriately.
2919 */
2920 switch (tiosp->c_cflag & CSIZE) {
2921 case CS5:
2922 cor1 |= COR1_CHL5;
2923 break;
2924 case CS6:
2925 cor1 |= COR1_CHL6;
2926 break;
2927 case CS7:
2928 cor1 |= COR1_CHL7;
2929 break;
2930 default:
2931 cor1 |= COR1_CHL8;
2932 break;
2933 }
2934
2935 if (tiosp->c_cflag & CSTOPB)
2936 cor1 |= COR1_STOP2;
2937 else
2938 cor1 |= COR1_STOP1;
2939
2940 if (tiosp->c_cflag & PARENB) {
2941 if (tiosp->c_cflag & PARODD)
2942 cor1 |= (COR1_PARENB | COR1_PARODD);
2943 else
2944 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2945 } else {
2946 cor1 |= COR1_PARNONE;
2947 }
2948
2949 /*
2950 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2951 * space for hardware flow control and the like. This should be set to
2952 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2953 * really be based on VTIME.
2954 */
2955 cor3 |= FIFO_RXTHRESHOLD;
2956 rtpr = 2;
2957
2958 /*
2959 * Calculate the baud rate timers. For now we will just assume that
2960 * the input and output baud are the same. Could have used a baud
2961 * table here, but this way we can generate virtually any baud rate
2962 * we like!
2963 */
2964 baudrate = tiosp->c_cflag & CBAUD;
2965 if (baudrate & CBAUDEX) {
2966 baudrate &= ~CBAUDEX;
2967 if ((baudrate < 1) || (baudrate > 4))
2968 tiosp->c_cflag &= ~CBAUDEX;
2969 else
2970 baudrate += 15;
2971 }
2972 baudrate = stl_baudrates[baudrate];
2973 if ((tiosp->c_cflag & CBAUD) == B38400) {
2974 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2975 baudrate = 57600;
2976 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2977 baudrate = 115200;
2978 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2979 baudrate = 230400;
2980 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2981 baudrate = 460800;
2982 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2983 baudrate = (portp->baud_base / portp->custom_divisor);
2984 }
2985 if (baudrate > STL_CD1400MAXBAUD)
2986 baudrate = STL_CD1400MAXBAUD;
2987
2988 if (baudrate > 0) {
2989 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2990 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2991 if (clkdiv < 0x100)
2992 break;
2993 }
2994 div = (unsigned char) clkdiv;
2995 }
2996
2997 /*
2998 * Check what form of modem signaling is required and set it up.
2999 */
3000 if ((tiosp->c_cflag & CLOCAL) == 0) {
3001 mcor1 |= MCOR1_DCD;
3002 mcor2 |= MCOR2_DCD;
3003 sreron |= SRER_MODEM;
3004 portp->flags |= ASYNC_CHECK_CD;
3005 } else
3006 portp->flags &= ~ASYNC_CHECK_CD;
3007
3008 /*
3009 * Setup cd1400 enhanced modes if we can. In particular we want to
3010 * handle as much of the flow control as possible automatically. As
3011 * well as saving a few CPU cycles it will also greatly improve flow
3012 * control reliability.
3013 */
3014 if (tiosp->c_iflag & IXON) {
3015 cor2 |= COR2_TXIBE;
3016 cor3 |= COR3_SCD12;
3017 if (tiosp->c_iflag & IXANY)
3018 cor2 |= COR2_IXM;
3019 }
3020
3021 if (tiosp->c_cflag & CRTSCTS) {
3022 cor2 |= COR2_CTSAE;
3023 mcor1 |= FIFO_RTSTHRESHOLD;
3024 }
3025
3026 /*
3027 * All cd1400 register values calculated so go through and set
3028 * them all up.
3029 */
3030
3031 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3032 portp->portnr, portp->panelnr, portp->brdnr);
3033 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3034 cor1, cor2, cor3, cor4, cor5);
3035 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3036 mcor1, mcor2, rtpr, sreron, sreroff);
3037 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3038 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3039 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3040 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3041
3042 spin_lock_irqsave(&brd_lock, flags);
3043 BRDENABLE(portp->brdnr, portp->pagenr);
3044 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3045 srer = stl_cd1400getreg(portp, SRER);
3046 stl_cd1400setreg(portp, SRER, 0);
3047 if (stl_cd1400updatereg(portp, COR1, cor1))
3048 ccr = 1;
3049 if (stl_cd1400updatereg(portp, COR2, cor2))
3050 ccr = 1;
3051 if (stl_cd1400updatereg(portp, COR3, cor3))
3052 ccr = 1;
3053 if (ccr) {
3054 stl_cd1400ccrwait(portp);
3055 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3056 }
3057 stl_cd1400setreg(portp, COR4, cor4);
3058 stl_cd1400setreg(portp, COR5, cor5);
3059 stl_cd1400setreg(portp, MCOR1, mcor1);
3060 stl_cd1400setreg(portp, MCOR2, mcor2);
3061 if (baudrate > 0) {
3062 stl_cd1400setreg(portp, TCOR, clk);
3063 stl_cd1400setreg(portp, TBPR, div);
3064 stl_cd1400setreg(portp, RCOR, clk);
3065 stl_cd1400setreg(portp, RBPR, div);
3066 }
3067 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3068 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3069 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3070 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3071 stl_cd1400setreg(portp, RTPR, rtpr);
3072 mcor1 = stl_cd1400getreg(portp, MSVR1);
3073 if (mcor1 & MSVR1_DCD)
3074 portp->sigs |= TIOCM_CD;
3075 else
3076 portp->sigs &= ~TIOCM_CD;
3077 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3078 BRDDISABLE(portp->brdnr);
3079 spin_unlock_irqrestore(&brd_lock, flags);
3080 }
3081
3082 /*****************************************************************************/
3083
3084 /*
3085 * Set the state of the DTR and RTS signals.
3086 */
3087
3088 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3089 {
3090 unsigned char msvr1, msvr2;
3091 unsigned long flags;
3092
3093 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3094 portp, dtr, rts);
3095
3096 msvr1 = 0;
3097 msvr2 = 0;
3098 if (dtr > 0)
3099 msvr1 = MSVR1_DTR;
3100 if (rts > 0)
3101 msvr2 = MSVR2_RTS;
3102
3103 spin_lock_irqsave(&brd_lock, flags);
3104 BRDENABLE(portp->brdnr, portp->pagenr);
3105 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3106 if (rts >= 0)
3107 stl_cd1400setreg(portp, MSVR2, msvr2);
3108 if (dtr >= 0)
3109 stl_cd1400setreg(portp, MSVR1, msvr1);
3110 BRDDISABLE(portp->brdnr);
3111 spin_unlock_irqrestore(&brd_lock, flags);
3112 }
3113
3114 /*****************************************************************************/
3115
3116 /*
3117 * Return the state of the signals.
3118 */
3119
3120 static int stl_cd1400getsignals(struct stlport *portp)
3121 {
3122 unsigned char msvr1, msvr2;
3123 unsigned long flags;
3124 int sigs;
3125
3126 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3127
3128 spin_lock_irqsave(&brd_lock, flags);
3129 BRDENABLE(portp->brdnr, portp->pagenr);
3130 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3131 msvr1 = stl_cd1400getreg(portp, MSVR1);
3132 msvr2 = stl_cd1400getreg(portp, MSVR2);
3133 BRDDISABLE(portp->brdnr);
3134 spin_unlock_irqrestore(&brd_lock, flags);
3135
3136 sigs = 0;
3137 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3138 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3139 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3140 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3141 #if 0
3142 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3143 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3144 #else
3145 sigs |= TIOCM_DSR;
3146 #endif
3147 return sigs;
3148 }
3149
3150 /*****************************************************************************/
3151
3152 /*
3153 * Enable/Disable the Transmitter and/or Receiver.
3154 */
3155
3156 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3157 {
3158 unsigned char ccr;
3159 unsigned long flags;
3160
3161 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3162
3163 ccr = 0;
3164
3165 if (tx == 0)
3166 ccr |= CCR_TXDISABLE;
3167 else if (tx > 0)
3168 ccr |= CCR_TXENABLE;
3169 if (rx == 0)
3170 ccr |= CCR_RXDISABLE;
3171 else if (rx > 0)
3172 ccr |= CCR_RXENABLE;
3173
3174 spin_lock_irqsave(&brd_lock, flags);
3175 BRDENABLE(portp->brdnr, portp->pagenr);
3176 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3177 stl_cd1400ccrwait(portp);
3178 stl_cd1400setreg(portp, CCR, ccr);
3179 stl_cd1400ccrwait(portp);
3180 BRDDISABLE(portp->brdnr);
3181 spin_unlock_irqrestore(&brd_lock, flags);
3182 }
3183
3184 /*****************************************************************************/
3185
3186 /*
3187 * Start/stop the Transmitter and/or Receiver.
3188 */
3189
3190 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3191 {
3192 unsigned char sreron, sreroff;
3193 unsigned long flags;
3194
3195 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3196
3197 sreron = 0;
3198 sreroff = 0;
3199 if (tx == 0)
3200 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3201 else if (tx == 1)
3202 sreron |= SRER_TXDATA;
3203 else if (tx >= 2)
3204 sreron |= SRER_TXEMPTY;
3205 if (rx == 0)
3206 sreroff |= SRER_RXDATA;
3207 else if (rx > 0)
3208 sreron |= SRER_RXDATA;
3209
3210 spin_lock_irqsave(&brd_lock, flags);
3211 BRDENABLE(portp->brdnr, portp->pagenr);
3212 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3213 stl_cd1400setreg(portp, SRER,
3214 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3215 BRDDISABLE(portp->brdnr);
3216 if (tx > 0)
3217 set_bit(ASYI_TXBUSY, &portp->istate);
3218 spin_unlock_irqrestore(&brd_lock, flags);
3219 }
3220
3221 /*****************************************************************************/
3222
3223 /*
3224 * Disable all interrupts from this port.
3225 */
3226
3227 static void stl_cd1400disableintrs(struct stlport *portp)
3228 {
3229 unsigned long flags;
3230
3231 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3232
3233 spin_lock_irqsave(&brd_lock, flags);
3234 BRDENABLE(portp->brdnr, portp->pagenr);
3235 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3236 stl_cd1400setreg(portp, SRER, 0);
3237 BRDDISABLE(portp->brdnr);
3238 spin_unlock_irqrestore(&brd_lock, flags);
3239 }
3240
3241 /*****************************************************************************/
3242
3243 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3244 {
3245 unsigned long flags;
3246
3247 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3248
3249 spin_lock_irqsave(&brd_lock, flags);
3250 BRDENABLE(portp->brdnr, portp->pagenr);
3251 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3252 stl_cd1400setreg(portp, SRER,
3253 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3254 SRER_TXEMPTY));
3255 BRDDISABLE(portp->brdnr);
3256 portp->brklen = len;
3257 if (len == 1)
3258 portp->stats.txbreaks++;
3259 spin_unlock_irqrestore(&brd_lock, flags);
3260 }
3261
3262 /*****************************************************************************/
3263
3264 /*
3265 * Take flow control actions...
3266 */
3267
3268 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3269 {
3270 struct tty_struct *tty;
3271 unsigned long flags;
3272
3273 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3274
3275 if (portp == NULL)
3276 return;
3277 tty = portp->tty;
3278 if (tty == NULL)
3279 return;
3280
3281 spin_lock_irqsave(&brd_lock, flags);
3282 BRDENABLE(portp->brdnr, portp->pagenr);
3283 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3284
3285 if (state) {
3286 if (tty->termios->c_iflag & IXOFF) {
3287 stl_cd1400ccrwait(portp);
3288 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3289 portp->stats.rxxon++;
3290 stl_cd1400ccrwait(portp);
3291 }
3292 /*
3293 * Question: should we return RTS to what it was before? It may
3294 * have been set by an ioctl... Suppose not, since if you have
3295 * hardware flow control set then it is pretty silly to go and
3296 * set the RTS line by hand.
3297 */
3298 if (tty->termios->c_cflag & CRTSCTS) {
3299 stl_cd1400setreg(portp, MCOR1,
3300 (stl_cd1400getreg(portp, MCOR1) |
3301 FIFO_RTSTHRESHOLD));
3302 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3303 portp->stats.rxrtson++;
3304 }
3305 } else {
3306 if (tty->termios->c_iflag & IXOFF) {
3307 stl_cd1400ccrwait(portp);
3308 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3309 portp->stats.rxxoff++;
3310 stl_cd1400ccrwait(portp);
3311 }
3312 if (tty->termios->c_cflag & CRTSCTS) {
3313 stl_cd1400setreg(portp, MCOR1,
3314 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3315 stl_cd1400setreg(portp, MSVR2, 0);
3316 portp->stats.rxrtsoff++;
3317 }
3318 }
3319
3320 BRDDISABLE(portp->brdnr);
3321 spin_unlock_irqrestore(&brd_lock, flags);
3322 }
3323
3324 /*****************************************************************************/
3325
3326 /*
3327 * Send a flow control character...
3328 */
3329
3330 static void stl_cd1400sendflow(struct stlport *portp, int state)
3331 {
3332 struct tty_struct *tty;
3333 unsigned long flags;
3334
3335 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3336
3337 if (portp == NULL)
3338 return;
3339 tty = portp->tty;
3340 if (tty == NULL)
3341 return;
3342
3343 spin_lock_irqsave(&brd_lock, flags);
3344 BRDENABLE(portp->brdnr, portp->pagenr);
3345 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3346 if (state) {
3347 stl_cd1400ccrwait(portp);
3348 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3349 portp->stats.rxxon++;
3350 stl_cd1400ccrwait(portp);
3351 } else {
3352 stl_cd1400ccrwait(portp);
3353 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3354 portp->stats.rxxoff++;
3355 stl_cd1400ccrwait(portp);
3356 }
3357 BRDDISABLE(portp->brdnr);
3358 spin_unlock_irqrestore(&brd_lock, flags);
3359 }
3360
3361 /*****************************************************************************/
3362
3363 static void stl_cd1400flush(struct stlport *portp)
3364 {
3365 unsigned long flags;
3366
3367 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3368
3369 if (portp == NULL)
3370 return;
3371
3372 spin_lock_irqsave(&brd_lock, flags);
3373 BRDENABLE(portp->brdnr, portp->pagenr);
3374 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3375 stl_cd1400ccrwait(portp);
3376 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3377 stl_cd1400ccrwait(portp);
3378 portp->tx.tail = portp->tx.head;
3379 BRDDISABLE(portp->brdnr);
3380 spin_unlock_irqrestore(&brd_lock, flags);
3381 }
3382
3383 /*****************************************************************************/
3384
3385 /*
3386 * Return the current state of data flow on this port. This is only
3387 * really interresting when determining if data has fully completed
3388 * transmission or not... This is easy for the cd1400, it accurately
3389 * maintains the busy port flag.
3390 */
3391
3392 static int stl_cd1400datastate(struct stlport *portp)
3393 {
3394 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3395
3396 if (portp == NULL)
3397 return 0;
3398
3399 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3400 }
3401
3402 /*****************************************************************************/
3403
3404 /*
3405 * Interrupt service routine for cd1400 EasyIO boards.
3406 */
3407
3408 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3409 {
3410 unsigned char svrtype;
3411
3412 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3413
3414 spin_lock(&brd_lock);
3415 outb(SVRR, iobase);
3416 svrtype = inb(iobase + EREG_DATA);
3417 if (panelp->nrports > 4) {
3418 outb((SVRR + 0x80), iobase);
3419 svrtype |= inb(iobase + EREG_DATA);
3420 }
3421
3422 if (svrtype & SVRR_RX)
3423 stl_cd1400rxisr(panelp, iobase);
3424 else if (svrtype & SVRR_TX)
3425 stl_cd1400txisr(panelp, iobase);
3426 else if (svrtype & SVRR_MDM)
3427 stl_cd1400mdmisr(panelp, iobase);
3428
3429 spin_unlock(&brd_lock);
3430 }
3431
3432 /*****************************************************************************/
3433
3434 /*
3435 * Interrupt service routine for cd1400 panels.
3436 */
3437
3438 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3439 {
3440 unsigned char svrtype;
3441
3442 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3443
3444 outb(SVRR, iobase);
3445 svrtype = inb(iobase + EREG_DATA);
3446 outb((SVRR + 0x80), iobase);
3447 svrtype |= inb(iobase + EREG_DATA);
3448 if (svrtype & SVRR_RX)
3449 stl_cd1400rxisr(panelp, iobase);
3450 else if (svrtype & SVRR_TX)
3451 stl_cd1400txisr(panelp, iobase);
3452 else if (svrtype & SVRR_MDM)
3453 stl_cd1400mdmisr(panelp, iobase);
3454 }
3455
3456
3457 /*****************************************************************************/
3458
3459 /*
3460 * Unfortunately we need to handle breaks in the TX data stream, since
3461 * this is the only way to generate them on the cd1400.
3462 */
3463
3464 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3465 {
3466 if (portp->brklen == 1) {
3467 outb((COR2 + portp->uartaddr), ioaddr);
3468 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3469 (ioaddr + EREG_DATA));
3470 outb((TDR + portp->uartaddr), ioaddr);
3471 outb(ETC_CMD, (ioaddr + EREG_DATA));
3472 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3473 outb((SRER + portp->uartaddr), ioaddr);
3474 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3475 (ioaddr + EREG_DATA));
3476 return 1;
3477 } else if (portp->brklen > 1) {
3478 outb((TDR + portp->uartaddr), ioaddr);
3479 outb(ETC_CMD, (ioaddr + EREG_DATA));
3480 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3481 portp->brklen = -1;
3482 return 1;
3483 } else {
3484 outb((COR2 + portp->uartaddr), ioaddr);
3485 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3486 (ioaddr + EREG_DATA));
3487 portp->brklen = 0;
3488 }
3489 return 0;
3490 }
3491
3492 /*****************************************************************************/
3493
3494 /*
3495 * Transmit interrupt handler. This has gotta be fast! Handling TX
3496 * chars is pretty simple, stuff as many as possible from the TX buffer
3497 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3498 * are embedded as commands in the data stream. Oh no, had to use a goto!
3499 * This could be optimized more, will do when I get time...
3500 * In practice it is possible that interrupts are enabled but that the
3501 * port has been hung up. Need to handle not having any TX buffer here,
3502 * this is done by using the side effect that head and tail will also
3503 * be NULL if the buffer has been freed.
3504 */
3505
3506 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3507 {
3508 struct stlport *portp;
3509 int len, stlen;
3510 char *head, *tail;
3511 unsigned char ioack, srer;
3512
3513 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3514
3515 ioack = inb(ioaddr + EREG_TXACK);
3516 if (((ioack & panelp->ackmask) != 0) ||
3517 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3518 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3519 return;
3520 }
3521 portp = panelp->ports[(ioack >> 3)];
3522
3523 /*
3524 * Unfortunately we need to handle breaks in the data stream, since
3525 * this is the only way to generate them on the cd1400. Do it now if
3526 * a break is to be sent.
3527 */
3528 if (portp->brklen != 0)
3529 if (stl_cd1400breakisr(portp, ioaddr))
3530 goto stl_txalldone;
3531
3532 head = portp->tx.head;
3533 tail = portp->tx.tail;
3534 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3535 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3536 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3537 set_bit(ASYI_TXLOW, &portp->istate);
3538 schedule_work(&portp->tqueue);
3539 }
3540
3541 if (len == 0) {
3542 outb((SRER + portp->uartaddr), ioaddr);
3543 srer = inb(ioaddr + EREG_DATA);
3544 if (srer & SRER_TXDATA) {
3545 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3546 } else {
3547 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3548 clear_bit(ASYI_TXBUSY, &portp->istate);
3549 }
3550 outb(srer, (ioaddr + EREG_DATA));
3551 } else {
3552 len = min(len, CD1400_TXFIFOSIZE);
3553 portp->stats.txtotal += len;
3554 stlen = min(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3555 outb((TDR + portp->uartaddr), ioaddr);
3556 outsb((ioaddr + EREG_DATA), tail, stlen);
3557 len -= stlen;
3558 tail += stlen;
3559 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3560 tail = portp->tx.buf;
3561 if (len > 0) {
3562 outsb((ioaddr + EREG_DATA), tail, len);
3563 tail += len;
3564 }
3565 portp->tx.tail = tail;
3566 }
3567
3568 stl_txalldone:
3569 outb((EOSRR + portp->uartaddr), ioaddr);
3570 outb(0, (ioaddr + EREG_DATA));
3571 }
3572
3573 /*****************************************************************************/
3574
3575 /*
3576 * Receive character interrupt handler. Determine if we have good chars
3577 * or bad chars and then process appropriately. Good chars are easy
3578 * just shove the lot into the RX buffer and set all status byte to 0.
3579 * If a bad RX char then process as required. This routine needs to be
3580 * fast! In practice it is possible that we get an interrupt on a port
3581 * that is closed. This can happen on hangups - since they completely
3582 * shutdown a port not in user context. Need to handle this case.
3583 */
3584
3585 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3586 {
3587 struct stlport *portp;
3588 struct tty_struct *tty;
3589 unsigned int ioack, len, buflen;
3590 unsigned char status;
3591 char ch;
3592
3593 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3594
3595 ioack = inb(ioaddr + EREG_RXACK);
3596 if ((ioack & panelp->ackmask) != 0) {
3597 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3598 return;
3599 }
3600 portp = panelp->ports[(ioack >> 3)];
3601 tty = portp->tty;
3602
3603 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3604 outb((RDCR + portp->uartaddr), ioaddr);
3605 len = inb(ioaddr + EREG_DATA);
3606 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3607 len = min(len, sizeof(stl_unwanted));
3608 outb((RDSR + portp->uartaddr), ioaddr);
3609 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3610 portp->stats.rxlost += len;
3611 portp->stats.rxtotal += len;
3612 } else {
3613 len = min(len, buflen);
3614 if (len > 0) {
3615 unsigned char *ptr;
3616 outb((RDSR + portp->uartaddr), ioaddr);
3617 tty_prepare_flip_string(tty, &ptr, len);
3618 insb((ioaddr + EREG_DATA), ptr, len);
3619 tty_schedule_flip(tty);
3620 portp->stats.rxtotal += len;
3621 }
3622 }
3623 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3624 outb((RDSR + portp->uartaddr), ioaddr);
3625 status = inb(ioaddr + EREG_DATA);
3626 ch = inb(ioaddr + EREG_DATA);
3627 if (status & ST_PARITY)
3628 portp->stats.rxparity++;
3629 if (status & ST_FRAMING)
3630 portp->stats.rxframing++;
3631 if (status & ST_OVERRUN)
3632 portp->stats.rxoverrun++;
3633 if (status & ST_BREAK)
3634 portp->stats.rxbreaks++;
3635 if (status & ST_SCHARMASK) {
3636 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3637 portp->stats.txxon++;
3638 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3639 portp->stats.txxoff++;
3640 goto stl_rxalldone;
3641 }
3642 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3643 if (portp->rxmarkmsk & status) {
3644 if (status & ST_BREAK) {
3645 status = TTY_BREAK;
3646 if (portp->flags & ASYNC_SAK) {
3647 do_SAK(tty);
3648 BRDENABLE(portp->brdnr, portp->pagenr);
3649 }
3650 } else if (status & ST_PARITY)
3651 status = TTY_PARITY;
3652 else if (status & ST_FRAMING)
3653 status = TTY_FRAME;
3654 else if(status & ST_OVERRUN)
3655 status = TTY_OVERRUN;
3656 else
3657 status = 0;
3658 } else
3659 status = 0;
3660 tty_insert_flip_char(tty, ch, status);
3661 tty_schedule_flip(tty);
3662 }
3663 } else {
3664 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3665 return;
3666 }
3667
3668 stl_rxalldone:
3669 outb((EOSRR + portp->uartaddr), ioaddr);
3670 outb(0, (ioaddr + EREG_DATA));
3671 }
3672
3673 /*****************************************************************************/
3674
3675 /*
3676 * Modem interrupt handler. The is called when the modem signal line
3677 * (DCD) has changed state. Leave most of the work to the off-level
3678 * processing routine.
3679 */
3680
3681 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3682 {
3683 struct stlport *portp;
3684 unsigned int ioack;
3685 unsigned char misr;
3686
3687 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3688
3689 ioack = inb(ioaddr + EREG_MDACK);
3690 if (((ioack & panelp->ackmask) != 0) ||
3691 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3692 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3693 return;
3694 }
3695 portp = panelp->ports[(ioack >> 3)];
3696
3697 outb((MISR + portp->uartaddr), ioaddr);
3698 misr = inb(ioaddr + EREG_DATA);
3699 if (misr & MISR_DCD) {
3700 set_bit(ASYI_DCDCHANGE, &portp->istate);
3701 schedule_work(&portp->tqueue);
3702 portp->stats.modem++;
3703 }
3704
3705 outb((EOSRR + portp->uartaddr), ioaddr);
3706 outb(0, (ioaddr + EREG_DATA));
3707 }
3708
3709 /*****************************************************************************/
3710 /* SC26198 HARDWARE FUNCTIONS */
3711 /*****************************************************************************/
3712
3713 /*
3714 * These functions get/set/update the registers of the sc26198 UARTs.
3715 * Access to the sc26198 registers is via an address/data io port pair.
3716 * (Maybe should make this inline...)
3717 */
3718
3719 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3720 {
3721 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3722 return inb(portp->ioaddr + XP_DATA);
3723 }
3724
3725 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3726 {
3727 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3728 outb(value, (portp->ioaddr + XP_DATA));
3729 }
3730
3731 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3732 {
3733 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3734 if (inb(portp->ioaddr + XP_DATA) != value) {
3735 outb(value, (portp->ioaddr + XP_DATA));
3736 return 1;
3737 }
3738 return 0;
3739 }
3740
3741 /*****************************************************************************/
3742
3743 /*
3744 * Functions to get and set the sc26198 global registers.
3745 */
3746
3747 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3748 {
3749 outb(regnr, (portp->ioaddr + XP_ADDR));
3750 return inb(portp->ioaddr + XP_DATA);
3751 }
3752
3753 #if 0
3754 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3755 {
3756 outb(regnr, (portp->ioaddr + XP_ADDR));
3757 outb(value, (portp->ioaddr + XP_DATA));
3758 }
3759 #endif
3760
3761 /*****************************************************************************/
3762
3763 /*
3764 * Inbitialize the UARTs in a panel. We don't care what sort of board
3765 * these ports are on - since the port io registers are almost
3766 * identical when dealing with ports.
3767 */
3768
3769 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3770 {
3771 int chipmask, i;
3772 int nrchips, ioaddr;
3773
3774 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3775
3776 BRDENABLE(panelp->brdnr, panelp->pagenr);
3777
3778 /*
3779 * Check that each chip is present and started up OK.
3780 */
3781 chipmask = 0;
3782 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3783 if (brdp->brdtype == BRD_ECHPCI)
3784 outb(panelp->pagenr, brdp->ioctrl);
3785
3786 for (i = 0; i < nrchips; i++) {
3787 ioaddr = panelp->iobase + (i * 4);
3788 outb(SCCR, (ioaddr + XP_ADDR));
3789 outb(CR_RESETALL, (ioaddr + XP_DATA));
3790 outb(TSTR, (ioaddr + XP_ADDR));
3791 if (inb(ioaddr + XP_DATA) != 0) {
3792 printk("STALLION: sc26198 not responding, "
3793 "brd=%d panel=%d chip=%d\n",
3794 panelp->brdnr, panelp->panelnr, i);
3795 continue;
3796 }
3797 chipmask |= (0x1 << i);
3798 outb(GCCR, (ioaddr + XP_ADDR));
3799 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3800 outb(WDTRCR, (ioaddr + XP_ADDR));
3801 outb(0xff, (ioaddr + XP_DATA));
3802 }
3803
3804 BRDDISABLE(panelp->brdnr);
3805 return chipmask;
3806 }
3807
3808 /*****************************************************************************/
3809
3810 /*
3811 * Initialize hardware specific port registers.
3812 */
3813
3814 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3815 {
3816 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3817 panelp, portp);
3818
3819 if ((brdp == NULL) || (panelp == NULL) ||
3820 (portp == NULL))
3821 return;
3822
3823 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3824 portp->uartaddr = (portp->portnr & 0x07) << 4;
3825 portp->pagenr = panelp->pagenr;
3826 portp->hwid = 0x1;
3827
3828 BRDENABLE(portp->brdnr, portp->pagenr);
3829 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3830 BRDDISABLE(portp->brdnr);
3831 }
3832
3833 /*****************************************************************************/
3834
3835 /*
3836 * Set up the sc26198 registers for a port based on the termios port
3837 * settings.
3838 */
3839
3840 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3841 {
3842 struct stlbrd *brdp;
3843 unsigned long flags;
3844 unsigned int baudrate;
3845 unsigned char mr0, mr1, mr2, clk;
3846 unsigned char imron, imroff, iopr, ipr;
3847
3848 mr0 = 0;
3849 mr1 = 0;
3850 mr2 = 0;
3851 clk = 0;
3852 iopr = 0;
3853 imron = 0;
3854 imroff = 0;
3855
3856 brdp = stl_brds[portp->brdnr];
3857 if (brdp == NULL)
3858 return;
3859
3860 /*
3861 * Set up the RX char ignore mask with those RX error types we
3862 * can ignore.
3863 */
3864 portp->rxignoremsk = 0;
3865 if (tiosp->c_iflag & IGNPAR)
3866 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3867 SR_RXOVERRUN);
3868 if (tiosp->c_iflag & IGNBRK)
3869 portp->rxignoremsk |= SR_RXBREAK;
3870
3871 portp->rxmarkmsk = SR_RXOVERRUN;
3872 if (tiosp->c_iflag & (INPCK | PARMRK))
3873 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3874 if (tiosp->c_iflag & BRKINT)
3875 portp->rxmarkmsk |= SR_RXBREAK;
3876
3877 /*
3878 * Go through the char size, parity and stop bits and set all the
3879 * option register appropriately.
3880 */
3881 switch (tiosp->c_cflag & CSIZE) {
3882 case CS5:
3883 mr1 |= MR1_CS5;
3884 break;
3885 case CS6:
3886 mr1 |= MR1_CS6;
3887 break;
3888 case CS7:
3889 mr1 |= MR1_CS7;
3890 break;
3891 default:
3892 mr1 |= MR1_CS8;
3893 break;
3894 }
3895
3896 if (tiosp->c_cflag & CSTOPB)
3897 mr2 |= MR2_STOP2;
3898 else
3899 mr2 |= MR2_STOP1;
3900
3901 if (tiosp->c_cflag & PARENB) {
3902 if (tiosp->c_cflag & PARODD)
3903 mr1 |= (MR1_PARENB | MR1_PARODD);
3904 else
3905 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3906 } else
3907 mr1 |= MR1_PARNONE;
3908
3909 mr1 |= MR1_ERRBLOCK;
3910
3911 /*
3912 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3913 * space for hardware flow control and the like. This should be set to
3914 * VMIN.
3915 */
3916 mr2 |= MR2_RXFIFOHALF;
3917
3918 /*
3919 * Calculate the baud rate timers. For now we will just assume that
3920 * the input and output baud are the same. The sc26198 has a fixed
3921 * baud rate table, so only discrete baud rates possible.
3922 */
3923 baudrate = tiosp->c_cflag & CBAUD;
3924 if (baudrate & CBAUDEX) {
3925 baudrate &= ~CBAUDEX;
3926 if ((baudrate < 1) || (baudrate > 4))
3927 tiosp->c_cflag &= ~CBAUDEX;
3928 else
3929 baudrate += 15;
3930 }
3931 baudrate = stl_baudrates[baudrate];
3932 if ((tiosp->c_cflag & CBAUD) == B38400) {
3933 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3934 baudrate = 57600;
3935 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3936 baudrate = 115200;
3937 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3938 baudrate = 230400;
3939 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3940 baudrate = 460800;
3941 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3942 baudrate = (portp->baud_base / portp->custom_divisor);
3943 }
3944 if (baudrate > STL_SC26198MAXBAUD)
3945 baudrate = STL_SC26198MAXBAUD;
3946
3947 if (baudrate > 0)
3948 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3949 if (baudrate <= sc26198_baudtable[clk])
3950 break;
3951
3952 /*
3953 * Check what form of modem signaling is required and set it up.
3954 */
3955 if (tiosp->c_cflag & CLOCAL) {
3956 portp->flags &= ~ASYNC_CHECK_CD;
3957 } else {
3958 iopr |= IOPR_DCDCOS;
3959 imron |= IR_IOPORT;
3960 portp->flags |= ASYNC_CHECK_CD;
3961 }
3962
3963 /*
3964 * Setup sc26198 enhanced modes if we can. In particular we want to
3965 * handle as much of the flow control as possible automatically. As
3966 * well as saving a few CPU cycles it will also greatly improve flow
3967 * control reliability.
3968 */
3969 if (tiosp->c_iflag & IXON) {
3970 mr0 |= MR0_SWFTX | MR0_SWFT;
3971 imron |= IR_XONXOFF;
3972 } else
3973 imroff |= IR_XONXOFF;
3974
3975 if (tiosp->c_iflag & IXOFF)
3976 mr0 |= MR0_SWFRX;
3977
3978 if (tiosp->c_cflag & CRTSCTS) {
3979 mr2 |= MR2_AUTOCTS;
3980 mr1 |= MR1_AUTORTS;
3981 }
3982
3983 /*
3984 * All sc26198 register values calculated so go through and set
3985 * them all up.
3986 */
3987
3988 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3989 portp->portnr, portp->panelnr, portp->brdnr);
3990 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3991 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3992 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3993 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3994 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3995
3996 spin_lock_irqsave(&brd_lock, flags);
3997 BRDENABLE(portp->brdnr, portp->pagenr);
3998 stl_sc26198setreg(portp, IMR, 0);
3999 stl_sc26198updatereg(portp, MR0, mr0);
4000 stl_sc26198updatereg(portp, MR1, mr1);
4001 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4002 stl_sc26198updatereg(portp, MR2, mr2);
4003 stl_sc26198updatereg(portp, IOPIOR,
4004 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4005
4006 if (baudrate > 0) {
4007 stl_sc26198setreg(portp, TXCSR, clk);
4008 stl_sc26198setreg(portp, RXCSR, clk);
4009 }
4010
4011 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4012 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4013
4014 ipr = stl_sc26198getreg(portp, IPR);
4015 if (ipr & IPR_DCD)
4016 portp->sigs &= ~TIOCM_CD;
4017 else
4018 portp->sigs |= TIOCM_CD;
4019
4020 portp->imr = (portp->imr & ~imroff) | imron;
4021 stl_sc26198setreg(portp, IMR, portp->imr);
4022 BRDDISABLE(portp->brdnr);
4023 spin_unlock_irqrestore(&brd_lock, flags);
4024 }
4025
4026 /*****************************************************************************/
4027
4028 /*
4029 * Set the state of the DTR and RTS signals.
4030 */
4031
4032 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
4033 {
4034 unsigned char iopioron, iopioroff;
4035 unsigned long flags;
4036
4037 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
4038 dtr, rts);
4039
4040 iopioron = 0;
4041 iopioroff = 0;
4042 if (dtr == 0)
4043 iopioroff |= IPR_DTR;
4044 else if (dtr > 0)
4045 iopioron |= IPR_DTR;
4046 if (rts == 0)
4047 iopioroff |= IPR_RTS;
4048 else if (rts > 0)
4049 iopioron |= IPR_RTS;
4050
4051 spin_lock_irqsave(&brd_lock, flags);
4052 BRDENABLE(portp->brdnr, portp->pagenr);
4053 stl_sc26198setreg(portp, IOPIOR,
4054 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4055 BRDDISABLE(portp->brdnr);
4056 spin_unlock_irqrestore(&brd_lock, flags);
4057 }
4058
4059 /*****************************************************************************/
4060
4061 /*
4062 * Return the state of the signals.
4063 */
4064
4065 static int stl_sc26198getsignals(struct stlport *portp)
4066 {
4067 unsigned char ipr;
4068 unsigned long flags;
4069 int sigs;
4070
4071 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4072
4073 spin_lock_irqsave(&brd_lock, flags);
4074 BRDENABLE(portp->brdnr, portp->pagenr);
4075 ipr = stl_sc26198getreg(portp, IPR);
4076 BRDDISABLE(portp->brdnr);
4077 spin_unlock_irqrestore(&brd_lock, flags);
4078
4079 sigs = 0;
4080 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4081 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4082 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4083 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4084 sigs |= TIOCM_DSR;
4085 return sigs;
4086 }
4087
4088 /*****************************************************************************/
4089
4090 /*
4091 * Enable/Disable the Transmitter and/or Receiver.
4092 */
4093
4094 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4095 {
4096 unsigned char ccr;
4097 unsigned long flags;
4098
4099 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4100
4101 ccr = portp->crenable;
4102 if (tx == 0)
4103 ccr &= ~CR_TXENABLE;
4104 else if (tx > 0)
4105 ccr |= CR_TXENABLE;
4106 if (rx == 0)
4107 ccr &= ~CR_RXENABLE;
4108 else if (rx > 0)
4109 ccr |= CR_RXENABLE;
4110
4111 spin_lock_irqsave(&brd_lock, flags);
4112 BRDENABLE(portp->brdnr, portp->pagenr);
4113 stl_sc26198setreg(portp, SCCR, ccr);
4114 BRDDISABLE(portp->brdnr);
4115 portp->crenable = ccr;
4116 spin_unlock_irqrestore(&brd_lock, flags);
4117 }
4118
4119 /*****************************************************************************/
4120
4121 /*
4122 * Start/stop the Transmitter and/or Receiver.
4123 */
4124
4125 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4126 {
4127 unsigned char imr;
4128 unsigned long flags;
4129
4130 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4131
4132 imr = portp->imr;
4133 if (tx == 0)
4134 imr &= ~IR_TXRDY;
4135 else if (tx == 1)
4136 imr |= IR_TXRDY;
4137 if (rx == 0)
4138 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4139 else if (rx > 0)
4140 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4141
4142 spin_lock_irqsave(&brd_lock, flags);
4143 BRDENABLE(portp->brdnr, portp->pagenr);
4144 stl_sc26198setreg(portp, IMR, imr);
4145 BRDDISABLE(portp->brdnr);
4146 portp->imr = imr;
4147 if (tx > 0)
4148 set_bit(ASYI_TXBUSY, &portp->istate);
4149 spin_unlock_irqrestore(&brd_lock, flags);
4150 }
4151
4152 /*****************************************************************************/
4153
4154 /*
4155 * Disable all interrupts from this port.
4156 */
4157
4158 static void stl_sc26198disableintrs(struct stlport *portp)
4159 {
4160 unsigned long flags;
4161
4162 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4163
4164 spin_lock_irqsave(&brd_lock, flags);
4165 BRDENABLE(portp->brdnr, portp->pagenr);
4166 portp->imr = 0;
4167 stl_sc26198setreg(portp, IMR, 0);
4168 BRDDISABLE(portp->brdnr);
4169 spin_unlock_irqrestore(&brd_lock, flags);
4170 }
4171
4172 /*****************************************************************************/
4173
4174 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4175 {
4176 unsigned long flags;
4177
4178 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4179
4180 spin_lock_irqsave(&brd_lock, flags);
4181 BRDENABLE(portp->brdnr, portp->pagenr);
4182 if (len == 1) {
4183 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4184 portp->stats.txbreaks++;
4185 } else
4186 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4187
4188 BRDDISABLE(portp->brdnr);
4189 spin_unlock_irqrestore(&brd_lock, flags);
4190 }
4191
4192 /*****************************************************************************/
4193
4194 /*
4195 * Take flow control actions...
4196 */
4197
4198 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4199 {
4200 struct tty_struct *tty;
4201 unsigned long flags;
4202 unsigned char mr0;
4203
4204 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4205
4206 if (portp == NULL)
4207 return;
4208 tty = portp->tty;
4209 if (tty == NULL)
4210 return;
4211
4212 spin_lock_irqsave(&brd_lock, flags);
4213 BRDENABLE(portp->brdnr, portp->pagenr);
4214
4215 if (state) {
4216 if (tty->termios->c_iflag & IXOFF) {
4217 mr0 = stl_sc26198getreg(portp, MR0);
4218 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4219 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4220 mr0 |= MR0_SWFRX;
4221 portp->stats.rxxon++;
4222 stl_sc26198wait(portp);
4223 stl_sc26198setreg(portp, MR0, mr0);
4224 }
4225 /*
4226 * Question: should we return RTS to what it was before? It may
4227 * have been set by an ioctl... Suppose not, since if you have
4228 * hardware flow control set then it is pretty silly to go and
4229 * set the RTS line by hand.
4230 */
4231 if (tty->termios->c_cflag & CRTSCTS) {
4232 stl_sc26198setreg(portp, MR1,
4233 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4234 stl_sc26198setreg(portp, IOPIOR,
4235 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4236 portp->stats.rxrtson++;
4237 }
4238 } else {
4239 if (tty->termios->c_iflag & IXOFF) {
4240 mr0 = stl_sc26198getreg(portp, MR0);
4241 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4242 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4243 mr0 &= ~MR0_SWFRX;
4244 portp->stats.rxxoff++;
4245 stl_sc26198wait(portp);
4246 stl_sc26198setreg(portp, MR0, mr0);
4247 }
4248 if (tty->termios->c_cflag & CRTSCTS) {
4249 stl_sc26198setreg(portp, MR1,
4250 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4251 stl_sc26198setreg(portp, IOPIOR,
4252 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4253 portp->stats.rxrtsoff++;
4254 }
4255 }
4256
4257 BRDDISABLE(portp->brdnr);
4258 spin_unlock_irqrestore(&brd_lock, flags);
4259 }
4260
4261 /*****************************************************************************/
4262
4263 /*
4264 * Send a flow control character.
4265 */
4266
4267 static void stl_sc26198sendflow(struct stlport *portp, int state)
4268 {
4269 struct tty_struct *tty;
4270 unsigned long flags;
4271 unsigned char mr0;
4272
4273 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4274
4275 if (portp == NULL)
4276 return;
4277 tty = portp->tty;
4278 if (tty == NULL)
4279 return;
4280
4281 spin_lock_irqsave(&brd_lock, flags);
4282 BRDENABLE(portp->brdnr, portp->pagenr);
4283 if (state) {
4284 mr0 = stl_sc26198getreg(portp, MR0);
4285 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4286 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4287 mr0 |= MR0_SWFRX;
4288 portp->stats.rxxon++;
4289 stl_sc26198wait(portp);
4290 stl_sc26198setreg(portp, MR0, mr0);
4291 } else {
4292 mr0 = stl_sc26198getreg(portp, MR0);
4293 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4294 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4295 mr0 &= ~MR0_SWFRX;
4296 portp->stats.rxxoff++;
4297 stl_sc26198wait(portp);
4298 stl_sc26198setreg(portp, MR0, mr0);
4299 }
4300 BRDDISABLE(portp->brdnr);
4301 spin_unlock_irqrestore(&brd_lock, flags);
4302 }
4303
4304 /*****************************************************************************/
4305
4306 static void stl_sc26198flush(struct stlport *portp)
4307 {
4308 unsigned long flags;
4309
4310 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4311
4312 if (portp == NULL)
4313 return;
4314
4315 spin_lock_irqsave(&brd_lock, flags);
4316 BRDENABLE(portp->brdnr, portp->pagenr);
4317 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4318 stl_sc26198setreg(portp, SCCR, portp->crenable);
4319 BRDDISABLE(portp->brdnr);
4320 portp->tx.tail = portp->tx.head;
4321 spin_unlock_irqrestore(&brd_lock, flags);
4322 }
4323
4324 /*****************************************************************************/
4325
4326 /*
4327 * Return the current state of data flow on this port. This is only
4328 * really interresting when determining if data has fully completed
4329 * transmission or not... The sc26198 interrupt scheme cannot
4330 * determine when all data has actually drained, so we need to
4331 * check the port statusy register to be sure.
4332 */
4333
4334 static int stl_sc26198datastate(struct stlport *portp)
4335 {
4336 unsigned long flags;
4337 unsigned char sr;
4338
4339 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4340
4341 if (portp == NULL)
4342 return 0;
4343 if (test_bit(ASYI_TXBUSY, &portp->istate))
4344 return 1;
4345
4346 spin_lock_irqsave(&brd_lock, flags);
4347 BRDENABLE(portp->brdnr, portp->pagenr);
4348 sr = stl_sc26198getreg(portp, SR);
4349 BRDDISABLE(portp->brdnr);
4350 spin_unlock_irqrestore(&brd_lock, flags);
4351
4352 return (sr & SR_TXEMPTY) ? 0 : 1;
4353 }
4354
4355 /*****************************************************************************/
4356
4357 /*
4358 * Delay for a small amount of time, to give the sc26198 a chance
4359 * to process a command...
4360 */
4361
4362 static void stl_sc26198wait(struct stlport *portp)
4363 {
4364 int i;
4365
4366 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4367
4368 if (portp == NULL)
4369 return;
4370
4371 for (i = 0; i < 20; i++)
4372 stl_sc26198getglobreg(portp, TSTR);
4373 }
4374
4375 /*****************************************************************************/
4376
4377 /*
4378 * If we are TX flow controlled and in IXANY mode then we may
4379 * need to unflow control here. We gotta do this because of the
4380 * automatic flow control modes of the sc26198.
4381 */
4382
4383 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4384 {
4385 unsigned char mr0;
4386
4387 mr0 = stl_sc26198getreg(portp, MR0);
4388 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4389 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4390 stl_sc26198wait(portp);
4391 stl_sc26198setreg(portp, MR0, mr0);
4392 clear_bit(ASYI_TXFLOWED, &portp->istate);
4393 }
4394
4395 /*****************************************************************************/
4396
4397 /*
4398 * Interrupt service routine for sc26198 panels.
4399 */
4400
4401 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4402 {
4403 struct stlport *portp;
4404 unsigned int iack;
4405
4406 spin_lock(&brd_lock);
4407
4408 /*
4409 * Work around bug in sc26198 chip... Cannot have A6 address
4410 * line of UART high, else iack will be returned as 0.
4411 */
4412 outb(0, (iobase + 1));
4413
4414 iack = inb(iobase + XP_IACK);
4415 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4416
4417 if (iack & IVR_RXDATA)
4418 stl_sc26198rxisr(portp, iack);
4419 else if (iack & IVR_TXDATA)
4420 stl_sc26198txisr(portp);
4421 else
4422 stl_sc26198otherisr(portp, iack);
4423
4424 spin_unlock(&brd_lock);
4425 }
4426
4427 /*****************************************************************************/
4428
4429 /*
4430 * Transmit interrupt handler. This has gotta be fast! Handling TX
4431 * chars is pretty simple, stuff as many as possible from the TX buffer
4432 * into the sc26198 FIFO.
4433 * In practice it is possible that interrupts are enabled but that the
4434 * port has been hung up. Need to handle not having any TX buffer here,
4435 * this is done by using the side effect that head and tail will also
4436 * be NULL if the buffer has been freed.
4437 */
4438
4439 static void stl_sc26198txisr(struct stlport *portp)
4440 {
4441 unsigned int ioaddr;
4442 unsigned char mr0;
4443 int len, stlen;
4444 char *head, *tail;
4445
4446 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4447
4448 ioaddr = portp->ioaddr;
4449 head = portp->tx.head;
4450 tail = portp->tx.tail;
4451 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4452 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4453 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4454 set_bit(ASYI_TXLOW, &portp->istate);
4455 schedule_work(&portp->tqueue);
4456 }
4457
4458 if (len == 0) {
4459 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4460 mr0 = inb(ioaddr + XP_DATA);
4461 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4462 portp->imr &= ~IR_TXRDY;
4463 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4464 outb(portp->imr, (ioaddr + XP_DATA));
4465 clear_bit(ASYI_TXBUSY, &portp->istate);
4466 } else {
4467 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4468 outb(mr0, (ioaddr + XP_DATA));
4469 }
4470 } else {
4471 len = min(len, SC26198_TXFIFOSIZE);
4472 portp->stats.txtotal += len;
4473 stlen = min(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4474 outb(GTXFIFO, (ioaddr + XP_ADDR));
4475 outsb((ioaddr + XP_DATA), tail, stlen);
4476 len -= stlen;
4477 tail += stlen;
4478 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4479 tail = portp->tx.buf;
4480 if (len > 0) {
4481 outsb((ioaddr + XP_DATA), tail, len);
4482 tail += len;
4483 }
4484 portp->tx.tail = tail;
4485 }
4486 }
4487
4488 /*****************************************************************************/
4489
4490 /*
4491 * Receive character interrupt handler. Determine if we have good chars
4492 * or bad chars and then process appropriately. Good chars are easy
4493 * just shove the lot into the RX buffer and set all status byte to 0.
4494 * If a bad RX char then process as required. This routine needs to be
4495 * fast! In practice it is possible that we get an interrupt on a port
4496 * that is closed. This can happen on hangups - since they completely
4497 * shutdown a port not in user context. Need to handle this case.
4498 */
4499
4500 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4501 {
4502 struct tty_struct *tty;
4503 unsigned int len, buflen, ioaddr;
4504
4505 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4506
4507 tty = portp->tty;
4508 ioaddr = portp->ioaddr;
4509 outb(GIBCR, (ioaddr + XP_ADDR));
4510 len = inb(ioaddr + XP_DATA) + 1;
4511
4512 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4513 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4514 len = min(len, sizeof(stl_unwanted));
4515 outb(GRXFIFO, (ioaddr + XP_ADDR));
4516 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4517 portp->stats.rxlost += len;
4518 portp->stats.rxtotal += len;
4519 } else {
4520 len = min(len, buflen);
4521 if (len > 0) {
4522 unsigned char *ptr;
4523 outb(GRXFIFO, (ioaddr + XP_ADDR));
4524 tty_prepare_flip_string(tty, &ptr, len);
4525 insb((ioaddr + XP_DATA), ptr, len);
4526 tty_schedule_flip(tty);
4527 portp->stats.rxtotal += len;
4528 }
4529 }
4530 } else {
4531 stl_sc26198rxbadchars(portp);
4532 }
4533
4534 /*
4535 * If we are TX flow controlled and in IXANY mode then we may need
4536 * to unflow control here. We gotta do this because of the automatic
4537 * flow control modes of the sc26198.
4538 */
4539 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4540 if ((tty != NULL) &&
4541 (tty->termios != NULL) &&
4542 (tty->termios->c_iflag & IXANY)) {
4543 stl_sc26198txunflow(portp, tty);
4544 }
4545 }
4546 }
4547
4548 /*****************************************************************************/
4549
4550 /*
4551 * Process an RX bad character.
4552 */
4553
4554 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4555 {
4556 struct tty_struct *tty;
4557 unsigned int ioaddr;
4558
4559 tty = portp->tty;
4560 ioaddr = portp->ioaddr;
4561
4562 if (status & SR_RXPARITY)
4563 portp->stats.rxparity++;
4564 if (status & SR_RXFRAMING)
4565 portp->stats.rxframing++;
4566 if (status & SR_RXOVERRUN)
4567 portp->stats.rxoverrun++;
4568 if (status & SR_RXBREAK)
4569 portp->stats.rxbreaks++;
4570
4571 if ((tty != NULL) &&
4572 ((portp->rxignoremsk & status) == 0)) {
4573 if (portp->rxmarkmsk & status) {
4574 if (status & SR_RXBREAK) {
4575 status = TTY_BREAK;
4576 if (portp->flags & ASYNC_SAK) {
4577 do_SAK(tty);
4578 BRDENABLE(portp->brdnr, portp->pagenr);
4579 }
4580 } else if (status & SR_RXPARITY)
4581 status = TTY_PARITY;
4582 else if (status & SR_RXFRAMING)
4583 status = TTY_FRAME;
4584 else if(status & SR_RXOVERRUN)
4585 status = TTY_OVERRUN;
4586 else
4587 status = 0;
4588 } else
4589 status = 0;
4590
4591 tty_insert_flip_char(tty, ch, status);
4592 tty_schedule_flip(tty);
4593
4594 if (status == 0)
4595 portp->stats.rxtotal++;
4596 }
4597 }
4598
4599 /*****************************************************************************/
4600
4601 /*
4602 * Process all characters in the RX FIFO of the UART. Check all char
4603 * status bytes as well, and process as required. We need to check
4604 * all bytes in the FIFO, in case some more enter the FIFO while we
4605 * are here. To get the exact character error type we need to switch
4606 * into CHAR error mode (that is why we need to make sure we empty
4607 * the FIFO).
4608 */
4609
4610 static void stl_sc26198rxbadchars(struct stlport *portp)
4611 {
4612 unsigned char status, mr1;
4613 char ch;
4614
4615 /*
4616 * To get the precise error type for each character we must switch
4617 * back into CHAR error mode.
4618 */
4619 mr1 = stl_sc26198getreg(portp, MR1);
4620 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4621
4622 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4623 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4624 ch = stl_sc26198getreg(portp, RXFIFO);
4625 stl_sc26198rxbadch(portp, status, ch);
4626 }
4627
4628 /*
4629 * To get correct interrupt class we must switch back into BLOCK
4630 * error mode.
4631 */
4632 stl_sc26198setreg(portp, MR1, mr1);
4633 }
4634
4635 /*****************************************************************************/
4636
4637 /*
4638 * Other interrupt handler. This includes modem signals, flow
4639 * control actions, etc. Most stuff is left to off-level interrupt
4640 * processing time.
4641 */
4642
4643 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4644 {
4645 unsigned char cir, ipr, xisr;
4646
4647 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4648
4649 cir = stl_sc26198getglobreg(portp, CIR);
4650
4651 switch (cir & CIR_SUBTYPEMASK) {
4652 case CIR_SUBCOS:
4653 ipr = stl_sc26198getreg(portp, IPR);
4654 if (ipr & IPR_DCDCHANGE) {
4655 set_bit(ASYI_DCDCHANGE, &portp->istate);
4656 schedule_work(&portp->tqueue);
4657 portp->stats.modem++;
4658 }
4659 break;
4660 case CIR_SUBXONXOFF:
4661 xisr = stl_sc26198getreg(portp, XISR);
4662 if (xisr & XISR_RXXONGOT) {
4663 set_bit(ASYI_TXFLOWED, &portp->istate);
4664 portp->stats.txxoff++;
4665 }
4666 if (xisr & XISR_RXXOFFGOT) {
4667 clear_bit(ASYI_TXFLOWED, &portp->istate);
4668 portp->stats.txxon++;
4669 }
4670 break;
4671 case CIR_SUBBREAK:
4672 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4673 stl_sc26198rxbadchars(portp);
4674 break;
4675 default:
4676 break;
4677 }
4678 }
4679
4680 static void stl_free_isabrds(void)
4681 {
4682 struct stlbrd *brdp;
4683 unsigned int i;
4684
4685 for (i = 0; i < stl_nrbrds; i++) {
4686 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4687 continue;
4688
4689 free_irq(brdp->irq, brdp);
4690
4691 stl_cleanup_panels(brdp);
4692
4693 release_region(brdp->ioaddr1, brdp->iosize1);
4694 if (brdp->iosize2 > 0)
4695 release_region(brdp->ioaddr2, brdp->iosize2);
4696
4697 kfree(brdp);
4698 stl_brds[i] = NULL;
4699 }
4700 }
4701
4702 /*
4703 * Loadable module initialization stuff.
4704 */
4705 static int __init stallion_module_init(void)
4706 {
4707 struct stlbrd *brdp;
4708 struct stlconf conf;
4709 unsigned int i, j;
4710 int retval;
4711
4712 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4713
4714 spin_lock_init(&stallion_lock);
4715 spin_lock_init(&brd_lock);
4716
4717 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4718 if (!stl_serial) {
4719 retval = -ENOMEM;
4720 goto err;
4721 }
4722
4723 stl_serial->owner = THIS_MODULE;
4724 stl_serial->driver_name = stl_drvname;
4725 stl_serial->name = "ttyE";
4726 stl_serial->major = STL_SERIALMAJOR;
4727 stl_serial->minor_start = 0;
4728 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4729 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4730 stl_serial->init_termios = stl_deftermios;
4731 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4732 tty_set_operations(stl_serial, &stl_ops);
4733
4734 retval = tty_register_driver(stl_serial);
4735 if (retval) {
4736 printk("STALLION: failed to register serial driver\n");
4737 goto err_frtty;
4738 }
4739
4740 /*
4741 * Find any dynamically supported boards. That is via module load
4742 * line options.
4743 */
4744 for (i = stl_nrbrds; i < stl_nargs; i++) {
4745 memset(&conf, 0, sizeof(conf));
4746 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4747 continue;
4748 if ((brdp = stl_allocbrd()) == NULL)
4749 continue;
4750 brdp->brdnr = i;
4751 brdp->brdtype = conf.brdtype;
4752 brdp->ioaddr1 = conf.ioaddr1;
4753 brdp->ioaddr2 = conf.ioaddr2;
4754 brdp->irq = conf.irq;
4755 brdp->irqtype = conf.irqtype;
4756 stl_brds[brdp->brdnr] = brdp;
4757 if (stl_brdinit(brdp)) {
4758 stl_brds[brdp->brdnr] = NULL;
4759 kfree(brdp);
4760 } else {
4761 for (j = 0; j < brdp->nrports; j++)
4762 tty_register_device(stl_serial,
4763 brdp->brdnr * STL_MAXPORTS + j, NULL);
4764 stl_nrbrds = i + 1;
4765 }
4766 }
4767
4768 /* this has to be _after_ isa finding because of locking */
4769 retval = pci_register_driver(&stl_pcidriver);
4770 if (retval && stl_nrbrds == 0) {
4771 printk(KERN_ERR "STALLION: can't register pci driver\n");
4772 goto err_unrtty;
4773 }
4774
4775 /*
4776 * Set up a character driver for per board stuff. This is mainly used
4777 * to do stats ioctls on the ports.
4778 */
4779 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4780 printk("STALLION: failed to register serial board device\n");
4781
4782 stallion_class = class_create(THIS_MODULE, "staliomem");
4783 if (IS_ERR(stallion_class))
4784 printk("STALLION: failed to create class\n");
4785 for (i = 0; i < 4; i++)
4786 class_device_create(stallion_class, NULL,
4787 MKDEV(STL_SIOMEMMAJOR, i), NULL,
4788 "staliomem%d", i);
4789
4790 return 0;
4791 err_unrtty:
4792 tty_unregister_driver(stl_serial);
4793 err_frtty:
4794 put_tty_driver(stl_serial);
4795 err:
4796 return retval;
4797 }
4798
4799 static void __exit stallion_module_exit(void)
4800 {
4801 struct stlbrd *brdp;
4802 unsigned int i, j;
4803 int retval;
4804
4805 pr_debug("cleanup_module()\n");
4806
4807 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4808 stl_drvversion);
4809
4810 /*
4811 * Free up all allocated resources used by the ports. This includes
4812 * memory and interrupts. As part of this process we will also do
4813 * a hangup on every open port - to try to flush out any processes
4814 * hanging onto ports.
4815 */
4816 for (i = 0; i < stl_nrbrds; i++) {
4817 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4818 continue;
4819 for (j = 0; j < brdp->nrports; j++)
4820 tty_unregister_device(stl_serial,
4821 brdp->brdnr * STL_MAXPORTS + j);
4822 }
4823
4824 for (i = 0; i < 4; i++)
4825 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4826 if ((retval = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
4827 printk("STALLION: failed to un-register serial memory device, "
4828 "errno=%d\n", -retval);
4829 class_destroy(stallion_class);
4830
4831 pci_unregister_driver(&stl_pcidriver);
4832
4833 stl_free_isabrds();
4834
4835 tty_unregister_driver(stl_serial);
4836 put_tty_driver(stl_serial);
4837 }
4838
4839 module_init(stallion_module_init);
4840 module_exit(stallion_module_exit);
4841
4842 MODULE_AUTHOR("Greg Ungerer");
4843 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4844 MODULE_LICENSE("GPL");
This page took 0.149313 seconds and 5 git commands to generate.