fs: cleanup files_lock locking
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 /* Spinlock to protect the tty->tty_files list */
140 DEFINE_SPINLOCK(tty_files_lock);
141
142 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
143 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
144 ssize_t redirected_tty_write(struct file *, const char __user *,
145 size_t, loff_t *);
146 static unsigned int tty_poll(struct file *, poll_table *);
147 static int tty_open(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160
161 /**
162 * alloc_tty_struct - allocate a tty object
163 *
164 * Return a new empty tty structure. The data fields have not
165 * been initialized in any way but has been zeroed
166 *
167 * Locking: none
168 */
169
170 struct tty_struct *alloc_tty_struct(void)
171 {
172 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 }
174
175 /**
176 * free_tty_struct - free a disused tty
177 * @tty: tty struct to free
178 *
179 * Free the write buffers, tty queue and tty memory itself.
180 *
181 * Locking: none. Must be called after tty is definitely unused
182 */
183
184 void free_tty_struct(struct tty_struct *tty)
185 {
186 kfree(tty->write_buf);
187 tty_buffer_free_all(tty);
188 kfree(tty);
189 }
190
191 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
192
193 /**
194 * tty_name - return tty naming
195 * @tty: tty structure
196 * @buf: buffer for output
197 *
198 * Convert a tty structure into a name. The name reflects the kernel
199 * naming policy and if udev is in use may not reflect user space
200 *
201 * Locking: none
202 */
203
204 char *tty_name(struct tty_struct *tty, char *buf)
205 {
206 if (!tty) /* Hmm. NULL pointer. That's fun. */
207 strcpy(buf, "NULL tty");
208 else
209 strcpy(buf, tty->name);
210 return buf;
211 }
212
213 EXPORT_SYMBOL(tty_name);
214
215 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
216 const char *routine)
217 {
218 #ifdef TTY_PARANOIA_CHECK
219 if (!tty) {
220 printk(KERN_WARNING
221 "null TTY for (%d:%d) in %s\n",
222 imajor(inode), iminor(inode), routine);
223 return 1;
224 }
225 if (tty->magic != TTY_MAGIC) {
226 printk(KERN_WARNING
227 "bad magic number for tty struct (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
230 }
231 #endif
232 return 0;
233 }
234
235 static int check_tty_count(struct tty_struct *tty, const char *routine)
236 {
237 #ifdef CHECK_TTY_COUNT
238 struct list_head *p;
239 int count = 0;
240
241 spin_lock(&tty_files_lock);
242 list_for_each(p, &tty->tty_files) {
243 count++;
244 }
245 spin_unlock(&tty_files_lock);
246 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
247 tty->driver->subtype == PTY_TYPE_SLAVE &&
248 tty->link && tty->link->count)
249 count++;
250 if (tty->count != count) {
251 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
252 "!= #fd's(%d) in %s\n",
253 tty->name, tty->count, count, routine);
254 return count;
255 }
256 #endif
257 return 0;
258 }
259
260 /**
261 * get_tty_driver - find device of a tty
262 * @dev_t: device identifier
263 * @index: returns the index of the tty
264 *
265 * This routine returns a tty driver structure, given a device number
266 * and also passes back the index number.
267 *
268 * Locking: caller must hold tty_mutex
269 */
270
271 static struct tty_driver *get_tty_driver(dev_t device, int *index)
272 {
273 struct tty_driver *p;
274
275 list_for_each_entry(p, &tty_drivers, tty_drivers) {
276 dev_t base = MKDEV(p->major, p->minor_start);
277 if (device < base || device >= base + p->num)
278 continue;
279 *index = device - base;
280 return tty_driver_kref_get(p);
281 }
282 return NULL;
283 }
284
285 #ifdef CONFIG_CONSOLE_POLL
286
287 /**
288 * tty_find_polling_driver - find device of a polled tty
289 * @name: name string to match
290 * @line: pointer to resulting tty line nr
291 *
292 * This routine returns a tty driver structure, given a name
293 * and the condition that the tty driver is capable of polled
294 * operation.
295 */
296 struct tty_driver *tty_find_polling_driver(char *name, int *line)
297 {
298 struct tty_driver *p, *res = NULL;
299 int tty_line = 0;
300 int len;
301 char *str, *stp;
302
303 for (str = name; *str; str++)
304 if ((*str >= '0' && *str <= '9') || *str == ',')
305 break;
306 if (!*str)
307 return NULL;
308
309 len = str - name;
310 tty_line = simple_strtoul(str, &str, 10);
311
312 mutex_lock(&tty_mutex);
313 /* Search through the tty devices to look for a match */
314 list_for_each_entry(p, &tty_drivers, tty_drivers) {
315 if (strncmp(name, p->name, len) != 0)
316 continue;
317 stp = str;
318 if (*stp == ',')
319 stp++;
320 if (*stp == '\0')
321 stp = NULL;
322
323 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
324 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
325 res = tty_driver_kref_get(p);
326 *line = tty_line;
327 break;
328 }
329 }
330 mutex_unlock(&tty_mutex);
331
332 return res;
333 }
334 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
335 #endif
336
337 /**
338 * tty_check_change - check for POSIX terminal changes
339 * @tty: tty to check
340 *
341 * If we try to write to, or set the state of, a terminal and we're
342 * not in the foreground, send a SIGTTOU. If the signal is blocked or
343 * ignored, go ahead and perform the operation. (POSIX 7.2)
344 *
345 * Locking: ctrl_lock
346 */
347
348 int tty_check_change(struct tty_struct *tty)
349 {
350 unsigned long flags;
351 int ret = 0;
352
353 if (current->signal->tty != tty)
354 return 0;
355
356 spin_lock_irqsave(&tty->ctrl_lock, flags);
357
358 if (!tty->pgrp) {
359 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
360 goto out_unlock;
361 }
362 if (task_pgrp(current) == tty->pgrp)
363 goto out_unlock;
364 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
365 if (is_ignored(SIGTTOU))
366 goto out;
367 if (is_current_pgrp_orphaned()) {
368 ret = -EIO;
369 goto out;
370 }
371 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
372 set_thread_flag(TIF_SIGPENDING);
373 ret = -ERESTARTSYS;
374 out:
375 return ret;
376 out_unlock:
377 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
378 return ret;
379 }
380
381 EXPORT_SYMBOL(tty_check_change);
382
383 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
384 size_t count, loff_t *ppos)
385 {
386 return 0;
387 }
388
389 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
390 size_t count, loff_t *ppos)
391 {
392 return -EIO;
393 }
394
395 /* No kernel lock held - none needed ;) */
396 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
397 {
398 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
399 }
400
401 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
402 unsigned long arg)
403 {
404 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
405 }
406
407 static long hung_up_tty_compat_ioctl(struct file *file,
408 unsigned int cmd, unsigned long arg)
409 {
410 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
411 }
412
413 static const struct file_operations tty_fops = {
414 .llseek = no_llseek,
415 .read = tty_read,
416 .write = tty_write,
417 .poll = tty_poll,
418 .unlocked_ioctl = tty_ioctl,
419 .compat_ioctl = tty_compat_ioctl,
420 .open = tty_open,
421 .release = tty_release,
422 .fasync = tty_fasync,
423 };
424
425 static const struct file_operations console_fops = {
426 .llseek = no_llseek,
427 .read = tty_read,
428 .write = redirected_tty_write,
429 .poll = tty_poll,
430 .unlocked_ioctl = tty_ioctl,
431 .compat_ioctl = tty_compat_ioctl,
432 .open = tty_open,
433 .release = tty_release,
434 .fasync = tty_fasync,
435 };
436
437 static const struct file_operations hung_up_tty_fops = {
438 .llseek = no_llseek,
439 .read = hung_up_tty_read,
440 .write = hung_up_tty_write,
441 .poll = hung_up_tty_poll,
442 .unlocked_ioctl = hung_up_tty_ioctl,
443 .compat_ioctl = hung_up_tty_compat_ioctl,
444 .release = tty_release,
445 };
446
447 static DEFINE_SPINLOCK(redirect_lock);
448 static struct file *redirect;
449
450 /**
451 * tty_wakeup - request more data
452 * @tty: terminal
453 *
454 * Internal and external helper for wakeups of tty. This function
455 * informs the line discipline if present that the driver is ready
456 * to receive more output data.
457 */
458
459 void tty_wakeup(struct tty_struct *tty)
460 {
461 struct tty_ldisc *ld;
462
463 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
464 ld = tty_ldisc_ref(tty);
465 if (ld) {
466 if (ld->ops->write_wakeup)
467 ld->ops->write_wakeup(tty);
468 tty_ldisc_deref(ld);
469 }
470 }
471 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
472 }
473
474 EXPORT_SYMBOL_GPL(tty_wakeup);
475
476 /**
477 * __tty_hangup - actual handler for hangup events
478 * @work: tty device
479 *
480 * This can be called by the "eventd" kernel thread. That is process
481 * synchronous but doesn't hold any locks, so we need to make sure we
482 * have the appropriate locks for what we're doing.
483 *
484 * The hangup event clears any pending redirections onto the hung up
485 * device. It ensures future writes will error and it does the needed
486 * line discipline hangup and signal delivery. The tty object itself
487 * remains intact.
488 *
489 * Locking:
490 * BTM
491 * redirect lock for undoing redirection
492 * file list lock for manipulating list of ttys
493 * tty_ldisc_lock from called functions
494 * termios_mutex resetting termios data
495 * tasklist_lock to walk task list for hangup event
496 * ->siglock to protect ->signal/->sighand
497 */
498 void __tty_hangup(struct tty_struct *tty)
499 {
500 struct file *cons_filp = NULL;
501 struct file *filp, *f = NULL;
502 struct task_struct *p;
503 int closecount = 0, n;
504 unsigned long flags;
505 int refs = 0;
506
507 if (!tty)
508 return;
509
510
511 spin_lock(&redirect_lock);
512 if (redirect && redirect->private_data == tty) {
513 f = redirect;
514 redirect = NULL;
515 }
516 spin_unlock(&redirect_lock);
517
518 tty_lock();
519
520 /* inuse_filps is protected by the single tty lock,
521 this really needs to change if we want to flush the
522 workqueue with the lock held */
523 check_tty_count(tty, "tty_hangup");
524
525 spin_lock(&tty_files_lock);
526 /* This breaks for file handles being sent over AF_UNIX sockets ? */
527 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
528 if (filp->f_op->write == redirected_tty_write)
529 cons_filp = filp;
530 if (filp->f_op->write != tty_write)
531 continue;
532 closecount++;
533 __tty_fasync(-1, filp, 0); /* can't block */
534 filp->f_op = &hung_up_tty_fops;
535 }
536 spin_unlock(&tty_files_lock);
537
538 tty_ldisc_hangup(tty);
539
540 read_lock(&tasklist_lock);
541 if (tty->session) {
542 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
543 spin_lock_irq(&p->sighand->siglock);
544 if (p->signal->tty == tty) {
545 p->signal->tty = NULL;
546 /* We defer the dereferences outside fo
547 the tasklist lock */
548 refs++;
549 }
550 if (!p->signal->leader) {
551 spin_unlock_irq(&p->sighand->siglock);
552 continue;
553 }
554 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
555 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
556 put_pid(p->signal->tty_old_pgrp); /* A noop */
557 spin_lock_irqsave(&tty->ctrl_lock, flags);
558 if (tty->pgrp)
559 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
561 spin_unlock_irq(&p->sighand->siglock);
562 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
563 }
564 read_unlock(&tasklist_lock);
565
566 spin_lock_irqsave(&tty->ctrl_lock, flags);
567 clear_bit(TTY_THROTTLED, &tty->flags);
568 clear_bit(TTY_PUSH, &tty->flags);
569 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
570 put_pid(tty->session);
571 put_pid(tty->pgrp);
572 tty->session = NULL;
573 tty->pgrp = NULL;
574 tty->ctrl_status = 0;
575 set_bit(TTY_HUPPED, &tty->flags);
576 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
577
578 /* Account for the p->signal references we killed */
579 while (refs--)
580 tty_kref_put(tty);
581
582 /*
583 * If one of the devices matches a console pointer, we
584 * cannot just call hangup() because that will cause
585 * tty->count and state->count to go out of sync.
586 * So we just call close() the right number of times.
587 */
588 if (cons_filp) {
589 if (tty->ops->close)
590 for (n = 0; n < closecount; n++)
591 tty->ops->close(tty, cons_filp);
592 } else if (tty->ops->hangup)
593 (tty->ops->hangup)(tty);
594 /*
595 * We don't want to have driver/ldisc interactions beyond
596 * the ones we did here. The driver layer expects no
597 * calls after ->hangup() from the ldisc side. However we
598 * can't yet guarantee all that.
599 */
600 set_bit(TTY_HUPPED, &tty->flags);
601 tty_ldisc_enable(tty);
602
603 tty_unlock();
604
605 if (f)
606 fput(f);
607 }
608
609 static void do_tty_hangup(struct work_struct *work)
610 {
611 struct tty_struct *tty =
612 container_of(work, struct tty_struct, hangup_work);
613
614 __tty_hangup(tty);
615 }
616
617 /**
618 * tty_hangup - trigger a hangup event
619 * @tty: tty to hangup
620 *
621 * A carrier loss (virtual or otherwise) has occurred on this like
622 * schedule a hangup sequence to run after this event.
623 */
624
625 void tty_hangup(struct tty_struct *tty)
626 {
627 #ifdef TTY_DEBUG_HANGUP
628 char buf[64];
629 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
630 #endif
631 schedule_work(&tty->hangup_work);
632 }
633
634 EXPORT_SYMBOL(tty_hangup);
635
636 /**
637 * tty_vhangup - process vhangup
638 * @tty: tty to hangup
639 *
640 * The user has asked via system call for the terminal to be hung up.
641 * We do this synchronously so that when the syscall returns the process
642 * is complete. That guarantee is necessary for security reasons.
643 */
644
645 void tty_vhangup(struct tty_struct *tty)
646 {
647 #ifdef TTY_DEBUG_HANGUP
648 char buf[64];
649
650 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
651 #endif
652 __tty_hangup(tty);
653 }
654
655 EXPORT_SYMBOL(tty_vhangup);
656
657
658 /**
659 * tty_vhangup_self - process vhangup for own ctty
660 *
661 * Perform a vhangup on the current controlling tty
662 */
663
664 void tty_vhangup_self(void)
665 {
666 struct tty_struct *tty;
667
668 tty = get_current_tty();
669 if (tty) {
670 tty_vhangup(tty);
671 tty_kref_put(tty);
672 }
673 }
674
675 /**
676 * tty_hung_up_p - was tty hung up
677 * @filp: file pointer of tty
678 *
679 * Return true if the tty has been subject to a vhangup or a carrier
680 * loss
681 */
682
683 int tty_hung_up_p(struct file *filp)
684 {
685 return (filp->f_op == &hung_up_tty_fops);
686 }
687
688 EXPORT_SYMBOL(tty_hung_up_p);
689
690 static void session_clear_tty(struct pid *session)
691 {
692 struct task_struct *p;
693 do_each_pid_task(session, PIDTYPE_SID, p) {
694 proc_clear_tty(p);
695 } while_each_pid_task(session, PIDTYPE_SID, p);
696 }
697
698 /**
699 * disassociate_ctty - disconnect controlling tty
700 * @on_exit: true if exiting so need to "hang up" the session
701 *
702 * This function is typically called only by the session leader, when
703 * it wants to disassociate itself from its controlling tty.
704 *
705 * It performs the following functions:
706 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
707 * (2) Clears the tty from being controlling the session
708 * (3) Clears the controlling tty for all processes in the
709 * session group.
710 *
711 * The argument on_exit is set to 1 if called when a process is
712 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
713 *
714 * Locking:
715 * BTM is taken for hysterical raisins, and held when
716 * called from no_tty().
717 * tty_mutex is taken to protect tty
718 * ->siglock is taken to protect ->signal/->sighand
719 * tasklist_lock is taken to walk process list for sessions
720 * ->siglock is taken to protect ->signal/->sighand
721 */
722
723 void disassociate_ctty(int on_exit)
724 {
725 struct tty_struct *tty;
726 struct pid *tty_pgrp = NULL;
727
728 if (!current->signal->leader)
729 return;
730
731 tty = get_current_tty();
732 if (tty) {
733 tty_pgrp = get_pid(tty->pgrp);
734 if (on_exit) {
735 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
736 tty_vhangup(tty);
737 }
738 tty_kref_put(tty);
739 } else if (on_exit) {
740 struct pid *old_pgrp;
741 spin_lock_irq(&current->sighand->siglock);
742 old_pgrp = current->signal->tty_old_pgrp;
743 current->signal->tty_old_pgrp = NULL;
744 spin_unlock_irq(&current->sighand->siglock);
745 if (old_pgrp) {
746 kill_pgrp(old_pgrp, SIGHUP, on_exit);
747 kill_pgrp(old_pgrp, SIGCONT, on_exit);
748 put_pid(old_pgrp);
749 }
750 return;
751 }
752 if (tty_pgrp) {
753 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
754 if (!on_exit)
755 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
756 put_pid(tty_pgrp);
757 }
758
759 spin_lock_irq(&current->sighand->siglock);
760 put_pid(current->signal->tty_old_pgrp);
761 current->signal->tty_old_pgrp = NULL;
762 spin_unlock_irq(&current->sighand->siglock);
763
764 tty = get_current_tty();
765 if (tty) {
766 unsigned long flags;
767 spin_lock_irqsave(&tty->ctrl_lock, flags);
768 put_pid(tty->session);
769 put_pid(tty->pgrp);
770 tty->session = NULL;
771 tty->pgrp = NULL;
772 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
773 tty_kref_put(tty);
774 } else {
775 #ifdef TTY_DEBUG_HANGUP
776 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
777 " = NULL", tty);
778 #endif
779 }
780
781 /* Now clear signal->tty under the lock */
782 read_lock(&tasklist_lock);
783 session_clear_tty(task_session(current));
784 read_unlock(&tasklist_lock);
785 }
786
787 /**
788 *
789 * no_tty - Ensure the current process does not have a controlling tty
790 */
791 void no_tty(void)
792 {
793 struct task_struct *tsk = current;
794 tty_lock();
795 disassociate_ctty(0);
796 tty_unlock();
797 proc_clear_tty(tsk);
798 }
799
800
801 /**
802 * stop_tty - propagate flow control
803 * @tty: tty to stop
804 *
805 * Perform flow control to the driver. For PTY/TTY pairs we
806 * must also propagate the TIOCKPKT status. May be called
807 * on an already stopped device and will not re-call the driver
808 * method.
809 *
810 * This functionality is used by both the line disciplines for
811 * halting incoming flow and by the driver. It may therefore be
812 * called from any context, may be under the tty atomic_write_lock
813 * but not always.
814 *
815 * Locking:
816 * Uses the tty control lock internally
817 */
818
819 void stop_tty(struct tty_struct *tty)
820 {
821 unsigned long flags;
822 spin_lock_irqsave(&tty->ctrl_lock, flags);
823 if (tty->stopped) {
824 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
825 return;
826 }
827 tty->stopped = 1;
828 if (tty->link && tty->link->packet) {
829 tty->ctrl_status &= ~TIOCPKT_START;
830 tty->ctrl_status |= TIOCPKT_STOP;
831 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
832 }
833 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
834 if (tty->ops->stop)
835 (tty->ops->stop)(tty);
836 }
837
838 EXPORT_SYMBOL(stop_tty);
839
840 /**
841 * start_tty - propagate flow control
842 * @tty: tty to start
843 *
844 * Start a tty that has been stopped if at all possible. Perform
845 * any necessary wakeups and propagate the TIOCPKT status. If this
846 * is the tty was previous stopped and is being started then the
847 * driver start method is invoked and the line discipline woken.
848 *
849 * Locking:
850 * ctrl_lock
851 */
852
853 void start_tty(struct tty_struct *tty)
854 {
855 unsigned long flags;
856 spin_lock_irqsave(&tty->ctrl_lock, flags);
857 if (!tty->stopped || tty->flow_stopped) {
858 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
859 return;
860 }
861 tty->stopped = 0;
862 if (tty->link && tty->link->packet) {
863 tty->ctrl_status &= ~TIOCPKT_STOP;
864 tty->ctrl_status |= TIOCPKT_START;
865 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
866 }
867 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
868 if (tty->ops->start)
869 (tty->ops->start)(tty);
870 /* If we have a running line discipline it may need kicking */
871 tty_wakeup(tty);
872 }
873
874 EXPORT_SYMBOL(start_tty);
875
876 /**
877 * tty_read - read method for tty device files
878 * @file: pointer to tty file
879 * @buf: user buffer
880 * @count: size of user buffer
881 * @ppos: unused
882 *
883 * Perform the read system call function on this terminal device. Checks
884 * for hung up devices before calling the line discipline method.
885 *
886 * Locking:
887 * Locks the line discipline internally while needed. Multiple
888 * read calls may be outstanding in parallel.
889 */
890
891 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
892 loff_t *ppos)
893 {
894 int i;
895 struct tty_struct *tty;
896 struct inode *inode;
897 struct tty_ldisc *ld;
898
899 tty = file->private_data;
900 inode = file->f_path.dentry->d_inode;
901 if (tty_paranoia_check(tty, inode, "tty_read"))
902 return -EIO;
903 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
904 return -EIO;
905
906 /* We want to wait for the line discipline to sort out in this
907 situation */
908 ld = tty_ldisc_ref_wait(tty);
909 if (ld->ops->read)
910 i = (ld->ops->read)(tty, file, buf, count);
911 else
912 i = -EIO;
913 tty_ldisc_deref(ld);
914 if (i > 0)
915 inode->i_atime = current_fs_time(inode->i_sb);
916 return i;
917 }
918
919 void tty_write_unlock(struct tty_struct *tty)
920 {
921 mutex_unlock(&tty->atomic_write_lock);
922 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
923 }
924
925 int tty_write_lock(struct tty_struct *tty, int ndelay)
926 {
927 if (!mutex_trylock(&tty->atomic_write_lock)) {
928 if (ndelay)
929 return -EAGAIN;
930 if (mutex_lock_interruptible(&tty->atomic_write_lock))
931 return -ERESTARTSYS;
932 }
933 return 0;
934 }
935
936 /*
937 * Split writes up in sane blocksizes to avoid
938 * denial-of-service type attacks
939 */
940 static inline ssize_t do_tty_write(
941 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
942 struct tty_struct *tty,
943 struct file *file,
944 const char __user *buf,
945 size_t count)
946 {
947 ssize_t ret, written = 0;
948 unsigned int chunk;
949
950 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
951 if (ret < 0)
952 return ret;
953
954 /*
955 * We chunk up writes into a temporary buffer. This
956 * simplifies low-level drivers immensely, since they
957 * don't have locking issues and user mode accesses.
958 *
959 * But if TTY_NO_WRITE_SPLIT is set, we should use a
960 * big chunk-size..
961 *
962 * The default chunk-size is 2kB, because the NTTY
963 * layer has problems with bigger chunks. It will
964 * claim to be able to handle more characters than
965 * it actually does.
966 *
967 * FIXME: This can probably go away now except that 64K chunks
968 * are too likely to fail unless switched to vmalloc...
969 */
970 chunk = 2048;
971 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
972 chunk = 65536;
973 if (count < chunk)
974 chunk = count;
975
976 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
977 if (tty->write_cnt < chunk) {
978 unsigned char *buf_chunk;
979
980 if (chunk < 1024)
981 chunk = 1024;
982
983 buf_chunk = kmalloc(chunk, GFP_KERNEL);
984 if (!buf_chunk) {
985 ret = -ENOMEM;
986 goto out;
987 }
988 kfree(tty->write_buf);
989 tty->write_cnt = chunk;
990 tty->write_buf = buf_chunk;
991 }
992
993 /* Do the write .. */
994 for (;;) {
995 size_t size = count;
996 if (size > chunk)
997 size = chunk;
998 ret = -EFAULT;
999 if (copy_from_user(tty->write_buf, buf, size))
1000 break;
1001 ret = write(tty, file, tty->write_buf, size);
1002 if (ret <= 0)
1003 break;
1004 written += ret;
1005 buf += ret;
1006 count -= ret;
1007 if (!count)
1008 break;
1009 ret = -ERESTARTSYS;
1010 if (signal_pending(current))
1011 break;
1012 cond_resched();
1013 }
1014 if (written) {
1015 struct inode *inode = file->f_path.dentry->d_inode;
1016 inode->i_mtime = current_fs_time(inode->i_sb);
1017 ret = written;
1018 }
1019 out:
1020 tty_write_unlock(tty);
1021 return ret;
1022 }
1023
1024 /**
1025 * tty_write_message - write a message to a certain tty, not just the console.
1026 * @tty: the destination tty_struct
1027 * @msg: the message to write
1028 *
1029 * This is used for messages that need to be redirected to a specific tty.
1030 * We don't put it into the syslog queue right now maybe in the future if
1031 * really needed.
1032 *
1033 * We must still hold the BTM and test the CLOSING flag for the moment.
1034 */
1035
1036 void tty_write_message(struct tty_struct *tty, char *msg)
1037 {
1038 if (tty) {
1039 mutex_lock(&tty->atomic_write_lock);
1040 tty_lock();
1041 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1042 tty_unlock();
1043 tty->ops->write(tty, msg, strlen(msg));
1044 } else
1045 tty_unlock();
1046 tty_write_unlock(tty);
1047 }
1048 return;
1049 }
1050
1051
1052 /**
1053 * tty_write - write method for tty device file
1054 * @file: tty file pointer
1055 * @buf: user data to write
1056 * @count: bytes to write
1057 * @ppos: unused
1058 *
1059 * Write data to a tty device via the line discipline.
1060 *
1061 * Locking:
1062 * Locks the line discipline as required
1063 * Writes to the tty driver are serialized by the atomic_write_lock
1064 * and are then processed in chunks to the device. The line discipline
1065 * write method will not be invoked in parallel for each device.
1066 */
1067
1068 static ssize_t tty_write(struct file *file, const char __user *buf,
1069 size_t count, loff_t *ppos)
1070 {
1071 struct tty_struct *tty;
1072 struct inode *inode = file->f_path.dentry->d_inode;
1073 ssize_t ret;
1074 struct tty_ldisc *ld;
1075
1076 tty = file->private_data;
1077 if (tty_paranoia_check(tty, inode, "tty_write"))
1078 return -EIO;
1079 if (!tty || !tty->ops->write ||
1080 (test_bit(TTY_IO_ERROR, &tty->flags)))
1081 return -EIO;
1082 /* Short term debug to catch buggy drivers */
1083 if (tty->ops->write_room == NULL)
1084 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1085 tty->driver->name);
1086 ld = tty_ldisc_ref_wait(tty);
1087 if (!ld->ops->write)
1088 ret = -EIO;
1089 else
1090 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1091 tty_ldisc_deref(ld);
1092 return ret;
1093 }
1094
1095 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1096 size_t count, loff_t *ppos)
1097 {
1098 struct file *p = NULL;
1099
1100 spin_lock(&redirect_lock);
1101 if (redirect) {
1102 get_file(redirect);
1103 p = redirect;
1104 }
1105 spin_unlock(&redirect_lock);
1106
1107 if (p) {
1108 ssize_t res;
1109 res = vfs_write(p, buf, count, &p->f_pos);
1110 fput(p);
1111 return res;
1112 }
1113 return tty_write(file, buf, count, ppos);
1114 }
1115
1116 static char ptychar[] = "pqrstuvwxyzabcde";
1117
1118 /**
1119 * pty_line_name - generate name for a pty
1120 * @driver: the tty driver in use
1121 * @index: the minor number
1122 * @p: output buffer of at least 6 bytes
1123 *
1124 * Generate a name from a driver reference and write it to the output
1125 * buffer.
1126 *
1127 * Locking: None
1128 */
1129 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1130 {
1131 int i = index + driver->name_base;
1132 /* ->name is initialized to "ttyp", but "tty" is expected */
1133 sprintf(p, "%s%c%x",
1134 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1135 ptychar[i >> 4 & 0xf], i & 0xf);
1136 }
1137
1138 /**
1139 * tty_line_name - generate name for a tty
1140 * @driver: the tty driver in use
1141 * @index: the minor number
1142 * @p: output buffer of at least 7 bytes
1143 *
1144 * Generate a name from a driver reference and write it to the output
1145 * buffer.
1146 *
1147 * Locking: None
1148 */
1149 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1150 {
1151 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1152 }
1153
1154 /**
1155 * tty_driver_lookup_tty() - find an existing tty, if any
1156 * @driver: the driver for the tty
1157 * @idx: the minor number
1158 *
1159 * Return the tty, if found or ERR_PTR() otherwise.
1160 *
1161 * Locking: tty_mutex must be held. If tty is found, the mutex must
1162 * be held until the 'fast-open' is also done. Will change once we
1163 * have refcounting in the driver and per driver locking
1164 */
1165 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1166 struct inode *inode, int idx)
1167 {
1168 struct tty_struct *tty;
1169
1170 if (driver->ops->lookup)
1171 return driver->ops->lookup(driver, inode, idx);
1172
1173 tty = driver->ttys[idx];
1174 return tty;
1175 }
1176
1177 /**
1178 * tty_init_termios - helper for termios setup
1179 * @tty: the tty to set up
1180 *
1181 * Initialise the termios structures for this tty. Thus runs under
1182 * the tty_mutex currently so we can be relaxed about ordering.
1183 */
1184
1185 int tty_init_termios(struct tty_struct *tty)
1186 {
1187 struct ktermios *tp;
1188 int idx = tty->index;
1189
1190 tp = tty->driver->termios[idx];
1191 if (tp == NULL) {
1192 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1193 if (tp == NULL)
1194 return -ENOMEM;
1195 memcpy(tp, &tty->driver->init_termios,
1196 sizeof(struct ktermios));
1197 tty->driver->termios[idx] = tp;
1198 }
1199 tty->termios = tp;
1200 tty->termios_locked = tp + 1;
1201
1202 /* Compatibility until drivers always set this */
1203 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1204 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1205 return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(tty_init_termios);
1208
1209 /**
1210 * tty_driver_install_tty() - install a tty entry in the driver
1211 * @driver: the driver for the tty
1212 * @tty: the tty
1213 *
1214 * Install a tty object into the driver tables. The tty->index field
1215 * will be set by the time this is called. This method is responsible
1216 * for ensuring any need additional structures are allocated and
1217 * configured.
1218 *
1219 * Locking: tty_mutex for now
1220 */
1221 static int tty_driver_install_tty(struct tty_driver *driver,
1222 struct tty_struct *tty)
1223 {
1224 int idx = tty->index;
1225 int ret;
1226
1227 if (driver->ops->install) {
1228 ret = driver->ops->install(driver, tty);
1229 return ret;
1230 }
1231
1232 if (tty_init_termios(tty) == 0) {
1233 tty_driver_kref_get(driver);
1234 tty->count++;
1235 driver->ttys[idx] = tty;
1236 return 0;
1237 }
1238 return -ENOMEM;
1239 }
1240
1241 /**
1242 * tty_driver_remove_tty() - remove a tty from the driver tables
1243 * @driver: the driver for the tty
1244 * @idx: the minor number
1245 *
1246 * Remvoe a tty object from the driver tables. The tty->index field
1247 * will be set by the time this is called.
1248 *
1249 * Locking: tty_mutex for now
1250 */
1251 static void tty_driver_remove_tty(struct tty_driver *driver,
1252 struct tty_struct *tty)
1253 {
1254 if (driver->ops->remove)
1255 driver->ops->remove(driver, tty);
1256 else
1257 driver->ttys[tty->index] = NULL;
1258 }
1259
1260 /*
1261 * tty_reopen() - fast re-open of an open tty
1262 * @tty - the tty to open
1263 *
1264 * Return 0 on success, -errno on error.
1265 *
1266 * Locking: tty_mutex must be held from the time the tty was found
1267 * till this open completes.
1268 */
1269 static int tty_reopen(struct tty_struct *tty)
1270 {
1271 struct tty_driver *driver = tty->driver;
1272
1273 if (test_bit(TTY_CLOSING, &tty->flags))
1274 return -EIO;
1275
1276 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1277 driver->subtype == PTY_TYPE_MASTER) {
1278 /*
1279 * special case for PTY masters: only one open permitted,
1280 * and the slave side open count is incremented as well.
1281 */
1282 if (tty->count)
1283 return -EIO;
1284
1285 tty->link->count++;
1286 }
1287 tty->count++;
1288 tty->driver = driver; /* N.B. why do this every time?? */
1289
1290 mutex_lock(&tty->ldisc_mutex);
1291 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1292 mutex_unlock(&tty->ldisc_mutex);
1293
1294 return 0;
1295 }
1296
1297 /**
1298 * tty_init_dev - initialise a tty device
1299 * @driver: tty driver we are opening a device on
1300 * @idx: device index
1301 * @ret_tty: returned tty structure
1302 * @first_ok: ok to open a new device (used by ptmx)
1303 *
1304 * Prepare a tty device. This may not be a "new" clean device but
1305 * could also be an active device. The pty drivers require special
1306 * handling because of this.
1307 *
1308 * Locking:
1309 * The function is called under the tty_mutex, which
1310 * protects us from the tty struct or driver itself going away.
1311 *
1312 * On exit the tty device has the line discipline attached and
1313 * a reference count of 1. If a pair was created for pty/tty use
1314 * and the other was a pty master then it too has a reference count of 1.
1315 *
1316 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1317 * failed open. The new code protects the open with a mutex, so it's
1318 * really quite straightforward. The mutex locking can probably be
1319 * relaxed for the (most common) case of reopening a tty.
1320 */
1321
1322 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1323 int first_ok)
1324 {
1325 struct tty_struct *tty;
1326 int retval;
1327
1328 /* Check if pty master is being opened multiple times */
1329 if (driver->subtype == PTY_TYPE_MASTER &&
1330 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1331 return ERR_PTR(-EIO);
1332 }
1333
1334 /*
1335 * First time open is complex, especially for PTY devices.
1336 * This code guarantees that either everything succeeds and the
1337 * TTY is ready for operation, or else the table slots are vacated
1338 * and the allocated memory released. (Except that the termios
1339 * and locked termios may be retained.)
1340 */
1341
1342 if (!try_module_get(driver->owner))
1343 return ERR_PTR(-ENODEV);
1344
1345 tty = alloc_tty_struct();
1346 if (!tty)
1347 goto fail_no_mem;
1348 initialize_tty_struct(tty, driver, idx);
1349
1350 retval = tty_driver_install_tty(driver, tty);
1351 if (retval < 0) {
1352 free_tty_struct(tty);
1353 module_put(driver->owner);
1354 return ERR_PTR(retval);
1355 }
1356
1357 /*
1358 * Structures all installed ... call the ldisc open routines.
1359 * If we fail here just call release_tty to clean up. No need
1360 * to decrement the use counts, as release_tty doesn't care.
1361 */
1362 retval = tty_ldisc_setup(tty, tty->link);
1363 if (retval)
1364 goto release_mem_out;
1365 return tty;
1366
1367 fail_no_mem:
1368 module_put(driver->owner);
1369 return ERR_PTR(-ENOMEM);
1370
1371 /* call the tty release_tty routine to clean out this slot */
1372 release_mem_out:
1373 if (printk_ratelimit())
1374 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1375 "clearing slot %d\n", idx);
1376 release_tty(tty, idx);
1377 return ERR_PTR(retval);
1378 }
1379
1380 void tty_free_termios(struct tty_struct *tty)
1381 {
1382 struct ktermios *tp;
1383 int idx = tty->index;
1384 /* Kill this flag and push into drivers for locking etc */
1385 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1386 /* FIXME: Locking on ->termios array */
1387 tp = tty->termios;
1388 tty->driver->termios[idx] = NULL;
1389 kfree(tp);
1390 }
1391 }
1392 EXPORT_SYMBOL(tty_free_termios);
1393
1394 void tty_shutdown(struct tty_struct *tty)
1395 {
1396 tty_driver_remove_tty(tty->driver, tty);
1397 tty_free_termios(tty);
1398 }
1399 EXPORT_SYMBOL(tty_shutdown);
1400
1401 /**
1402 * release_one_tty - release tty structure memory
1403 * @kref: kref of tty we are obliterating
1404 *
1405 * Releases memory associated with a tty structure, and clears out the
1406 * driver table slots. This function is called when a device is no longer
1407 * in use. It also gets called when setup of a device fails.
1408 *
1409 * Locking:
1410 * tty_mutex - sometimes only
1411 * takes the file list lock internally when working on the list
1412 * of ttys that the driver keeps.
1413 *
1414 * This method gets called from a work queue so that the driver private
1415 * cleanup ops can sleep (needed for USB at least)
1416 */
1417 static void release_one_tty(struct work_struct *work)
1418 {
1419 struct tty_struct *tty =
1420 container_of(work, struct tty_struct, hangup_work);
1421 struct tty_driver *driver = tty->driver;
1422
1423 if (tty->ops->cleanup)
1424 tty->ops->cleanup(tty);
1425
1426 tty->magic = 0;
1427 tty_driver_kref_put(driver);
1428 module_put(driver->owner);
1429
1430 spin_lock(&tty_files_lock);
1431 list_del_init(&tty->tty_files);
1432 spin_unlock(&tty_files_lock);
1433
1434 put_pid(tty->pgrp);
1435 put_pid(tty->session);
1436 free_tty_struct(tty);
1437 }
1438
1439 static void queue_release_one_tty(struct kref *kref)
1440 {
1441 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1442
1443 if (tty->ops->shutdown)
1444 tty->ops->shutdown(tty);
1445 else
1446 tty_shutdown(tty);
1447
1448 /* The hangup queue is now free so we can reuse it rather than
1449 waste a chunk of memory for each port */
1450 INIT_WORK(&tty->hangup_work, release_one_tty);
1451 schedule_work(&tty->hangup_work);
1452 }
1453
1454 /**
1455 * tty_kref_put - release a tty kref
1456 * @tty: tty device
1457 *
1458 * Release a reference to a tty device and if need be let the kref
1459 * layer destruct the object for us
1460 */
1461
1462 void tty_kref_put(struct tty_struct *tty)
1463 {
1464 if (tty)
1465 kref_put(&tty->kref, queue_release_one_tty);
1466 }
1467 EXPORT_SYMBOL(tty_kref_put);
1468
1469 /**
1470 * release_tty - release tty structure memory
1471 *
1472 * Release both @tty and a possible linked partner (think pty pair),
1473 * and decrement the refcount of the backing module.
1474 *
1475 * Locking:
1476 * tty_mutex - sometimes only
1477 * takes the file list lock internally when working on the list
1478 * of ttys that the driver keeps.
1479 * FIXME: should we require tty_mutex is held here ??
1480 *
1481 */
1482 static void release_tty(struct tty_struct *tty, int idx)
1483 {
1484 /* This should always be true but check for the moment */
1485 WARN_ON(tty->index != idx);
1486
1487 if (tty->link)
1488 tty_kref_put(tty->link);
1489 tty_kref_put(tty);
1490 }
1491
1492 /**
1493 * tty_release - vfs callback for close
1494 * @inode: inode of tty
1495 * @filp: file pointer for handle to tty
1496 *
1497 * Called the last time each file handle is closed that references
1498 * this tty. There may however be several such references.
1499 *
1500 * Locking:
1501 * Takes bkl. See tty_release_dev
1502 *
1503 * Even releasing the tty structures is a tricky business.. We have
1504 * to be very careful that the structures are all released at the
1505 * same time, as interrupts might otherwise get the wrong pointers.
1506 *
1507 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1508 * lead to double frees or releasing memory still in use.
1509 */
1510
1511 int tty_release(struct inode *inode, struct file *filp)
1512 {
1513 struct tty_struct *tty, *o_tty;
1514 int pty_master, tty_closing, o_tty_closing, do_sleep;
1515 int devpts;
1516 int idx;
1517 char buf[64];
1518
1519 tty = filp->private_data;
1520 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1521 return 0;
1522
1523 tty_lock();
1524 check_tty_count(tty, "tty_release_dev");
1525
1526 __tty_fasync(-1, filp, 0);
1527
1528 idx = tty->index;
1529 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1530 tty->driver->subtype == PTY_TYPE_MASTER);
1531 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1532 o_tty = tty->link;
1533
1534 #ifdef TTY_PARANOIA_CHECK
1535 if (idx < 0 || idx >= tty->driver->num) {
1536 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1537 "free (%s)\n", tty->name);
1538 tty_unlock();
1539 return 0;
1540 }
1541 if (!devpts) {
1542 if (tty != tty->driver->ttys[idx]) {
1543 tty_unlock();
1544 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1545 "for (%s)\n", idx, tty->name);
1546 return 0;
1547 }
1548 if (tty->termios != tty->driver->termios[idx]) {
1549 tty_unlock();
1550 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1551 "for (%s)\n",
1552 idx, tty->name);
1553 return 0;
1554 }
1555 }
1556 #endif
1557
1558 #ifdef TTY_DEBUG_HANGUP
1559 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1560 tty_name(tty, buf), tty->count);
1561 #endif
1562
1563 #ifdef TTY_PARANOIA_CHECK
1564 if (tty->driver->other &&
1565 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1566 if (o_tty != tty->driver->other->ttys[idx]) {
1567 tty_unlock();
1568 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1569 "not o_tty for (%s)\n",
1570 idx, tty->name);
1571 return 0 ;
1572 }
1573 if (o_tty->termios != tty->driver->other->termios[idx]) {
1574 tty_unlock();
1575 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1576 "not o_termios for (%s)\n",
1577 idx, tty->name);
1578 return 0;
1579 }
1580 if (o_tty->link != tty) {
1581 tty_unlock();
1582 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1583 return 0;
1584 }
1585 }
1586 #endif
1587 if (tty->ops->close)
1588 tty->ops->close(tty, filp);
1589
1590 tty_unlock();
1591 /*
1592 * Sanity check: if tty->count is going to zero, there shouldn't be
1593 * any waiters on tty->read_wait or tty->write_wait. We test the
1594 * wait queues and kick everyone out _before_ actually starting to
1595 * close. This ensures that we won't block while releasing the tty
1596 * structure.
1597 *
1598 * The test for the o_tty closing is necessary, since the master and
1599 * slave sides may close in any order. If the slave side closes out
1600 * first, its count will be one, since the master side holds an open.
1601 * Thus this test wouldn't be triggered at the time the slave closes,
1602 * so we do it now.
1603 *
1604 * Note that it's possible for the tty to be opened again while we're
1605 * flushing out waiters. By recalculating the closing flags before
1606 * each iteration we avoid any problems.
1607 */
1608 while (1) {
1609 /* Guard against races with tty->count changes elsewhere and
1610 opens on /dev/tty */
1611
1612 mutex_lock(&tty_mutex);
1613 tty_lock();
1614 tty_closing = tty->count <= 1;
1615 o_tty_closing = o_tty &&
1616 (o_tty->count <= (pty_master ? 1 : 0));
1617 do_sleep = 0;
1618
1619 if (tty_closing) {
1620 if (waitqueue_active(&tty->read_wait)) {
1621 wake_up_poll(&tty->read_wait, POLLIN);
1622 do_sleep++;
1623 }
1624 if (waitqueue_active(&tty->write_wait)) {
1625 wake_up_poll(&tty->write_wait, POLLOUT);
1626 do_sleep++;
1627 }
1628 }
1629 if (o_tty_closing) {
1630 if (waitqueue_active(&o_tty->read_wait)) {
1631 wake_up_poll(&o_tty->read_wait, POLLIN);
1632 do_sleep++;
1633 }
1634 if (waitqueue_active(&o_tty->write_wait)) {
1635 wake_up_poll(&o_tty->write_wait, POLLOUT);
1636 do_sleep++;
1637 }
1638 }
1639 if (!do_sleep)
1640 break;
1641
1642 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1643 "active!\n", tty_name(tty, buf));
1644 tty_unlock();
1645 mutex_unlock(&tty_mutex);
1646 schedule();
1647 }
1648
1649 /*
1650 * The closing flags are now consistent with the open counts on
1651 * both sides, and we've completed the last operation that could
1652 * block, so it's safe to proceed with closing.
1653 */
1654 if (pty_master) {
1655 if (--o_tty->count < 0) {
1656 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1657 "(%d) for %s\n",
1658 o_tty->count, tty_name(o_tty, buf));
1659 o_tty->count = 0;
1660 }
1661 }
1662 if (--tty->count < 0) {
1663 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1664 tty->count, tty_name(tty, buf));
1665 tty->count = 0;
1666 }
1667
1668 /*
1669 * We've decremented tty->count, so we need to remove this file
1670 * descriptor off the tty->tty_files list; this serves two
1671 * purposes:
1672 * - check_tty_count sees the correct number of file descriptors
1673 * associated with this tty.
1674 * - do_tty_hangup no longer sees this file descriptor as
1675 * something that needs to be handled for hangups.
1676 */
1677 spin_lock(&tty_files_lock);
1678 BUG_ON(list_empty(&filp->f_u.fu_list));
1679 list_del_init(&filp->f_u.fu_list);
1680 spin_unlock(&tty_files_lock);
1681 filp->private_data = NULL;
1682
1683 /*
1684 * Perform some housekeeping before deciding whether to return.
1685 *
1686 * Set the TTY_CLOSING flag if this was the last open. In the
1687 * case of a pty we may have to wait around for the other side
1688 * to close, and TTY_CLOSING makes sure we can't be reopened.
1689 */
1690 if (tty_closing)
1691 set_bit(TTY_CLOSING, &tty->flags);
1692 if (o_tty_closing)
1693 set_bit(TTY_CLOSING, &o_tty->flags);
1694
1695 /*
1696 * If _either_ side is closing, make sure there aren't any
1697 * processes that still think tty or o_tty is their controlling
1698 * tty.
1699 */
1700 if (tty_closing || o_tty_closing) {
1701 read_lock(&tasklist_lock);
1702 session_clear_tty(tty->session);
1703 if (o_tty)
1704 session_clear_tty(o_tty->session);
1705 read_unlock(&tasklist_lock);
1706 }
1707
1708 mutex_unlock(&tty_mutex);
1709
1710 /* check whether both sides are closing ... */
1711 if (!tty_closing || (o_tty && !o_tty_closing)) {
1712 tty_unlock();
1713 return 0;
1714 }
1715
1716 #ifdef TTY_DEBUG_HANGUP
1717 printk(KERN_DEBUG "freeing tty structure...");
1718 #endif
1719 /*
1720 * Ask the line discipline code to release its structures
1721 */
1722 tty_ldisc_release(tty, o_tty);
1723 /*
1724 * The release_tty function takes care of the details of clearing
1725 * the slots and preserving the termios structure.
1726 */
1727 release_tty(tty, idx);
1728
1729 /* Make this pty number available for reallocation */
1730 if (devpts)
1731 devpts_kill_index(inode, idx);
1732 tty_unlock();
1733 return 0;
1734 }
1735
1736 /**
1737 * tty_open - open a tty device
1738 * @inode: inode of device file
1739 * @filp: file pointer to tty
1740 *
1741 * tty_open and tty_release keep up the tty count that contains the
1742 * number of opens done on a tty. We cannot use the inode-count, as
1743 * different inodes might point to the same tty.
1744 *
1745 * Open-counting is needed for pty masters, as well as for keeping
1746 * track of serial lines: DTR is dropped when the last close happens.
1747 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1748 *
1749 * The termios state of a pty is reset on first open so that
1750 * settings don't persist across reuse.
1751 *
1752 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1753 * tty->count should protect the rest.
1754 * ->siglock protects ->signal/->sighand
1755 */
1756
1757 static int tty_open(struct inode *inode, struct file *filp)
1758 {
1759 struct tty_struct *tty = NULL;
1760 int noctty, retval;
1761 struct tty_driver *driver;
1762 int index;
1763 dev_t device = inode->i_rdev;
1764 unsigned saved_flags = filp->f_flags;
1765
1766 nonseekable_open(inode, filp);
1767
1768 retry_open:
1769 noctty = filp->f_flags & O_NOCTTY;
1770 index = -1;
1771 retval = 0;
1772
1773 mutex_lock(&tty_mutex);
1774 tty_lock();
1775
1776 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1777 tty = get_current_tty();
1778 if (!tty) {
1779 tty_unlock();
1780 mutex_unlock(&tty_mutex);
1781 return -ENXIO;
1782 }
1783 driver = tty_driver_kref_get(tty->driver);
1784 index = tty->index;
1785 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1786 /* noctty = 1; */
1787 /* FIXME: Should we take a driver reference ? */
1788 tty_kref_put(tty);
1789 goto got_driver;
1790 }
1791 #ifdef CONFIG_VT
1792 if (device == MKDEV(TTY_MAJOR, 0)) {
1793 extern struct tty_driver *console_driver;
1794 driver = tty_driver_kref_get(console_driver);
1795 index = fg_console;
1796 noctty = 1;
1797 goto got_driver;
1798 }
1799 #endif
1800 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1801 struct tty_driver *console_driver = console_device(&index);
1802 if (console_driver) {
1803 driver = tty_driver_kref_get(console_driver);
1804 if (driver) {
1805 /* Don't let /dev/console block */
1806 filp->f_flags |= O_NONBLOCK;
1807 noctty = 1;
1808 goto got_driver;
1809 }
1810 }
1811 tty_unlock();
1812 mutex_unlock(&tty_mutex);
1813 return -ENODEV;
1814 }
1815
1816 driver = get_tty_driver(device, &index);
1817 if (!driver) {
1818 tty_unlock();
1819 mutex_unlock(&tty_mutex);
1820 return -ENODEV;
1821 }
1822 got_driver:
1823 if (!tty) {
1824 /* check whether we're reopening an existing tty */
1825 tty = tty_driver_lookup_tty(driver, inode, index);
1826
1827 if (IS_ERR(tty)) {
1828 tty_unlock();
1829 mutex_unlock(&tty_mutex);
1830 return PTR_ERR(tty);
1831 }
1832 }
1833
1834 if (tty) {
1835 retval = tty_reopen(tty);
1836 if (retval)
1837 tty = ERR_PTR(retval);
1838 } else
1839 tty = tty_init_dev(driver, index, 0);
1840
1841 mutex_unlock(&tty_mutex);
1842 tty_driver_kref_put(driver);
1843 if (IS_ERR(tty)) {
1844 tty_unlock();
1845 return PTR_ERR(tty);
1846 }
1847
1848 filp->private_data = tty;
1849 BUG_ON(list_empty(&filp->f_u.fu_list));
1850 file_sb_list_del(filp); /* __dentry_open has put it on the sb list */
1851 spin_lock(&tty_files_lock);
1852 list_add(&filp->f_u.fu_list, &tty->tty_files);
1853 spin_unlock(&tty_files_lock);
1854 check_tty_count(tty, "tty_open");
1855 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1856 tty->driver->subtype == PTY_TYPE_MASTER)
1857 noctty = 1;
1858 #ifdef TTY_DEBUG_HANGUP
1859 printk(KERN_DEBUG "opening %s...", tty->name);
1860 #endif
1861 if (!retval) {
1862 if (tty->ops->open)
1863 retval = tty->ops->open(tty, filp);
1864 else
1865 retval = -ENODEV;
1866 }
1867 filp->f_flags = saved_flags;
1868
1869 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1870 !capable(CAP_SYS_ADMIN))
1871 retval = -EBUSY;
1872
1873 if (retval) {
1874 #ifdef TTY_DEBUG_HANGUP
1875 printk(KERN_DEBUG "error %d in opening %s...", retval,
1876 tty->name);
1877 #endif
1878 tty_unlock(); /* need to call tty_release without BTM */
1879 tty_release(inode, filp);
1880 if (retval != -ERESTARTSYS)
1881 return retval;
1882
1883 if (signal_pending(current))
1884 return retval;
1885
1886 schedule();
1887 /*
1888 * Need to reset f_op in case a hangup happened.
1889 */
1890 tty_lock();
1891 if (filp->f_op == &hung_up_tty_fops)
1892 filp->f_op = &tty_fops;
1893 tty_unlock();
1894 goto retry_open;
1895 }
1896 tty_unlock();
1897
1898
1899 mutex_lock(&tty_mutex);
1900 tty_lock();
1901 spin_lock_irq(&current->sighand->siglock);
1902 if (!noctty &&
1903 current->signal->leader &&
1904 !current->signal->tty &&
1905 tty->session == NULL)
1906 __proc_set_tty(current, tty);
1907 spin_unlock_irq(&current->sighand->siglock);
1908 tty_unlock();
1909 mutex_unlock(&tty_mutex);
1910 return 0;
1911 }
1912
1913
1914
1915 /**
1916 * tty_poll - check tty status
1917 * @filp: file being polled
1918 * @wait: poll wait structures to update
1919 *
1920 * Call the line discipline polling method to obtain the poll
1921 * status of the device.
1922 *
1923 * Locking: locks called line discipline but ldisc poll method
1924 * may be re-entered freely by other callers.
1925 */
1926
1927 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1928 {
1929 struct tty_struct *tty;
1930 struct tty_ldisc *ld;
1931 int ret = 0;
1932
1933 tty = filp->private_data;
1934 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1935 return 0;
1936
1937 ld = tty_ldisc_ref_wait(tty);
1938 if (ld->ops->poll)
1939 ret = (ld->ops->poll)(tty, filp, wait);
1940 tty_ldisc_deref(ld);
1941 return ret;
1942 }
1943
1944 static int __tty_fasync(int fd, struct file *filp, int on)
1945 {
1946 struct tty_struct *tty;
1947 unsigned long flags;
1948 int retval = 0;
1949
1950 tty = filp->private_data;
1951 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1952 goto out;
1953
1954 retval = fasync_helper(fd, filp, on, &tty->fasync);
1955 if (retval <= 0)
1956 goto out;
1957
1958 if (on) {
1959 enum pid_type type;
1960 struct pid *pid;
1961 if (!waitqueue_active(&tty->read_wait))
1962 tty->minimum_to_wake = 1;
1963 spin_lock_irqsave(&tty->ctrl_lock, flags);
1964 if (tty->pgrp) {
1965 pid = tty->pgrp;
1966 type = PIDTYPE_PGID;
1967 } else {
1968 pid = task_pid(current);
1969 type = PIDTYPE_PID;
1970 }
1971 get_pid(pid);
1972 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1973 retval = __f_setown(filp, pid, type, 0);
1974 put_pid(pid);
1975 if (retval)
1976 goto out;
1977 } else {
1978 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1979 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1980 }
1981 retval = 0;
1982 out:
1983 return retval;
1984 }
1985
1986 static int tty_fasync(int fd, struct file *filp, int on)
1987 {
1988 int retval;
1989 tty_lock();
1990 retval = __tty_fasync(fd, filp, on);
1991 tty_unlock();
1992 return retval;
1993 }
1994
1995 /**
1996 * tiocsti - fake input character
1997 * @tty: tty to fake input into
1998 * @p: pointer to character
1999 *
2000 * Fake input to a tty device. Does the necessary locking and
2001 * input management.
2002 *
2003 * FIXME: does not honour flow control ??
2004 *
2005 * Locking:
2006 * Called functions take tty_ldisc_lock
2007 * current->signal->tty check is safe without locks
2008 *
2009 * FIXME: may race normal receive processing
2010 */
2011
2012 static int tiocsti(struct tty_struct *tty, char __user *p)
2013 {
2014 char ch, mbz = 0;
2015 struct tty_ldisc *ld;
2016
2017 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2018 return -EPERM;
2019 if (get_user(ch, p))
2020 return -EFAULT;
2021 tty_audit_tiocsti(tty, ch);
2022 ld = tty_ldisc_ref_wait(tty);
2023 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2024 tty_ldisc_deref(ld);
2025 return 0;
2026 }
2027
2028 /**
2029 * tiocgwinsz - implement window query ioctl
2030 * @tty; tty
2031 * @arg: user buffer for result
2032 *
2033 * Copies the kernel idea of the window size into the user buffer.
2034 *
2035 * Locking: tty->termios_mutex is taken to ensure the winsize data
2036 * is consistent.
2037 */
2038
2039 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2040 {
2041 int err;
2042
2043 mutex_lock(&tty->termios_mutex);
2044 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2045 mutex_unlock(&tty->termios_mutex);
2046
2047 return err ? -EFAULT: 0;
2048 }
2049
2050 /**
2051 * tty_do_resize - resize event
2052 * @tty: tty being resized
2053 * @rows: rows (character)
2054 * @cols: cols (character)
2055 *
2056 * Update the termios variables and send the necessary signals to
2057 * peform a terminal resize correctly
2058 */
2059
2060 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2061 {
2062 struct pid *pgrp;
2063 unsigned long flags;
2064
2065 /* Lock the tty */
2066 mutex_lock(&tty->termios_mutex);
2067 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2068 goto done;
2069 /* Get the PID values and reference them so we can
2070 avoid holding the tty ctrl lock while sending signals */
2071 spin_lock_irqsave(&tty->ctrl_lock, flags);
2072 pgrp = get_pid(tty->pgrp);
2073 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2074
2075 if (pgrp)
2076 kill_pgrp(pgrp, SIGWINCH, 1);
2077 put_pid(pgrp);
2078
2079 tty->winsize = *ws;
2080 done:
2081 mutex_unlock(&tty->termios_mutex);
2082 return 0;
2083 }
2084
2085 /**
2086 * tiocswinsz - implement window size set ioctl
2087 * @tty; tty side of tty
2088 * @arg: user buffer for result
2089 *
2090 * Copies the user idea of the window size to the kernel. Traditionally
2091 * this is just advisory information but for the Linux console it
2092 * actually has driver level meaning and triggers a VC resize.
2093 *
2094 * Locking:
2095 * Driver dependant. The default do_resize method takes the
2096 * tty termios mutex and ctrl_lock. The console takes its own lock
2097 * then calls into the default method.
2098 */
2099
2100 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2101 {
2102 struct winsize tmp_ws;
2103 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2104 return -EFAULT;
2105
2106 if (tty->ops->resize)
2107 return tty->ops->resize(tty, &tmp_ws);
2108 else
2109 return tty_do_resize(tty, &tmp_ws);
2110 }
2111
2112 /**
2113 * tioccons - allow admin to move logical console
2114 * @file: the file to become console
2115 *
2116 * Allow the adminstrator to move the redirected console device
2117 *
2118 * Locking: uses redirect_lock to guard the redirect information
2119 */
2120
2121 static int tioccons(struct file *file)
2122 {
2123 if (!capable(CAP_SYS_ADMIN))
2124 return -EPERM;
2125 if (file->f_op->write == redirected_tty_write) {
2126 struct file *f;
2127 spin_lock(&redirect_lock);
2128 f = redirect;
2129 redirect = NULL;
2130 spin_unlock(&redirect_lock);
2131 if (f)
2132 fput(f);
2133 return 0;
2134 }
2135 spin_lock(&redirect_lock);
2136 if (redirect) {
2137 spin_unlock(&redirect_lock);
2138 return -EBUSY;
2139 }
2140 get_file(file);
2141 redirect = file;
2142 spin_unlock(&redirect_lock);
2143 return 0;
2144 }
2145
2146 /**
2147 * fionbio - non blocking ioctl
2148 * @file: file to set blocking value
2149 * @p: user parameter
2150 *
2151 * Historical tty interfaces had a blocking control ioctl before
2152 * the generic functionality existed. This piece of history is preserved
2153 * in the expected tty API of posix OS's.
2154 *
2155 * Locking: none, the open file handle ensures it won't go away.
2156 */
2157
2158 static int fionbio(struct file *file, int __user *p)
2159 {
2160 int nonblock;
2161
2162 if (get_user(nonblock, p))
2163 return -EFAULT;
2164
2165 spin_lock(&file->f_lock);
2166 if (nonblock)
2167 file->f_flags |= O_NONBLOCK;
2168 else
2169 file->f_flags &= ~O_NONBLOCK;
2170 spin_unlock(&file->f_lock);
2171 return 0;
2172 }
2173
2174 /**
2175 * tiocsctty - set controlling tty
2176 * @tty: tty structure
2177 * @arg: user argument
2178 *
2179 * This ioctl is used to manage job control. It permits a session
2180 * leader to set this tty as the controlling tty for the session.
2181 *
2182 * Locking:
2183 * Takes tty_mutex() to protect tty instance
2184 * Takes tasklist_lock internally to walk sessions
2185 * Takes ->siglock() when updating signal->tty
2186 */
2187
2188 static int tiocsctty(struct tty_struct *tty, int arg)
2189 {
2190 int ret = 0;
2191 if (current->signal->leader && (task_session(current) == tty->session))
2192 return ret;
2193
2194 mutex_lock(&tty_mutex);
2195 /*
2196 * The process must be a session leader and
2197 * not have a controlling tty already.
2198 */
2199 if (!current->signal->leader || current->signal->tty) {
2200 ret = -EPERM;
2201 goto unlock;
2202 }
2203
2204 if (tty->session) {
2205 /*
2206 * This tty is already the controlling
2207 * tty for another session group!
2208 */
2209 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2210 /*
2211 * Steal it away
2212 */
2213 read_lock(&tasklist_lock);
2214 session_clear_tty(tty->session);
2215 read_unlock(&tasklist_lock);
2216 } else {
2217 ret = -EPERM;
2218 goto unlock;
2219 }
2220 }
2221 proc_set_tty(current, tty);
2222 unlock:
2223 mutex_unlock(&tty_mutex);
2224 return ret;
2225 }
2226
2227 /**
2228 * tty_get_pgrp - return a ref counted pgrp pid
2229 * @tty: tty to read
2230 *
2231 * Returns a refcounted instance of the pid struct for the process
2232 * group controlling the tty.
2233 */
2234
2235 struct pid *tty_get_pgrp(struct tty_struct *tty)
2236 {
2237 unsigned long flags;
2238 struct pid *pgrp;
2239
2240 spin_lock_irqsave(&tty->ctrl_lock, flags);
2241 pgrp = get_pid(tty->pgrp);
2242 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2243
2244 return pgrp;
2245 }
2246 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2247
2248 /**
2249 * tiocgpgrp - get process group
2250 * @tty: tty passed by user
2251 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2252 * @p: returned pid
2253 *
2254 * Obtain the process group of the tty. If there is no process group
2255 * return an error.
2256 *
2257 * Locking: none. Reference to current->signal->tty is safe.
2258 */
2259
2260 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2261 {
2262 struct pid *pid;
2263 int ret;
2264 /*
2265 * (tty == real_tty) is a cheap way of
2266 * testing if the tty is NOT a master pty.
2267 */
2268 if (tty == real_tty && current->signal->tty != real_tty)
2269 return -ENOTTY;
2270 pid = tty_get_pgrp(real_tty);
2271 ret = put_user(pid_vnr(pid), p);
2272 put_pid(pid);
2273 return ret;
2274 }
2275
2276 /**
2277 * tiocspgrp - attempt to set process group
2278 * @tty: tty passed by user
2279 * @real_tty: tty side device matching tty passed by user
2280 * @p: pid pointer
2281 *
2282 * Set the process group of the tty to the session passed. Only
2283 * permitted where the tty session is our session.
2284 *
2285 * Locking: RCU, ctrl lock
2286 */
2287
2288 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2289 {
2290 struct pid *pgrp;
2291 pid_t pgrp_nr;
2292 int retval = tty_check_change(real_tty);
2293 unsigned long flags;
2294
2295 if (retval == -EIO)
2296 return -ENOTTY;
2297 if (retval)
2298 return retval;
2299 if (!current->signal->tty ||
2300 (current->signal->tty != real_tty) ||
2301 (real_tty->session != task_session(current)))
2302 return -ENOTTY;
2303 if (get_user(pgrp_nr, p))
2304 return -EFAULT;
2305 if (pgrp_nr < 0)
2306 return -EINVAL;
2307 rcu_read_lock();
2308 pgrp = find_vpid(pgrp_nr);
2309 retval = -ESRCH;
2310 if (!pgrp)
2311 goto out_unlock;
2312 retval = -EPERM;
2313 if (session_of_pgrp(pgrp) != task_session(current))
2314 goto out_unlock;
2315 retval = 0;
2316 spin_lock_irqsave(&tty->ctrl_lock, flags);
2317 put_pid(real_tty->pgrp);
2318 real_tty->pgrp = get_pid(pgrp);
2319 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2320 out_unlock:
2321 rcu_read_unlock();
2322 return retval;
2323 }
2324
2325 /**
2326 * tiocgsid - get session id
2327 * @tty: tty passed by user
2328 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2329 * @p: pointer to returned session id
2330 *
2331 * Obtain the session id of the tty. If there is no session
2332 * return an error.
2333 *
2334 * Locking: none. Reference to current->signal->tty is safe.
2335 */
2336
2337 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2338 {
2339 /*
2340 * (tty == real_tty) is a cheap way of
2341 * testing if the tty is NOT a master pty.
2342 */
2343 if (tty == real_tty && current->signal->tty != real_tty)
2344 return -ENOTTY;
2345 if (!real_tty->session)
2346 return -ENOTTY;
2347 return put_user(pid_vnr(real_tty->session), p);
2348 }
2349
2350 /**
2351 * tiocsetd - set line discipline
2352 * @tty: tty device
2353 * @p: pointer to user data
2354 *
2355 * Set the line discipline according to user request.
2356 *
2357 * Locking: see tty_set_ldisc, this function is just a helper
2358 */
2359
2360 static int tiocsetd(struct tty_struct *tty, int __user *p)
2361 {
2362 int ldisc;
2363 int ret;
2364
2365 if (get_user(ldisc, p))
2366 return -EFAULT;
2367
2368 ret = tty_set_ldisc(tty, ldisc);
2369
2370 return ret;
2371 }
2372
2373 /**
2374 * send_break - performed time break
2375 * @tty: device to break on
2376 * @duration: timeout in mS
2377 *
2378 * Perform a timed break on hardware that lacks its own driver level
2379 * timed break functionality.
2380 *
2381 * Locking:
2382 * atomic_write_lock serializes
2383 *
2384 */
2385
2386 static int send_break(struct tty_struct *tty, unsigned int duration)
2387 {
2388 int retval;
2389
2390 if (tty->ops->break_ctl == NULL)
2391 return 0;
2392
2393 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2394 retval = tty->ops->break_ctl(tty, duration);
2395 else {
2396 /* Do the work ourselves */
2397 if (tty_write_lock(tty, 0) < 0)
2398 return -EINTR;
2399 retval = tty->ops->break_ctl(tty, -1);
2400 if (retval)
2401 goto out;
2402 if (!signal_pending(current))
2403 msleep_interruptible(duration);
2404 retval = tty->ops->break_ctl(tty, 0);
2405 out:
2406 tty_write_unlock(tty);
2407 if (signal_pending(current))
2408 retval = -EINTR;
2409 }
2410 return retval;
2411 }
2412
2413 /**
2414 * tty_tiocmget - get modem status
2415 * @tty: tty device
2416 * @file: user file pointer
2417 * @p: pointer to result
2418 *
2419 * Obtain the modem status bits from the tty driver if the feature
2420 * is supported. Return -EINVAL if it is not available.
2421 *
2422 * Locking: none (up to the driver)
2423 */
2424
2425 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2426 {
2427 int retval = -EINVAL;
2428
2429 if (tty->ops->tiocmget) {
2430 retval = tty->ops->tiocmget(tty, file);
2431
2432 if (retval >= 0)
2433 retval = put_user(retval, p);
2434 }
2435 return retval;
2436 }
2437
2438 /**
2439 * tty_tiocmset - set modem status
2440 * @tty: tty device
2441 * @file: user file pointer
2442 * @cmd: command - clear bits, set bits or set all
2443 * @p: pointer to desired bits
2444 *
2445 * Set the modem status bits from the tty driver if the feature
2446 * is supported. Return -EINVAL if it is not available.
2447 *
2448 * Locking: none (up to the driver)
2449 */
2450
2451 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2452 unsigned __user *p)
2453 {
2454 int retval;
2455 unsigned int set, clear, val;
2456
2457 if (tty->ops->tiocmset == NULL)
2458 return -EINVAL;
2459
2460 retval = get_user(val, p);
2461 if (retval)
2462 return retval;
2463 set = clear = 0;
2464 switch (cmd) {
2465 case TIOCMBIS:
2466 set = val;
2467 break;
2468 case TIOCMBIC:
2469 clear = val;
2470 break;
2471 case TIOCMSET:
2472 set = val;
2473 clear = ~val;
2474 break;
2475 }
2476 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2477 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2478 return tty->ops->tiocmset(tty, file, set, clear);
2479 }
2480
2481 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2482 {
2483 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2484 tty->driver->subtype == PTY_TYPE_MASTER)
2485 tty = tty->link;
2486 return tty;
2487 }
2488 EXPORT_SYMBOL(tty_pair_get_tty);
2489
2490 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2491 {
2492 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2493 tty->driver->subtype == PTY_TYPE_MASTER)
2494 return tty;
2495 return tty->link;
2496 }
2497 EXPORT_SYMBOL(tty_pair_get_pty);
2498
2499 /*
2500 * Split this up, as gcc can choke on it otherwise..
2501 */
2502 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2503 {
2504 struct tty_struct *tty, *real_tty;
2505 void __user *p = (void __user *)arg;
2506 int retval;
2507 struct tty_ldisc *ld;
2508 struct inode *inode = file->f_dentry->d_inode;
2509
2510 tty = file->private_data;
2511 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2512 return -EINVAL;
2513
2514 real_tty = tty_pair_get_tty(tty);
2515
2516 /*
2517 * Factor out some common prep work
2518 */
2519 switch (cmd) {
2520 case TIOCSETD:
2521 case TIOCSBRK:
2522 case TIOCCBRK:
2523 case TCSBRK:
2524 case TCSBRKP:
2525 retval = tty_check_change(tty);
2526 if (retval)
2527 return retval;
2528 if (cmd != TIOCCBRK) {
2529 tty_wait_until_sent(tty, 0);
2530 if (signal_pending(current))
2531 return -EINTR;
2532 }
2533 break;
2534 }
2535
2536 /*
2537 * Now do the stuff.
2538 */
2539 switch (cmd) {
2540 case TIOCSTI:
2541 return tiocsti(tty, p);
2542 case TIOCGWINSZ:
2543 return tiocgwinsz(real_tty, p);
2544 case TIOCSWINSZ:
2545 return tiocswinsz(real_tty, p);
2546 case TIOCCONS:
2547 return real_tty != tty ? -EINVAL : tioccons(file);
2548 case FIONBIO:
2549 return fionbio(file, p);
2550 case TIOCEXCL:
2551 set_bit(TTY_EXCLUSIVE, &tty->flags);
2552 return 0;
2553 case TIOCNXCL:
2554 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2555 return 0;
2556 case TIOCNOTTY:
2557 if (current->signal->tty != tty)
2558 return -ENOTTY;
2559 no_tty();
2560 return 0;
2561 case TIOCSCTTY:
2562 return tiocsctty(tty, arg);
2563 case TIOCGPGRP:
2564 return tiocgpgrp(tty, real_tty, p);
2565 case TIOCSPGRP:
2566 return tiocspgrp(tty, real_tty, p);
2567 case TIOCGSID:
2568 return tiocgsid(tty, real_tty, p);
2569 case TIOCGETD:
2570 return put_user(tty->ldisc->ops->num, (int __user *)p);
2571 case TIOCSETD:
2572 return tiocsetd(tty, p);
2573 /*
2574 * Break handling
2575 */
2576 case TIOCSBRK: /* Turn break on, unconditionally */
2577 if (tty->ops->break_ctl)
2578 return tty->ops->break_ctl(tty, -1);
2579 return 0;
2580 case TIOCCBRK: /* Turn break off, unconditionally */
2581 if (tty->ops->break_ctl)
2582 return tty->ops->break_ctl(tty, 0);
2583 return 0;
2584 case TCSBRK: /* SVID version: non-zero arg --> no break */
2585 /* non-zero arg means wait for all output data
2586 * to be sent (performed above) but don't send break.
2587 * This is used by the tcdrain() termios function.
2588 */
2589 if (!arg)
2590 return send_break(tty, 250);
2591 return 0;
2592 case TCSBRKP: /* support for POSIX tcsendbreak() */
2593 return send_break(tty, arg ? arg*100 : 250);
2594
2595 case TIOCMGET:
2596 return tty_tiocmget(tty, file, p);
2597 case TIOCMSET:
2598 case TIOCMBIC:
2599 case TIOCMBIS:
2600 return tty_tiocmset(tty, file, cmd, p);
2601 case TCFLSH:
2602 switch (arg) {
2603 case TCIFLUSH:
2604 case TCIOFLUSH:
2605 /* flush tty buffer and allow ldisc to process ioctl */
2606 tty_buffer_flush(tty);
2607 break;
2608 }
2609 break;
2610 }
2611 if (tty->ops->ioctl) {
2612 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2613 if (retval != -ENOIOCTLCMD)
2614 return retval;
2615 }
2616 ld = tty_ldisc_ref_wait(tty);
2617 retval = -EINVAL;
2618 if (ld->ops->ioctl) {
2619 retval = ld->ops->ioctl(tty, file, cmd, arg);
2620 if (retval == -ENOIOCTLCMD)
2621 retval = -EINVAL;
2622 }
2623 tty_ldisc_deref(ld);
2624 return retval;
2625 }
2626
2627 #ifdef CONFIG_COMPAT
2628 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2629 unsigned long arg)
2630 {
2631 struct inode *inode = file->f_dentry->d_inode;
2632 struct tty_struct *tty = file->private_data;
2633 struct tty_ldisc *ld;
2634 int retval = -ENOIOCTLCMD;
2635
2636 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2637 return -EINVAL;
2638
2639 if (tty->ops->compat_ioctl) {
2640 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2641 if (retval != -ENOIOCTLCMD)
2642 return retval;
2643 }
2644
2645 ld = tty_ldisc_ref_wait(tty);
2646 if (ld->ops->compat_ioctl)
2647 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2648 tty_ldisc_deref(ld);
2649
2650 return retval;
2651 }
2652 #endif
2653
2654 /*
2655 * This implements the "Secure Attention Key" --- the idea is to
2656 * prevent trojan horses by killing all processes associated with this
2657 * tty when the user hits the "Secure Attention Key". Required for
2658 * super-paranoid applications --- see the Orange Book for more details.
2659 *
2660 * This code could be nicer; ideally it should send a HUP, wait a few
2661 * seconds, then send a INT, and then a KILL signal. But you then
2662 * have to coordinate with the init process, since all processes associated
2663 * with the current tty must be dead before the new getty is allowed
2664 * to spawn.
2665 *
2666 * Now, if it would be correct ;-/ The current code has a nasty hole -
2667 * it doesn't catch files in flight. We may send the descriptor to ourselves
2668 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2669 *
2670 * Nasty bug: do_SAK is being called in interrupt context. This can
2671 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2672 */
2673 void __do_SAK(struct tty_struct *tty)
2674 {
2675 #ifdef TTY_SOFT_SAK
2676 tty_hangup(tty);
2677 #else
2678 struct task_struct *g, *p;
2679 struct pid *session;
2680 int i;
2681 struct file *filp;
2682 struct fdtable *fdt;
2683
2684 if (!tty)
2685 return;
2686 session = tty->session;
2687
2688 tty_ldisc_flush(tty);
2689
2690 tty_driver_flush_buffer(tty);
2691
2692 read_lock(&tasklist_lock);
2693 /* Kill the entire session */
2694 do_each_pid_task(session, PIDTYPE_SID, p) {
2695 printk(KERN_NOTICE "SAK: killed process %d"
2696 " (%s): task_session(p)==tty->session\n",
2697 task_pid_nr(p), p->comm);
2698 send_sig(SIGKILL, p, 1);
2699 } while_each_pid_task(session, PIDTYPE_SID, p);
2700 /* Now kill any processes that happen to have the
2701 * tty open.
2702 */
2703 do_each_thread(g, p) {
2704 if (p->signal->tty == tty) {
2705 printk(KERN_NOTICE "SAK: killed process %d"
2706 " (%s): task_session(p)==tty->session\n",
2707 task_pid_nr(p), p->comm);
2708 send_sig(SIGKILL, p, 1);
2709 continue;
2710 }
2711 task_lock(p);
2712 if (p->files) {
2713 /*
2714 * We don't take a ref to the file, so we must
2715 * hold ->file_lock instead.
2716 */
2717 spin_lock(&p->files->file_lock);
2718 fdt = files_fdtable(p->files);
2719 for (i = 0; i < fdt->max_fds; i++) {
2720 filp = fcheck_files(p->files, i);
2721 if (!filp)
2722 continue;
2723 if (filp->f_op->read == tty_read &&
2724 filp->private_data == tty) {
2725 printk(KERN_NOTICE "SAK: killed process %d"
2726 " (%s): fd#%d opened to the tty\n",
2727 task_pid_nr(p), p->comm, i);
2728 force_sig(SIGKILL, p);
2729 break;
2730 }
2731 }
2732 spin_unlock(&p->files->file_lock);
2733 }
2734 task_unlock(p);
2735 } while_each_thread(g, p);
2736 read_unlock(&tasklist_lock);
2737 #endif
2738 }
2739
2740 static void do_SAK_work(struct work_struct *work)
2741 {
2742 struct tty_struct *tty =
2743 container_of(work, struct tty_struct, SAK_work);
2744 __do_SAK(tty);
2745 }
2746
2747 /*
2748 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2749 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2750 * the values which we write to it will be identical to the values which it
2751 * already has. --akpm
2752 */
2753 void do_SAK(struct tty_struct *tty)
2754 {
2755 if (!tty)
2756 return;
2757 schedule_work(&tty->SAK_work);
2758 }
2759
2760 EXPORT_SYMBOL(do_SAK);
2761
2762 /**
2763 * initialize_tty_struct
2764 * @tty: tty to initialize
2765 *
2766 * This subroutine initializes a tty structure that has been newly
2767 * allocated.
2768 *
2769 * Locking: none - tty in question must not be exposed at this point
2770 */
2771
2772 void initialize_tty_struct(struct tty_struct *tty,
2773 struct tty_driver *driver, int idx)
2774 {
2775 memset(tty, 0, sizeof(struct tty_struct));
2776 kref_init(&tty->kref);
2777 tty->magic = TTY_MAGIC;
2778 tty_ldisc_init(tty);
2779 tty->session = NULL;
2780 tty->pgrp = NULL;
2781 tty->overrun_time = jiffies;
2782 tty->buf.head = tty->buf.tail = NULL;
2783 tty_buffer_init(tty);
2784 mutex_init(&tty->termios_mutex);
2785 mutex_init(&tty->ldisc_mutex);
2786 init_waitqueue_head(&tty->write_wait);
2787 init_waitqueue_head(&tty->read_wait);
2788 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2789 mutex_init(&tty->atomic_read_lock);
2790 mutex_init(&tty->atomic_write_lock);
2791 mutex_init(&tty->output_lock);
2792 mutex_init(&tty->echo_lock);
2793 spin_lock_init(&tty->read_lock);
2794 spin_lock_init(&tty->ctrl_lock);
2795 INIT_LIST_HEAD(&tty->tty_files);
2796 INIT_WORK(&tty->SAK_work, do_SAK_work);
2797
2798 tty->driver = driver;
2799 tty->ops = driver->ops;
2800 tty->index = idx;
2801 tty_line_name(driver, idx, tty->name);
2802 }
2803
2804 /**
2805 * tty_put_char - write one character to a tty
2806 * @tty: tty
2807 * @ch: character
2808 *
2809 * Write one byte to the tty using the provided put_char method
2810 * if present. Returns the number of characters successfully output.
2811 *
2812 * Note: the specific put_char operation in the driver layer may go
2813 * away soon. Don't call it directly, use this method
2814 */
2815
2816 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2817 {
2818 if (tty->ops->put_char)
2819 return tty->ops->put_char(tty, ch);
2820 return tty->ops->write(tty, &ch, 1);
2821 }
2822 EXPORT_SYMBOL_GPL(tty_put_char);
2823
2824 struct class *tty_class;
2825
2826 /**
2827 * tty_register_device - register a tty device
2828 * @driver: the tty driver that describes the tty device
2829 * @index: the index in the tty driver for this tty device
2830 * @device: a struct device that is associated with this tty device.
2831 * This field is optional, if there is no known struct device
2832 * for this tty device it can be set to NULL safely.
2833 *
2834 * Returns a pointer to the struct device for this tty device
2835 * (or ERR_PTR(-EFOO) on error).
2836 *
2837 * This call is required to be made to register an individual tty device
2838 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2839 * that bit is not set, this function should not be called by a tty
2840 * driver.
2841 *
2842 * Locking: ??
2843 */
2844
2845 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2846 struct device *device)
2847 {
2848 char name[64];
2849 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2850
2851 if (index >= driver->num) {
2852 printk(KERN_ERR "Attempt to register invalid tty line number "
2853 " (%d).\n", index);
2854 return ERR_PTR(-EINVAL);
2855 }
2856
2857 if (driver->type == TTY_DRIVER_TYPE_PTY)
2858 pty_line_name(driver, index, name);
2859 else
2860 tty_line_name(driver, index, name);
2861
2862 return device_create(tty_class, device, dev, NULL, name);
2863 }
2864 EXPORT_SYMBOL(tty_register_device);
2865
2866 /**
2867 * tty_unregister_device - unregister a tty device
2868 * @driver: the tty driver that describes the tty device
2869 * @index: the index in the tty driver for this tty device
2870 *
2871 * If a tty device is registered with a call to tty_register_device() then
2872 * this function must be called when the tty device is gone.
2873 *
2874 * Locking: ??
2875 */
2876
2877 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2878 {
2879 device_destroy(tty_class,
2880 MKDEV(driver->major, driver->minor_start) + index);
2881 }
2882 EXPORT_SYMBOL(tty_unregister_device);
2883
2884 struct tty_driver *alloc_tty_driver(int lines)
2885 {
2886 struct tty_driver *driver;
2887
2888 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2889 if (driver) {
2890 kref_init(&driver->kref);
2891 driver->magic = TTY_DRIVER_MAGIC;
2892 driver->num = lines;
2893 /* later we'll move allocation of tables here */
2894 }
2895 return driver;
2896 }
2897 EXPORT_SYMBOL(alloc_tty_driver);
2898
2899 static void destruct_tty_driver(struct kref *kref)
2900 {
2901 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2902 int i;
2903 struct ktermios *tp;
2904 void *p;
2905
2906 if (driver->flags & TTY_DRIVER_INSTALLED) {
2907 /*
2908 * Free the termios and termios_locked structures because
2909 * we don't want to get memory leaks when modular tty
2910 * drivers are removed from the kernel.
2911 */
2912 for (i = 0; i < driver->num; i++) {
2913 tp = driver->termios[i];
2914 if (tp) {
2915 driver->termios[i] = NULL;
2916 kfree(tp);
2917 }
2918 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2919 tty_unregister_device(driver, i);
2920 }
2921 p = driver->ttys;
2922 proc_tty_unregister_driver(driver);
2923 driver->ttys = NULL;
2924 driver->termios = NULL;
2925 kfree(p);
2926 cdev_del(&driver->cdev);
2927 }
2928 kfree(driver);
2929 }
2930
2931 void tty_driver_kref_put(struct tty_driver *driver)
2932 {
2933 kref_put(&driver->kref, destruct_tty_driver);
2934 }
2935 EXPORT_SYMBOL(tty_driver_kref_put);
2936
2937 void tty_set_operations(struct tty_driver *driver,
2938 const struct tty_operations *op)
2939 {
2940 driver->ops = op;
2941 };
2942 EXPORT_SYMBOL(tty_set_operations);
2943
2944 void put_tty_driver(struct tty_driver *d)
2945 {
2946 tty_driver_kref_put(d);
2947 }
2948 EXPORT_SYMBOL(put_tty_driver);
2949
2950 /*
2951 * Called by a tty driver to register itself.
2952 */
2953 int tty_register_driver(struct tty_driver *driver)
2954 {
2955 int error;
2956 int i;
2957 dev_t dev;
2958 void **p = NULL;
2959
2960 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2961 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2962 if (!p)
2963 return -ENOMEM;
2964 }
2965
2966 if (!driver->major) {
2967 error = alloc_chrdev_region(&dev, driver->minor_start,
2968 driver->num, driver->name);
2969 if (!error) {
2970 driver->major = MAJOR(dev);
2971 driver->minor_start = MINOR(dev);
2972 }
2973 } else {
2974 dev = MKDEV(driver->major, driver->minor_start);
2975 error = register_chrdev_region(dev, driver->num, driver->name);
2976 }
2977 if (error < 0) {
2978 kfree(p);
2979 return error;
2980 }
2981
2982 if (p) {
2983 driver->ttys = (struct tty_struct **)p;
2984 driver->termios = (struct ktermios **)(p + driver->num);
2985 } else {
2986 driver->ttys = NULL;
2987 driver->termios = NULL;
2988 }
2989
2990 cdev_init(&driver->cdev, &tty_fops);
2991 driver->cdev.owner = driver->owner;
2992 error = cdev_add(&driver->cdev, dev, driver->num);
2993 if (error) {
2994 unregister_chrdev_region(dev, driver->num);
2995 driver->ttys = NULL;
2996 driver->termios = NULL;
2997 kfree(p);
2998 return error;
2999 }
3000
3001 mutex_lock(&tty_mutex);
3002 list_add(&driver->tty_drivers, &tty_drivers);
3003 mutex_unlock(&tty_mutex);
3004
3005 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3006 for (i = 0; i < driver->num; i++)
3007 tty_register_device(driver, i, NULL);
3008 }
3009 proc_tty_register_driver(driver);
3010 driver->flags |= TTY_DRIVER_INSTALLED;
3011 return 0;
3012 }
3013
3014 EXPORT_SYMBOL(tty_register_driver);
3015
3016 /*
3017 * Called by a tty driver to unregister itself.
3018 */
3019 int tty_unregister_driver(struct tty_driver *driver)
3020 {
3021 #if 0
3022 /* FIXME */
3023 if (driver->refcount)
3024 return -EBUSY;
3025 #endif
3026 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3027 driver->num);
3028 mutex_lock(&tty_mutex);
3029 list_del(&driver->tty_drivers);
3030 mutex_unlock(&tty_mutex);
3031 return 0;
3032 }
3033
3034 EXPORT_SYMBOL(tty_unregister_driver);
3035
3036 dev_t tty_devnum(struct tty_struct *tty)
3037 {
3038 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3039 }
3040 EXPORT_SYMBOL(tty_devnum);
3041
3042 void proc_clear_tty(struct task_struct *p)
3043 {
3044 unsigned long flags;
3045 struct tty_struct *tty;
3046 spin_lock_irqsave(&p->sighand->siglock, flags);
3047 tty = p->signal->tty;
3048 p->signal->tty = NULL;
3049 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3050 tty_kref_put(tty);
3051 }
3052
3053 /* Called under the sighand lock */
3054
3055 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3056 {
3057 if (tty) {
3058 unsigned long flags;
3059 /* We should not have a session or pgrp to put here but.... */
3060 spin_lock_irqsave(&tty->ctrl_lock, flags);
3061 put_pid(tty->session);
3062 put_pid(tty->pgrp);
3063 tty->pgrp = get_pid(task_pgrp(tsk));
3064 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3065 tty->session = get_pid(task_session(tsk));
3066 if (tsk->signal->tty) {
3067 printk(KERN_DEBUG "tty not NULL!!\n");
3068 tty_kref_put(tsk->signal->tty);
3069 }
3070 }
3071 put_pid(tsk->signal->tty_old_pgrp);
3072 tsk->signal->tty = tty_kref_get(tty);
3073 tsk->signal->tty_old_pgrp = NULL;
3074 }
3075
3076 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3077 {
3078 spin_lock_irq(&tsk->sighand->siglock);
3079 __proc_set_tty(tsk, tty);
3080 spin_unlock_irq(&tsk->sighand->siglock);
3081 }
3082
3083 struct tty_struct *get_current_tty(void)
3084 {
3085 struct tty_struct *tty;
3086 unsigned long flags;
3087
3088 spin_lock_irqsave(&current->sighand->siglock, flags);
3089 tty = tty_kref_get(current->signal->tty);
3090 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3091 return tty;
3092 }
3093 EXPORT_SYMBOL_GPL(get_current_tty);
3094
3095 void tty_default_fops(struct file_operations *fops)
3096 {
3097 *fops = tty_fops;
3098 }
3099
3100 /*
3101 * Initialize the console device. This is called *early*, so
3102 * we can't necessarily depend on lots of kernel help here.
3103 * Just do some early initializations, and do the complex setup
3104 * later.
3105 */
3106 void __init console_init(void)
3107 {
3108 initcall_t *call;
3109
3110 /* Setup the default TTY line discipline. */
3111 tty_ldisc_begin();
3112
3113 /*
3114 * set up the console device so that later boot sequences can
3115 * inform about problems etc..
3116 */
3117 call = __con_initcall_start;
3118 while (call < __con_initcall_end) {
3119 (*call)();
3120 call++;
3121 }
3122 }
3123
3124 static char *tty_devnode(struct device *dev, mode_t *mode)
3125 {
3126 if (!mode)
3127 return NULL;
3128 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3129 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3130 *mode = 0666;
3131 return NULL;
3132 }
3133
3134 static int __init tty_class_init(void)
3135 {
3136 tty_class = class_create(THIS_MODULE, "tty");
3137 if (IS_ERR(tty_class))
3138 return PTR_ERR(tty_class);
3139 tty_class->devnode = tty_devnode;
3140 return 0;
3141 }
3142
3143 postcore_initcall(tty_class_init);
3144
3145 /* 3/2004 jmc: why do these devices exist? */
3146
3147 static struct cdev tty_cdev, console_cdev;
3148
3149 /*
3150 * Ok, now we can initialize the rest of the tty devices and can count
3151 * on memory allocations, interrupts etc..
3152 */
3153 int __init tty_init(void)
3154 {
3155 cdev_init(&tty_cdev, &tty_fops);
3156 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3157 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3158 panic("Couldn't register /dev/tty driver\n");
3159 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3160 "tty");
3161
3162 cdev_init(&console_cdev, &console_fops);
3163 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3164 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3165 panic("Couldn't register /dev/console driver\n");
3166 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3167 "console");
3168
3169 #ifdef CONFIG_VT
3170 vty_init(&console_fops);
3171 #endif
3172 return 0;
3173 }
3174
This page took 0.110237 seconds and 5 git commands to generate.