tty: Redo current tty locking
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *,
149 size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file *filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166 * alloc_tty_struct - allocate a tty object
167 *
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
170 *
171 * Locking: none
172 */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 /**
180 * free_tty_struct - free a disused tty
181 * @tty: tty struct to free
182 *
183 * Free the write buffers, tty queue and tty memory itself.
184 *
185 * Locking: none. Must be called after tty is definitely unused
186 */
187
188 static inline void free_tty_struct(struct tty_struct *tty)
189 {
190 kfree(tty->write_buf);
191 tty_buffer_free_all(tty);
192 kfree(tty);
193 }
194
195 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
196
197 /**
198 * tty_name - return tty naming
199 * @tty: tty structure
200 * @buf: buffer for output
201 *
202 * Convert a tty structure into a name. The name reflects the kernel
203 * naming policy and if udev is in use may not reflect user space
204 *
205 * Locking: none
206 */
207
208 char *tty_name(struct tty_struct *tty, char *buf)
209 {
210 if (!tty) /* Hmm. NULL pointer. That's fun. */
211 strcpy(buf, "NULL tty");
212 else
213 strcpy(buf, tty->name);
214 return buf;
215 }
216
217 EXPORT_SYMBOL(tty_name);
218
219 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
220 const char *routine)
221 {
222 #ifdef TTY_PARANOIA_CHECK
223 if (!tty) {
224 printk(KERN_WARNING
225 "null TTY for (%d:%d) in %s\n",
226 imajor(inode), iminor(inode), routine);
227 return 1;
228 }
229 if (tty->magic != TTY_MAGIC) {
230 printk(KERN_WARNING
231 "bad magic number for tty struct (%d:%d) in %s\n",
232 imajor(inode), iminor(inode), routine);
233 return 1;
234 }
235 #endif
236 return 0;
237 }
238
239 static int check_tty_count(struct tty_struct *tty, const char *routine)
240 {
241 #ifdef CHECK_TTY_COUNT
242 struct list_head *p;
243 int count = 0;
244
245 file_list_lock();
246 list_for_each(p, &tty->tty_files) {
247 count++;
248 }
249 file_list_unlock();
250 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
251 tty->driver->subtype == PTY_TYPE_SLAVE &&
252 tty->link && tty->link->count)
253 count++;
254 if (tty->count != count) {
255 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
256 "!= #fd's(%d) in %s\n",
257 tty->name, tty->count, count, routine);
258 return count;
259 }
260 #endif
261 return 0;
262 }
263
264 /**
265 * get_tty_driver - find device of a tty
266 * @dev_t: device identifier
267 * @index: returns the index of the tty
268 *
269 * This routine returns a tty driver structure, given a device number
270 * and also passes back the index number.
271 *
272 * Locking: caller must hold tty_mutex
273 */
274
275 static struct tty_driver *get_tty_driver(dev_t device, int *index)
276 {
277 struct tty_driver *p;
278
279 list_for_each_entry(p, &tty_drivers, tty_drivers) {
280 dev_t base = MKDEV(p->major, p->minor_start);
281 if (device < base || device >= base + p->num)
282 continue;
283 *index = device - base;
284 return p;
285 }
286 return NULL;
287 }
288
289 #ifdef CONFIG_CONSOLE_POLL
290
291 /**
292 * tty_find_polling_driver - find device of a polled tty
293 * @name: name string to match
294 * @line: pointer to resulting tty line nr
295 *
296 * This routine returns a tty driver structure, given a name
297 * and the condition that the tty driver is capable of polled
298 * operation.
299 */
300 struct tty_driver *tty_find_polling_driver(char *name, int *line)
301 {
302 struct tty_driver *p, *res = NULL;
303 int tty_line = 0;
304 int len;
305 char *str;
306
307 for (str = name; *str; str++)
308 if ((*str >= '0' && *str <= '9') || *str == ',')
309 break;
310 if (!*str)
311 return NULL;
312
313 len = str - name;
314 tty_line = simple_strtoul(str, &str, 10);
315
316 mutex_lock(&tty_mutex);
317 /* Search through the tty devices to look for a match */
318 list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 if (strncmp(name, p->name, len) != 0)
320 continue;
321 if (*str == ',')
322 str++;
323 if (*str == '\0')
324 str = NULL;
325
326 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
327 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
328 res = p;
329 *line = tty_line;
330 break;
331 }
332 }
333 mutex_unlock(&tty_mutex);
334
335 return res;
336 }
337 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
338 #endif
339
340 /**
341 * tty_check_change - check for POSIX terminal changes
342 * @tty: tty to check
343 *
344 * If we try to write to, or set the state of, a terminal and we're
345 * not in the foreground, send a SIGTTOU. If the signal is blocked or
346 * ignored, go ahead and perform the operation. (POSIX 7.2)
347 *
348 * Locking: ctrl_lock
349 */
350
351 int tty_check_change(struct tty_struct *tty)
352 {
353 unsigned long flags;
354 int ret = 0;
355
356 if (current->signal->tty != tty)
357 return 0;
358
359 spin_lock_irqsave(&tty->ctrl_lock, flags);
360
361 if (!tty->pgrp) {
362 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
363 goto out_unlock;
364 }
365 if (task_pgrp(current) == tty->pgrp)
366 goto out_unlock;
367 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
368 if (is_ignored(SIGTTOU))
369 goto out;
370 if (is_current_pgrp_orphaned()) {
371 ret = -EIO;
372 goto out;
373 }
374 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
375 set_thread_flag(TIF_SIGPENDING);
376 ret = -ERESTARTSYS;
377 out:
378 return ret;
379 out_unlock:
380 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
381 return ret;
382 }
383
384 EXPORT_SYMBOL(tty_check_change);
385
386 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
387 size_t count, loff_t *ppos)
388 {
389 return 0;
390 }
391
392 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
393 size_t count, loff_t *ppos)
394 {
395 return -EIO;
396 }
397
398 /* No kernel lock held - none needed ;) */
399 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
400 {
401 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
402 }
403
404 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
405 unsigned long arg)
406 {
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static long hung_up_tty_compat_ioctl(struct file *file,
411 unsigned int cmd, unsigned long arg)
412 {
413 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
414 }
415
416 static const struct file_operations tty_fops = {
417 .llseek = no_llseek,
418 .read = tty_read,
419 .write = tty_write,
420 .poll = tty_poll,
421 .unlocked_ioctl = tty_ioctl,
422 .compat_ioctl = tty_compat_ioctl,
423 .open = tty_open,
424 .release = tty_release,
425 .fasync = tty_fasync,
426 };
427
428 #ifdef CONFIG_UNIX98_PTYS
429 static const struct file_operations ptmx_fops = {
430 .llseek = no_llseek,
431 .read = tty_read,
432 .write = tty_write,
433 .poll = tty_poll,
434 .unlocked_ioctl = tty_ioctl,
435 .compat_ioctl = tty_compat_ioctl,
436 .open = ptmx_open,
437 .release = tty_release,
438 .fasync = tty_fasync,
439 };
440 #endif
441
442 static const struct file_operations console_fops = {
443 .llseek = no_llseek,
444 .read = tty_read,
445 .write = redirected_tty_write,
446 .poll = tty_poll,
447 .unlocked_ioctl = tty_ioctl,
448 .compat_ioctl = tty_compat_ioctl,
449 .open = tty_open,
450 .release = tty_release,
451 .fasync = tty_fasync,
452 };
453
454 static const struct file_operations hung_up_tty_fops = {
455 .llseek = no_llseek,
456 .read = hung_up_tty_read,
457 .write = hung_up_tty_write,
458 .poll = hung_up_tty_poll,
459 .unlocked_ioctl = hung_up_tty_ioctl,
460 .compat_ioctl = hung_up_tty_compat_ioctl,
461 .release = tty_release,
462 };
463
464 static DEFINE_SPINLOCK(redirect_lock);
465 static struct file *redirect;
466
467 /**
468 * tty_wakeup - request more data
469 * @tty: terminal
470 *
471 * Internal and external helper for wakeups of tty. This function
472 * informs the line discipline if present that the driver is ready
473 * to receive more output data.
474 */
475
476 void tty_wakeup(struct tty_struct *tty)
477 {
478 struct tty_ldisc *ld;
479
480 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
481 ld = tty_ldisc_ref(tty);
482 if (ld) {
483 if (ld->ops->write_wakeup)
484 ld->ops->write_wakeup(tty);
485 tty_ldisc_deref(ld);
486 }
487 }
488 wake_up_interruptible(&tty->write_wait);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_wakeup);
492
493 /**
494 * tty_ldisc_flush - flush line discipline queue
495 * @tty: tty
496 *
497 * Flush the line discipline queue (if any) for this tty. If there
498 * is no line discipline active this is a no-op.
499 */
500
501 void tty_ldisc_flush(struct tty_struct *tty)
502 {
503 struct tty_ldisc *ld = tty_ldisc_ref(tty);
504 if (ld) {
505 if (ld->ops->flush_buffer)
506 ld->ops->flush_buffer(tty);
507 tty_ldisc_deref(ld);
508 }
509 tty_buffer_flush(tty);
510 }
511
512 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
513
514 /**
515 * tty_reset_termios - reset terminal state
516 * @tty: tty to reset
517 *
518 * Restore a terminal to the driver default state
519 */
520
521 static void tty_reset_termios(struct tty_struct *tty)
522 {
523 mutex_lock(&tty->termios_mutex);
524 *tty->termios = tty->driver->init_termios;
525 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
526 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
527 mutex_unlock(&tty->termios_mutex);
528 }
529
530 /**
531 * do_tty_hangup - actual handler for hangup events
532 * @work: tty device
533 *
534 * This can be called by the "eventd" kernel thread. That is process
535 * synchronous but doesn't hold any locks, so we need to make sure we
536 * have the appropriate locks for what we're doing.
537 *
538 * The hangup event clears any pending redirections onto the hung up
539 * device. It ensures future writes will error and it does the needed
540 * line discipline hangup and signal delivery. The tty object itself
541 * remains intact.
542 *
543 * Locking:
544 * BKL
545 * redirect lock for undoing redirection
546 * file list lock for manipulating list of ttys
547 * tty_ldisc_lock from called functions
548 * termios_mutex resetting termios data
549 * tasklist_lock to walk task list for hangup event
550 * ->siglock to protect ->signal/->sighand
551 */
552 static void do_tty_hangup(struct work_struct *work)
553 {
554 struct tty_struct *tty =
555 container_of(work, struct tty_struct, hangup_work);
556 struct file *cons_filp = NULL;
557 struct file *filp, *f = NULL;
558 struct task_struct *p;
559 struct tty_ldisc *ld;
560 int closecount = 0, n;
561 unsigned long flags;
562 int refs = 0;
563
564 if (!tty)
565 return;
566
567 /* inuse_filps is protected by the single kernel lock */
568 lock_kernel();
569
570 spin_lock(&redirect_lock);
571 if (redirect && redirect->private_data == tty) {
572 f = redirect;
573 redirect = NULL;
574 }
575 spin_unlock(&redirect_lock);
576
577 check_tty_count(tty, "do_tty_hangup");
578 file_list_lock();
579 /* This breaks for file handles being sent over AF_UNIX sockets ? */
580 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
581 if (filp->f_op->write == redirected_tty_write)
582 cons_filp = filp;
583 if (filp->f_op->write != tty_write)
584 continue;
585 closecount++;
586 tty_fasync(-1, filp, 0); /* can't block */
587 filp->f_op = &hung_up_tty_fops;
588 }
589 file_list_unlock();
590 /*
591 * FIXME! What are the locking issues here? This may me overdoing
592 * things... This question is especially important now that we've
593 * removed the irqlock.
594 */
595 ld = tty_ldisc_ref(tty);
596 if (ld != NULL) {
597 /* We may have no line discipline at this point */
598 if (ld->ops->flush_buffer)
599 ld->ops->flush_buffer(tty);
600 tty_driver_flush_buffer(tty);
601 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
602 ld->ops->write_wakeup)
603 ld->ops->write_wakeup(tty);
604 if (ld->ops->hangup)
605 ld->ops->hangup(tty);
606 }
607 /*
608 * FIXME: Once we trust the LDISC code better we can wait here for
609 * ldisc completion and fix the driver call race
610 */
611 wake_up_interruptible(&tty->write_wait);
612 wake_up_interruptible(&tty->read_wait);
613 /*
614 * Shutdown the current line discipline, and reset it to
615 * N_TTY.
616 */
617 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
618 tty_reset_termios(tty);
619 /* Defer ldisc switch */
620 /* tty_deferred_ldisc_switch(N_TTY);
621
622 This should get done automatically when the port closes and
623 tty_release is called */
624
625 read_lock(&tasklist_lock);
626 if (tty->session) {
627 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
628 spin_lock_irq(&p->sighand->siglock);
629 if (p->signal->tty == tty) {
630 p->signal->tty = NULL;
631 /* We defer the dereferences outside fo
632 the tasklist lock */
633 refs++;
634 }
635 if (!p->signal->leader) {
636 spin_unlock_irq(&p->sighand->siglock);
637 continue;
638 }
639 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
640 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
641 put_pid(p->signal->tty_old_pgrp); /* A noop */
642 spin_lock_irqsave(&tty->ctrl_lock, flags);
643 if (tty->pgrp)
644 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
645 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
646 spin_unlock_irq(&p->sighand->siglock);
647 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
648 }
649 read_unlock(&tasklist_lock);
650
651 spin_lock_irqsave(&tty->ctrl_lock, flags);
652 tty->flags = 0;
653 put_pid(tty->session);
654 put_pid(tty->pgrp);
655 tty->session = NULL;
656 tty->pgrp = NULL;
657 tty->ctrl_status = 0;
658 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
659
660 /* Account for the p->signal references we killed */
661 while (refs--)
662 tty_kref_put(tty);
663
664 /*
665 * If one of the devices matches a console pointer, we
666 * cannot just call hangup() because that will cause
667 * tty->count and state->count to go out of sync.
668 * So we just call close() the right number of times.
669 */
670 if (cons_filp) {
671 if (tty->ops->close)
672 for (n = 0; n < closecount; n++)
673 tty->ops->close(tty, cons_filp);
674 } else if (tty->ops->hangup)
675 (tty->ops->hangup)(tty);
676 /*
677 * We don't want to have driver/ldisc interactions beyond
678 * the ones we did here. The driver layer expects no
679 * calls after ->hangup() from the ldisc side. However we
680 * can't yet guarantee all that.
681 */
682 set_bit(TTY_HUPPED, &tty->flags);
683 if (ld) {
684 tty_ldisc_enable(tty);
685 tty_ldisc_deref(ld);
686 }
687 unlock_kernel();
688 if (f)
689 fput(f);
690 }
691
692 /**
693 * tty_hangup - trigger a hangup event
694 * @tty: tty to hangup
695 *
696 * A carrier loss (virtual or otherwise) has occurred on this like
697 * schedule a hangup sequence to run after this event.
698 */
699
700 void tty_hangup(struct tty_struct *tty)
701 {
702 #ifdef TTY_DEBUG_HANGUP
703 char buf[64];
704 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
705 #endif
706 schedule_work(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_hangup);
710
711 /**
712 * tty_vhangup - process vhangup
713 * @tty: tty to hangup
714 *
715 * The user has asked via system call for the terminal to be hung up.
716 * We do this synchronously so that when the syscall returns the process
717 * is complete. That guarantee is necessary for security reasons.
718 */
719
720 void tty_vhangup(struct tty_struct *tty)
721 {
722 #ifdef TTY_DEBUG_HANGUP
723 char buf[64];
724
725 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
726 #endif
727 do_tty_hangup(&tty->hangup_work);
728 }
729
730 EXPORT_SYMBOL(tty_vhangup);
731
732 /**
733 * tty_vhangup_self - process vhangup for own ctty
734 *
735 * Perform a vhangup on the current controlling tty
736 */
737
738 void tty_vhangup_self(void)
739 {
740 struct tty_struct *tty;
741
742 tty = get_current_tty();
743 if (tty) {
744 tty_vhangup(tty);
745 tty_kref_put(tty);
746 }
747 }
748
749 /**
750 * tty_hung_up_p - was tty hung up
751 * @filp: file pointer of tty
752 *
753 * Return true if the tty has been subject to a vhangup or a carrier
754 * loss
755 */
756
757 int tty_hung_up_p(struct file *filp)
758 {
759 return (filp->f_op == &hung_up_tty_fops);
760 }
761
762 EXPORT_SYMBOL(tty_hung_up_p);
763
764 static void session_clear_tty(struct pid *session)
765 {
766 struct task_struct *p;
767 do_each_pid_task(session, PIDTYPE_SID, p) {
768 proc_clear_tty(p);
769 } while_each_pid_task(session, PIDTYPE_SID, p);
770 }
771
772 /**
773 * disassociate_ctty - disconnect controlling tty
774 * @on_exit: true if exiting so need to "hang up" the session
775 *
776 * This function is typically called only by the session leader, when
777 * it wants to disassociate itself from its controlling tty.
778 *
779 * It performs the following functions:
780 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
781 * (2) Clears the tty from being controlling the session
782 * (3) Clears the controlling tty for all processes in the
783 * session group.
784 *
785 * The argument on_exit is set to 1 if called when a process is
786 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
787 *
788 * Locking:
789 * BKL is taken for hysterical raisins
790 * tty_mutex is taken to protect tty
791 * ->siglock is taken to protect ->signal/->sighand
792 * tasklist_lock is taken to walk process list for sessions
793 * ->siglock is taken to protect ->signal/->sighand
794 */
795
796 void disassociate_ctty(int on_exit)
797 {
798 struct tty_struct *tty;
799 struct pid *tty_pgrp = NULL;
800
801
802 tty = get_current_tty();
803 if (tty) {
804 tty_pgrp = get_pid(tty->pgrp);
805 lock_kernel();
806 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
807 tty_vhangup(tty);
808 unlock_kernel();
809 tty_kref_put(tty);
810 } else if (on_exit) {
811 struct pid *old_pgrp;
812 spin_lock_irq(&current->sighand->siglock);
813 old_pgrp = current->signal->tty_old_pgrp;
814 current->signal->tty_old_pgrp = NULL;
815 spin_unlock_irq(&current->sighand->siglock);
816 if (old_pgrp) {
817 kill_pgrp(old_pgrp, SIGHUP, on_exit);
818 kill_pgrp(old_pgrp, SIGCONT, on_exit);
819 put_pid(old_pgrp);
820 }
821 return;
822 }
823 if (tty_pgrp) {
824 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
825 if (!on_exit)
826 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
827 put_pid(tty_pgrp);
828 }
829
830 spin_lock_irq(&current->sighand->siglock);
831 put_pid(current->signal->tty_old_pgrp);
832 current->signal->tty_old_pgrp = NULL;
833 spin_unlock_irq(&current->sighand->siglock);
834
835 tty = get_current_tty();
836 if (tty) {
837 unsigned long flags;
838 spin_lock_irqsave(&tty->ctrl_lock, flags);
839 put_pid(tty->session);
840 put_pid(tty->pgrp);
841 tty->session = NULL;
842 tty->pgrp = NULL;
843 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
844 tty_kref_put(tty);
845 } else {
846 #ifdef TTY_DEBUG_HANGUP
847 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
848 " = NULL", tty);
849 #endif
850 }
851
852 /* Now clear signal->tty under the lock */
853 read_lock(&tasklist_lock);
854 session_clear_tty(task_session(current));
855 read_unlock(&tasklist_lock);
856 }
857
858 /**
859 *
860 * no_tty - Ensure the current process does not have a controlling tty
861 */
862 void no_tty(void)
863 {
864 struct task_struct *tsk = current;
865 lock_kernel();
866 if (tsk->signal->leader)
867 disassociate_ctty(0);
868 unlock_kernel();
869 proc_clear_tty(tsk);
870 }
871
872
873 /**
874 * stop_tty - propagate flow control
875 * @tty: tty to stop
876 *
877 * Perform flow control to the driver. For PTY/TTY pairs we
878 * must also propagate the TIOCKPKT status. May be called
879 * on an already stopped device and will not re-call the driver
880 * method.
881 *
882 * This functionality is used by both the line disciplines for
883 * halting incoming flow and by the driver. It may therefore be
884 * called from any context, may be under the tty atomic_write_lock
885 * but not always.
886 *
887 * Locking:
888 * Uses the tty control lock internally
889 */
890
891 void stop_tty(struct tty_struct *tty)
892 {
893 unsigned long flags;
894 spin_lock_irqsave(&tty->ctrl_lock, flags);
895 if (tty->stopped) {
896 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
897 return;
898 }
899 tty->stopped = 1;
900 if (tty->link && tty->link->packet) {
901 tty->ctrl_status &= ~TIOCPKT_START;
902 tty->ctrl_status |= TIOCPKT_STOP;
903 wake_up_interruptible(&tty->link->read_wait);
904 }
905 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
906 if (tty->ops->stop)
907 (tty->ops->stop)(tty);
908 }
909
910 EXPORT_SYMBOL(stop_tty);
911
912 /**
913 * start_tty - propagate flow control
914 * @tty: tty to start
915 *
916 * Start a tty that has been stopped if at all possible. Perform
917 * any necessary wakeups and propagate the TIOCPKT status. If this
918 * is the tty was previous stopped and is being started then the
919 * driver start method is invoked and the line discipline woken.
920 *
921 * Locking:
922 * ctrl_lock
923 */
924
925 void start_tty(struct tty_struct *tty)
926 {
927 unsigned long flags;
928 spin_lock_irqsave(&tty->ctrl_lock, flags);
929 if (!tty->stopped || tty->flow_stopped) {
930 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931 return;
932 }
933 tty->stopped = 0;
934 if (tty->link && tty->link->packet) {
935 tty->ctrl_status &= ~TIOCPKT_STOP;
936 tty->ctrl_status |= TIOCPKT_START;
937 wake_up_interruptible(&tty->link->read_wait);
938 }
939 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 if (tty->ops->start)
941 (tty->ops->start)(tty);
942 /* If we have a running line discipline it may need kicking */
943 tty_wakeup(tty);
944 }
945
946 EXPORT_SYMBOL(start_tty);
947
948 /**
949 * tty_read - read method for tty device files
950 * @file: pointer to tty file
951 * @buf: user buffer
952 * @count: size of user buffer
953 * @ppos: unused
954 *
955 * Perform the read system call function on this terminal device. Checks
956 * for hung up devices before calling the line discipline method.
957 *
958 * Locking:
959 * Locks the line discipline internally while needed. Multiple
960 * read calls may be outstanding in parallel.
961 */
962
963 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
964 loff_t *ppos)
965 {
966 int i;
967 struct tty_struct *tty;
968 struct inode *inode;
969 struct tty_ldisc *ld;
970
971 tty = (struct tty_struct *)file->private_data;
972 inode = file->f_path.dentry->d_inode;
973 if (tty_paranoia_check(tty, inode, "tty_read"))
974 return -EIO;
975 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
976 return -EIO;
977
978 /* We want to wait for the line discipline to sort out in this
979 situation */
980 ld = tty_ldisc_ref_wait(tty);
981 if (ld->ops->read)
982 i = (ld->ops->read)(tty, file, buf, count);
983 else
984 i = -EIO;
985 tty_ldisc_deref(ld);
986 if (i > 0)
987 inode->i_atime = current_fs_time(inode->i_sb);
988 return i;
989 }
990
991 void tty_write_unlock(struct tty_struct *tty)
992 {
993 mutex_unlock(&tty->atomic_write_lock);
994 wake_up_interruptible(&tty->write_wait);
995 }
996
997 int tty_write_lock(struct tty_struct *tty, int ndelay)
998 {
999 if (!mutex_trylock(&tty->atomic_write_lock)) {
1000 if (ndelay)
1001 return -EAGAIN;
1002 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1003 return -ERESTARTSYS;
1004 }
1005 return 0;
1006 }
1007
1008 /*
1009 * Split writes up in sane blocksizes to avoid
1010 * denial-of-service type attacks
1011 */
1012 static inline ssize_t do_tty_write(
1013 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1014 struct tty_struct *tty,
1015 struct file *file,
1016 const char __user *buf,
1017 size_t count)
1018 {
1019 ssize_t ret, written = 0;
1020 unsigned int chunk;
1021
1022 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1023 if (ret < 0)
1024 return ret;
1025
1026 /*
1027 * We chunk up writes into a temporary buffer. This
1028 * simplifies low-level drivers immensely, since they
1029 * don't have locking issues and user mode accesses.
1030 *
1031 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1032 * big chunk-size..
1033 *
1034 * The default chunk-size is 2kB, because the NTTY
1035 * layer has problems with bigger chunks. It will
1036 * claim to be able to handle more characters than
1037 * it actually does.
1038 *
1039 * FIXME: This can probably go away now except that 64K chunks
1040 * are too likely to fail unless switched to vmalloc...
1041 */
1042 chunk = 2048;
1043 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1044 chunk = 65536;
1045 if (count < chunk)
1046 chunk = count;
1047
1048 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1049 if (tty->write_cnt < chunk) {
1050 unsigned char *buf;
1051
1052 if (chunk < 1024)
1053 chunk = 1024;
1054
1055 buf = kmalloc(chunk, GFP_KERNEL);
1056 if (!buf) {
1057 ret = -ENOMEM;
1058 goto out;
1059 }
1060 kfree(tty->write_buf);
1061 tty->write_cnt = chunk;
1062 tty->write_buf = buf;
1063 }
1064
1065 /* Do the write .. */
1066 for (;;) {
1067 size_t size = count;
1068 if (size > chunk)
1069 size = chunk;
1070 ret = -EFAULT;
1071 if (copy_from_user(tty->write_buf, buf, size))
1072 break;
1073 ret = write(tty, file, tty->write_buf, size);
1074 if (ret <= 0)
1075 break;
1076 written += ret;
1077 buf += ret;
1078 count -= ret;
1079 if (!count)
1080 break;
1081 ret = -ERESTARTSYS;
1082 if (signal_pending(current))
1083 break;
1084 cond_resched();
1085 }
1086 if (written) {
1087 struct inode *inode = file->f_path.dentry->d_inode;
1088 inode->i_mtime = current_fs_time(inode->i_sb);
1089 ret = written;
1090 }
1091 out:
1092 tty_write_unlock(tty);
1093 return ret;
1094 }
1095
1096 /**
1097 * tty_write_message - write a message to a certain tty, not just the console.
1098 * @tty: the destination tty_struct
1099 * @msg: the message to write
1100 *
1101 * This is used for messages that need to be redirected to a specific tty.
1102 * We don't put it into the syslog queue right now maybe in the future if
1103 * really needed.
1104 *
1105 * We must still hold the BKL and test the CLOSING flag for the moment.
1106 */
1107
1108 void tty_write_message(struct tty_struct *tty, char *msg)
1109 {
1110 lock_kernel();
1111 if (tty) {
1112 mutex_lock(&tty->atomic_write_lock);
1113 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1114 tty->ops->write(tty, msg, strlen(msg));
1115 tty_write_unlock(tty);
1116 }
1117 unlock_kernel();
1118 return;
1119 }
1120
1121
1122 /**
1123 * tty_write - write method for tty device file
1124 * @file: tty file pointer
1125 * @buf: user data to write
1126 * @count: bytes to write
1127 * @ppos: unused
1128 *
1129 * Write data to a tty device via the line discipline.
1130 *
1131 * Locking:
1132 * Locks the line discipline as required
1133 * Writes to the tty driver are serialized by the atomic_write_lock
1134 * and are then processed in chunks to the device. The line discipline
1135 * write method will not be involked in parallel for each device
1136 * The line discipline write method is called under the big
1137 * kernel lock for historical reasons. New code should not rely on this.
1138 */
1139
1140 static ssize_t tty_write(struct file *file, const char __user *buf,
1141 size_t count, loff_t *ppos)
1142 {
1143 struct tty_struct *tty;
1144 struct inode *inode = file->f_path.dentry->d_inode;
1145 ssize_t ret;
1146 struct tty_ldisc *ld;
1147
1148 tty = (struct tty_struct *)file->private_data;
1149 if (tty_paranoia_check(tty, inode, "tty_write"))
1150 return -EIO;
1151 if (!tty || !tty->ops->write ||
1152 (test_bit(TTY_IO_ERROR, &tty->flags)))
1153 return -EIO;
1154 /* Short term debug to catch buggy drivers */
1155 if (tty->ops->write_room == NULL)
1156 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1157 tty->driver->name);
1158 ld = tty_ldisc_ref_wait(tty);
1159 if (!ld->ops->write)
1160 ret = -EIO;
1161 else
1162 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1163 tty_ldisc_deref(ld);
1164 return ret;
1165 }
1166
1167 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1168 size_t count, loff_t *ppos)
1169 {
1170 struct file *p = NULL;
1171
1172 spin_lock(&redirect_lock);
1173 if (redirect) {
1174 get_file(redirect);
1175 p = redirect;
1176 }
1177 spin_unlock(&redirect_lock);
1178
1179 if (p) {
1180 ssize_t res;
1181 res = vfs_write(p, buf, count, &p->f_pos);
1182 fput(p);
1183 return res;
1184 }
1185 return tty_write(file, buf, count, ppos);
1186 }
1187
1188 static char ptychar[] = "pqrstuvwxyzabcde";
1189
1190 /**
1191 * pty_line_name - generate name for a pty
1192 * @driver: the tty driver in use
1193 * @index: the minor number
1194 * @p: output buffer of at least 6 bytes
1195 *
1196 * Generate a name from a driver reference and write it to the output
1197 * buffer.
1198 *
1199 * Locking: None
1200 */
1201 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1202 {
1203 int i = index + driver->name_base;
1204 /* ->name is initialized to "ttyp", but "tty" is expected */
1205 sprintf(p, "%s%c%x",
1206 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1207 ptychar[i >> 4 & 0xf], i & 0xf);
1208 }
1209
1210 /**
1211 * pty_line_name - generate name for a tty
1212 * @driver: the tty driver in use
1213 * @index: the minor number
1214 * @p: output buffer of at least 7 bytes
1215 *
1216 * Generate a name from a driver reference and write it to the output
1217 * buffer.
1218 *
1219 * Locking: None
1220 */
1221 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1222 {
1223 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1224 }
1225
1226 /**
1227 * init_dev - initialise a tty device
1228 * @driver: tty driver we are opening a device on
1229 * @idx: device index
1230 * @tty: returned tty structure
1231 *
1232 * Prepare a tty device. This may not be a "new" clean device but
1233 * could also be an active device. The pty drivers require special
1234 * handling because of this.
1235 *
1236 * Locking:
1237 * The function is called under the tty_mutex, which
1238 * protects us from the tty struct or driver itself going away.
1239 *
1240 * On exit the tty device has the line discipline attached and
1241 * a reference count of 1. If a pair was created for pty/tty use
1242 * and the other was a pty master then it too has a reference count of 1.
1243 *
1244 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1245 * failed open. The new code protects the open with a mutex, so it's
1246 * really quite straightforward. The mutex locking can probably be
1247 * relaxed for the (most common) case of reopening a tty.
1248 */
1249
1250 static int init_dev(struct tty_driver *driver, int idx,
1251 struct tty_struct **ret_tty)
1252 {
1253 struct tty_struct *tty, *o_tty;
1254 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1255 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1256 int retval = 0;
1257
1258 /* check whether we're reopening an existing tty */
1259 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1260 tty = devpts_get_tty(idx);
1261 /*
1262 * If we don't have a tty here on a slave open, it's because
1263 * the master already started the close process and there's
1264 * no relation between devpts file and tty anymore.
1265 */
1266 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1267 retval = -EIO;
1268 goto end_init;
1269 }
1270 /*
1271 * It's safe from now on because init_dev() is called with
1272 * tty_mutex held and release_dev() won't change tty->count
1273 * or tty->flags without having to grab tty_mutex
1274 */
1275 if (tty && driver->subtype == PTY_TYPE_MASTER)
1276 tty = tty->link;
1277 } else {
1278 tty = driver->ttys[idx];
1279 }
1280 if (tty) goto fast_track;
1281
1282 /*
1283 * First time open is complex, especially for PTY devices.
1284 * This code guarantees that either everything succeeds and the
1285 * TTY is ready for operation, or else the table slots are vacated
1286 * and the allocated memory released. (Except that the termios
1287 * and locked termios may be retained.)
1288 */
1289
1290 if (!try_module_get(driver->owner)) {
1291 retval = -ENODEV;
1292 goto end_init;
1293 }
1294
1295 o_tty = NULL;
1296 tp = o_tp = NULL;
1297 ltp = o_ltp = NULL;
1298
1299 tty = alloc_tty_struct();
1300 if (!tty)
1301 goto fail_no_mem;
1302 initialize_tty_struct(tty);
1303 tty->driver = driver;
1304 tty->ops = driver->ops;
1305 tty->index = idx;
1306 tty_line_name(driver, idx, tty->name);
1307
1308 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1309 tp_loc = &tty->termios;
1310 ltp_loc = &tty->termios_locked;
1311 } else {
1312 tp_loc = &driver->termios[idx];
1313 ltp_loc = &driver->termios_locked[idx];
1314 }
1315
1316 if (!*tp_loc) {
1317 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1318 if (!tp)
1319 goto free_mem_out;
1320 *tp = driver->init_termios;
1321 }
1322
1323 if (!*ltp_loc) {
1324 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1325 if (!ltp)
1326 goto free_mem_out;
1327 }
1328
1329 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1330 o_tty = alloc_tty_struct();
1331 if (!o_tty)
1332 goto free_mem_out;
1333 if (!try_module_get(driver->other->owner)) {
1334 /* This cannot in fact currently happen */
1335 free_tty_struct(o_tty);
1336 o_tty = NULL;
1337 goto free_mem_out;
1338 }
1339 initialize_tty_struct(o_tty);
1340 o_tty->driver = driver->other;
1341 o_tty->ops = driver->ops;
1342 o_tty->index = idx;
1343 tty_line_name(driver->other, idx, o_tty->name);
1344
1345 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1346 o_tp_loc = &o_tty->termios;
1347 o_ltp_loc = &o_tty->termios_locked;
1348 } else {
1349 o_tp_loc = &driver->other->termios[idx];
1350 o_ltp_loc = &driver->other->termios_locked[idx];
1351 }
1352
1353 if (!*o_tp_loc) {
1354 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1355 if (!o_tp)
1356 goto free_mem_out;
1357 *o_tp = driver->other->init_termios;
1358 }
1359
1360 if (!*o_ltp_loc) {
1361 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1362 if (!o_ltp)
1363 goto free_mem_out;
1364 }
1365
1366 /*
1367 * Everything allocated ... set up the o_tty structure.
1368 */
1369 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1370 driver->other->ttys[idx] = o_tty;
1371 if (!*o_tp_loc)
1372 *o_tp_loc = o_tp;
1373 if (!*o_ltp_loc)
1374 *o_ltp_loc = o_ltp;
1375 o_tty->termios = *o_tp_loc;
1376 o_tty->termios_locked = *o_ltp_loc;
1377 driver->other->refcount++;
1378 if (driver->subtype == PTY_TYPE_MASTER)
1379 o_tty->count++;
1380
1381 /* Establish the links in both directions */
1382 tty->link = o_tty;
1383 o_tty->link = tty;
1384 }
1385
1386 /*
1387 * All structures have been allocated, so now we install them.
1388 * Failures after this point use release_tty to clean up, so
1389 * there's no need to null out the local pointers.
1390 */
1391 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
1392 driver->ttys[idx] = tty;
1393
1394 if (!*tp_loc)
1395 *tp_loc = tp;
1396 if (!*ltp_loc)
1397 *ltp_loc = ltp;
1398 tty->termios = *tp_loc;
1399 tty->termios_locked = *ltp_loc;
1400 /* Compatibility until drivers always set this */
1401 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1402 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1403 driver->refcount++;
1404 tty->count++;
1405
1406 /*
1407 * Structures all installed ... call the ldisc open routines.
1408 * If we fail here just call release_tty to clean up. No need
1409 * to decrement the use counts, as release_tty doesn't care.
1410 */
1411
1412 retval = tty_ldisc_setup(tty, o_tty);
1413
1414 if (retval)
1415 goto release_mem_out;
1416 goto success;
1417
1418 /*
1419 * This fast open can be used if the tty is already open.
1420 * No memory is allocated, and the only failures are from
1421 * attempting to open a closing tty or attempting multiple
1422 * opens on a pty master.
1423 */
1424 fast_track:
1425 if (test_bit(TTY_CLOSING, &tty->flags)) {
1426 retval = -EIO;
1427 goto end_init;
1428 }
1429 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1430 driver->subtype == PTY_TYPE_MASTER) {
1431 /*
1432 * special case for PTY masters: only one open permitted,
1433 * and the slave side open count is incremented as well.
1434 */
1435 if (tty->count) {
1436 retval = -EIO;
1437 goto end_init;
1438 }
1439 tty->link->count++;
1440 }
1441 tty->count++;
1442 tty->driver = driver; /* N.B. why do this every time?? */
1443
1444 /* FIXME */
1445 if (!test_bit(TTY_LDISC, &tty->flags))
1446 printk(KERN_ERR "init_dev but no ldisc\n");
1447 success:
1448 *ret_tty = tty;
1449
1450 /* All paths come through here to release the mutex */
1451 end_init:
1452 return retval;
1453
1454 /* Release locally allocated memory ... nothing placed in slots */
1455 free_mem_out:
1456 kfree(o_tp);
1457 if (o_tty) {
1458 module_put(o_tty->driver->owner);
1459 free_tty_struct(o_tty);
1460 }
1461 kfree(ltp);
1462 kfree(tp);
1463 free_tty_struct(tty);
1464
1465 fail_no_mem:
1466 module_put(driver->owner);
1467 retval = -ENOMEM;
1468 goto end_init;
1469
1470 /* call the tty release_tty routine to clean out this slot */
1471 release_mem_out:
1472 if (printk_ratelimit())
1473 printk(KERN_INFO "init_dev: ldisc open failed, "
1474 "clearing slot %d\n", idx);
1475 release_tty(tty, idx);
1476 goto end_init;
1477 }
1478
1479 /**
1480 * release_one_tty - release tty structure memory
1481 * @kref: kref of tty we are obliterating
1482 *
1483 * Releases memory associated with a tty structure, and clears out the
1484 * driver table slots. This function is called when a device is no longer
1485 * in use. It also gets called when setup of a device fails.
1486 *
1487 * Locking:
1488 * tty_mutex - sometimes only
1489 * takes the file list lock internally when working on the list
1490 * of ttys that the driver keeps.
1491 */
1492 static void release_one_tty(struct kref *kref)
1493 {
1494 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1495 struct tty_driver *driver = tty->driver;
1496 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
1497 struct ktermios *tp;
1498 int idx = tty->index;
1499
1500 if (!devpts)
1501 tty->driver->ttys[idx] = NULL;
1502
1503 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1504 /* FIXME: Locking on ->termios array */
1505 tp = tty->termios;
1506 if (!devpts)
1507 tty->driver->termios[idx] = NULL;
1508 kfree(tp);
1509
1510 tp = tty->termios_locked;
1511 if (!devpts)
1512 tty->driver->termios_locked[idx] = NULL;
1513 kfree(tp);
1514 }
1515
1516
1517 tty->magic = 0;
1518 /* FIXME: locking on tty->driver->refcount */
1519 tty->driver->refcount--;
1520 module_put(driver->owner);
1521
1522 file_list_lock();
1523 list_del_init(&tty->tty_files);
1524 file_list_unlock();
1525
1526 free_tty_struct(tty);
1527 }
1528
1529 /**
1530 * tty_kref_put - release a tty kref
1531 * @tty: tty device
1532 *
1533 * Release a reference to a tty device and if need be let the kref
1534 * layer destruct the object for us
1535 */
1536
1537 void tty_kref_put(struct tty_struct *tty)
1538 {
1539 if (tty)
1540 kref_put(&tty->kref, release_one_tty);
1541 }
1542 EXPORT_SYMBOL(tty_kref_put);
1543
1544 /**
1545 * release_tty - release tty structure memory
1546 *
1547 * Release both @tty and a possible linked partner (think pty pair),
1548 * and decrement the refcount of the backing module.
1549 *
1550 * Locking:
1551 * tty_mutex - sometimes only
1552 * takes the file list lock internally when working on the list
1553 * of ttys that the driver keeps.
1554 * FIXME: should we require tty_mutex is held here ??
1555 *
1556 */
1557 static void release_tty(struct tty_struct *tty, int idx)
1558 {
1559 /* This should always be true but check for the moment */
1560 WARN_ON(tty->index != idx);
1561
1562 if (tty->link)
1563 tty_kref_put(tty->link);
1564 tty_kref_put(tty);
1565 }
1566
1567 /*
1568 * Even releasing the tty structures is a tricky business.. We have
1569 * to be very careful that the structures are all released at the
1570 * same time, as interrupts might otherwise get the wrong pointers.
1571 *
1572 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1573 * lead to double frees or releasing memory still in use.
1574 */
1575 static void release_dev(struct file *filp)
1576 {
1577 struct tty_struct *tty, *o_tty;
1578 int pty_master, tty_closing, o_tty_closing, do_sleep;
1579 int devpts;
1580 int idx;
1581 char buf[64];
1582
1583 tty = (struct tty_struct *)filp->private_data;
1584 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1585 "release_dev"))
1586 return;
1587
1588 check_tty_count(tty, "release_dev");
1589
1590 tty_fasync(-1, filp, 0);
1591
1592 idx = tty->index;
1593 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1594 tty->driver->subtype == PTY_TYPE_MASTER);
1595 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1596 o_tty = tty->link;
1597
1598 #ifdef TTY_PARANOIA_CHECK
1599 if (idx < 0 || idx >= tty->driver->num) {
1600 printk(KERN_DEBUG "release_dev: bad idx when trying to "
1601 "free (%s)\n", tty->name);
1602 return;
1603 }
1604 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1605 if (tty != tty->driver->ttys[idx]) {
1606 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
1607 "for (%s)\n", idx, tty->name);
1608 return;
1609 }
1610 if (tty->termios != tty->driver->termios[idx]) {
1611 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
1612 "for (%s)\n",
1613 idx, tty->name);
1614 return;
1615 }
1616 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1617 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
1618 "termios_locked for (%s)\n",
1619 idx, tty->name);
1620 return;
1621 }
1622 }
1623 #endif
1624
1625 #ifdef TTY_DEBUG_HANGUP
1626 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
1627 tty_name(tty, buf), tty->count);
1628 #endif
1629
1630 #ifdef TTY_PARANOIA_CHECK
1631 if (tty->driver->other &&
1632 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1633 if (o_tty != tty->driver->other->ttys[idx]) {
1634 printk(KERN_DEBUG "release_dev: other->table[%d] "
1635 "not o_tty for (%s)\n",
1636 idx, tty->name);
1637 return;
1638 }
1639 if (o_tty->termios != tty->driver->other->termios[idx]) {
1640 printk(KERN_DEBUG "release_dev: other->termios[%d] "
1641 "not o_termios for (%s)\n",
1642 idx, tty->name);
1643 return;
1644 }
1645 if (o_tty->termios_locked !=
1646 tty->driver->other->termios_locked[idx]) {
1647 printk(KERN_DEBUG "release_dev: other->termios_locked["
1648 "%d] not o_termios_locked for (%s)\n",
1649 idx, tty->name);
1650 return;
1651 }
1652 if (o_tty->link != tty) {
1653 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
1654 return;
1655 }
1656 }
1657 #endif
1658 if (tty->ops->close)
1659 tty->ops->close(tty, filp);
1660
1661 /*
1662 * Sanity check: if tty->count is going to zero, there shouldn't be
1663 * any waiters on tty->read_wait or tty->write_wait. We test the
1664 * wait queues and kick everyone out _before_ actually starting to
1665 * close. This ensures that we won't block while releasing the tty
1666 * structure.
1667 *
1668 * The test for the o_tty closing is necessary, since the master and
1669 * slave sides may close in any order. If the slave side closes out
1670 * first, its count will be one, since the master side holds an open.
1671 * Thus this test wouldn't be triggered at the time the slave closes,
1672 * so we do it now.
1673 *
1674 * Note that it's possible for the tty to be opened again while we're
1675 * flushing out waiters. By recalculating the closing flags before
1676 * each iteration we avoid any problems.
1677 */
1678 while (1) {
1679 /* Guard against races with tty->count changes elsewhere and
1680 opens on /dev/tty */
1681
1682 mutex_lock(&tty_mutex);
1683 tty_closing = tty->count <= 1;
1684 o_tty_closing = o_tty &&
1685 (o_tty->count <= (pty_master ? 1 : 0));
1686 do_sleep = 0;
1687
1688 if (tty_closing) {
1689 if (waitqueue_active(&tty->read_wait)) {
1690 wake_up(&tty->read_wait);
1691 do_sleep++;
1692 }
1693 if (waitqueue_active(&tty->write_wait)) {
1694 wake_up(&tty->write_wait);
1695 do_sleep++;
1696 }
1697 }
1698 if (o_tty_closing) {
1699 if (waitqueue_active(&o_tty->read_wait)) {
1700 wake_up(&o_tty->read_wait);
1701 do_sleep++;
1702 }
1703 if (waitqueue_active(&o_tty->write_wait)) {
1704 wake_up(&o_tty->write_wait);
1705 do_sleep++;
1706 }
1707 }
1708 if (!do_sleep)
1709 break;
1710
1711 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
1712 "active!\n", tty_name(tty, buf));
1713 mutex_unlock(&tty_mutex);
1714 schedule();
1715 }
1716
1717 /*
1718 * The closing flags are now consistent with the open counts on
1719 * both sides, and we've completed the last operation that could
1720 * block, so it's safe to proceed with closing.
1721 */
1722 if (pty_master) {
1723 if (--o_tty->count < 0) {
1724 printk(KERN_WARNING "release_dev: bad pty slave count "
1725 "(%d) for %s\n",
1726 o_tty->count, tty_name(o_tty, buf));
1727 o_tty->count = 0;
1728 }
1729 }
1730 if (--tty->count < 0) {
1731 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
1732 tty->count, tty_name(tty, buf));
1733 tty->count = 0;
1734 }
1735
1736 /*
1737 * We've decremented tty->count, so we need to remove this file
1738 * descriptor off the tty->tty_files list; this serves two
1739 * purposes:
1740 * - check_tty_count sees the correct number of file descriptors
1741 * associated with this tty.
1742 * - do_tty_hangup no longer sees this file descriptor as
1743 * something that needs to be handled for hangups.
1744 */
1745 file_kill(filp);
1746 filp->private_data = NULL;
1747
1748 /*
1749 * Perform some housekeeping before deciding whether to return.
1750 *
1751 * Set the TTY_CLOSING flag if this was the last open. In the
1752 * case of a pty we may have to wait around for the other side
1753 * to close, and TTY_CLOSING makes sure we can't be reopened.
1754 */
1755 if (tty_closing)
1756 set_bit(TTY_CLOSING, &tty->flags);
1757 if (o_tty_closing)
1758 set_bit(TTY_CLOSING, &o_tty->flags);
1759
1760 /*
1761 * If _either_ side is closing, make sure there aren't any
1762 * processes that still think tty or o_tty is their controlling
1763 * tty.
1764 */
1765 if (tty_closing || o_tty_closing) {
1766 read_lock(&tasklist_lock);
1767 session_clear_tty(tty->session);
1768 if (o_tty)
1769 session_clear_tty(o_tty->session);
1770 read_unlock(&tasklist_lock);
1771 }
1772
1773 mutex_unlock(&tty_mutex);
1774
1775 /* check whether both sides are closing ... */
1776 if (!tty_closing || (o_tty && !o_tty_closing))
1777 return;
1778
1779 #ifdef TTY_DEBUG_HANGUP
1780 printk(KERN_DEBUG "freeing tty structure...");
1781 #endif
1782 /*
1783 * Ask the line discipline code to release its structures
1784 */
1785 tty_ldisc_release(tty, o_tty);
1786 /*
1787 * The release_tty function takes care of the details of clearing
1788 * the slots and preserving the termios structure.
1789 */
1790 release_tty(tty, idx);
1791
1792 /* Make this pty number available for reallocation */
1793 if (devpts)
1794 devpts_kill_index(idx);
1795 }
1796
1797 /**
1798 * tty_open - open a tty device
1799 * @inode: inode of device file
1800 * @filp: file pointer to tty
1801 *
1802 * tty_open and tty_release keep up the tty count that contains the
1803 * number of opens done on a tty. We cannot use the inode-count, as
1804 * different inodes might point to the same tty.
1805 *
1806 * Open-counting is needed for pty masters, as well as for keeping
1807 * track of serial lines: DTR is dropped when the last close happens.
1808 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1809 *
1810 * The termios state of a pty is reset on first open so that
1811 * settings don't persist across reuse.
1812 *
1813 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
1814 * tty->count should protect the rest.
1815 * ->siglock protects ->signal/->sighand
1816 */
1817
1818 static int __tty_open(struct inode *inode, struct file *filp)
1819 {
1820 struct tty_struct *tty;
1821 int noctty, retval;
1822 struct tty_driver *driver;
1823 int index;
1824 dev_t device = inode->i_rdev;
1825 unsigned short saved_flags = filp->f_flags;
1826
1827 nonseekable_open(inode, filp);
1828
1829 retry_open:
1830 noctty = filp->f_flags & O_NOCTTY;
1831 index = -1;
1832 retval = 0;
1833
1834 mutex_lock(&tty_mutex);
1835
1836 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1837 tty = get_current_tty();
1838 if (!tty) {
1839 mutex_unlock(&tty_mutex);
1840 return -ENXIO;
1841 }
1842 driver = tty->driver;
1843 index = tty->index;
1844 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1845 /* noctty = 1; */
1846 /* FIXME: Should we take a driver reference ? */
1847 tty_kref_put(tty);
1848 goto got_driver;
1849 }
1850 #ifdef CONFIG_VT
1851 if (device == MKDEV(TTY_MAJOR, 0)) {
1852 extern struct tty_driver *console_driver;
1853 driver = console_driver;
1854 index = fg_console;
1855 noctty = 1;
1856 goto got_driver;
1857 }
1858 #endif
1859 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1860 driver = console_device(&index);
1861 if (driver) {
1862 /* Don't let /dev/console block */
1863 filp->f_flags |= O_NONBLOCK;
1864 noctty = 1;
1865 goto got_driver;
1866 }
1867 mutex_unlock(&tty_mutex);
1868 return -ENODEV;
1869 }
1870
1871 driver = get_tty_driver(device, &index);
1872 if (!driver) {
1873 mutex_unlock(&tty_mutex);
1874 return -ENODEV;
1875 }
1876 got_driver:
1877 retval = init_dev(driver, index, &tty);
1878 mutex_unlock(&tty_mutex);
1879 if (retval)
1880 return retval;
1881
1882 filp->private_data = tty;
1883 file_move(filp, &tty->tty_files);
1884 check_tty_count(tty, "tty_open");
1885 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1886 tty->driver->subtype == PTY_TYPE_MASTER)
1887 noctty = 1;
1888 #ifdef TTY_DEBUG_HANGUP
1889 printk(KERN_DEBUG "opening %s...", tty->name);
1890 #endif
1891 if (!retval) {
1892 if (tty->ops->open)
1893 retval = tty->ops->open(tty, filp);
1894 else
1895 retval = -ENODEV;
1896 }
1897 filp->f_flags = saved_flags;
1898
1899 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1900 !capable(CAP_SYS_ADMIN))
1901 retval = -EBUSY;
1902
1903 if (retval) {
1904 #ifdef TTY_DEBUG_HANGUP
1905 printk(KERN_DEBUG "error %d in opening %s...", retval,
1906 tty->name);
1907 #endif
1908 release_dev(filp);
1909 if (retval != -ERESTARTSYS)
1910 return retval;
1911 if (signal_pending(current))
1912 return retval;
1913 schedule();
1914 /*
1915 * Need to reset f_op in case a hangup happened.
1916 */
1917 if (filp->f_op == &hung_up_tty_fops)
1918 filp->f_op = &tty_fops;
1919 goto retry_open;
1920 }
1921
1922 mutex_lock(&tty_mutex);
1923 spin_lock_irq(&current->sighand->siglock);
1924 if (!noctty &&
1925 current->signal->leader &&
1926 !current->signal->tty &&
1927 tty->session == NULL)
1928 __proc_set_tty(current, tty);
1929 spin_unlock_irq(&current->sighand->siglock);
1930 mutex_unlock(&tty_mutex);
1931 return 0;
1932 }
1933
1934 /* BKL pushdown: scary code avoidance wrapper */
1935 static int tty_open(struct inode *inode, struct file *filp)
1936 {
1937 int ret;
1938
1939 lock_kernel();
1940 ret = __tty_open(inode, filp);
1941 unlock_kernel();
1942 return ret;
1943 }
1944
1945
1946
1947 #ifdef CONFIG_UNIX98_PTYS
1948 /**
1949 * ptmx_open - open a unix 98 pty master
1950 * @inode: inode of device file
1951 * @filp: file pointer to tty
1952 *
1953 * Allocate a unix98 pty master device from the ptmx driver.
1954 *
1955 * Locking: tty_mutex protects theinit_dev work. tty->count should
1956 * protect the rest.
1957 * allocated_ptys_lock handles the list of free pty numbers
1958 */
1959
1960 static int __ptmx_open(struct inode *inode, struct file *filp)
1961 {
1962 struct tty_struct *tty;
1963 int retval;
1964 int index;
1965
1966 nonseekable_open(inode, filp);
1967
1968 /* find a device that is not in use. */
1969 index = devpts_new_index();
1970 if (index < 0)
1971 return index;
1972
1973 mutex_lock(&tty_mutex);
1974 retval = init_dev(ptm_driver, index, &tty);
1975 mutex_unlock(&tty_mutex);
1976
1977 if (retval)
1978 goto out;
1979
1980 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
1981 filp->private_data = tty;
1982 file_move(filp, &tty->tty_files);
1983
1984 retval = devpts_pty_new(tty->link);
1985 if (retval)
1986 goto out1;
1987
1988 check_tty_count(tty, "ptmx_open");
1989 retval = ptm_driver->ops->open(tty, filp);
1990 if (!retval)
1991 return 0;
1992 out1:
1993 release_dev(filp);
1994 return retval;
1995 out:
1996 devpts_kill_index(index);
1997 return retval;
1998 }
1999
2000 static int ptmx_open(struct inode *inode, struct file *filp)
2001 {
2002 int ret;
2003
2004 lock_kernel();
2005 ret = __ptmx_open(inode, filp);
2006 unlock_kernel();
2007 return ret;
2008 }
2009 #endif
2010
2011 /**
2012 * tty_release - vfs callback for close
2013 * @inode: inode of tty
2014 * @filp: file pointer for handle to tty
2015 *
2016 * Called the last time each file handle is closed that references
2017 * this tty. There may however be several such references.
2018 *
2019 * Locking:
2020 * Takes bkl. See release_dev
2021 */
2022
2023 static int tty_release(struct inode *inode, struct file *filp)
2024 {
2025 lock_kernel();
2026 release_dev(filp);
2027 unlock_kernel();
2028 return 0;
2029 }
2030
2031 /**
2032 * tty_poll - check tty status
2033 * @filp: file being polled
2034 * @wait: poll wait structures to update
2035 *
2036 * Call the line discipline polling method to obtain the poll
2037 * status of the device.
2038 *
2039 * Locking: locks called line discipline but ldisc poll method
2040 * may be re-entered freely by other callers.
2041 */
2042
2043 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2044 {
2045 struct tty_struct *tty;
2046 struct tty_ldisc *ld;
2047 int ret = 0;
2048
2049 tty = (struct tty_struct *)filp->private_data;
2050 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2051 return 0;
2052
2053 ld = tty_ldisc_ref_wait(tty);
2054 if (ld->ops->poll)
2055 ret = (ld->ops->poll)(tty, filp, wait);
2056 tty_ldisc_deref(ld);
2057 return ret;
2058 }
2059
2060 static int tty_fasync(int fd, struct file *filp, int on)
2061 {
2062 struct tty_struct *tty;
2063 unsigned long flags;
2064 int retval = 0;
2065
2066 lock_kernel();
2067 tty = (struct tty_struct *)filp->private_data;
2068 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2069 goto out;
2070
2071 retval = fasync_helper(fd, filp, on, &tty->fasync);
2072 if (retval <= 0)
2073 goto out;
2074
2075 if (on) {
2076 enum pid_type type;
2077 struct pid *pid;
2078 if (!waitqueue_active(&tty->read_wait))
2079 tty->minimum_to_wake = 1;
2080 spin_lock_irqsave(&tty->ctrl_lock, flags);
2081 if (tty->pgrp) {
2082 pid = tty->pgrp;
2083 type = PIDTYPE_PGID;
2084 } else {
2085 pid = task_pid(current);
2086 type = PIDTYPE_PID;
2087 }
2088 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2089 retval = __f_setown(filp, pid, type, 0);
2090 if (retval)
2091 goto out;
2092 } else {
2093 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2094 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2095 }
2096 retval = 0;
2097 out:
2098 unlock_kernel();
2099 return retval;
2100 }
2101
2102 /**
2103 * tiocsti - fake input character
2104 * @tty: tty to fake input into
2105 * @p: pointer to character
2106 *
2107 * Fake input to a tty device. Does the necessary locking and
2108 * input management.
2109 *
2110 * FIXME: does not honour flow control ??
2111 *
2112 * Locking:
2113 * Called functions take tty_ldisc_lock
2114 * current->signal->tty check is safe without locks
2115 *
2116 * FIXME: may race normal receive processing
2117 */
2118
2119 static int tiocsti(struct tty_struct *tty, char __user *p)
2120 {
2121 char ch, mbz = 0;
2122 struct tty_ldisc *ld;
2123
2124 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2125 return -EPERM;
2126 if (get_user(ch, p))
2127 return -EFAULT;
2128 ld = tty_ldisc_ref_wait(tty);
2129 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2130 tty_ldisc_deref(ld);
2131 return 0;
2132 }
2133
2134 /**
2135 * tiocgwinsz - implement window query ioctl
2136 * @tty; tty
2137 * @arg: user buffer for result
2138 *
2139 * Copies the kernel idea of the window size into the user buffer.
2140 *
2141 * Locking: tty->termios_mutex is taken to ensure the winsize data
2142 * is consistent.
2143 */
2144
2145 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2146 {
2147 int err;
2148
2149 mutex_lock(&tty->termios_mutex);
2150 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2151 mutex_unlock(&tty->termios_mutex);
2152
2153 return err ? -EFAULT: 0;
2154 }
2155
2156 /**
2157 * tty_do_resize - resize event
2158 * @tty: tty being resized
2159 * @real_tty: real tty (not the same as tty if using a pty/tty pair)
2160 * @rows: rows (character)
2161 * @cols: cols (character)
2162 *
2163 * Update the termios variables and send the neccessary signals to
2164 * peform a terminal resize correctly
2165 */
2166
2167 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2168 struct winsize *ws)
2169 {
2170 struct pid *pgrp, *rpgrp;
2171 unsigned long flags;
2172
2173 /* For a PTY we need to lock the tty side */
2174 mutex_lock(&real_tty->termios_mutex);
2175 if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2176 goto done;
2177 /* Get the PID values and reference them so we can
2178 avoid holding the tty ctrl lock while sending signals */
2179 spin_lock_irqsave(&tty->ctrl_lock, flags);
2180 pgrp = get_pid(tty->pgrp);
2181 rpgrp = get_pid(real_tty->pgrp);
2182 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
2184 if (pgrp)
2185 kill_pgrp(pgrp, SIGWINCH, 1);
2186 if (rpgrp != pgrp && rpgrp)
2187 kill_pgrp(rpgrp, SIGWINCH, 1);
2188
2189 put_pid(pgrp);
2190 put_pid(rpgrp);
2191
2192 tty->winsize = *ws;
2193 real_tty->winsize = *ws;
2194 done:
2195 mutex_unlock(&real_tty->termios_mutex);
2196 return 0;
2197 }
2198
2199 /**
2200 * tiocswinsz - implement window size set ioctl
2201 * @tty; tty
2202 * @arg: user buffer for result
2203 *
2204 * Copies the user idea of the window size to the kernel. Traditionally
2205 * this is just advisory information but for the Linux console it
2206 * actually has driver level meaning and triggers a VC resize.
2207 *
2208 * Locking:
2209 * Driver dependant. The default do_resize method takes the
2210 * tty termios mutex and ctrl_lock. The console takes its own lock
2211 * then calls into the default method.
2212 */
2213
2214 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2215 struct winsize __user *arg)
2216 {
2217 struct winsize tmp_ws;
2218 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2219 return -EFAULT;
2220
2221 if (tty->ops->resize)
2222 return tty->ops->resize(tty, real_tty, &tmp_ws);
2223 else
2224 return tty_do_resize(tty, real_tty, &tmp_ws);
2225 }
2226
2227 /**
2228 * tioccons - allow admin to move logical console
2229 * @file: the file to become console
2230 *
2231 * Allow the adminstrator to move the redirected console device
2232 *
2233 * Locking: uses redirect_lock to guard the redirect information
2234 */
2235
2236 static int tioccons(struct file *file)
2237 {
2238 if (!capable(CAP_SYS_ADMIN))
2239 return -EPERM;
2240 if (file->f_op->write == redirected_tty_write) {
2241 struct file *f;
2242 spin_lock(&redirect_lock);
2243 f = redirect;
2244 redirect = NULL;
2245 spin_unlock(&redirect_lock);
2246 if (f)
2247 fput(f);
2248 return 0;
2249 }
2250 spin_lock(&redirect_lock);
2251 if (redirect) {
2252 spin_unlock(&redirect_lock);
2253 return -EBUSY;
2254 }
2255 get_file(file);
2256 redirect = file;
2257 spin_unlock(&redirect_lock);
2258 return 0;
2259 }
2260
2261 /**
2262 * fionbio - non blocking ioctl
2263 * @file: file to set blocking value
2264 * @p: user parameter
2265 *
2266 * Historical tty interfaces had a blocking control ioctl before
2267 * the generic functionality existed. This piece of history is preserved
2268 * in the expected tty API of posix OS's.
2269 *
2270 * Locking: none, the open fle handle ensures it won't go away.
2271 */
2272
2273 static int fionbio(struct file *file, int __user *p)
2274 {
2275 int nonblock;
2276
2277 if (get_user(nonblock, p))
2278 return -EFAULT;
2279
2280 /* file->f_flags is still BKL protected in the fs layer - vomit */
2281 lock_kernel();
2282 if (nonblock)
2283 file->f_flags |= O_NONBLOCK;
2284 else
2285 file->f_flags &= ~O_NONBLOCK;
2286 unlock_kernel();
2287 return 0;
2288 }
2289
2290 /**
2291 * tiocsctty - set controlling tty
2292 * @tty: tty structure
2293 * @arg: user argument
2294 *
2295 * This ioctl is used to manage job control. It permits a session
2296 * leader to set this tty as the controlling tty for the session.
2297 *
2298 * Locking:
2299 * Takes tty_mutex() to protect tty instance
2300 * Takes tasklist_lock internally to walk sessions
2301 * Takes ->siglock() when updating signal->tty
2302 */
2303
2304 static int tiocsctty(struct tty_struct *tty, int arg)
2305 {
2306 int ret = 0;
2307 if (current->signal->leader && (task_session(current) == tty->session))
2308 return ret;
2309
2310 mutex_lock(&tty_mutex);
2311 /*
2312 * The process must be a session leader and
2313 * not have a controlling tty already.
2314 */
2315 if (!current->signal->leader || current->signal->tty) {
2316 ret = -EPERM;
2317 goto unlock;
2318 }
2319
2320 if (tty->session) {
2321 /*
2322 * This tty is already the controlling
2323 * tty for another session group!
2324 */
2325 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2326 /*
2327 * Steal it away
2328 */
2329 read_lock(&tasklist_lock);
2330 session_clear_tty(tty->session);
2331 read_unlock(&tasklist_lock);
2332 } else {
2333 ret = -EPERM;
2334 goto unlock;
2335 }
2336 }
2337 proc_set_tty(current, tty);
2338 unlock:
2339 mutex_unlock(&tty_mutex);
2340 return ret;
2341 }
2342
2343 /**
2344 * tty_get_pgrp - return a ref counted pgrp pid
2345 * @tty: tty to read
2346 *
2347 * Returns a refcounted instance of the pid struct for the process
2348 * group controlling the tty.
2349 */
2350
2351 struct pid *tty_get_pgrp(struct tty_struct *tty)
2352 {
2353 unsigned long flags;
2354 struct pid *pgrp;
2355
2356 spin_lock_irqsave(&tty->ctrl_lock, flags);
2357 pgrp = get_pid(tty->pgrp);
2358 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2359
2360 return pgrp;
2361 }
2362 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2363
2364 /**
2365 * tiocgpgrp - get process group
2366 * @tty: tty passed by user
2367 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2368 * @p: returned pid
2369 *
2370 * Obtain the process group of the tty. If there is no process group
2371 * return an error.
2372 *
2373 * Locking: none. Reference to current->signal->tty is safe.
2374 */
2375
2376 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2377 {
2378 struct pid *pid;
2379 int ret;
2380 /*
2381 * (tty == real_tty) is a cheap way of
2382 * testing if the tty is NOT a master pty.
2383 */
2384 if (tty == real_tty && current->signal->tty != real_tty)
2385 return -ENOTTY;
2386 pid = tty_get_pgrp(real_tty);
2387 ret = put_user(pid_vnr(pid), p);
2388 put_pid(pid);
2389 return ret;
2390 }
2391
2392 /**
2393 * tiocspgrp - attempt to set process group
2394 * @tty: tty passed by user
2395 * @real_tty: tty side device matching tty passed by user
2396 * @p: pid pointer
2397 *
2398 * Set the process group of the tty to the session passed. Only
2399 * permitted where the tty session is our session.
2400 *
2401 * Locking: RCU, ctrl lock
2402 */
2403
2404 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2405 {
2406 struct pid *pgrp;
2407 pid_t pgrp_nr;
2408 int retval = tty_check_change(real_tty);
2409 unsigned long flags;
2410
2411 if (retval == -EIO)
2412 return -ENOTTY;
2413 if (retval)
2414 return retval;
2415 if (!current->signal->tty ||
2416 (current->signal->tty != real_tty) ||
2417 (real_tty->session != task_session(current)))
2418 return -ENOTTY;
2419 if (get_user(pgrp_nr, p))
2420 return -EFAULT;
2421 if (pgrp_nr < 0)
2422 return -EINVAL;
2423 rcu_read_lock();
2424 pgrp = find_vpid(pgrp_nr);
2425 retval = -ESRCH;
2426 if (!pgrp)
2427 goto out_unlock;
2428 retval = -EPERM;
2429 if (session_of_pgrp(pgrp) != task_session(current))
2430 goto out_unlock;
2431 retval = 0;
2432 spin_lock_irqsave(&tty->ctrl_lock, flags);
2433 put_pid(real_tty->pgrp);
2434 real_tty->pgrp = get_pid(pgrp);
2435 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2436 out_unlock:
2437 rcu_read_unlock();
2438 return retval;
2439 }
2440
2441 /**
2442 * tiocgsid - get session id
2443 * @tty: tty passed by user
2444 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2445 * @p: pointer to returned session id
2446 *
2447 * Obtain the session id of the tty. If there is no session
2448 * return an error.
2449 *
2450 * Locking: none. Reference to current->signal->tty is safe.
2451 */
2452
2453 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2454 {
2455 /*
2456 * (tty == real_tty) is a cheap way of
2457 * testing if the tty is NOT a master pty.
2458 */
2459 if (tty == real_tty && current->signal->tty != real_tty)
2460 return -ENOTTY;
2461 if (!real_tty->session)
2462 return -ENOTTY;
2463 return put_user(pid_vnr(real_tty->session), p);
2464 }
2465
2466 /**
2467 * tiocsetd - set line discipline
2468 * @tty: tty device
2469 * @p: pointer to user data
2470 *
2471 * Set the line discipline according to user request.
2472 *
2473 * Locking: see tty_set_ldisc, this function is just a helper
2474 */
2475
2476 static int tiocsetd(struct tty_struct *tty, int __user *p)
2477 {
2478 int ldisc;
2479 int ret;
2480
2481 if (get_user(ldisc, p))
2482 return -EFAULT;
2483
2484 lock_kernel();
2485 ret = tty_set_ldisc(tty, ldisc);
2486 unlock_kernel();
2487
2488 return ret;
2489 }
2490
2491 /**
2492 * send_break - performed time break
2493 * @tty: device to break on
2494 * @duration: timeout in mS
2495 *
2496 * Perform a timed break on hardware that lacks its own driver level
2497 * timed break functionality.
2498 *
2499 * Locking:
2500 * atomic_write_lock serializes
2501 *
2502 */
2503
2504 static int send_break(struct tty_struct *tty, unsigned int duration)
2505 {
2506 int retval;
2507
2508 if (tty->ops->break_ctl == NULL)
2509 return 0;
2510
2511 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2512 retval = tty->ops->break_ctl(tty, duration);
2513 else {
2514 /* Do the work ourselves */
2515 if (tty_write_lock(tty, 0) < 0)
2516 return -EINTR;
2517 retval = tty->ops->break_ctl(tty, -1);
2518 if (retval)
2519 goto out;
2520 if (!signal_pending(current))
2521 msleep_interruptible(duration);
2522 retval = tty->ops->break_ctl(tty, 0);
2523 out:
2524 tty_write_unlock(tty);
2525 if (signal_pending(current))
2526 retval = -EINTR;
2527 }
2528 return retval;
2529 }
2530
2531 /**
2532 * tty_tiocmget - get modem status
2533 * @tty: tty device
2534 * @file: user file pointer
2535 * @p: pointer to result
2536 *
2537 * Obtain the modem status bits from the tty driver if the feature
2538 * is supported. Return -EINVAL if it is not available.
2539 *
2540 * Locking: none (up to the driver)
2541 */
2542
2543 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2544 {
2545 int retval = -EINVAL;
2546
2547 if (tty->ops->tiocmget) {
2548 retval = tty->ops->tiocmget(tty, file);
2549
2550 if (retval >= 0)
2551 retval = put_user(retval, p);
2552 }
2553 return retval;
2554 }
2555
2556 /**
2557 * tty_tiocmset - set modem status
2558 * @tty: tty device
2559 * @file: user file pointer
2560 * @cmd: command - clear bits, set bits or set all
2561 * @p: pointer to desired bits
2562 *
2563 * Set the modem status bits from the tty driver if the feature
2564 * is supported. Return -EINVAL if it is not available.
2565 *
2566 * Locking: none (up to the driver)
2567 */
2568
2569 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2570 unsigned __user *p)
2571 {
2572 int retval;
2573 unsigned int set, clear, val;
2574
2575 if (tty->ops->tiocmset == NULL)
2576 return -EINVAL;
2577
2578 retval = get_user(val, p);
2579 if (retval)
2580 return retval;
2581 set = clear = 0;
2582 switch (cmd) {
2583 case TIOCMBIS:
2584 set = val;
2585 break;
2586 case TIOCMBIC:
2587 clear = val;
2588 break;
2589 case TIOCMSET:
2590 set = val;
2591 clear = ~val;
2592 break;
2593 }
2594 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2595 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2596 return tty->ops->tiocmset(tty, file, set, clear);
2597 }
2598
2599 /*
2600 * Split this up, as gcc can choke on it otherwise..
2601 */
2602 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2603 {
2604 struct tty_struct *tty, *real_tty;
2605 void __user *p = (void __user *)arg;
2606 int retval;
2607 struct tty_ldisc *ld;
2608 struct inode *inode = file->f_dentry->d_inode;
2609
2610 tty = (struct tty_struct *)file->private_data;
2611 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2612 return -EINVAL;
2613
2614 real_tty = tty;
2615 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2616 tty->driver->subtype == PTY_TYPE_MASTER)
2617 real_tty = tty->link;
2618
2619
2620 /*
2621 * Factor out some common prep work
2622 */
2623 switch (cmd) {
2624 case TIOCSETD:
2625 case TIOCSBRK:
2626 case TIOCCBRK:
2627 case TCSBRK:
2628 case TCSBRKP:
2629 retval = tty_check_change(tty);
2630 if (retval)
2631 return retval;
2632 if (cmd != TIOCCBRK) {
2633 tty_wait_until_sent(tty, 0);
2634 if (signal_pending(current))
2635 return -EINTR;
2636 }
2637 break;
2638 }
2639
2640 /*
2641 * Now do the stuff.
2642 */
2643 switch (cmd) {
2644 case TIOCSTI:
2645 return tiocsti(tty, p);
2646 case TIOCGWINSZ:
2647 return tiocgwinsz(real_tty, p);
2648 case TIOCSWINSZ:
2649 return tiocswinsz(tty, real_tty, p);
2650 case TIOCCONS:
2651 return real_tty != tty ? -EINVAL : tioccons(file);
2652 case FIONBIO:
2653 return fionbio(file, p);
2654 case TIOCEXCL:
2655 set_bit(TTY_EXCLUSIVE, &tty->flags);
2656 return 0;
2657 case TIOCNXCL:
2658 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2659 return 0;
2660 case TIOCNOTTY:
2661 if (current->signal->tty != tty)
2662 return -ENOTTY;
2663 no_tty();
2664 return 0;
2665 case TIOCSCTTY:
2666 return tiocsctty(tty, arg);
2667 case TIOCGPGRP:
2668 return tiocgpgrp(tty, real_tty, p);
2669 case TIOCSPGRP:
2670 return tiocspgrp(tty, real_tty, p);
2671 case TIOCGSID:
2672 return tiocgsid(tty, real_tty, p);
2673 case TIOCGETD:
2674 return put_user(tty->ldisc.ops->num, (int __user *)p);
2675 case TIOCSETD:
2676 return tiocsetd(tty, p);
2677 /*
2678 * Break handling
2679 */
2680 case TIOCSBRK: /* Turn break on, unconditionally */
2681 if (tty->ops->break_ctl)
2682 return tty->ops->break_ctl(tty, -1);
2683 return 0;
2684 case TIOCCBRK: /* Turn break off, unconditionally */
2685 if (tty->ops->break_ctl)
2686 return tty->ops->break_ctl(tty, 0);
2687 return 0;
2688 case TCSBRK: /* SVID version: non-zero arg --> no break */
2689 /* non-zero arg means wait for all output data
2690 * to be sent (performed above) but don't send break.
2691 * This is used by the tcdrain() termios function.
2692 */
2693 if (!arg)
2694 return send_break(tty, 250);
2695 return 0;
2696 case TCSBRKP: /* support for POSIX tcsendbreak() */
2697 return send_break(tty, arg ? arg*100 : 250);
2698
2699 case TIOCMGET:
2700 return tty_tiocmget(tty, file, p);
2701 case TIOCMSET:
2702 case TIOCMBIC:
2703 case TIOCMBIS:
2704 return tty_tiocmset(tty, file, cmd, p);
2705 case TCFLSH:
2706 switch (arg) {
2707 case TCIFLUSH:
2708 case TCIOFLUSH:
2709 /* flush tty buffer and allow ldisc to process ioctl */
2710 tty_buffer_flush(tty);
2711 break;
2712 }
2713 break;
2714 }
2715 if (tty->ops->ioctl) {
2716 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2717 if (retval != -ENOIOCTLCMD)
2718 return retval;
2719 }
2720 ld = tty_ldisc_ref_wait(tty);
2721 retval = -EINVAL;
2722 if (ld->ops->ioctl) {
2723 retval = ld->ops->ioctl(tty, file, cmd, arg);
2724 if (retval == -ENOIOCTLCMD)
2725 retval = -EINVAL;
2726 }
2727 tty_ldisc_deref(ld);
2728 return retval;
2729 }
2730
2731 #ifdef CONFIG_COMPAT
2732 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2733 unsigned long arg)
2734 {
2735 struct inode *inode = file->f_dentry->d_inode;
2736 struct tty_struct *tty = file->private_data;
2737 struct tty_ldisc *ld;
2738 int retval = -ENOIOCTLCMD;
2739
2740 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2741 return -EINVAL;
2742
2743 if (tty->ops->compat_ioctl) {
2744 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2745 if (retval != -ENOIOCTLCMD)
2746 return retval;
2747 }
2748
2749 ld = tty_ldisc_ref_wait(tty);
2750 if (ld->ops->compat_ioctl)
2751 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2752 tty_ldisc_deref(ld);
2753
2754 return retval;
2755 }
2756 #endif
2757
2758 /*
2759 * This implements the "Secure Attention Key" --- the idea is to
2760 * prevent trojan horses by killing all processes associated with this
2761 * tty when the user hits the "Secure Attention Key". Required for
2762 * super-paranoid applications --- see the Orange Book for more details.
2763 *
2764 * This code could be nicer; ideally it should send a HUP, wait a few
2765 * seconds, then send a INT, and then a KILL signal. But you then
2766 * have to coordinate with the init process, since all processes associated
2767 * with the current tty must be dead before the new getty is allowed
2768 * to spawn.
2769 *
2770 * Now, if it would be correct ;-/ The current code has a nasty hole -
2771 * it doesn't catch files in flight. We may send the descriptor to ourselves
2772 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2773 *
2774 * Nasty bug: do_SAK is being called in interrupt context. This can
2775 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2776 */
2777 void __do_SAK(struct tty_struct *tty)
2778 {
2779 #ifdef TTY_SOFT_SAK
2780 tty_hangup(tty);
2781 #else
2782 struct task_struct *g, *p;
2783 struct pid *session;
2784 int i;
2785 struct file *filp;
2786 struct fdtable *fdt;
2787
2788 if (!tty)
2789 return;
2790 session = tty->session;
2791
2792 tty_ldisc_flush(tty);
2793
2794 tty_driver_flush_buffer(tty);
2795
2796 read_lock(&tasklist_lock);
2797 /* Kill the entire session */
2798 do_each_pid_task(session, PIDTYPE_SID, p) {
2799 printk(KERN_NOTICE "SAK: killed process %d"
2800 " (%s): task_session_nr(p)==tty->session\n",
2801 task_pid_nr(p), p->comm);
2802 send_sig(SIGKILL, p, 1);
2803 } while_each_pid_task(session, PIDTYPE_SID, p);
2804 /* Now kill any processes that happen to have the
2805 * tty open.
2806 */
2807 do_each_thread(g, p) {
2808 if (p->signal->tty == tty) {
2809 printk(KERN_NOTICE "SAK: killed process %d"
2810 " (%s): task_session_nr(p)==tty->session\n",
2811 task_pid_nr(p), p->comm);
2812 send_sig(SIGKILL, p, 1);
2813 continue;
2814 }
2815 task_lock(p);
2816 if (p->files) {
2817 /*
2818 * We don't take a ref to the file, so we must
2819 * hold ->file_lock instead.
2820 */
2821 spin_lock(&p->files->file_lock);
2822 fdt = files_fdtable(p->files);
2823 for (i = 0; i < fdt->max_fds; i++) {
2824 filp = fcheck_files(p->files, i);
2825 if (!filp)
2826 continue;
2827 if (filp->f_op->read == tty_read &&
2828 filp->private_data == tty) {
2829 printk(KERN_NOTICE "SAK: killed process %d"
2830 " (%s): fd#%d opened to the tty\n",
2831 task_pid_nr(p), p->comm, i);
2832 force_sig(SIGKILL, p);
2833 break;
2834 }
2835 }
2836 spin_unlock(&p->files->file_lock);
2837 }
2838 task_unlock(p);
2839 } while_each_thread(g, p);
2840 read_unlock(&tasklist_lock);
2841 #endif
2842 }
2843
2844 static void do_SAK_work(struct work_struct *work)
2845 {
2846 struct tty_struct *tty =
2847 container_of(work, struct tty_struct, SAK_work);
2848 __do_SAK(tty);
2849 }
2850
2851 /*
2852 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2853 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2854 * the values which we write to it will be identical to the values which it
2855 * already has. --akpm
2856 */
2857 void do_SAK(struct tty_struct *tty)
2858 {
2859 if (!tty)
2860 return;
2861 schedule_work(&tty->SAK_work);
2862 }
2863
2864 EXPORT_SYMBOL(do_SAK);
2865
2866 /**
2867 * initialize_tty_struct
2868 * @tty: tty to initialize
2869 *
2870 * This subroutine initializes a tty structure that has been newly
2871 * allocated.
2872 *
2873 * Locking: none - tty in question must not be exposed at this point
2874 */
2875
2876 static void initialize_tty_struct(struct tty_struct *tty)
2877 {
2878 memset(tty, 0, sizeof(struct tty_struct));
2879 kref_init(&tty->kref);
2880 tty->magic = TTY_MAGIC;
2881 tty_ldisc_init(tty);
2882 tty->session = NULL;
2883 tty->pgrp = NULL;
2884 tty->overrun_time = jiffies;
2885 tty->buf.head = tty->buf.tail = NULL;
2886 tty_buffer_init(tty);
2887 mutex_init(&tty->termios_mutex);
2888 init_waitqueue_head(&tty->write_wait);
2889 init_waitqueue_head(&tty->read_wait);
2890 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2891 mutex_init(&tty->atomic_read_lock);
2892 mutex_init(&tty->atomic_write_lock);
2893 spin_lock_init(&tty->read_lock);
2894 spin_lock_init(&tty->ctrl_lock);
2895 INIT_LIST_HEAD(&tty->tty_files);
2896 INIT_WORK(&tty->SAK_work, do_SAK_work);
2897 }
2898
2899 /**
2900 * tty_put_char - write one character to a tty
2901 * @tty: tty
2902 * @ch: character
2903 *
2904 * Write one byte to the tty using the provided put_char method
2905 * if present. Returns the number of characters successfully output.
2906 *
2907 * Note: the specific put_char operation in the driver layer may go
2908 * away soon. Don't call it directly, use this method
2909 */
2910
2911 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2912 {
2913 if (tty->ops->put_char)
2914 return tty->ops->put_char(tty, ch);
2915 return tty->ops->write(tty, &ch, 1);
2916 }
2917
2918 EXPORT_SYMBOL_GPL(tty_put_char);
2919
2920 static struct class *tty_class;
2921
2922 /**
2923 * tty_register_device - register a tty device
2924 * @driver: the tty driver that describes the tty device
2925 * @index: the index in the tty driver for this tty device
2926 * @device: a struct device that is associated with this tty device.
2927 * This field is optional, if there is no known struct device
2928 * for this tty device it can be set to NULL safely.
2929 *
2930 * Returns a pointer to the struct device for this tty device
2931 * (or ERR_PTR(-EFOO) on error).
2932 *
2933 * This call is required to be made to register an individual tty device
2934 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2935 * that bit is not set, this function should not be called by a tty
2936 * driver.
2937 *
2938 * Locking: ??
2939 */
2940
2941 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2942 struct device *device)
2943 {
2944 char name[64];
2945 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2946
2947 if (index >= driver->num) {
2948 printk(KERN_ERR "Attempt to register invalid tty line number "
2949 " (%d).\n", index);
2950 return ERR_PTR(-EINVAL);
2951 }
2952
2953 if (driver->type == TTY_DRIVER_TYPE_PTY)
2954 pty_line_name(driver, index, name);
2955 else
2956 tty_line_name(driver, index, name);
2957
2958 return device_create_drvdata(tty_class, device, dev, NULL, name);
2959 }
2960
2961 /**
2962 * tty_unregister_device - unregister a tty device
2963 * @driver: the tty driver that describes the tty device
2964 * @index: the index in the tty driver for this tty device
2965 *
2966 * If a tty device is registered with a call to tty_register_device() then
2967 * this function must be called when the tty device is gone.
2968 *
2969 * Locking: ??
2970 */
2971
2972 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2973 {
2974 device_destroy(tty_class,
2975 MKDEV(driver->major, driver->minor_start) + index);
2976 }
2977
2978 EXPORT_SYMBOL(tty_register_device);
2979 EXPORT_SYMBOL(tty_unregister_device);
2980
2981 struct tty_driver *alloc_tty_driver(int lines)
2982 {
2983 struct tty_driver *driver;
2984
2985 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2986 if (driver) {
2987 driver->magic = TTY_DRIVER_MAGIC;
2988 driver->num = lines;
2989 /* later we'll move allocation of tables here */
2990 }
2991 return driver;
2992 }
2993
2994 void put_tty_driver(struct tty_driver *driver)
2995 {
2996 kfree(driver);
2997 }
2998
2999 void tty_set_operations(struct tty_driver *driver,
3000 const struct tty_operations *op)
3001 {
3002 driver->ops = op;
3003 };
3004
3005 EXPORT_SYMBOL(alloc_tty_driver);
3006 EXPORT_SYMBOL(put_tty_driver);
3007 EXPORT_SYMBOL(tty_set_operations);
3008
3009 /*
3010 * Called by a tty driver to register itself.
3011 */
3012 int tty_register_driver(struct tty_driver *driver)
3013 {
3014 int error;
3015 int i;
3016 dev_t dev;
3017 void **p = NULL;
3018
3019 if (driver->flags & TTY_DRIVER_INSTALLED)
3020 return 0;
3021
3022 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3023 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3024 if (!p)
3025 return -ENOMEM;
3026 }
3027
3028 if (!driver->major) {
3029 error = alloc_chrdev_region(&dev, driver->minor_start,
3030 driver->num, driver->name);
3031 if (!error) {
3032 driver->major = MAJOR(dev);
3033 driver->minor_start = MINOR(dev);
3034 }
3035 } else {
3036 dev = MKDEV(driver->major, driver->minor_start);
3037 error = register_chrdev_region(dev, driver->num, driver->name);
3038 }
3039 if (error < 0) {
3040 kfree(p);
3041 return error;
3042 }
3043
3044 if (p) {
3045 driver->ttys = (struct tty_struct **)p;
3046 driver->termios = (struct ktermios **)(p + driver->num);
3047 driver->termios_locked = (struct ktermios **)
3048 (p + driver->num * 2);
3049 } else {
3050 driver->ttys = NULL;
3051 driver->termios = NULL;
3052 driver->termios_locked = NULL;
3053 }
3054
3055 cdev_init(&driver->cdev, &tty_fops);
3056 driver->cdev.owner = driver->owner;
3057 error = cdev_add(&driver->cdev, dev, driver->num);
3058 if (error) {
3059 unregister_chrdev_region(dev, driver->num);
3060 driver->ttys = NULL;
3061 driver->termios = driver->termios_locked = NULL;
3062 kfree(p);
3063 return error;
3064 }
3065
3066 mutex_lock(&tty_mutex);
3067 list_add(&driver->tty_drivers, &tty_drivers);
3068 mutex_unlock(&tty_mutex);
3069
3070 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3071 for (i = 0; i < driver->num; i++)
3072 tty_register_device(driver, i, NULL);
3073 }
3074 proc_tty_register_driver(driver);
3075 return 0;
3076 }
3077
3078 EXPORT_SYMBOL(tty_register_driver);
3079
3080 /*
3081 * Called by a tty driver to unregister itself.
3082 */
3083 int tty_unregister_driver(struct tty_driver *driver)
3084 {
3085 int i;
3086 struct ktermios *tp;
3087 void *p;
3088
3089 if (driver->refcount)
3090 return -EBUSY;
3091
3092 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3093 driver->num);
3094 mutex_lock(&tty_mutex);
3095 list_del(&driver->tty_drivers);
3096 mutex_unlock(&tty_mutex);
3097
3098 /*
3099 * Free the termios and termios_locked structures because
3100 * we don't want to get memory leaks when modular tty
3101 * drivers are removed from the kernel.
3102 */
3103 for (i = 0; i < driver->num; i++) {
3104 tp = driver->termios[i];
3105 if (tp) {
3106 driver->termios[i] = NULL;
3107 kfree(tp);
3108 }
3109 tp = driver->termios_locked[i];
3110 if (tp) {
3111 driver->termios_locked[i] = NULL;
3112 kfree(tp);
3113 }
3114 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3115 tty_unregister_device(driver, i);
3116 }
3117 p = driver->ttys;
3118 proc_tty_unregister_driver(driver);
3119 driver->ttys = NULL;
3120 driver->termios = driver->termios_locked = NULL;
3121 kfree(p);
3122 cdev_del(&driver->cdev);
3123 return 0;
3124 }
3125 EXPORT_SYMBOL(tty_unregister_driver);
3126
3127 dev_t tty_devnum(struct tty_struct *tty)
3128 {
3129 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3130 }
3131 EXPORT_SYMBOL(tty_devnum);
3132
3133 void proc_clear_tty(struct task_struct *p)
3134 {
3135 struct tty_struct *tty;
3136 spin_lock_irq(&p->sighand->siglock);
3137 tty = p->signal->tty;
3138 p->signal->tty = NULL;
3139 spin_unlock_irq(&p->sighand->siglock);
3140 tty_kref_put(tty);
3141 }
3142
3143 /* Called under the sighand lock */
3144
3145 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3146 {
3147 if (tty) {
3148 unsigned long flags;
3149 /* We should not have a session or pgrp to put here but.... */
3150 spin_lock_irqsave(&tty->ctrl_lock, flags);
3151 put_pid(tty->session);
3152 put_pid(tty->pgrp);
3153 tty->pgrp = get_pid(task_pgrp(tsk));
3154 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3155 tty->session = get_pid(task_session(tsk));
3156 if (tsk->signal->tty) {
3157 printk(KERN_DEBUG "tty not NULL!!\n");
3158 tty_kref_put(tsk->signal->tty);
3159 }
3160 }
3161 put_pid(tsk->signal->tty_old_pgrp);
3162 tsk->signal->tty = tty_kref_get(tty);
3163 tsk->signal->tty_old_pgrp = NULL;
3164 }
3165
3166 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3167 {
3168 spin_lock_irq(&tsk->sighand->siglock);
3169 __proc_set_tty(tsk, tty);
3170 spin_unlock_irq(&tsk->sighand->siglock);
3171 }
3172
3173 struct tty_struct *get_current_tty(void)
3174 {
3175 struct tty_struct *tty;
3176 unsigned long flags;
3177
3178 spin_lock_irqsave(&current->sighand->siglock, flags);
3179 tty = tty_kref_get(current->signal->tty);
3180 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3181 return tty;
3182 }
3183 EXPORT_SYMBOL_GPL(get_current_tty);
3184
3185 /*
3186 * Initialize the console device. This is called *early*, so
3187 * we can't necessarily depend on lots of kernel help here.
3188 * Just do some early initializations, and do the complex setup
3189 * later.
3190 */
3191 void __init console_init(void)
3192 {
3193 initcall_t *call;
3194
3195 /* Setup the default TTY line discipline. */
3196 tty_ldisc_begin();
3197
3198 /*
3199 * set up the console device so that later boot sequences can
3200 * inform about problems etc..
3201 */
3202 call = __con_initcall_start;
3203 while (call < __con_initcall_end) {
3204 (*call)();
3205 call++;
3206 }
3207 }
3208
3209 static int __init tty_class_init(void)
3210 {
3211 tty_class = class_create(THIS_MODULE, "tty");
3212 if (IS_ERR(tty_class))
3213 return PTR_ERR(tty_class);
3214 return 0;
3215 }
3216
3217 postcore_initcall(tty_class_init);
3218
3219 /* 3/2004 jmc: why do these devices exist? */
3220
3221 static struct cdev tty_cdev, console_cdev;
3222 #ifdef CONFIG_UNIX98_PTYS
3223 static struct cdev ptmx_cdev;
3224 #endif
3225 #ifdef CONFIG_VT
3226 static struct cdev vc0_cdev;
3227 #endif
3228
3229 /*
3230 * Ok, now we can initialize the rest of the tty devices and can count
3231 * on memory allocations, interrupts etc..
3232 */
3233 static int __init tty_init(void)
3234 {
3235 cdev_init(&tty_cdev, &tty_fops);
3236 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3237 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3238 panic("Couldn't register /dev/tty driver\n");
3239 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3240 "tty");
3241
3242 cdev_init(&console_cdev, &console_fops);
3243 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3244 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3245 panic("Couldn't register /dev/console driver\n");
3246 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3247 "console");
3248
3249 #ifdef CONFIG_UNIX98_PTYS
3250 cdev_init(&ptmx_cdev, &ptmx_fops);
3251 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3252 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3253 panic("Couldn't register /dev/ptmx driver\n");
3254 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), NULL, "ptmx");
3255 #endif
3256
3257 #ifdef CONFIG_VT
3258 cdev_init(&vc0_cdev, &console_fops);
3259 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3260 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3261 panic("Couldn't register /dev/tty0 driver\n");
3262 device_create_drvdata(tty_class, NULL, MKDEV(TTY_MAJOR, 0), NULL, "tty0");
3263
3264 vty_init();
3265 #endif
3266 return 0;
3267 }
3268 module_init(tty_init);
This page took 0.146809 seconds and 5 git commands to generate.