Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 #ifdef CONFIG_COMPAT
147 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
148 unsigned long arg);
149 #else
150 #define tty_compat_ioctl NULL
151 #endif
152 static int tty_fasync(int fd, struct file *filp, int on);
153 static void release_tty(struct tty_struct *tty, int idx);
154 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
155 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156
157 /**
158 * alloc_tty_struct - allocate a tty object
159 *
160 * Return a new empty tty structure. The data fields have not
161 * been initialized in any way but has been zeroed
162 *
163 * Locking: none
164 */
165
166 struct tty_struct *alloc_tty_struct(void)
167 {
168 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
169 }
170
171 /**
172 * free_tty_struct - free a disused tty
173 * @tty: tty struct to free
174 *
175 * Free the write buffers, tty queue and tty memory itself.
176 *
177 * Locking: none. Must be called after tty is definitely unused
178 */
179
180 void free_tty_struct(struct tty_struct *tty)
181 {
182 kfree(tty->write_buf);
183 tty_buffer_free_all(tty);
184 kfree(tty);
185 }
186
187 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
188
189 /**
190 * tty_name - return tty naming
191 * @tty: tty structure
192 * @buf: buffer for output
193 *
194 * Convert a tty structure into a name. The name reflects the kernel
195 * naming policy and if udev is in use may not reflect user space
196 *
197 * Locking: none
198 */
199
200 char *tty_name(struct tty_struct *tty, char *buf)
201 {
202 if (!tty) /* Hmm. NULL pointer. That's fun. */
203 strcpy(buf, "NULL tty");
204 else
205 strcpy(buf, tty->name);
206 return buf;
207 }
208
209 EXPORT_SYMBOL(tty_name);
210
211 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
212 const char *routine)
213 {
214 #ifdef TTY_PARANOIA_CHECK
215 if (!tty) {
216 printk(KERN_WARNING
217 "null TTY for (%d:%d) in %s\n",
218 imajor(inode), iminor(inode), routine);
219 return 1;
220 }
221 if (tty->magic != TTY_MAGIC) {
222 printk(KERN_WARNING
223 "bad magic number for tty struct (%d:%d) in %s\n",
224 imajor(inode), iminor(inode), routine);
225 return 1;
226 }
227 #endif
228 return 0;
229 }
230
231 static int check_tty_count(struct tty_struct *tty, const char *routine)
232 {
233 #ifdef CHECK_TTY_COUNT
234 struct list_head *p;
235 int count = 0;
236
237 file_list_lock();
238 list_for_each(p, &tty->tty_files) {
239 count++;
240 }
241 file_list_unlock();
242 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
243 tty->driver->subtype == PTY_TYPE_SLAVE &&
244 tty->link && tty->link->count)
245 count++;
246 if (tty->count != count) {
247 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
248 "!= #fd's(%d) in %s\n",
249 tty->name, tty->count, count, routine);
250 return count;
251 }
252 #endif
253 return 0;
254 }
255
256 /**
257 * get_tty_driver - find device of a tty
258 * @dev_t: device identifier
259 * @index: returns the index of the tty
260 *
261 * This routine returns a tty driver structure, given a device number
262 * and also passes back the index number.
263 *
264 * Locking: caller must hold tty_mutex
265 */
266
267 static struct tty_driver *get_tty_driver(dev_t device, int *index)
268 {
269 struct tty_driver *p;
270
271 list_for_each_entry(p, &tty_drivers, tty_drivers) {
272 dev_t base = MKDEV(p->major, p->minor_start);
273 if (device < base || device >= base + p->num)
274 continue;
275 *index = device - base;
276 return tty_driver_kref_get(p);
277 }
278 return NULL;
279 }
280
281 #ifdef CONFIG_CONSOLE_POLL
282
283 /**
284 * tty_find_polling_driver - find device of a polled tty
285 * @name: name string to match
286 * @line: pointer to resulting tty line nr
287 *
288 * This routine returns a tty driver structure, given a name
289 * and the condition that the tty driver is capable of polled
290 * operation.
291 */
292 struct tty_driver *tty_find_polling_driver(char *name, int *line)
293 {
294 struct tty_driver *p, *res = NULL;
295 int tty_line = 0;
296 int len;
297 char *str, *stp;
298
299 for (str = name; *str; str++)
300 if ((*str >= '0' && *str <= '9') || *str == ',')
301 break;
302 if (!*str)
303 return NULL;
304
305 len = str - name;
306 tty_line = simple_strtoul(str, &str, 10);
307
308 mutex_lock(&tty_mutex);
309 /* Search through the tty devices to look for a match */
310 list_for_each_entry(p, &tty_drivers, tty_drivers) {
311 if (strncmp(name, p->name, len) != 0)
312 continue;
313 stp = str;
314 if (*stp == ',')
315 stp++;
316 if (*stp == '\0')
317 stp = NULL;
318
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
324 }
325 }
326 mutex_unlock(&tty_mutex);
327
328 return res;
329 }
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
332
333 /**
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
336 *
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
340 *
341 * Locking: ctrl_lock
342 */
343
344 int tty_check_change(struct tty_struct *tty)
345 {
346 unsigned long flags;
347 int ret = 0;
348
349 if (current->signal->tty != tty)
350 return 0;
351
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
357 }
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
366 }
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370 out:
371 return ret;
372 out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
375 }
376
377 EXPORT_SYMBOL(tty_check_change);
378
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
381 {
382 return 0;
383 }
384
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
387 {
388 return -EIO;
389 }
390
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393 {
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395 }
396
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
399 {
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401 }
402
403 static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
405 {
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407 }
408
409 static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
419 };
420
421 static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
431 };
432
433 static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
441 };
442
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
445
446 /**
447 * tty_wakeup - request more data
448 * @tty: terminal
449 *
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
453 */
454
455 void tty_wakeup(struct tty_struct *tty)
456 {
457 struct tty_ldisc *ld;
458
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
465 }
466 }
467 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
468 }
469
470 EXPORT_SYMBOL_GPL(tty_wakeup);
471
472 /**
473 * do_tty_hangup - actual handler for hangup events
474 * @work: tty device
475 *
476 * This can be called by the "eventd" kernel thread. That is process
477 * synchronous but doesn't hold any locks, so we need to make sure we
478 * have the appropriate locks for what we're doing.
479 *
480 * The hangup event clears any pending redirections onto the hung up
481 * device. It ensures future writes will error and it does the needed
482 * line discipline hangup and signal delivery. The tty object itself
483 * remains intact.
484 *
485 * Locking:
486 * BKL
487 * redirect lock for undoing redirection
488 * file list lock for manipulating list of ttys
489 * tty_ldisc_lock from called functions
490 * termios_mutex resetting termios data
491 * tasklist_lock to walk task list for hangup event
492 * ->siglock to protect ->signal/->sighand
493 */
494 static void do_tty_hangup(struct work_struct *work)
495 {
496 struct tty_struct *tty =
497 container_of(work, struct tty_struct, hangup_work);
498 struct file *cons_filp = NULL;
499 struct file *filp, *f = NULL;
500 struct task_struct *p;
501 int closecount = 0, n;
502 unsigned long flags;
503 int refs = 0;
504
505 if (!tty)
506 return;
507
508
509 spin_lock(&redirect_lock);
510 if (redirect && redirect->private_data == tty) {
511 f = redirect;
512 redirect = NULL;
513 }
514 spin_unlock(&redirect_lock);
515
516 /* inuse_filps is protected by the single kernel lock */
517 lock_kernel();
518 check_tty_count(tty, "do_tty_hangup");
519 unlock_kernel();
520
521 file_list_lock();
522 /* This breaks for file handles being sent over AF_UNIX sockets ? */
523 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
524 if (filp->f_op->write == redirected_tty_write)
525 cons_filp = filp;
526 if (filp->f_op->write != tty_write)
527 continue;
528 closecount++;
529 tty_fasync(-1, filp, 0); /* can't block */
530 filp->f_op = &hung_up_tty_fops;
531 }
532 file_list_unlock();
533
534 lock_kernel();
535 tty_ldisc_hangup(tty);
536
537 read_lock(&tasklist_lock);
538 if (tty->session) {
539 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
540 spin_lock_irq(&p->sighand->siglock);
541 if (p->signal->tty == tty) {
542 p->signal->tty = NULL;
543 /* We defer the dereferences outside fo
544 the tasklist lock */
545 refs++;
546 }
547 if (!p->signal->leader) {
548 spin_unlock_irq(&p->sighand->siglock);
549 continue;
550 }
551 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
552 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
553 put_pid(p->signal->tty_old_pgrp); /* A noop */
554 spin_lock_irqsave(&tty->ctrl_lock, flags);
555 if (tty->pgrp)
556 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
557 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
558 spin_unlock_irq(&p->sighand->siglock);
559 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
560 }
561 read_unlock(&tasklist_lock);
562
563 spin_lock_irqsave(&tty->ctrl_lock, flags);
564 clear_bit(TTY_THROTTLED, &tty->flags);
565 clear_bit(TTY_PUSH, &tty->flags);
566 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
567 put_pid(tty->session);
568 put_pid(tty->pgrp);
569 tty->session = NULL;
570 tty->pgrp = NULL;
571 tty->ctrl_status = 0;
572 set_bit(TTY_HUPPED, &tty->flags);
573 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
574
575 /* Account for the p->signal references we killed */
576 while (refs--)
577 tty_kref_put(tty);
578
579 /*
580 * If one of the devices matches a console pointer, we
581 * cannot just call hangup() because that will cause
582 * tty->count and state->count to go out of sync.
583 * So we just call close() the right number of times.
584 */
585 if (cons_filp) {
586 if (tty->ops->close)
587 for (n = 0; n < closecount; n++)
588 tty->ops->close(tty, cons_filp);
589 } else if (tty->ops->hangup)
590 (tty->ops->hangup)(tty);
591 /*
592 * We don't want to have driver/ldisc interactions beyond
593 * the ones we did here. The driver layer expects no
594 * calls after ->hangup() from the ldisc side. However we
595 * can't yet guarantee all that.
596 */
597 set_bit(TTY_HUPPED, &tty->flags);
598 tty_ldisc_enable(tty);
599 unlock_kernel();
600 if (f)
601 fput(f);
602 }
603
604 /**
605 * tty_hangup - trigger a hangup event
606 * @tty: tty to hangup
607 *
608 * A carrier loss (virtual or otherwise) has occurred on this like
609 * schedule a hangup sequence to run after this event.
610 */
611
612 void tty_hangup(struct tty_struct *tty)
613 {
614 #ifdef TTY_DEBUG_HANGUP
615 char buf[64];
616 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
617 #endif
618 schedule_work(&tty->hangup_work);
619 }
620
621 EXPORT_SYMBOL(tty_hangup);
622
623 /**
624 * tty_vhangup - process vhangup
625 * @tty: tty to hangup
626 *
627 * The user has asked via system call for the terminal to be hung up.
628 * We do this synchronously so that when the syscall returns the process
629 * is complete. That guarantee is necessary for security reasons.
630 */
631
632 void tty_vhangup(struct tty_struct *tty)
633 {
634 #ifdef TTY_DEBUG_HANGUP
635 char buf[64];
636
637 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
638 #endif
639 do_tty_hangup(&tty->hangup_work);
640 }
641
642 EXPORT_SYMBOL(tty_vhangup);
643
644 /**
645 * tty_vhangup_self - process vhangup for own ctty
646 *
647 * Perform a vhangup on the current controlling tty
648 */
649
650 void tty_vhangup_self(void)
651 {
652 struct tty_struct *tty;
653
654 tty = get_current_tty();
655 if (tty) {
656 tty_vhangup(tty);
657 tty_kref_put(tty);
658 }
659 }
660
661 /**
662 * tty_hung_up_p - was tty hung up
663 * @filp: file pointer of tty
664 *
665 * Return true if the tty has been subject to a vhangup or a carrier
666 * loss
667 */
668
669 int tty_hung_up_p(struct file *filp)
670 {
671 return (filp->f_op == &hung_up_tty_fops);
672 }
673
674 EXPORT_SYMBOL(tty_hung_up_p);
675
676 static void session_clear_tty(struct pid *session)
677 {
678 struct task_struct *p;
679 do_each_pid_task(session, PIDTYPE_SID, p) {
680 proc_clear_tty(p);
681 } while_each_pid_task(session, PIDTYPE_SID, p);
682 }
683
684 /**
685 * disassociate_ctty - disconnect controlling tty
686 * @on_exit: true if exiting so need to "hang up" the session
687 *
688 * This function is typically called only by the session leader, when
689 * it wants to disassociate itself from its controlling tty.
690 *
691 * It performs the following functions:
692 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
693 * (2) Clears the tty from being controlling the session
694 * (3) Clears the controlling tty for all processes in the
695 * session group.
696 *
697 * The argument on_exit is set to 1 if called when a process is
698 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
699 *
700 * Locking:
701 * BKL is taken for hysterical raisins
702 * tty_mutex is taken to protect tty
703 * ->siglock is taken to protect ->signal/->sighand
704 * tasklist_lock is taken to walk process list for sessions
705 * ->siglock is taken to protect ->signal/->sighand
706 */
707
708 void disassociate_ctty(int on_exit)
709 {
710 struct tty_struct *tty;
711 struct pid *tty_pgrp = NULL;
712
713 if (!current->signal->leader)
714 return;
715
716 tty = get_current_tty();
717 if (tty) {
718 tty_pgrp = get_pid(tty->pgrp);
719 lock_kernel();
720 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
721 tty_vhangup(tty);
722 unlock_kernel();
723 tty_kref_put(tty);
724 } else if (on_exit) {
725 struct pid *old_pgrp;
726 spin_lock_irq(&current->sighand->siglock);
727 old_pgrp = current->signal->tty_old_pgrp;
728 current->signal->tty_old_pgrp = NULL;
729 spin_unlock_irq(&current->sighand->siglock);
730 if (old_pgrp) {
731 kill_pgrp(old_pgrp, SIGHUP, on_exit);
732 kill_pgrp(old_pgrp, SIGCONT, on_exit);
733 put_pid(old_pgrp);
734 }
735 return;
736 }
737 if (tty_pgrp) {
738 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
739 if (!on_exit)
740 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
741 put_pid(tty_pgrp);
742 }
743
744 spin_lock_irq(&current->sighand->siglock);
745 put_pid(current->signal->tty_old_pgrp);
746 current->signal->tty_old_pgrp = NULL;
747 spin_unlock_irq(&current->sighand->siglock);
748
749 tty = get_current_tty();
750 if (tty) {
751 unsigned long flags;
752 spin_lock_irqsave(&tty->ctrl_lock, flags);
753 put_pid(tty->session);
754 put_pid(tty->pgrp);
755 tty->session = NULL;
756 tty->pgrp = NULL;
757 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
758 tty_kref_put(tty);
759 } else {
760 #ifdef TTY_DEBUG_HANGUP
761 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
762 " = NULL", tty);
763 #endif
764 }
765
766 /* Now clear signal->tty under the lock */
767 read_lock(&tasklist_lock);
768 session_clear_tty(task_session(current));
769 read_unlock(&tasklist_lock);
770 }
771
772 /**
773 *
774 * no_tty - Ensure the current process does not have a controlling tty
775 */
776 void no_tty(void)
777 {
778 struct task_struct *tsk = current;
779 lock_kernel();
780 disassociate_ctty(0);
781 unlock_kernel();
782 proc_clear_tty(tsk);
783 }
784
785
786 /**
787 * stop_tty - propagate flow control
788 * @tty: tty to stop
789 *
790 * Perform flow control to the driver. For PTY/TTY pairs we
791 * must also propagate the TIOCKPKT status. May be called
792 * on an already stopped device and will not re-call the driver
793 * method.
794 *
795 * This functionality is used by both the line disciplines for
796 * halting incoming flow and by the driver. It may therefore be
797 * called from any context, may be under the tty atomic_write_lock
798 * but not always.
799 *
800 * Locking:
801 * Uses the tty control lock internally
802 */
803
804 void stop_tty(struct tty_struct *tty)
805 {
806 unsigned long flags;
807 spin_lock_irqsave(&tty->ctrl_lock, flags);
808 if (tty->stopped) {
809 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
810 return;
811 }
812 tty->stopped = 1;
813 if (tty->link && tty->link->packet) {
814 tty->ctrl_status &= ~TIOCPKT_START;
815 tty->ctrl_status |= TIOCPKT_STOP;
816 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
817 }
818 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
819 if (tty->ops->stop)
820 (tty->ops->stop)(tty);
821 }
822
823 EXPORT_SYMBOL(stop_tty);
824
825 /**
826 * start_tty - propagate flow control
827 * @tty: tty to start
828 *
829 * Start a tty that has been stopped if at all possible. Perform
830 * any necessary wakeups and propagate the TIOCPKT status. If this
831 * is the tty was previous stopped and is being started then the
832 * driver start method is invoked and the line discipline woken.
833 *
834 * Locking:
835 * ctrl_lock
836 */
837
838 void start_tty(struct tty_struct *tty)
839 {
840 unsigned long flags;
841 spin_lock_irqsave(&tty->ctrl_lock, flags);
842 if (!tty->stopped || tty->flow_stopped) {
843 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
844 return;
845 }
846 tty->stopped = 0;
847 if (tty->link && tty->link->packet) {
848 tty->ctrl_status &= ~TIOCPKT_STOP;
849 tty->ctrl_status |= TIOCPKT_START;
850 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
851 }
852 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
853 if (tty->ops->start)
854 (tty->ops->start)(tty);
855 /* If we have a running line discipline it may need kicking */
856 tty_wakeup(tty);
857 }
858
859 EXPORT_SYMBOL(start_tty);
860
861 /**
862 * tty_read - read method for tty device files
863 * @file: pointer to tty file
864 * @buf: user buffer
865 * @count: size of user buffer
866 * @ppos: unused
867 *
868 * Perform the read system call function on this terminal device. Checks
869 * for hung up devices before calling the line discipline method.
870 *
871 * Locking:
872 * Locks the line discipline internally while needed. Multiple
873 * read calls may be outstanding in parallel.
874 */
875
876 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
877 loff_t *ppos)
878 {
879 int i;
880 struct tty_struct *tty;
881 struct inode *inode;
882 struct tty_ldisc *ld;
883
884 tty = (struct tty_struct *)file->private_data;
885 inode = file->f_path.dentry->d_inode;
886 if (tty_paranoia_check(tty, inode, "tty_read"))
887 return -EIO;
888 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
889 return -EIO;
890
891 /* We want to wait for the line discipline to sort out in this
892 situation */
893 ld = tty_ldisc_ref_wait(tty);
894 if (ld->ops->read)
895 i = (ld->ops->read)(tty, file, buf, count);
896 else
897 i = -EIO;
898 tty_ldisc_deref(ld);
899 if (i > 0)
900 inode->i_atime = current_fs_time(inode->i_sb);
901 return i;
902 }
903
904 void tty_write_unlock(struct tty_struct *tty)
905 {
906 mutex_unlock(&tty->atomic_write_lock);
907 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
908 }
909
910 int tty_write_lock(struct tty_struct *tty, int ndelay)
911 {
912 if (!mutex_trylock(&tty->atomic_write_lock)) {
913 if (ndelay)
914 return -EAGAIN;
915 if (mutex_lock_interruptible(&tty->atomic_write_lock))
916 return -ERESTARTSYS;
917 }
918 return 0;
919 }
920
921 /*
922 * Split writes up in sane blocksizes to avoid
923 * denial-of-service type attacks
924 */
925 static inline ssize_t do_tty_write(
926 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
927 struct tty_struct *tty,
928 struct file *file,
929 const char __user *buf,
930 size_t count)
931 {
932 ssize_t ret, written = 0;
933 unsigned int chunk;
934
935 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
936 if (ret < 0)
937 return ret;
938
939 /*
940 * We chunk up writes into a temporary buffer. This
941 * simplifies low-level drivers immensely, since they
942 * don't have locking issues and user mode accesses.
943 *
944 * But if TTY_NO_WRITE_SPLIT is set, we should use a
945 * big chunk-size..
946 *
947 * The default chunk-size is 2kB, because the NTTY
948 * layer has problems with bigger chunks. It will
949 * claim to be able to handle more characters than
950 * it actually does.
951 *
952 * FIXME: This can probably go away now except that 64K chunks
953 * are too likely to fail unless switched to vmalloc...
954 */
955 chunk = 2048;
956 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
957 chunk = 65536;
958 if (count < chunk)
959 chunk = count;
960
961 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
962 if (tty->write_cnt < chunk) {
963 unsigned char *buf_chunk;
964
965 if (chunk < 1024)
966 chunk = 1024;
967
968 buf_chunk = kmalloc(chunk, GFP_KERNEL);
969 if (!buf_chunk) {
970 ret = -ENOMEM;
971 goto out;
972 }
973 kfree(tty->write_buf);
974 tty->write_cnt = chunk;
975 tty->write_buf = buf_chunk;
976 }
977
978 /* Do the write .. */
979 for (;;) {
980 size_t size = count;
981 if (size > chunk)
982 size = chunk;
983 ret = -EFAULT;
984 if (copy_from_user(tty->write_buf, buf, size))
985 break;
986 ret = write(tty, file, tty->write_buf, size);
987 if (ret <= 0)
988 break;
989 written += ret;
990 buf += ret;
991 count -= ret;
992 if (!count)
993 break;
994 ret = -ERESTARTSYS;
995 if (signal_pending(current))
996 break;
997 cond_resched();
998 }
999 if (written) {
1000 struct inode *inode = file->f_path.dentry->d_inode;
1001 inode->i_mtime = current_fs_time(inode->i_sb);
1002 ret = written;
1003 }
1004 out:
1005 tty_write_unlock(tty);
1006 return ret;
1007 }
1008
1009 /**
1010 * tty_write_message - write a message to a certain tty, not just the console.
1011 * @tty: the destination tty_struct
1012 * @msg: the message to write
1013 *
1014 * This is used for messages that need to be redirected to a specific tty.
1015 * We don't put it into the syslog queue right now maybe in the future if
1016 * really needed.
1017 *
1018 * We must still hold the BKL and test the CLOSING flag for the moment.
1019 */
1020
1021 void tty_write_message(struct tty_struct *tty, char *msg)
1022 {
1023 if (tty) {
1024 mutex_lock(&tty->atomic_write_lock);
1025 lock_kernel();
1026 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1027 unlock_kernel();
1028 tty->ops->write(tty, msg, strlen(msg));
1029 } else
1030 unlock_kernel();
1031 tty_write_unlock(tty);
1032 }
1033 return;
1034 }
1035
1036
1037 /**
1038 * tty_write - write method for tty device file
1039 * @file: tty file pointer
1040 * @buf: user data to write
1041 * @count: bytes to write
1042 * @ppos: unused
1043 *
1044 * Write data to a tty device via the line discipline.
1045 *
1046 * Locking:
1047 * Locks the line discipline as required
1048 * Writes to the tty driver are serialized by the atomic_write_lock
1049 * and are then processed in chunks to the device. The line discipline
1050 * write method will not be invoked in parallel for each device.
1051 */
1052
1053 static ssize_t tty_write(struct file *file, const char __user *buf,
1054 size_t count, loff_t *ppos)
1055 {
1056 struct tty_struct *tty;
1057 struct inode *inode = file->f_path.dentry->d_inode;
1058 ssize_t ret;
1059 struct tty_ldisc *ld;
1060
1061 tty = (struct tty_struct *)file->private_data;
1062 if (tty_paranoia_check(tty, inode, "tty_write"))
1063 return -EIO;
1064 if (!tty || !tty->ops->write ||
1065 (test_bit(TTY_IO_ERROR, &tty->flags)))
1066 return -EIO;
1067 /* Short term debug to catch buggy drivers */
1068 if (tty->ops->write_room == NULL)
1069 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1070 tty->driver->name);
1071 ld = tty_ldisc_ref_wait(tty);
1072 if (!ld->ops->write)
1073 ret = -EIO;
1074 else
1075 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1076 tty_ldisc_deref(ld);
1077 return ret;
1078 }
1079
1080 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1081 size_t count, loff_t *ppos)
1082 {
1083 struct file *p = NULL;
1084
1085 spin_lock(&redirect_lock);
1086 if (redirect) {
1087 get_file(redirect);
1088 p = redirect;
1089 }
1090 spin_unlock(&redirect_lock);
1091
1092 if (p) {
1093 ssize_t res;
1094 res = vfs_write(p, buf, count, &p->f_pos);
1095 fput(p);
1096 return res;
1097 }
1098 return tty_write(file, buf, count, ppos);
1099 }
1100
1101 static char ptychar[] = "pqrstuvwxyzabcde";
1102
1103 /**
1104 * pty_line_name - generate name for a pty
1105 * @driver: the tty driver in use
1106 * @index: the minor number
1107 * @p: output buffer of at least 6 bytes
1108 *
1109 * Generate a name from a driver reference and write it to the output
1110 * buffer.
1111 *
1112 * Locking: None
1113 */
1114 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1115 {
1116 int i = index + driver->name_base;
1117 /* ->name is initialized to "ttyp", but "tty" is expected */
1118 sprintf(p, "%s%c%x",
1119 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1120 ptychar[i >> 4 & 0xf], i & 0xf);
1121 }
1122
1123 /**
1124 * tty_line_name - generate name for a tty
1125 * @driver: the tty driver in use
1126 * @index: the minor number
1127 * @p: output buffer of at least 7 bytes
1128 *
1129 * Generate a name from a driver reference and write it to the output
1130 * buffer.
1131 *
1132 * Locking: None
1133 */
1134 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1135 {
1136 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1137 }
1138
1139 /**
1140 * tty_driver_lookup_tty() - find an existing tty, if any
1141 * @driver: the driver for the tty
1142 * @idx: the minor number
1143 *
1144 * Return the tty, if found or ERR_PTR() otherwise.
1145 *
1146 * Locking: tty_mutex must be held. If tty is found, the mutex must
1147 * be held until the 'fast-open' is also done. Will change once we
1148 * have refcounting in the driver and per driver locking
1149 */
1150 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1151 struct inode *inode, int idx)
1152 {
1153 struct tty_struct *tty;
1154
1155 if (driver->ops->lookup)
1156 return driver->ops->lookup(driver, inode, idx);
1157
1158 tty = driver->ttys[idx];
1159 return tty;
1160 }
1161
1162 /**
1163 * tty_init_termios - helper for termios setup
1164 * @tty: the tty to set up
1165 *
1166 * Initialise the termios structures for this tty. Thus runs under
1167 * the tty_mutex currently so we can be relaxed about ordering.
1168 */
1169
1170 int tty_init_termios(struct tty_struct *tty)
1171 {
1172 struct ktermios *tp;
1173 int idx = tty->index;
1174
1175 tp = tty->driver->termios[idx];
1176 if (tp == NULL) {
1177 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1178 if (tp == NULL)
1179 return -ENOMEM;
1180 memcpy(tp, &tty->driver->init_termios,
1181 sizeof(struct ktermios));
1182 tty->driver->termios[idx] = tp;
1183 }
1184 tty->termios = tp;
1185 tty->termios_locked = tp + 1;
1186
1187 /* Compatibility until drivers always set this */
1188 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1189 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1190 return 0;
1191 }
1192 EXPORT_SYMBOL_GPL(tty_init_termios);
1193
1194 /**
1195 * tty_driver_install_tty() - install a tty entry in the driver
1196 * @driver: the driver for the tty
1197 * @tty: the tty
1198 *
1199 * Install a tty object into the driver tables. The tty->index field
1200 * will be set by the time this is called. This method is responsible
1201 * for ensuring any need additional structures are allocated and
1202 * configured.
1203 *
1204 * Locking: tty_mutex for now
1205 */
1206 static int tty_driver_install_tty(struct tty_driver *driver,
1207 struct tty_struct *tty)
1208 {
1209 int idx = tty->index;
1210 int ret;
1211
1212 if (driver->ops->install) {
1213 lock_kernel();
1214 ret = driver->ops->install(driver, tty);
1215 unlock_kernel();
1216 return ret;
1217 }
1218
1219 if (tty_init_termios(tty) == 0) {
1220 lock_kernel();
1221 tty_driver_kref_get(driver);
1222 tty->count++;
1223 driver->ttys[idx] = tty;
1224 unlock_kernel();
1225 return 0;
1226 }
1227 return -ENOMEM;
1228 }
1229
1230 /**
1231 * tty_driver_remove_tty() - remove a tty from the driver tables
1232 * @driver: the driver for the tty
1233 * @idx: the minor number
1234 *
1235 * Remvoe a tty object from the driver tables. The tty->index field
1236 * will be set by the time this is called.
1237 *
1238 * Locking: tty_mutex for now
1239 */
1240 static void tty_driver_remove_tty(struct tty_driver *driver,
1241 struct tty_struct *tty)
1242 {
1243 if (driver->ops->remove)
1244 driver->ops->remove(driver, tty);
1245 else
1246 driver->ttys[tty->index] = NULL;
1247 }
1248
1249 /*
1250 * tty_reopen() - fast re-open of an open tty
1251 * @tty - the tty to open
1252 *
1253 * Return 0 on success, -errno on error.
1254 *
1255 * Locking: tty_mutex must be held from the time the tty was found
1256 * till this open completes.
1257 */
1258 static int tty_reopen(struct tty_struct *tty)
1259 {
1260 struct tty_driver *driver = tty->driver;
1261
1262 if (test_bit(TTY_CLOSING, &tty->flags))
1263 return -EIO;
1264
1265 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1266 driver->subtype == PTY_TYPE_MASTER) {
1267 /*
1268 * special case for PTY masters: only one open permitted,
1269 * and the slave side open count is incremented as well.
1270 */
1271 if (tty->count)
1272 return -EIO;
1273
1274 tty->link->count++;
1275 }
1276 tty->count++;
1277 tty->driver = driver; /* N.B. why do this every time?? */
1278
1279 mutex_lock(&tty->ldisc_mutex);
1280 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1281 mutex_unlock(&tty->ldisc_mutex);
1282
1283 return 0;
1284 }
1285
1286 /**
1287 * tty_init_dev - initialise a tty device
1288 * @driver: tty driver we are opening a device on
1289 * @idx: device index
1290 * @ret_tty: returned tty structure
1291 * @first_ok: ok to open a new device (used by ptmx)
1292 *
1293 * Prepare a tty device. This may not be a "new" clean device but
1294 * could also be an active device. The pty drivers require special
1295 * handling because of this.
1296 *
1297 * Locking:
1298 * The function is called under the tty_mutex, which
1299 * protects us from the tty struct or driver itself going away.
1300 *
1301 * On exit the tty device has the line discipline attached and
1302 * a reference count of 1. If a pair was created for pty/tty use
1303 * and the other was a pty master then it too has a reference count of 1.
1304 *
1305 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1306 * failed open. The new code protects the open with a mutex, so it's
1307 * really quite straightforward. The mutex locking can probably be
1308 * relaxed for the (most common) case of reopening a tty.
1309 */
1310
1311 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1312 int first_ok)
1313 {
1314 struct tty_struct *tty;
1315 int retval;
1316
1317 lock_kernel();
1318 /* Check if pty master is being opened multiple times */
1319 if (driver->subtype == PTY_TYPE_MASTER &&
1320 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1321 unlock_kernel();
1322 return ERR_PTR(-EIO);
1323 }
1324 unlock_kernel();
1325
1326 /*
1327 * First time open is complex, especially for PTY devices.
1328 * This code guarantees that either everything succeeds and the
1329 * TTY is ready for operation, or else the table slots are vacated
1330 * and the allocated memory released. (Except that the termios
1331 * and locked termios may be retained.)
1332 */
1333
1334 if (!try_module_get(driver->owner))
1335 return ERR_PTR(-ENODEV);
1336
1337 tty = alloc_tty_struct();
1338 if (!tty)
1339 goto fail_no_mem;
1340 initialize_tty_struct(tty, driver, idx);
1341
1342 retval = tty_driver_install_tty(driver, tty);
1343 if (retval < 0) {
1344 free_tty_struct(tty);
1345 module_put(driver->owner);
1346 return ERR_PTR(retval);
1347 }
1348
1349 /*
1350 * Structures all installed ... call the ldisc open routines.
1351 * If we fail here just call release_tty to clean up. No need
1352 * to decrement the use counts, as release_tty doesn't care.
1353 */
1354 retval = tty_ldisc_setup(tty, tty->link);
1355 if (retval)
1356 goto release_mem_out;
1357 return tty;
1358
1359 fail_no_mem:
1360 module_put(driver->owner);
1361 return ERR_PTR(-ENOMEM);
1362
1363 /* call the tty release_tty routine to clean out this slot */
1364 release_mem_out:
1365 if (printk_ratelimit())
1366 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1367 "clearing slot %d\n", idx);
1368 lock_kernel();
1369 release_tty(tty, idx);
1370 unlock_kernel();
1371 return ERR_PTR(retval);
1372 }
1373
1374 void tty_free_termios(struct tty_struct *tty)
1375 {
1376 struct ktermios *tp;
1377 int idx = tty->index;
1378 /* Kill this flag and push into drivers for locking etc */
1379 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1380 /* FIXME: Locking on ->termios array */
1381 tp = tty->termios;
1382 tty->driver->termios[idx] = NULL;
1383 kfree(tp);
1384 }
1385 }
1386 EXPORT_SYMBOL(tty_free_termios);
1387
1388 void tty_shutdown(struct tty_struct *tty)
1389 {
1390 tty_driver_remove_tty(tty->driver, tty);
1391 tty_free_termios(tty);
1392 }
1393 EXPORT_SYMBOL(tty_shutdown);
1394
1395 /**
1396 * release_one_tty - release tty structure memory
1397 * @kref: kref of tty we are obliterating
1398 *
1399 * Releases memory associated with a tty structure, and clears out the
1400 * driver table slots. This function is called when a device is no longer
1401 * in use. It also gets called when setup of a device fails.
1402 *
1403 * Locking:
1404 * tty_mutex - sometimes only
1405 * takes the file list lock internally when working on the list
1406 * of ttys that the driver keeps.
1407 *
1408 * This method gets called from a work queue so that the driver private
1409 * cleanup ops can sleep (needed for USB at least)
1410 */
1411 static void release_one_tty(struct work_struct *work)
1412 {
1413 struct tty_struct *tty =
1414 container_of(work, struct tty_struct, hangup_work);
1415 struct tty_driver *driver = tty->driver;
1416
1417 if (tty->ops->cleanup)
1418 tty->ops->cleanup(tty);
1419
1420 tty->magic = 0;
1421 tty_driver_kref_put(driver);
1422 module_put(driver->owner);
1423
1424 file_list_lock();
1425 list_del_init(&tty->tty_files);
1426 file_list_unlock();
1427
1428 free_tty_struct(tty);
1429 }
1430
1431 static void queue_release_one_tty(struct kref *kref)
1432 {
1433 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1434
1435 if (tty->ops->shutdown)
1436 tty->ops->shutdown(tty);
1437 else
1438 tty_shutdown(tty);
1439
1440 /* The hangup queue is now free so we can reuse it rather than
1441 waste a chunk of memory for each port */
1442 INIT_WORK(&tty->hangup_work, release_one_tty);
1443 schedule_work(&tty->hangup_work);
1444 }
1445
1446 /**
1447 * tty_kref_put - release a tty kref
1448 * @tty: tty device
1449 *
1450 * Release a reference to a tty device and if need be let the kref
1451 * layer destruct the object for us
1452 */
1453
1454 void tty_kref_put(struct tty_struct *tty)
1455 {
1456 if (tty)
1457 kref_put(&tty->kref, queue_release_one_tty);
1458 }
1459 EXPORT_SYMBOL(tty_kref_put);
1460
1461 /**
1462 * release_tty - release tty structure memory
1463 *
1464 * Release both @tty and a possible linked partner (think pty pair),
1465 * and decrement the refcount of the backing module.
1466 *
1467 * Locking:
1468 * tty_mutex - sometimes only
1469 * takes the file list lock internally when working on the list
1470 * of ttys that the driver keeps.
1471 * FIXME: should we require tty_mutex is held here ??
1472 *
1473 */
1474 static void release_tty(struct tty_struct *tty, int idx)
1475 {
1476 /* This should always be true but check for the moment */
1477 WARN_ON(tty->index != idx);
1478
1479 if (tty->link)
1480 tty_kref_put(tty->link);
1481 tty_kref_put(tty);
1482 }
1483
1484 /**
1485 * tty_release - vfs callback for close
1486 * @inode: inode of tty
1487 * @filp: file pointer for handle to tty
1488 *
1489 * Called the last time each file handle is closed that references
1490 * this tty. There may however be several such references.
1491 *
1492 * Locking:
1493 * Takes bkl. See tty_release_dev
1494 *
1495 * Even releasing the tty structures is a tricky business.. We have
1496 * to be very careful that the structures are all released at the
1497 * same time, as interrupts might otherwise get the wrong pointers.
1498 *
1499 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1500 * lead to double frees or releasing memory still in use.
1501 */
1502
1503 int tty_release(struct inode *inode, struct file *filp)
1504 {
1505 struct tty_struct *tty, *o_tty;
1506 int pty_master, tty_closing, o_tty_closing, do_sleep;
1507 int devpts;
1508 int idx;
1509 char buf[64];
1510
1511 tty = (struct tty_struct *)filp->private_data;
1512 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1513 return 0;
1514
1515 lock_kernel();
1516 check_tty_count(tty, "tty_release_dev");
1517
1518 tty_fasync(-1, filp, 0);
1519
1520 idx = tty->index;
1521 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1522 tty->driver->subtype == PTY_TYPE_MASTER);
1523 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1524 o_tty = tty->link;
1525
1526 #ifdef TTY_PARANOIA_CHECK
1527 if (idx < 0 || idx >= tty->driver->num) {
1528 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1529 "free (%s)\n", tty->name);
1530 unlock_kernel();
1531 return 0;
1532 }
1533 if (!devpts) {
1534 if (tty != tty->driver->ttys[idx]) {
1535 unlock_kernel();
1536 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1537 "for (%s)\n", idx, tty->name);
1538 return 0;
1539 }
1540 if (tty->termios != tty->driver->termios[idx]) {
1541 unlock_kernel();
1542 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1543 "for (%s)\n",
1544 idx, tty->name);
1545 return 0;
1546 }
1547 }
1548 #endif
1549
1550 #ifdef TTY_DEBUG_HANGUP
1551 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1552 tty_name(tty, buf), tty->count);
1553 #endif
1554
1555 #ifdef TTY_PARANOIA_CHECK
1556 if (tty->driver->other &&
1557 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1558 if (o_tty != tty->driver->other->ttys[idx]) {
1559 unlock_kernel();
1560 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1561 "not o_tty for (%s)\n",
1562 idx, tty->name);
1563 return 0 ;
1564 }
1565 if (o_tty->termios != tty->driver->other->termios[idx]) {
1566 unlock_kernel();
1567 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1568 "not o_termios for (%s)\n",
1569 idx, tty->name);
1570 return 0;
1571 }
1572 if (o_tty->link != tty) {
1573 unlock_kernel();
1574 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1575 return 0;
1576 }
1577 }
1578 #endif
1579 if (tty->ops->close)
1580 tty->ops->close(tty, filp);
1581
1582 unlock_kernel();
1583 /*
1584 * Sanity check: if tty->count is going to zero, there shouldn't be
1585 * any waiters on tty->read_wait or tty->write_wait. We test the
1586 * wait queues and kick everyone out _before_ actually starting to
1587 * close. This ensures that we won't block while releasing the tty
1588 * structure.
1589 *
1590 * The test for the o_tty closing is necessary, since the master and
1591 * slave sides may close in any order. If the slave side closes out
1592 * first, its count will be one, since the master side holds an open.
1593 * Thus this test wouldn't be triggered at the time the slave closes,
1594 * so we do it now.
1595 *
1596 * Note that it's possible for the tty to be opened again while we're
1597 * flushing out waiters. By recalculating the closing flags before
1598 * each iteration we avoid any problems.
1599 */
1600 while (1) {
1601 /* Guard against races with tty->count changes elsewhere and
1602 opens on /dev/tty */
1603
1604 mutex_lock(&tty_mutex);
1605 lock_kernel();
1606 tty_closing = tty->count <= 1;
1607 o_tty_closing = o_tty &&
1608 (o_tty->count <= (pty_master ? 1 : 0));
1609 do_sleep = 0;
1610
1611 if (tty_closing) {
1612 if (waitqueue_active(&tty->read_wait)) {
1613 wake_up_poll(&tty->read_wait, POLLIN);
1614 do_sleep++;
1615 }
1616 if (waitqueue_active(&tty->write_wait)) {
1617 wake_up_poll(&tty->write_wait, POLLOUT);
1618 do_sleep++;
1619 }
1620 }
1621 if (o_tty_closing) {
1622 if (waitqueue_active(&o_tty->read_wait)) {
1623 wake_up_poll(&o_tty->read_wait, POLLIN);
1624 do_sleep++;
1625 }
1626 if (waitqueue_active(&o_tty->write_wait)) {
1627 wake_up_poll(&o_tty->write_wait, POLLOUT);
1628 do_sleep++;
1629 }
1630 }
1631 if (!do_sleep)
1632 break;
1633
1634 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1635 "active!\n", tty_name(tty, buf));
1636 unlock_kernel();
1637 mutex_unlock(&tty_mutex);
1638 schedule();
1639 }
1640
1641 /*
1642 * The closing flags are now consistent with the open counts on
1643 * both sides, and we've completed the last operation that could
1644 * block, so it's safe to proceed with closing.
1645 */
1646 if (pty_master) {
1647 if (--o_tty->count < 0) {
1648 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1649 "(%d) for %s\n",
1650 o_tty->count, tty_name(o_tty, buf));
1651 o_tty->count = 0;
1652 }
1653 }
1654 if (--tty->count < 0) {
1655 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1656 tty->count, tty_name(tty, buf));
1657 tty->count = 0;
1658 }
1659
1660 /*
1661 * We've decremented tty->count, so we need to remove this file
1662 * descriptor off the tty->tty_files list; this serves two
1663 * purposes:
1664 * - check_tty_count sees the correct number of file descriptors
1665 * associated with this tty.
1666 * - do_tty_hangup no longer sees this file descriptor as
1667 * something that needs to be handled for hangups.
1668 */
1669 file_kill(filp);
1670 filp->private_data = NULL;
1671
1672 /*
1673 * Perform some housekeeping before deciding whether to return.
1674 *
1675 * Set the TTY_CLOSING flag if this was the last open. In the
1676 * case of a pty we may have to wait around for the other side
1677 * to close, and TTY_CLOSING makes sure we can't be reopened.
1678 */
1679 if (tty_closing)
1680 set_bit(TTY_CLOSING, &tty->flags);
1681 if (o_tty_closing)
1682 set_bit(TTY_CLOSING, &o_tty->flags);
1683
1684 /*
1685 * If _either_ side is closing, make sure there aren't any
1686 * processes that still think tty or o_tty is their controlling
1687 * tty.
1688 */
1689 if (tty_closing || o_tty_closing) {
1690 read_lock(&tasklist_lock);
1691 session_clear_tty(tty->session);
1692 if (o_tty)
1693 session_clear_tty(o_tty->session);
1694 read_unlock(&tasklist_lock);
1695 }
1696
1697 mutex_unlock(&tty_mutex);
1698
1699 /* check whether both sides are closing ... */
1700 if (!tty_closing || (o_tty && !o_tty_closing)) {
1701 unlock_kernel();
1702 return 0;
1703 }
1704
1705 #ifdef TTY_DEBUG_HANGUP
1706 printk(KERN_DEBUG "freeing tty structure...");
1707 #endif
1708 /*
1709 * Ask the line discipline code to release its structures
1710 */
1711 tty_ldisc_release(tty, o_tty);
1712 /*
1713 * The release_tty function takes care of the details of clearing
1714 * the slots and preserving the termios structure.
1715 */
1716 release_tty(tty, idx);
1717
1718 /* Make this pty number available for reallocation */
1719 if (devpts)
1720 devpts_kill_index(inode, idx);
1721 unlock_kernel();
1722 return 0;
1723 }
1724
1725 /**
1726 * tty_open - open a tty device
1727 * @inode: inode of device file
1728 * @filp: file pointer to tty
1729 *
1730 * tty_open and tty_release keep up the tty count that contains the
1731 * number of opens done on a tty. We cannot use the inode-count, as
1732 * different inodes might point to the same tty.
1733 *
1734 * Open-counting is needed for pty masters, as well as for keeping
1735 * track of serial lines: DTR is dropped when the last close happens.
1736 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1737 *
1738 * The termios state of a pty is reset on first open so that
1739 * settings don't persist across reuse.
1740 *
1741 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1742 * tty->count should protect the rest.
1743 * ->siglock protects ->signal/->sighand
1744 */
1745
1746 static int tty_open(struct inode *inode, struct file *filp)
1747 {
1748 struct tty_struct *tty = NULL;
1749 int noctty, retval;
1750 struct tty_driver *driver;
1751 int index;
1752 dev_t device = inode->i_rdev;
1753 unsigned saved_flags = filp->f_flags;
1754
1755 nonseekable_open(inode, filp);
1756
1757 retry_open:
1758 noctty = filp->f_flags & O_NOCTTY;
1759 index = -1;
1760 retval = 0;
1761
1762 mutex_lock(&tty_mutex);
1763 lock_kernel();
1764
1765 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1766 tty = get_current_tty();
1767 if (!tty) {
1768 unlock_kernel();
1769 mutex_unlock(&tty_mutex);
1770 return -ENXIO;
1771 }
1772 driver = tty_driver_kref_get(tty->driver);
1773 index = tty->index;
1774 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1775 /* noctty = 1; */
1776 /* FIXME: Should we take a driver reference ? */
1777 tty_kref_put(tty);
1778 goto got_driver;
1779 }
1780 #ifdef CONFIG_VT
1781 if (device == MKDEV(TTY_MAJOR, 0)) {
1782 extern struct tty_driver *console_driver;
1783 driver = tty_driver_kref_get(console_driver);
1784 index = fg_console;
1785 noctty = 1;
1786 goto got_driver;
1787 }
1788 #endif
1789 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1790 struct tty_driver *console_driver = console_device(&index);
1791 if (console_driver) {
1792 driver = tty_driver_kref_get(console_driver);
1793 if (driver) {
1794 /* Don't let /dev/console block */
1795 filp->f_flags |= O_NONBLOCK;
1796 noctty = 1;
1797 goto got_driver;
1798 }
1799 }
1800 unlock_kernel();
1801 mutex_unlock(&tty_mutex);
1802 return -ENODEV;
1803 }
1804
1805 driver = get_tty_driver(device, &index);
1806 if (!driver) {
1807 unlock_kernel();
1808 mutex_unlock(&tty_mutex);
1809 return -ENODEV;
1810 }
1811 got_driver:
1812 if (!tty) {
1813 /* check whether we're reopening an existing tty */
1814 tty = tty_driver_lookup_tty(driver, inode, index);
1815
1816 if (IS_ERR(tty)) {
1817 unlock_kernel();
1818 mutex_unlock(&tty_mutex);
1819 return PTR_ERR(tty);
1820 }
1821 }
1822
1823 if (tty) {
1824 retval = tty_reopen(tty);
1825 if (retval)
1826 tty = ERR_PTR(retval);
1827 } else
1828 tty = tty_init_dev(driver, index, 0);
1829
1830 mutex_unlock(&tty_mutex);
1831 tty_driver_kref_put(driver);
1832 if (IS_ERR(tty)) {
1833 unlock_kernel();
1834 return PTR_ERR(tty);
1835 }
1836
1837 filp->private_data = tty;
1838 file_move(filp, &tty->tty_files);
1839 check_tty_count(tty, "tty_open");
1840 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1841 tty->driver->subtype == PTY_TYPE_MASTER)
1842 noctty = 1;
1843 #ifdef TTY_DEBUG_HANGUP
1844 printk(KERN_DEBUG "opening %s...", tty->name);
1845 #endif
1846 if (!retval) {
1847 if (tty->ops->open)
1848 retval = tty->ops->open(tty, filp);
1849 else
1850 retval = -ENODEV;
1851 }
1852 filp->f_flags = saved_flags;
1853
1854 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1855 !capable(CAP_SYS_ADMIN))
1856 retval = -EBUSY;
1857
1858 if (retval) {
1859 #ifdef TTY_DEBUG_HANGUP
1860 printk(KERN_DEBUG "error %d in opening %s...", retval,
1861 tty->name);
1862 #endif
1863 tty_release(inode, filp);
1864 if (retval != -ERESTARTSYS) {
1865 unlock_kernel();
1866 return retval;
1867 }
1868 if (signal_pending(current)) {
1869 unlock_kernel();
1870 return retval;
1871 }
1872 schedule();
1873 /*
1874 * Need to reset f_op in case a hangup happened.
1875 */
1876 if (filp->f_op == &hung_up_tty_fops)
1877 filp->f_op = &tty_fops;
1878 goto retry_open;
1879 }
1880 unlock_kernel();
1881
1882
1883 mutex_lock(&tty_mutex);
1884 lock_kernel();
1885 spin_lock_irq(&current->sighand->siglock);
1886 if (!noctty &&
1887 current->signal->leader &&
1888 !current->signal->tty &&
1889 tty->session == NULL)
1890 __proc_set_tty(current, tty);
1891 spin_unlock_irq(&current->sighand->siglock);
1892 unlock_kernel();
1893 mutex_unlock(&tty_mutex);
1894 return 0;
1895 }
1896
1897
1898
1899 /**
1900 * tty_poll - check tty status
1901 * @filp: file being polled
1902 * @wait: poll wait structures to update
1903 *
1904 * Call the line discipline polling method to obtain the poll
1905 * status of the device.
1906 *
1907 * Locking: locks called line discipline but ldisc poll method
1908 * may be re-entered freely by other callers.
1909 */
1910
1911 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1912 {
1913 struct tty_struct *tty;
1914 struct tty_ldisc *ld;
1915 int ret = 0;
1916
1917 tty = (struct tty_struct *)filp->private_data;
1918 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1919 return 0;
1920
1921 ld = tty_ldisc_ref_wait(tty);
1922 if (ld->ops->poll)
1923 ret = (ld->ops->poll)(tty, filp, wait);
1924 tty_ldisc_deref(ld);
1925 return ret;
1926 }
1927
1928 static int tty_fasync(int fd, struct file *filp, int on)
1929 {
1930 struct tty_struct *tty;
1931 unsigned long flags;
1932 int retval = 0;
1933
1934 lock_kernel();
1935 tty = (struct tty_struct *)filp->private_data;
1936 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1937 goto out;
1938
1939 retval = fasync_helper(fd, filp, on, &tty->fasync);
1940 if (retval <= 0)
1941 goto out;
1942
1943 if (on) {
1944 enum pid_type type;
1945 struct pid *pid;
1946 if (!waitqueue_active(&tty->read_wait))
1947 tty->minimum_to_wake = 1;
1948 spin_lock_irqsave(&tty->ctrl_lock, flags);
1949 if (tty->pgrp) {
1950 pid = tty->pgrp;
1951 type = PIDTYPE_PGID;
1952 } else {
1953 pid = task_pid(current);
1954 type = PIDTYPE_PID;
1955 }
1956 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1957 retval = __f_setown(filp, pid, type, 0);
1958 if (retval)
1959 goto out;
1960 } else {
1961 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1962 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1963 }
1964 retval = 0;
1965 out:
1966 unlock_kernel();
1967 return retval;
1968 }
1969
1970 /**
1971 * tiocsti - fake input character
1972 * @tty: tty to fake input into
1973 * @p: pointer to character
1974 *
1975 * Fake input to a tty device. Does the necessary locking and
1976 * input management.
1977 *
1978 * FIXME: does not honour flow control ??
1979 *
1980 * Locking:
1981 * Called functions take tty_ldisc_lock
1982 * current->signal->tty check is safe without locks
1983 *
1984 * FIXME: may race normal receive processing
1985 */
1986
1987 static int tiocsti(struct tty_struct *tty, char __user *p)
1988 {
1989 char ch, mbz = 0;
1990 struct tty_ldisc *ld;
1991
1992 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1993 return -EPERM;
1994 if (get_user(ch, p))
1995 return -EFAULT;
1996 tty_audit_tiocsti(tty, ch);
1997 ld = tty_ldisc_ref_wait(tty);
1998 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1999 tty_ldisc_deref(ld);
2000 return 0;
2001 }
2002
2003 /**
2004 * tiocgwinsz - implement window query ioctl
2005 * @tty; tty
2006 * @arg: user buffer for result
2007 *
2008 * Copies the kernel idea of the window size into the user buffer.
2009 *
2010 * Locking: tty->termios_mutex is taken to ensure the winsize data
2011 * is consistent.
2012 */
2013
2014 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2015 {
2016 int err;
2017
2018 mutex_lock(&tty->termios_mutex);
2019 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2020 mutex_unlock(&tty->termios_mutex);
2021
2022 return err ? -EFAULT: 0;
2023 }
2024
2025 /**
2026 * tty_do_resize - resize event
2027 * @tty: tty being resized
2028 * @rows: rows (character)
2029 * @cols: cols (character)
2030 *
2031 * Update the termios variables and send the neccessary signals to
2032 * peform a terminal resize correctly
2033 */
2034
2035 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2036 {
2037 struct pid *pgrp;
2038 unsigned long flags;
2039
2040 /* Lock the tty */
2041 mutex_lock(&tty->termios_mutex);
2042 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2043 goto done;
2044 /* Get the PID values and reference them so we can
2045 avoid holding the tty ctrl lock while sending signals */
2046 spin_lock_irqsave(&tty->ctrl_lock, flags);
2047 pgrp = get_pid(tty->pgrp);
2048 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2049
2050 if (pgrp)
2051 kill_pgrp(pgrp, SIGWINCH, 1);
2052 put_pid(pgrp);
2053
2054 tty->winsize = *ws;
2055 done:
2056 mutex_unlock(&tty->termios_mutex);
2057 return 0;
2058 }
2059
2060 /**
2061 * tiocswinsz - implement window size set ioctl
2062 * @tty; tty side of tty
2063 * @arg: user buffer for result
2064 *
2065 * Copies the user idea of the window size to the kernel. Traditionally
2066 * this is just advisory information but for the Linux console it
2067 * actually has driver level meaning and triggers a VC resize.
2068 *
2069 * Locking:
2070 * Driver dependant. The default do_resize method takes the
2071 * tty termios mutex and ctrl_lock. The console takes its own lock
2072 * then calls into the default method.
2073 */
2074
2075 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2076 {
2077 struct winsize tmp_ws;
2078 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2079 return -EFAULT;
2080
2081 if (tty->ops->resize)
2082 return tty->ops->resize(tty, &tmp_ws);
2083 else
2084 return tty_do_resize(tty, &tmp_ws);
2085 }
2086
2087 /**
2088 * tioccons - allow admin to move logical console
2089 * @file: the file to become console
2090 *
2091 * Allow the adminstrator to move the redirected console device
2092 *
2093 * Locking: uses redirect_lock to guard the redirect information
2094 */
2095
2096 static int tioccons(struct file *file)
2097 {
2098 if (!capable(CAP_SYS_ADMIN))
2099 return -EPERM;
2100 if (file->f_op->write == redirected_tty_write) {
2101 struct file *f;
2102 spin_lock(&redirect_lock);
2103 f = redirect;
2104 redirect = NULL;
2105 spin_unlock(&redirect_lock);
2106 if (f)
2107 fput(f);
2108 return 0;
2109 }
2110 spin_lock(&redirect_lock);
2111 if (redirect) {
2112 spin_unlock(&redirect_lock);
2113 return -EBUSY;
2114 }
2115 get_file(file);
2116 redirect = file;
2117 spin_unlock(&redirect_lock);
2118 return 0;
2119 }
2120
2121 /**
2122 * fionbio - non blocking ioctl
2123 * @file: file to set blocking value
2124 * @p: user parameter
2125 *
2126 * Historical tty interfaces had a blocking control ioctl before
2127 * the generic functionality existed. This piece of history is preserved
2128 * in the expected tty API of posix OS's.
2129 *
2130 * Locking: none, the open file handle ensures it won't go away.
2131 */
2132
2133 static int fionbio(struct file *file, int __user *p)
2134 {
2135 int nonblock;
2136
2137 if (get_user(nonblock, p))
2138 return -EFAULT;
2139
2140 spin_lock(&file->f_lock);
2141 if (nonblock)
2142 file->f_flags |= O_NONBLOCK;
2143 else
2144 file->f_flags &= ~O_NONBLOCK;
2145 spin_unlock(&file->f_lock);
2146 return 0;
2147 }
2148
2149 /**
2150 * tiocsctty - set controlling tty
2151 * @tty: tty structure
2152 * @arg: user argument
2153 *
2154 * This ioctl is used to manage job control. It permits a session
2155 * leader to set this tty as the controlling tty for the session.
2156 *
2157 * Locking:
2158 * Takes tty_mutex() to protect tty instance
2159 * Takes tasklist_lock internally to walk sessions
2160 * Takes ->siglock() when updating signal->tty
2161 */
2162
2163 static int tiocsctty(struct tty_struct *tty, int arg)
2164 {
2165 int ret = 0;
2166 if (current->signal->leader && (task_session(current) == tty->session))
2167 return ret;
2168
2169 mutex_lock(&tty_mutex);
2170 /*
2171 * The process must be a session leader and
2172 * not have a controlling tty already.
2173 */
2174 if (!current->signal->leader || current->signal->tty) {
2175 ret = -EPERM;
2176 goto unlock;
2177 }
2178
2179 if (tty->session) {
2180 /*
2181 * This tty is already the controlling
2182 * tty for another session group!
2183 */
2184 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2185 /*
2186 * Steal it away
2187 */
2188 read_lock(&tasklist_lock);
2189 session_clear_tty(tty->session);
2190 read_unlock(&tasklist_lock);
2191 } else {
2192 ret = -EPERM;
2193 goto unlock;
2194 }
2195 }
2196 proc_set_tty(current, tty);
2197 unlock:
2198 mutex_unlock(&tty_mutex);
2199 return ret;
2200 }
2201
2202 /**
2203 * tty_get_pgrp - return a ref counted pgrp pid
2204 * @tty: tty to read
2205 *
2206 * Returns a refcounted instance of the pid struct for the process
2207 * group controlling the tty.
2208 */
2209
2210 struct pid *tty_get_pgrp(struct tty_struct *tty)
2211 {
2212 unsigned long flags;
2213 struct pid *pgrp;
2214
2215 spin_lock_irqsave(&tty->ctrl_lock, flags);
2216 pgrp = get_pid(tty->pgrp);
2217 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2218
2219 return pgrp;
2220 }
2221 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2222
2223 /**
2224 * tiocgpgrp - get process group
2225 * @tty: tty passed by user
2226 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2227 * @p: returned pid
2228 *
2229 * Obtain the process group of the tty. If there is no process group
2230 * return an error.
2231 *
2232 * Locking: none. Reference to current->signal->tty is safe.
2233 */
2234
2235 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2236 {
2237 struct pid *pid;
2238 int ret;
2239 /*
2240 * (tty == real_tty) is a cheap way of
2241 * testing if the tty is NOT a master pty.
2242 */
2243 if (tty == real_tty && current->signal->tty != real_tty)
2244 return -ENOTTY;
2245 pid = tty_get_pgrp(real_tty);
2246 ret = put_user(pid_vnr(pid), p);
2247 put_pid(pid);
2248 return ret;
2249 }
2250
2251 /**
2252 * tiocspgrp - attempt to set process group
2253 * @tty: tty passed by user
2254 * @real_tty: tty side device matching tty passed by user
2255 * @p: pid pointer
2256 *
2257 * Set the process group of the tty to the session passed. Only
2258 * permitted where the tty session is our session.
2259 *
2260 * Locking: RCU, ctrl lock
2261 */
2262
2263 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2264 {
2265 struct pid *pgrp;
2266 pid_t pgrp_nr;
2267 int retval = tty_check_change(real_tty);
2268 unsigned long flags;
2269
2270 if (retval == -EIO)
2271 return -ENOTTY;
2272 if (retval)
2273 return retval;
2274 if (!current->signal->tty ||
2275 (current->signal->tty != real_tty) ||
2276 (real_tty->session != task_session(current)))
2277 return -ENOTTY;
2278 if (get_user(pgrp_nr, p))
2279 return -EFAULT;
2280 if (pgrp_nr < 0)
2281 return -EINVAL;
2282 rcu_read_lock();
2283 pgrp = find_vpid(pgrp_nr);
2284 retval = -ESRCH;
2285 if (!pgrp)
2286 goto out_unlock;
2287 retval = -EPERM;
2288 if (session_of_pgrp(pgrp) != task_session(current))
2289 goto out_unlock;
2290 retval = 0;
2291 spin_lock_irqsave(&tty->ctrl_lock, flags);
2292 put_pid(real_tty->pgrp);
2293 real_tty->pgrp = get_pid(pgrp);
2294 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2295 out_unlock:
2296 rcu_read_unlock();
2297 return retval;
2298 }
2299
2300 /**
2301 * tiocgsid - get session id
2302 * @tty: tty passed by user
2303 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2304 * @p: pointer to returned session id
2305 *
2306 * Obtain the session id of the tty. If there is no session
2307 * return an error.
2308 *
2309 * Locking: none. Reference to current->signal->tty is safe.
2310 */
2311
2312 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2313 {
2314 /*
2315 * (tty == real_tty) is a cheap way of
2316 * testing if the tty is NOT a master pty.
2317 */
2318 if (tty == real_tty && current->signal->tty != real_tty)
2319 return -ENOTTY;
2320 if (!real_tty->session)
2321 return -ENOTTY;
2322 return put_user(pid_vnr(real_tty->session), p);
2323 }
2324
2325 /**
2326 * tiocsetd - set line discipline
2327 * @tty: tty device
2328 * @p: pointer to user data
2329 *
2330 * Set the line discipline according to user request.
2331 *
2332 * Locking: see tty_set_ldisc, this function is just a helper
2333 */
2334
2335 static int tiocsetd(struct tty_struct *tty, int __user *p)
2336 {
2337 int ldisc;
2338 int ret;
2339
2340 if (get_user(ldisc, p))
2341 return -EFAULT;
2342
2343 ret = tty_set_ldisc(tty, ldisc);
2344
2345 return ret;
2346 }
2347
2348 /**
2349 * send_break - performed time break
2350 * @tty: device to break on
2351 * @duration: timeout in mS
2352 *
2353 * Perform a timed break on hardware that lacks its own driver level
2354 * timed break functionality.
2355 *
2356 * Locking:
2357 * atomic_write_lock serializes
2358 *
2359 */
2360
2361 static int send_break(struct tty_struct *tty, unsigned int duration)
2362 {
2363 int retval;
2364
2365 if (tty->ops->break_ctl == NULL)
2366 return 0;
2367
2368 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2369 retval = tty->ops->break_ctl(tty, duration);
2370 else {
2371 /* Do the work ourselves */
2372 if (tty_write_lock(tty, 0) < 0)
2373 return -EINTR;
2374 retval = tty->ops->break_ctl(tty, -1);
2375 if (retval)
2376 goto out;
2377 if (!signal_pending(current))
2378 msleep_interruptible(duration);
2379 retval = tty->ops->break_ctl(tty, 0);
2380 out:
2381 tty_write_unlock(tty);
2382 if (signal_pending(current))
2383 retval = -EINTR;
2384 }
2385 return retval;
2386 }
2387
2388 /**
2389 * tty_tiocmget - get modem status
2390 * @tty: tty device
2391 * @file: user file pointer
2392 * @p: pointer to result
2393 *
2394 * Obtain the modem status bits from the tty driver if the feature
2395 * is supported. Return -EINVAL if it is not available.
2396 *
2397 * Locking: none (up to the driver)
2398 */
2399
2400 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2401 {
2402 int retval = -EINVAL;
2403
2404 if (tty->ops->tiocmget) {
2405 retval = tty->ops->tiocmget(tty, file);
2406
2407 if (retval >= 0)
2408 retval = put_user(retval, p);
2409 }
2410 return retval;
2411 }
2412
2413 /**
2414 * tty_tiocmset - set modem status
2415 * @tty: tty device
2416 * @file: user file pointer
2417 * @cmd: command - clear bits, set bits or set all
2418 * @p: pointer to desired bits
2419 *
2420 * Set the modem status bits from the tty driver if the feature
2421 * is supported. Return -EINVAL if it is not available.
2422 *
2423 * Locking: none (up to the driver)
2424 */
2425
2426 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2427 unsigned __user *p)
2428 {
2429 int retval;
2430 unsigned int set, clear, val;
2431
2432 if (tty->ops->tiocmset == NULL)
2433 return -EINVAL;
2434
2435 retval = get_user(val, p);
2436 if (retval)
2437 return retval;
2438 set = clear = 0;
2439 switch (cmd) {
2440 case TIOCMBIS:
2441 set = val;
2442 break;
2443 case TIOCMBIC:
2444 clear = val;
2445 break;
2446 case TIOCMSET:
2447 set = val;
2448 clear = ~val;
2449 break;
2450 }
2451 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2452 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2453 return tty->ops->tiocmset(tty, file, set, clear);
2454 }
2455
2456 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2457 {
2458 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2459 tty->driver->subtype == PTY_TYPE_MASTER)
2460 tty = tty->link;
2461 return tty;
2462 }
2463 EXPORT_SYMBOL(tty_pair_get_tty);
2464
2465 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2466 {
2467 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2468 tty->driver->subtype == PTY_TYPE_MASTER)
2469 return tty;
2470 return tty->link;
2471 }
2472 EXPORT_SYMBOL(tty_pair_get_pty);
2473
2474 /*
2475 * Split this up, as gcc can choke on it otherwise..
2476 */
2477 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2478 {
2479 struct tty_struct *tty, *real_tty;
2480 void __user *p = (void __user *)arg;
2481 int retval;
2482 struct tty_ldisc *ld;
2483 struct inode *inode = file->f_dentry->d_inode;
2484
2485 tty = (struct tty_struct *)file->private_data;
2486 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2487 return -EINVAL;
2488
2489 real_tty = tty_pair_get_tty(tty);
2490
2491 /*
2492 * Factor out some common prep work
2493 */
2494 switch (cmd) {
2495 case TIOCSETD:
2496 case TIOCSBRK:
2497 case TIOCCBRK:
2498 case TCSBRK:
2499 case TCSBRKP:
2500 retval = tty_check_change(tty);
2501 if (retval)
2502 return retval;
2503 if (cmd != TIOCCBRK) {
2504 tty_wait_until_sent(tty, 0);
2505 if (signal_pending(current))
2506 return -EINTR;
2507 }
2508 break;
2509 }
2510
2511 /*
2512 * Now do the stuff.
2513 */
2514 switch (cmd) {
2515 case TIOCSTI:
2516 return tiocsti(tty, p);
2517 case TIOCGWINSZ:
2518 return tiocgwinsz(real_tty, p);
2519 case TIOCSWINSZ:
2520 return tiocswinsz(real_tty, p);
2521 case TIOCCONS:
2522 return real_tty != tty ? -EINVAL : tioccons(file);
2523 case FIONBIO:
2524 return fionbio(file, p);
2525 case TIOCEXCL:
2526 set_bit(TTY_EXCLUSIVE, &tty->flags);
2527 return 0;
2528 case TIOCNXCL:
2529 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2530 return 0;
2531 case TIOCNOTTY:
2532 if (current->signal->tty != tty)
2533 return -ENOTTY;
2534 no_tty();
2535 return 0;
2536 case TIOCSCTTY:
2537 return tiocsctty(tty, arg);
2538 case TIOCGPGRP:
2539 return tiocgpgrp(tty, real_tty, p);
2540 case TIOCSPGRP:
2541 return tiocspgrp(tty, real_tty, p);
2542 case TIOCGSID:
2543 return tiocgsid(tty, real_tty, p);
2544 case TIOCGETD:
2545 return put_user(tty->ldisc->ops->num, (int __user *)p);
2546 case TIOCSETD:
2547 return tiocsetd(tty, p);
2548 /*
2549 * Break handling
2550 */
2551 case TIOCSBRK: /* Turn break on, unconditionally */
2552 if (tty->ops->break_ctl)
2553 return tty->ops->break_ctl(tty, -1);
2554 return 0;
2555 case TIOCCBRK: /* Turn break off, unconditionally */
2556 if (tty->ops->break_ctl)
2557 return tty->ops->break_ctl(tty, 0);
2558 return 0;
2559 case TCSBRK: /* SVID version: non-zero arg --> no break */
2560 /* non-zero arg means wait for all output data
2561 * to be sent (performed above) but don't send break.
2562 * This is used by the tcdrain() termios function.
2563 */
2564 if (!arg)
2565 return send_break(tty, 250);
2566 return 0;
2567 case TCSBRKP: /* support for POSIX tcsendbreak() */
2568 return send_break(tty, arg ? arg*100 : 250);
2569
2570 case TIOCMGET:
2571 return tty_tiocmget(tty, file, p);
2572 case TIOCMSET:
2573 case TIOCMBIC:
2574 case TIOCMBIS:
2575 return tty_tiocmset(tty, file, cmd, p);
2576 case TCFLSH:
2577 switch (arg) {
2578 case TCIFLUSH:
2579 case TCIOFLUSH:
2580 /* flush tty buffer and allow ldisc to process ioctl */
2581 tty_buffer_flush(tty);
2582 break;
2583 }
2584 break;
2585 }
2586 if (tty->ops->ioctl) {
2587 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2588 if (retval != -ENOIOCTLCMD)
2589 return retval;
2590 }
2591 ld = tty_ldisc_ref_wait(tty);
2592 retval = -EINVAL;
2593 if (ld->ops->ioctl) {
2594 retval = ld->ops->ioctl(tty, file, cmd, arg);
2595 if (retval == -ENOIOCTLCMD)
2596 retval = -EINVAL;
2597 }
2598 tty_ldisc_deref(ld);
2599 return retval;
2600 }
2601
2602 #ifdef CONFIG_COMPAT
2603 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2604 unsigned long arg)
2605 {
2606 struct inode *inode = file->f_dentry->d_inode;
2607 struct tty_struct *tty = file->private_data;
2608 struct tty_ldisc *ld;
2609 int retval = -ENOIOCTLCMD;
2610
2611 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2612 return -EINVAL;
2613
2614 if (tty->ops->compat_ioctl) {
2615 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2616 if (retval != -ENOIOCTLCMD)
2617 return retval;
2618 }
2619
2620 ld = tty_ldisc_ref_wait(tty);
2621 if (ld->ops->compat_ioctl)
2622 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2623 tty_ldisc_deref(ld);
2624
2625 return retval;
2626 }
2627 #endif
2628
2629 /*
2630 * This implements the "Secure Attention Key" --- the idea is to
2631 * prevent trojan horses by killing all processes associated with this
2632 * tty when the user hits the "Secure Attention Key". Required for
2633 * super-paranoid applications --- see the Orange Book for more details.
2634 *
2635 * This code could be nicer; ideally it should send a HUP, wait a few
2636 * seconds, then send a INT, and then a KILL signal. But you then
2637 * have to coordinate with the init process, since all processes associated
2638 * with the current tty must be dead before the new getty is allowed
2639 * to spawn.
2640 *
2641 * Now, if it would be correct ;-/ The current code has a nasty hole -
2642 * it doesn't catch files in flight. We may send the descriptor to ourselves
2643 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2644 *
2645 * Nasty bug: do_SAK is being called in interrupt context. This can
2646 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2647 */
2648 void __do_SAK(struct tty_struct *tty)
2649 {
2650 #ifdef TTY_SOFT_SAK
2651 tty_hangup(tty);
2652 #else
2653 struct task_struct *g, *p;
2654 struct pid *session;
2655 int i;
2656 struct file *filp;
2657 struct fdtable *fdt;
2658
2659 if (!tty)
2660 return;
2661 session = tty->session;
2662
2663 tty_ldisc_flush(tty);
2664
2665 tty_driver_flush_buffer(tty);
2666
2667 read_lock(&tasklist_lock);
2668 /* Kill the entire session */
2669 do_each_pid_task(session, PIDTYPE_SID, p) {
2670 printk(KERN_NOTICE "SAK: killed process %d"
2671 " (%s): task_session(p)==tty->session\n",
2672 task_pid_nr(p), p->comm);
2673 send_sig(SIGKILL, p, 1);
2674 } while_each_pid_task(session, PIDTYPE_SID, p);
2675 /* Now kill any processes that happen to have the
2676 * tty open.
2677 */
2678 do_each_thread(g, p) {
2679 if (p->signal->tty == tty) {
2680 printk(KERN_NOTICE "SAK: killed process %d"
2681 " (%s): task_session(p)==tty->session\n",
2682 task_pid_nr(p), p->comm);
2683 send_sig(SIGKILL, p, 1);
2684 continue;
2685 }
2686 task_lock(p);
2687 if (p->files) {
2688 /*
2689 * We don't take a ref to the file, so we must
2690 * hold ->file_lock instead.
2691 */
2692 spin_lock(&p->files->file_lock);
2693 fdt = files_fdtable(p->files);
2694 for (i = 0; i < fdt->max_fds; i++) {
2695 filp = fcheck_files(p->files, i);
2696 if (!filp)
2697 continue;
2698 if (filp->f_op->read == tty_read &&
2699 filp->private_data == tty) {
2700 printk(KERN_NOTICE "SAK: killed process %d"
2701 " (%s): fd#%d opened to the tty\n",
2702 task_pid_nr(p), p->comm, i);
2703 force_sig(SIGKILL, p);
2704 break;
2705 }
2706 }
2707 spin_unlock(&p->files->file_lock);
2708 }
2709 task_unlock(p);
2710 } while_each_thread(g, p);
2711 read_unlock(&tasklist_lock);
2712 #endif
2713 }
2714
2715 static void do_SAK_work(struct work_struct *work)
2716 {
2717 struct tty_struct *tty =
2718 container_of(work, struct tty_struct, SAK_work);
2719 __do_SAK(tty);
2720 }
2721
2722 /*
2723 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2724 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2725 * the values which we write to it will be identical to the values which it
2726 * already has. --akpm
2727 */
2728 void do_SAK(struct tty_struct *tty)
2729 {
2730 if (!tty)
2731 return;
2732 schedule_work(&tty->SAK_work);
2733 }
2734
2735 EXPORT_SYMBOL(do_SAK);
2736
2737 /**
2738 * initialize_tty_struct
2739 * @tty: tty to initialize
2740 *
2741 * This subroutine initializes a tty structure that has been newly
2742 * allocated.
2743 *
2744 * Locking: none - tty in question must not be exposed at this point
2745 */
2746
2747 void initialize_tty_struct(struct tty_struct *tty,
2748 struct tty_driver *driver, int idx)
2749 {
2750 memset(tty, 0, sizeof(struct tty_struct));
2751 kref_init(&tty->kref);
2752 tty->magic = TTY_MAGIC;
2753 tty_ldisc_init(tty);
2754 tty->session = NULL;
2755 tty->pgrp = NULL;
2756 tty->overrun_time = jiffies;
2757 tty->buf.head = tty->buf.tail = NULL;
2758 tty_buffer_init(tty);
2759 mutex_init(&tty->termios_mutex);
2760 mutex_init(&tty->ldisc_mutex);
2761 init_waitqueue_head(&tty->write_wait);
2762 init_waitqueue_head(&tty->read_wait);
2763 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2764 mutex_init(&tty->atomic_read_lock);
2765 mutex_init(&tty->atomic_write_lock);
2766 mutex_init(&tty->output_lock);
2767 mutex_init(&tty->echo_lock);
2768 spin_lock_init(&tty->read_lock);
2769 spin_lock_init(&tty->ctrl_lock);
2770 INIT_LIST_HEAD(&tty->tty_files);
2771 INIT_WORK(&tty->SAK_work, do_SAK_work);
2772
2773 tty->driver = driver;
2774 tty->ops = driver->ops;
2775 tty->index = idx;
2776 tty_line_name(driver, idx, tty->name);
2777 }
2778
2779 /**
2780 * tty_put_char - write one character to a tty
2781 * @tty: tty
2782 * @ch: character
2783 *
2784 * Write one byte to the tty using the provided put_char method
2785 * if present. Returns the number of characters successfully output.
2786 *
2787 * Note: the specific put_char operation in the driver layer may go
2788 * away soon. Don't call it directly, use this method
2789 */
2790
2791 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2792 {
2793 if (tty->ops->put_char)
2794 return tty->ops->put_char(tty, ch);
2795 return tty->ops->write(tty, &ch, 1);
2796 }
2797 EXPORT_SYMBOL_GPL(tty_put_char);
2798
2799 struct class *tty_class;
2800
2801 /**
2802 * tty_register_device - register a tty device
2803 * @driver: the tty driver that describes the tty device
2804 * @index: the index in the tty driver for this tty device
2805 * @device: a struct device that is associated with this tty device.
2806 * This field is optional, if there is no known struct device
2807 * for this tty device it can be set to NULL safely.
2808 *
2809 * Returns a pointer to the struct device for this tty device
2810 * (or ERR_PTR(-EFOO) on error).
2811 *
2812 * This call is required to be made to register an individual tty device
2813 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2814 * that bit is not set, this function should not be called by a tty
2815 * driver.
2816 *
2817 * Locking: ??
2818 */
2819
2820 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2821 struct device *device)
2822 {
2823 char name[64];
2824 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2825
2826 if (index >= driver->num) {
2827 printk(KERN_ERR "Attempt to register invalid tty line number "
2828 " (%d).\n", index);
2829 return ERR_PTR(-EINVAL);
2830 }
2831
2832 if (driver->type == TTY_DRIVER_TYPE_PTY)
2833 pty_line_name(driver, index, name);
2834 else
2835 tty_line_name(driver, index, name);
2836
2837 return device_create(tty_class, device, dev, NULL, name);
2838 }
2839 EXPORT_SYMBOL(tty_register_device);
2840
2841 /**
2842 * tty_unregister_device - unregister a tty device
2843 * @driver: the tty driver that describes the tty device
2844 * @index: the index in the tty driver for this tty device
2845 *
2846 * If a tty device is registered with a call to tty_register_device() then
2847 * this function must be called when the tty device is gone.
2848 *
2849 * Locking: ??
2850 */
2851
2852 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2853 {
2854 device_destroy(tty_class,
2855 MKDEV(driver->major, driver->minor_start) + index);
2856 }
2857 EXPORT_SYMBOL(tty_unregister_device);
2858
2859 struct tty_driver *alloc_tty_driver(int lines)
2860 {
2861 struct tty_driver *driver;
2862
2863 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2864 if (driver) {
2865 kref_init(&driver->kref);
2866 driver->magic = TTY_DRIVER_MAGIC;
2867 driver->num = lines;
2868 /* later we'll move allocation of tables here */
2869 }
2870 return driver;
2871 }
2872 EXPORT_SYMBOL(alloc_tty_driver);
2873
2874 static void destruct_tty_driver(struct kref *kref)
2875 {
2876 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2877 int i;
2878 struct ktermios *tp;
2879 void *p;
2880
2881 if (driver->flags & TTY_DRIVER_INSTALLED) {
2882 /*
2883 * Free the termios and termios_locked structures because
2884 * we don't want to get memory leaks when modular tty
2885 * drivers are removed from the kernel.
2886 */
2887 for (i = 0; i < driver->num; i++) {
2888 tp = driver->termios[i];
2889 if (tp) {
2890 driver->termios[i] = NULL;
2891 kfree(tp);
2892 }
2893 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2894 tty_unregister_device(driver, i);
2895 }
2896 p = driver->ttys;
2897 proc_tty_unregister_driver(driver);
2898 driver->ttys = NULL;
2899 driver->termios = NULL;
2900 kfree(p);
2901 cdev_del(&driver->cdev);
2902 }
2903 kfree(driver);
2904 }
2905
2906 void tty_driver_kref_put(struct tty_driver *driver)
2907 {
2908 kref_put(&driver->kref, destruct_tty_driver);
2909 }
2910 EXPORT_SYMBOL(tty_driver_kref_put);
2911
2912 void tty_set_operations(struct tty_driver *driver,
2913 const struct tty_operations *op)
2914 {
2915 driver->ops = op;
2916 };
2917 EXPORT_SYMBOL(tty_set_operations);
2918
2919 void put_tty_driver(struct tty_driver *d)
2920 {
2921 tty_driver_kref_put(d);
2922 }
2923 EXPORT_SYMBOL(put_tty_driver);
2924
2925 /*
2926 * Called by a tty driver to register itself.
2927 */
2928 int tty_register_driver(struct tty_driver *driver)
2929 {
2930 int error;
2931 int i;
2932 dev_t dev;
2933 void **p = NULL;
2934
2935 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2936 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2937 if (!p)
2938 return -ENOMEM;
2939 }
2940
2941 if (!driver->major) {
2942 error = alloc_chrdev_region(&dev, driver->minor_start,
2943 driver->num, driver->name);
2944 if (!error) {
2945 driver->major = MAJOR(dev);
2946 driver->minor_start = MINOR(dev);
2947 }
2948 } else {
2949 dev = MKDEV(driver->major, driver->minor_start);
2950 error = register_chrdev_region(dev, driver->num, driver->name);
2951 }
2952 if (error < 0) {
2953 kfree(p);
2954 return error;
2955 }
2956
2957 if (p) {
2958 driver->ttys = (struct tty_struct **)p;
2959 driver->termios = (struct ktermios **)(p + driver->num);
2960 } else {
2961 driver->ttys = NULL;
2962 driver->termios = NULL;
2963 }
2964
2965 cdev_init(&driver->cdev, &tty_fops);
2966 driver->cdev.owner = driver->owner;
2967 error = cdev_add(&driver->cdev, dev, driver->num);
2968 if (error) {
2969 unregister_chrdev_region(dev, driver->num);
2970 driver->ttys = NULL;
2971 driver->termios = NULL;
2972 kfree(p);
2973 return error;
2974 }
2975
2976 mutex_lock(&tty_mutex);
2977 list_add(&driver->tty_drivers, &tty_drivers);
2978 mutex_unlock(&tty_mutex);
2979
2980 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2981 for (i = 0; i < driver->num; i++)
2982 tty_register_device(driver, i, NULL);
2983 }
2984 proc_tty_register_driver(driver);
2985 driver->flags |= TTY_DRIVER_INSTALLED;
2986 return 0;
2987 }
2988
2989 EXPORT_SYMBOL(tty_register_driver);
2990
2991 /*
2992 * Called by a tty driver to unregister itself.
2993 */
2994 int tty_unregister_driver(struct tty_driver *driver)
2995 {
2996 #if 0
2997 /* FIXME */
2998 if (driver->refcount)
2999 return -EBUSY;
3000 #endif
3001 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3002 driver->num);
3003 mutex_lock(&tty_mutex);
3004 list_del(&driver->tty_drivers);
3005 mutex_unlock(&tty_mutex);
3006 return 0;
3007 }
3008
3009 EXPORT_SYMBOL(tty_unregister_driver);
3010
3011 dev_t tty_devnum(struct tty_struct *tty)
3012 {
3013 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3014 }
3015 EXPORT_SYMBOL(tty_devnum);
3016
3017 void proc_clear_tty(struct task_struct *p)
3018 {
3019 unsigned long flags;
3020 struct tty_struct *tty;
3021 spin_lock_irqsave(&p->sighand->siglock, flags);
3022 tty = p->signal->tty;
3023 p->signal->tty = NULL;
3024 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3025 tty_kref_put(tty);
3026 }
3027
3028 /* Called under the sighand lock */
3029
3030 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3031 {
3032 if (tty) {
3033 unsigned long flags;
3034 /* We should not have a session or pgrp to put here but.... */
3035 spin_lock_irqsave(&tty->ctrl_lock, flags);
3036 put_pid(tty->session);
3037 put_pid(tty->pgrp);
3038 tty->pgrp = get_pid(task_pgrp(tsk));
3039 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3040 tty->session = get_pid(task_session(tsk));
3041 if (tsk->signal->tty) {
3042 printk(KERN_DEBUG "tty not NULL!!\n");
3043 tty_kref_put(tsk->signal->tty);
3044 }
3045 }
3046 put_pid(tsk->signal->tty_old_pgrp);
3047 tsk->signal->tty = tty_kref_get(tty);
3048 tsk->signal->tty_old_pgrp = NULL;
3049 }
3050
3051 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3052 {
3053 spin_lock_irq(&tsk->sighand->siglock);
3054 __proc_set_tty(tsk, tty);
3055 spin_unlock_irq(&tsk->sighand->siglock);
3056 }
3057
3058 struct tty_struct *get_current_tty(void)
3059 {
3060 struct tty_struct *tty;
3061 unsigned long flags;
3062
3063 spin_lock_irqsave(&current->sighand->siglock, flags);
3064 tty = tty_kref_get(current->signal->tty);
3065 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3066 return tty;
3067 }
3068 EXPORT_SYMBOL_GPL(get_current_tty);
3069
3070 void tty_default_fops(struct file_operations *fops)
3071 {
3072 *fops = tty_fops;
3073 }
3074
3075 /*
3076 * Initialize the console device. This is called *early*, so
3077 * we can't necessarily depend on lots of kernel help here.
3078 * Just do some early initializations, and do the complex setup
3079 * later.
3080 */
3081 void __init console_init(void)
3082 {
3083 initcall_t *call;
3084
3085 /* Setup the default TTY line discipline. */
3086 tty_ldisc_begin();
3087
3088 /*
3089 * set up the console device so that later boot sequences can
3090 * inform about problems etc..
3091 */
3092 call = __con_initcall_start;
3093 while (call < __con_initcall_end) {
3094 (*call)();
3095 call++;
3096 }
3097 }
3098
3099 static char *tty_devnode(struct device *dev, mode_t *mode)
3100 {
3101 if (!mode)
3102 return NULL;
3103 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3104 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3105 *mode = 0666;
3106 return NULL;
3107 }
3108
3109 static int __init tty_class_init(void)
3110 {
3111 tty_class = class_create(THIS_MODULE, "tty");
3112 if (IS_ERR(tty_class))
3113 return PTR_ERR(tty_class);
3114 tty_class->devnode = tty_devnode;
3115 return 0;
3116 }
3117
3118 postcore_initcall(tty_class_init);
3119
3120 /* 3/2004 jmc: why do these devices exist? */
3121
3122 static struct cdev tty_cdev, console_cdev;
3123
3124 /*
3125 * Ok, now we can initialize the rest of the tty devices and can count
3126 * on memory allocations, interrupts etc..
3127 */
3128 static int __init tty_init(void)
3129 {
3130 cdev_init(&tty_cdev, &tty_fops);
3131 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3132 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3133 panic("Couldn't register /dev/tty driver\n");
3134 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3135 "tty");
3136
3137 cdev_init(&console_cdev, &console_fops);
3138 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3139 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3140 panic("Couldn't register /dev/console driver\n");
3141 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3142 "console");
3143
3144 #ifdef CONFIG_VT
3145 vty_init(&console_fops);
3146 #endif
3147 return 0;
3148 }
3149 module_init(tty_init);
This page took 0.092412 seconds and 6 git commands to generate.