clk: change clk_debugfs_add_file to take a struct clk_hw
[deliverable/linux.git] / drivers / clk / bcm / clk-kona.c
1 /*
2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include "clk-kona.h"
16
17 #include <linux/delay.h>
18
19 /*
20 * "Policies" affect the frequencies of bus clocks provided by a
21 * CCU. (I believe these polices are named "Deep Sleep", "Economy",
22 * "Normal", and "Turbo".) A lower policy number has lower power
23 * consumption, and policy 2 is the default.
24 */
25 #define CCU_POLICY_COUNT 4
26
27 #define CCU_ACCESS_PASSWORD 0xA5A500
28 #define CLK_GATE_DELAY_LOOP 2000
29
30 /* Bitfield operations */
31
32 /* Produces a mask of set bits covering a range of a 32-bit value */
33 static inline u32 bitfield_mask(u32 shift, u32 width)
34 {
35 return ((1 << width) - 1) << shift;
36 }
37
38 /* Extract the value of a bitfield found within a given register value */
39 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
40 {
41 return (reg_val & bitfield_mask(shift, width)) >> shift;
42 }
43
44 /* Replace the value of a bitfield found within a given register value */
45 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
46 {
47 u32 mask = bitfield_mask(shift, width);
48
49 return (reg_val & ~mask) | (val << shift);
50 }
51
52 /* Divider and scaling helpers */
53
54 /*
55 * Implement DIV_ROUND_CLOSEST() for 64-bit dividend and both values
56 * unsigned. Note that unlike do_div(), the remainder is discarded
57 * and the return value is the quotient (not the remainder).
58 */
59 u64 do_div_round_closest(u64 dividend, unsigned long divisor)
60 {
61 u64 result;
62
63 result = dividend + ((u64)divisor >> 1);
64 (void)do_div(result, divisor);
65
66 return result;
67 }
68
69 /* Convert a divider into the scaled divisor value it represents. */
70 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
71 {
72 return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
73 }
74
75 /*
76 * Build a scaled divider value as close as possible to the
77 * given whole part (div_value) and fractional part (expressed
78 * in billionths).
79 */
80 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
81 {
82 u64 combined;
83
84 BUG_ON(!div_value);
85 BUG_ON(billionths >= BILLION);
86
87 combined = (u64)div_value * BILLION + billionths;
88 combined <<= div->u.s.frac_width;
89
90 return do_div_round_closest(combined, BILLION);
91 }
92
93 /* The scaled minimum divisor representable by a divider */
94 static inline u64
95 scaled_div_min(struct bcm_clk_div *div)
96 {
97 if (divider_is_fixed(div))
98 return (u64)div->u.fixed;
99
100 return scaled_div_value(div, 0);
101 }
102
103 /* The scaled maximum divisor representable by a divider */
104 u64 scaled_div_max(struct bcm_clk_div *div)
105 {
106 u32 reg_div;
107
108 if (divider_is_fixed(div))
109 return (u64)div->u.fixed;
110
111 reg_div = ((u32)1 << div->u.s.width) - 1;
112
113 return scaled_div_value(div, reg_div);
114 }
115
116 /*
117 * Convert a scaled divisor into its divider representation as
118 * stored in a divider register field.
119 */
120 static inline u32
121 divider(struct bcm_clk_div *div, u64 scaled_div)
122 {
123 BUG_ON(scaled_div < scaled_div_min(div));
124 BUG_ON(scaled_div > scaled_div_max(div));
125
126 return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
127 }
128
129 /* Return a rate scaled for use when dividing by a scaled divisor. */
130 static inline u64
131 scale_rate(struct bcm_clk_div *div, u32 rate)
132 {
133 if (divider_is_fixed(div))
134 return (u64)rate;
135
136 return (u64)rate << div->u.s.frac_width;
137 }
138
139 /* CCU access */
140
141 /* Read a 32-bit register value from a CCU's address space. */
142 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
143 {
144 return readl(ccu->base + reg_offset);
145 }
146
147 /* Write a 32-bit register value into a CCU's address space. */
148 static inline void
149 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
150 {
151 writel(reg_val, ccu->base + reg_offset);
152 }
153
154 static inline unsigned long ccu_lock(struct ccu_data *ccu)
155 {
156 unsigned long flags;
157
158 spin_lock_irqsave(&ccu->lock, flags);
159
160 return flags;
161 }
162 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
163 {
164 spin_unlock_irqrestore(&ccu->lock, flags);
165 }
166
167 /*
168 * Enable/disable write access to CCU protected registers. The
169 * WR_ACCESS register for all CCUs is at offset 0.
170 */
171 static inline void __ccu_write_enable(struct ccu_data *ccu)
172 {
173 if (ccu->write_enabled) {
174 pr_err("%s: access already enabled for %s\n", __func__,
175 ccu->name);
176 return;
177 }
178 ccu->write_enabled = true;
179 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
180 }
181
182 static inline void __ccu_write_disable(struct ccu_data *ccu)
183 {
184 if (!ccu->write_enabled) {
185 pr_err("%s: access wasn't enabled for %s\n", __func__,
186 ccu->name);
187 return;
188 }
189
190 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
191 ccu->write_enabled = false;
192 }
193
194 /*
195 * Poll a register in a CCU's address space, returning when the
196 * specified bit in that register's value is set (or clear). Delay
197 * a microsecond after each read of the register. Returns true if
198 * successful, or false if we gave up trying.
199 *
200 * Caller must ensure the CCU lock is held.
201 */
202 static inline bool
203 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
204 {
205 unsigned int tries;
206 u32 bit_mask = 1 << bit;
207
208 for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
209 u32 val;
210 bool bit_val;
211
212 val = __ccu_read(ccu, reg_offset);
213 bit_val = (val & bit_mask) != 0;
214 if (bit_val == want)
215 return true;
216 udelay(1);
217 }
218 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
219 ccu->name, reg_offset, bit, want ? "set" : "clear");
220
221 return false;
222 }
223
224 /* Policy operations */
225
226 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
227 {
228 struct bcm_policy_ctl *control = &ccu->policy.control;
229 u32 offset;
230 u32 go_bit;
231 u32 mask;
232 bool ret;
233
234 /* If we don't need to control policy for this CCU, we're done. */
235 if (!policy_ctl_exists(control))
236 return true;
237
238 offset = control->offset;
239 go_bit = control->go_bit;
240
241 /* Ensure we're not busy before we start */
242 ret = __ccu_wait_bit(ccu, offset, go_bit, false);
243 if (!ret) {
244 pr_err("%s: ccu %s policy engine wouldn't go idle\n",
245 __func__, ccu->name);
246 return false;
247 }
248
249 /*
250 * If it's a synchronous request, we'll wait for the voltage
251 * and frequency of the active load to stabilize before
252 * returning. To do this we select the active load by
253 * setting the ATL bit.
254 *
255 * An asynchronous request instead ramps the voltage in the
256 * background, and when that process stabilizes, the target
257 * load is copied to the active load and the CCU frequency
258 * is switched. We do this by selecting the target load
259 * (ATL bit clear) and setting the request auto-copy (AC bit
260 * set).
261 *
262 * Note, we do NOT read-modify-write this register.
263 */
264 mask = (u32)1 << go_bit;
265 if (sync)
266 mask |= 1 << control->atl_bit;
267 else
268 mask |= 1 << control->ac_bit;
269 __ccu_write(ccu, offset, mask);
270
271 /* Wait for indication that operation is complete. */
272 ret = __ccu_wait_bit(ccu, offset, go_bit, false);
273 if (!ret)
274 pr_err("%s: ccu %s policy engine never started\n",
275 __func__, ccu->name);
276
277 return ret;
278 }
279
280 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
281 {
282 struct bcm_lvm_en *enable = &ccu->policy.enable;
283 u32 offset;
284 u32 enable_bit;
285 bool ret;
286
287 /* If we don't need to control policy for this CCU, we're done. */
288 if (!policy_lvm_en_exists(enable))
289 return true;
290
291 /* Ensure we're not busy before we start */
292 offset = enable->offset;
293 enable_bit = enable->bit;
294 ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
295 if (!ret) {
296 pr_err("%s: ccu %s policy engine already stopped\n",
297 __func__, ccu->name);
298 return false;
299 }
300
301 /* Now set the bit to stop the engine (NO read-modify-write) */
302 __ccu_write(ccu, offset, (u32)1 << enable_bit);
303
304 /* Wait for indication that it has stopped. */
305 ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
306 if (!ret)
307 pr_err("%s: ccu %s policy engine never stopped\n",
308 __func__, ccu->name);
309
310 return ret;
311 }
312
313 /*
314 * A CCU has four operating conditions ("policies"), and some clocks
315 * can be disabled or enabled based on which policy is currently in
316 * effect. Such clocks have a bit in a "policy mask" register for
317 * each policy indicating whether the clock is enabled for that
318 * policy or not. The bit position for a clock is the same for all
319 * four registers, and the 32-bit registers are at consecutive
320 * addresses.
321 */
322 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
323 {
324 u32 offset;
325 u32 mask;
326 int i;
327 bool ret;
328
329 if (!policy_exists(policy))
330 return true;
331
332 /*
333 * We need to stop the CCU policy engine to allow update
334 * of our policy bits.
335 */
336 if (!__ccu_policy_engine_stop(ccu)) {
337 pr_err("%s: unable to stop CCU %s policy engine\n",
338 __func__, ccu->name);
339 return false;
340 }
341
342 /*
343 * For now, if a clock defines its policy bit we just mark
344 * it "enabled" for all four policies.
345 */
346 offset = policy->offset;
347 mask = (u32)1 << policy->bit;
348 for (i = 0; i < CCU_POLICY_COUNT; i++) {
349 u32 reg_val;
350
351 reg_val = __ccu_read(ccu, offset);
352 reg_val |= mask;
353 __ccu_write(ccu, offset, reg_val);
354 offset += sizeof(u32);
355 }
356
357 /* We're done updating; fire up the policy engine again. */
358 ret = __ccu_policy_engine_start(ccu, true);
359 if (!ret)
360 pr_err("%s: unable to restart CCU %s policy engine\n",
361 __func__, ccu->name);
362
363 return ret;
364 }
365
366 /* Gate operations */
367
368 /* Determine whether a clock is gated. CCU lock must be held. */
369 static bool
370 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
371 {
372 u32 bit_mask;
373 u32 reg_val;
374
375 /* If there is no gate we can assume it's enabled. */
376 if (!gate_exists(gate))
377 return true;
378
379 bit_mask = 1 << gate->status_bit;
380 reg_val = __ccu_read(ccu, gate->offset);
381
382 return (reg_val & bit_mask) != 0;
383 }
384
385 /* Determine whether a clock is gated. */
386 static bool
387 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
388 {
389 long flags;
390 bool ret;
391
392 /* Avoid taking the lock if we can */
393 if (!gate_exists(gate))
394 return true;
395
396 flags = ccu_lock(ccu);
397 ret = __is_clk_gate_enabled(ccu, gate);
398 ccu_unlock(ccu, flags);
399
400 return ret;
401 }
402
403 /*
404 * Commit our desired gate state to the hardware.
405 * Returns true if successful, false otherwise.
406 */
407 static bool
408 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
409 {
410 u32 reg_val;
411 u32 mask;
412 bool enabled = false;
413
414 BUG_ON(!gate_exists(gate));
415 if (!gate_is_sw_controllable(gate))
416 return true; /* Nothing we can change */
417
418 reg_val = __ccu_read(ccu, gate->offset);
419
420 /* For a hardware/software gate, set which is in control */
421 if (gate_is_hw_controllable(gate)) {
422 mask = (u32)1 << gate->hw_sw_sel_bit;
423 if (gate_is_sw_managed(gate))
424 reg_val |= mask;
425 else
426 reg_val &= ~mask;
427 }
428
429 /*
430 * If software is in control, enable or disable the gate.
431 * If hardware is, clear the enabled bit for good measure.
432 * If a software controlled gate can't be disabled, we're
433 * required to write a 0 into the enable bit (but the gate
434 * will be enabled).
435 */
436 mask = (u32)1 << gate->en_bit;
437 if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
438 !gate_is_no_disable(gate))
439 reg_val |= mask;
440 else
441 reg_val &= ~mask;
442
443 __ccu_write(ccu, gate->offset, reg_val);
444
445 /* For a hardware controlled gate, we're done */
446 if (!gate_is_sw_managed(gate))
447 return true;
448
449 /* Otherwise wait for the gate to be in desired state */
450 return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
451 }
452
453 /*
454 * Initialize a gate. Our desired state (hardware/software select,
455 * and if software, its enable state) is committed to hardware
456 * without the usual checks to see if it's already set up that way.
457 * Returns true if successful, false otherwise.
458 */
459 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
460 {
461 if (!gate_exists(gate))
462 return true;
463 return __gate_commit(ccu, gate);
464 }
465
466 /*
467 * Set a gate to enabled or disabled state. Does nothing if the
468 * gate is not currently under software control, or if it is already
469 * in the requested state. Returns true if successful, false
470 * otherwise. CCU lock must be held.
471 */
472 static bool
473 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
474 {
475 bool ret;
476
477 if (!gate_exists(gate) || !gate_is_sw_managed(gate))
478 return true; /* Nothing to do */
479
480 if (!enable && gate_is_no_disable(gate)) {
481 pr_warn("%s: invalid gate disable request (ignoring)\n",
482 __func__);
483 return true;
484 }
485
486 if (enable == gate_is_enabled(gate))
487 return true; /* No change */
488
489 gate_flip_enabled(gate);
490 ret = __gate_commit(ccu, gate);
491 if (!ret)
492 gate_flip_enabled(gate); /* Revert the change */
493
494 return ret;
495 }
496
497 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */
498 static int clk_gate(struct ccu_data *ccu, const char *name,
499 struct bcm_clk_gate *gate, bool enable)
500 {
501 unsigned long flags;
502 bool success;
503
504 /*
505 * Avoid taking the lock if we can. We quietly ignore
506 * requests to change state that don't make sense.
507 */
508 if (!gate_exists(gate) || !gate_is_sw_managed(gate))
509 return 0;
510 if (!enable && gate_is_no_disable(gate))
511 return 0;
512
513 flags = ccu_lock(ccu);
514 __ccu_write_enable(ccu);
515
516 success = __clk_gate(ccu, gate, enable);
517
518 __ccu_write_disable(ccu);
519 ccu_unlock(ccu, flags);
520
521 if (success)
522 return 0;
523
524 pr_err("%s: failed to %s gate for %s\n", __func__,
525 enable ? "enable" : "disable", name);
526
527 return -EIO;
528 }
529
530 /* Hysteresis operations */
531
532 /*
533 * If a clock gate requires a turn-off delay it will have
534 * "hysteresis" register bits defined. The first, if set, enables
535 * the delay; and if enabled, the second bit determines whether the
536 * delay is "low" or "high" (1 means high). For now, if it's
537 * defined for a clock, we set it.
538 */
539 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
540 {
541 u32 offset;
542 u32 reg_val;
543 u32 mask;
544
545 if (!hyst_exists(hyst))
546 return true;
547
548 offset = hyst->offset;
549 mask = (u32)1 << hyst->en_bit;
550 mask |= (u32)1 << hyst->val_bit;
551
552 reg_val = __ccu_read(ccu, offset);
553 reg_val |= mask;
554 __ccu_write(ccu, offset, reg_val);
555
556 return true;
557 }
558
559 /* Trigger operations */
560
561 /*
562 * Caller must ensure CCU lock is held and access is enabled.
563 * Returns true if successful, false otherwise.
564 */
565 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
566 {
567 /* Trigger the clock and wait for it to finish */
568 __ccu_write(ccu, trig->offset, 1 << trig->bit);
569
570 return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
571 }
572
573 /* Divider operations */
574
575 /* Read a divider value and return the scaled divisor it represents. */
576 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
577 {
578 unsigned long flags;
579 u32 reg_val;
580 u32 reg_div;
581
582 if (divider_is_fixed(div))
583 return (u64)div->u.fixed;
584
585 flags = ccu_lock(ccu);
586 reg_val = __ccu_read(ccu, div->u.s.offset);
587 ccu_unlock(ccu, flags);
588
589 /* Extract the full divider field from the register value */
590 reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
591
592 /* Return the scaled divisor value it represents */
593 return scaled_div_value(div, reg_div);
594 }
595
596 /*
597 * Convert a divider's scaled divisor value into its recorded form
598 * and commit it into the hardware divider register.
599 *
600 * Returns 0 on success. Returns -EINVAL for invalid arguments.
601 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
602 */
603 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
604 struct bcm_clk_div *div, struct bcm_clk_trig *trig)
605 {
606 bool enabled;
607 u32 reg_div;
608 u32 reg_val;
609 int ret = 0;
610
611 BUG_ON(divider_is_fixed(div));
612
613 /*
614 * If we're just initializing the divider, and no initial
615 * state was defined in the device tree, we just find out
616 * what its current value is rather than updating it.
617 */
618 if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
619 reg_val = __ccu_read(ccu, div->u.s.offset);
620 reg_div = bitfield_extract(reg_val, div->u.s.shift,
621 div->u.s.width);
622 div->u.s.scaled_div = scaled_div_value(div, reg_div);
623
624 return 0;
625 }
626
627 /* Convert the scaled divisor to the value we need to record */
628 reg_div = divider(div, div->u.s.scaled_div);
629
630 /* Clock needs to be enabled before changing the rate */
631 enabled = __is_clk_gate_enabled(ccu, gate);
632 if (!enabled && !__clk_gate(ccu, gate, true)) {
633 ret = -ENXIO;
634 goto out;
635 }
636
637 /* Replace the divider value and record the result */
638 reg_val = __ccu_read(ccu, div->u.s.offset);
639 reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
640 reg_div);
641 __ccu_write(ccu, div->u.s.offset, reg_val);
642
643 /* If the trigger fails we still want to disable the gate */
644 if (!__clk_trigger(ccu, trig))
645 ret = -EIO;
646
647 /* Disable the clock again if it was disabled to begin with */
648 if (!enabled && !__clk_gate(ccu, gate, false))
649 ret = ret ? ret : -ENXIO; /* return first error */
650 out:
651 return ret;
652 }
653
654 /*
655 * Initialize a divider by committing our desired state to hardware
656 * without the usual checks to see if it's already set up that way.
657 * Returns true if successful, false otherwise.
658 */
659 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
660 struct bcm_clk_div *div, struct bcm_clk_trig *trig)
661 {
662 if (!divider_exists(div) || divider_is_fixed(div))
663 return true;
664 return !__div_commit(ccu, gate, div, trig);
665 }
666
667 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
668 struct bcm_clk_div *div, struct bcm_clk_trig *trig,
669 u64 scaled_div)
670 {
671 unsigned long flags;
672 u64 previous;
673 int ret;
674
675 BUG_ON(divider_is_fixed(div));
676
677 previous = div->u.s.scaled_div;
678 if (previous == scaled_div)
679 return 0; /* No change */
680
681 div->u.s.scaled_div = scaled_div;
682
683 flags = ccu_lock(ccu);
684 __ccu_write_enable(ccu);
685
686 ret = __div_commit(ccu, gate, div, trig);
687
688 __ccu_write_disable(ccu);
689 ccu_unlock(ccu, flags);
690
691 if (ret)
692 div->u.s.scaled_div = previous; /* Revert the change */
693
694 return ret;
695
696 }
697
698 /* Common clock rate helpers */
699
700 /*
701 * Implement the common clock framework recalc_rate method, taking
702 * into account a divider and an optional pre-divider. The
703 * pre-divider register pointer may be NULL.
704 */
705 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
706 struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
707 unsigned long parent_rate)
708 {
709 u64 scaled_parent_rate;
710 u64 scaled_div;
711 u64 result;
712
713 if (!divider_exists(div))
714 return parent_rate;
715
716 if (parent_rate > (unsigned long)LONG_MAX)
717 return 0; /* actually this would be a caller bug */
718
719 /*
720 * If there is a pre-divider, divide the scaled parent rate
721 * by the pre-divider value first. In this case--to improve
722 * accuracy--scale the parent rate by *both* the pre-divider
723 * value and the divider before actually computing the
724 * result of the pre-divider.
725 *
726 * If there's only one divider, just scale the parent rate.
727 */
728 if (pre_div && divider_exists(pre_div)) {
729 u64 scaled_rate;
730
731 scaled_rate = scale_rate(pre_div, parent_rate);
732 scaled_rate = scale_rate(div, scaled_rate);
733 scaled_div = divider_read_scaled(ccu, pre_div);
734 scaled_parent_rate = do_div_round_closest(scaled_rate,
735 scaled_div);
736 } else {
737 scaled_parent_rate = scale_rate(div, parent_rate);
738 }
739
740 /*
741 * Get the scaled divisor value, and divide the scaled
742 * parent rate by that to determine this clock's resulting
743 * rate.
744 */
745 scaled_div = divider_read_scaled(ccu, div);
746 result = do_div_round_closest(scaled_parent_rate, scaled_div);
747
748 return (unsigned long)result;
749 }
750
751 /*
752 * Compute the output rate produced when a given parent rate is fed
753 * into two dividers. The pre-divider can be NULL, and even if it's
754 * non-null it may be nonexistent. It's also OK for the divider to
755 * be nonexistent, and in that case the pre-divider is also ignored.
756 *
757 * If scaled_div is non-null, it is used to return the scaled divisor
758 * value used by the (downstream) divider to produce that rate.
759 */
760 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
761 struct bcm_clk_div *pre_div,
762 unsigned long rate, unsigned long parent_rate,
763 u64 *scaled_div)
764 {
765 u64 scaled_parent_rate;
766 u64 min_scaled_div;
767 u64 max_scaled_div;
768 u64 best_scaled_div;
769 u64 result;
770
771 BUG_ON(!divider_exists(div));
772 BUG_ON(!rate);
773 BUG_ON(parent_rate > (u64)LONG_MAX);
774
775 /*
776 * If there is a pre-divider, divide the scaled parent rate
777 * by the pre-divider value first. In this case--to improve
778 * accuracy--scale the parent rate by *both* the pre-divider
779 * value and the divider before actually computing the
780 * result of the pre-divider.
781 *
782 * If there's only one divider, just scale the parent rate.
783 *
784 * For simplicity we treat the pre-divider as fixed (for now).
785 */
786 if (divider_exists(pre_div)) {
787 u64 scaled_rate;
788 u64 scaled_pre_div;
789
790 scaled_rate = scale_rate(pre_div, parent_rate);
791 scaled_rate = scale_rate(div, scaled_rate);
792 scaled_pre_div = divider_read_scaled(ccu, pre_div);
793 scaled_parent_rate = do_div_round_closest(scaled_rate,
794 scaled_pre_div);
795 } else {
796 scaled_parent_rate = scale_rate(div, parent_rate);
797 }
798
799 /*
800 * Compute the best possible divider and ensure it is in
801 * range. A fixed divider can't be changed, so just report
802 * the best we can do.
803 */
804 if (!divider_is_fixed(div)) {
805 best_scaled_div = do_div_round_closest(scaled_parent_rate,
806 rate);
807 min_scaled_div = scaled_div_min(div);
808 max_scaled_div = scaled_div_max(div);
809 if (best_scaled_div > max_scaled_div)
810 best_scaled_div = max_scaled_div;
811 else if (best_scaled_div < min_scaled_div)
812 best_scaled_div = min_scaled_div;
813 } else {
814 best_scaled_div = divider_read_scaled(ccu, div);
815 }
816
817 /* OK, figure out the resulting rate */
818 result = do_div_round_closest(scaled_parent_rate, best_scaled_div);
819
820 if (scaled_div)
821 *scaled_div = best_scaled_div;
822
823 return (long)result;
824 }
825
826 /* Common clock parent helpers */
827
828 /*
829 * For a given parent selector (register field) value, find the
830 * index into a selector's parent_sel array that contains it.
831 * Returns the index, or BAD_CLK_INDEX if it's not found.
832 */
833 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
834 {
835 u8 i;
836
837 BUG_ON(sel->parent_count > (u32)U8_MAX);
838 for (i = 0; i < sel->parent_count; i++)
839 if (sel->parent_sel[i] == parent_sel)
840 return i;
841 return BAD_CLK_INDEX;
842 }
843
844 /*
845 * Fetch the current value of the selector, and translate that into
846 * its corresponding index in the parent array we registered with
847 * the clock framework.
848 *
849 * Returns parent array index that corresponds with the value found,
850 * or BAD_CLK_INDEX if the found value is out of range.
851 */
852 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
853 {
854 unsigned long flags;
855 u32 reg_val;
856 u32 parent_sel;
857 u8 index;
858
859 /* If there's no selector, there's only one parent */
860 if (!selector_exists(sel))
861 return 0;
862
863 /* Get the value in the selector register */
864 flags = ccu_lock(ccu);
865 reg_val = __ccu_read(ccu, sel->offset);
866 ccu_unlock(ccu, flags);
867
868 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
869
870 /* Look up that selector's parent array index and return it */
871 index = parent_index(sel, parent_sel);
872 if (index == BAD_CLK_INDEX)
873 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
874 __func__, parent_sel, ccu->name, sel->offset);
875
876 return index;
877 }
878
879 /*
880 * Commit our desired selector value to the hardware.
881 *
882 * Returns 0 on success. Returns -EINVAL for invalid arguments.
883 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
884 */
885 static int
886 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
887 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
888 {
889 u32 parent_sel;
890 u32 reg_val;
891 bool enabled;
892 int ret = 0;
893
894 BUG_ON(!selector_exists(sel));
895
896 /*
897 * If we're just initializing the selector, and no initial
898 * state was defined in the device tree, we just find out
899 * what its current value is rather than updating it.
900 */
901 if (sel->clk_index == BAD_CLK_INDEX) {
902 u8 index;
903
904 reg_val = __ccu_read(ccu, sel->offset);
905 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
906 index = parent_index(sel, parent_sel);
907 if (index == BAD_CLK_INDEX)
908 return -EINVAL;
909 sel->clk_index = index;
910
911 return 0;
912 }
913
914 BUG_ON((u32)sel->clk_index >= sel->parent_count);
915 parent_sel = sel->parent_sel[sel->clk_index];
916
917 /* Clock needs to be enabled before changing the parent */
918 enabled = __is_clk_gate_enabled(ccu, gate);
919 if (!enabled && !__clk_gate(ccu, gate, true))
920 return -ENXIO;
921
922 /* Replace the selector value and record the result */
923 reg_val = __ccu_read(ccu, sel->offset);
924 reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
925 __ccu_write(ccu, sel->offset, reg_val);
926
927 /* If the trigger fails we still want to disable the gate */
928 if (!__clk_trigger(ccu, trig))
929 ret = -EIO;
930
931 /* Disable the clock again if it was disabled to begin with */
932 if (!enabled && !__clk_gate(ccu, gate, false))
933 ret = ret ? ret : -ENXIO; /* return first error */
934
935 return ret;
936 }
937
938 /*
939 * Initialize a selector by committing our desired state to hardware
940 * without the usual checks to see if it's already set up that way.
941 * Returns true if successful, false otherwise.
942 */
943 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
944 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
945 {
946 if (!selector_exists(sel))
947 return true;
948 return !__sel_commit(ccu, gate, sel, trig);
949 }
950
951 /*
952 * Write a new value into a selector register to switch to a
953 * different parent clock. Returns 0 on success, or an error code
954 * (from __sel_commit()) otherwise.
955 */
956 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
957 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
958 u8 index)
959 {
960 unsigned long flags;
961 u8 previous;
962 int ret;
963
964 previous = sel->clk_index;
965 if (previous == index)
966 return 0; /* No change */
967
968 sel->clk_index = index;
969
970 flags = ccu_lock(ccu);
971 __ccu_write_enable(ccu);
972
973 ret = __sel_commit(ccu, gate, sel, trig);
974
975 __ccu_write_disable(ccu);
976 ccu_unlock(ccu, flags);
977
978 if (ret)
979 sel->clk_index = previous; /* Revert the change */
980
981 return ret;
982 }
983
984 /* Clock operations */
985
986 static int kona_peri_clk_enable(struct clk_hw *hw)
987 {
988 struct kona_clk *bcm_clk = to_kona_clk(hw);
989 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
990
991 return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
992 }
993
994 static void kona_peri_clk_disable(struct clk_hw *hw)
995 {
996 struct kona_clk *bcm_clk = to_kona_clk(hw);
997 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
998
999 (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
1000 }
1001
1002 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
1003 {
1004 struct kona_clk *bcm_clk = to_kona_clk(hw);
1005 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
1006
1007 return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
1008 }
1009
1010 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
1011 unsigned long parent_rate)
1012 {
1013 struct kona_clk *bcm_clk = to_kona_clk(hw);
1014 struct peri_clk_data *data = bcm_clk->u.peri;
1015
1016 return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1017 parent_rate);
1018 }
1019
1020 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1021 unsigned long *parent_rate)
1022 {
1023 struct kona_clk *bcm_clk = to_kona_clk(hw);
1024 struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1025
1026 if (!divider_exists(div))
1027 return __clk_get_rate(hw->clk);
1028
1029 /* Quietly avoid a zero rate */
1030 return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1031 rate ? rate : 1, *parent_rate, NULL);
1032 }
1033
1034 static long kona_peri_clk_determine_rate(struct clk_hw *hw, unsigned long rate,
1035 unsigned long *best_parent_rate, struct clk **best_parent)
1036 {
1037 struct kona_clk *bcm_clk = to_kona_clk(hw);
1038 struct clk *clk = hw->clk;
1039 struct clk *current_parent;
1040 unsigned long parent_rate;
1041 unsigned long best_delta;
1042 unsigned long best_rate;
1043 u32 parent_count;
1044 u32 which;
1045
1046 /*
1047 * If there is no other parent to choose, use the current one.
1048 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1049 */
1050 WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1051 parent_count = (u32)bcm_clk->init_data.num_parents;
1052 if (parent_count < 2)
1053 return kona_peri_clk_round_rate(hw, rate, best_parent_rate);
1054
1055 /* Unless we can do better, stick with current parent */
1056 current_parent = clk_get_parent(clk);
1057 parent_rate = __clk_get_rate(current_parent);
1058 best_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
1059 best_delta = abs(best_rate - rate);
1060
1061 /* Check whether any other parent clock can produce a better result */
1062 for (which = 0; which < parent_count; which++) {
1063 struct clk *parent = clk_get_parent_by_index(clk, which);
1064 unsigned long delta;
1065 unsigned long other_rate;
1066
1067 BUG_ON(!parent);
1068 if (parent == current_parent)
1069 continue;
1070
1071 /* We don't support CLK_SET_RATE_PARENT */
1072 parent_rate = __clk_get_rate(parent);
1073 other_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
1074 delta = abs(other_rate - rate);
1075 if (delta < best_delta) {
1076 best_delta = delta;
1077 best_rate = other_rate;
1078 *best_parent = parent;
1079 *best_parent_rate = parent_rate;
1080 }
1081 }
1082
1083 return best_rate;
1084 }
1085
1086 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1087 {
1088 struct kona_clk *bcm_clk = to_kona_clk(hw);
1089 struct peri_clk_data *data = bcm_clk->u.peri;
1090 struct bcm_clk_sel *sel = &data->sel;
1091 struct bcm_clk_trig *trig;
1092 int ret;
1093
1094 BUG_ON(index >= sel->parent_count);
1095
1096 /* If there's only one parent we don't require a selector */
1097 if (!selector_exists(sel))
1098 return 0;
1099
1100 /*
1101 * The regular trigger is used by default, but if there's a
1102 * pre-trigger we want to use that instead.
1103 */
1104 trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1105 : &data->trig;
1106
1107 ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1108 if (ret == -ENXIO) {
1109 pr_err("%s: gating failure for %s\n", __func__,
1110 bcm_clk->init_data.name);
1111 ret = -EIO; /* Don't proliferate weird errors */
1112 } else if (ret == -EIO) {
1113 pr_err("%s: %strigger failed for %s\n", __func__,
1114 trig == &data->pre_trig ? "pre-" : "",
1115 bcm_clk->init_data.name);
1116 }
1117
1118 return ret;
1119 }
1120
1121 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1122 {
1123 struct kona_clk *bcm_clk = to_kona_clk(hw);
1124 struct peri_clk_data *data = bcm_clk->u.peri;
1125 u8 index;
1126
1127 index = selector_read_index(bcm_clk->ccu, &data->sel);
1128
1129 /* Not all callers would handle an out-of-range value gracefully */
1130 return index == BAD_CLK_INDEX ? 0 : index;
1131 }
1132
1133 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1134 unsigned long parent_rate)
1135 {
1136 struct kona_clk *bcm_clk = to_kona_clk(hw);
1137 struct peri_clk_data *data = bcm_clk->u.peri;
1138 struct bcm_clk_div *div = &data->div;
1139 u64 scaled_div = 0;
1140 int ret;
1141
1142 if (parent_rate > (unsigned long)LONG_MAX)
1143 return -EINVAL;
1144
1145 if (rate == __clk_get_rate(hw->clk))
1146 return 0;
1147
1148 if (!divider_exists(div))
1149 return rate == parent_rate ? 0 : -EINVAL;
1150
1151 /*
1152 * A fixed divider can't be changed. (Nor can a fixed
1153 * pre-divider be, but for now we never actually try to
1154 * change that.) Tolerate a request for a no-op change.
1155 */
1156 if (divider_is_fixed(&data->div))
1157 return rate == parent_rate ? 0 : -EINVAL;
1158
1159 /*
1160 * Get the scaled divisor value needed to achieve a clock
1161 * rate as close as possible to what was requested, given
1162 * the parent clock rate supplied.
1163 */
1164 (void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1165 rate ? rate : 1, parent_rate, &scaled_div);
1166
1167 /*
1168 * We aren't updating any pre-divider at this point, so
1169 * we'll use the regular trigger.
1170 */
1171 ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1172 &data->trig, scaled_div);
1173 if (ret == -ENXIO) {
1174 pr_err("%s: gating failure for %s\n", __func__,
1175 bcm_clk->init_data.name);
1176 ret = -EIO; /* Don't proliferate weird errors */
1177 } else if (ret == -EIO) {
1178 pr_err("%s: trigger failed for %s\n", __func__,
1179 bcm_clk->init_data.name);
1180 }
1181
1182 return ret;
1183 }
1184
1185 struct clk_ops kona_peri_clk_ops = {
1186 .enable = kona_peri_clk_enable,
1187 .disable = kona_peri_clk_disable,
1188 .is_enabled = kona_peri_clk_is_enabled,
1189 .recalc_rate = kona_peri_clk_recalc_rate,
1190 .determine_rate = kona_peri_clk_determine_rate,
1191 .set_parent = kona_peri_clk_set_parent,
1192 .get_parent = kona_peri_clk_get_parent,
1193 .set_rate = kona_peri_clk_set_rate,
1194 };
1195
1196 /* Put a peripheral clock into its initial state */
1197 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1198 {
1199 struct ccu_data *ccu = bcm_clk->ccu;
1200 struct peri_clk_data *peri = bcm_clk->u.peri;
1201 const char *name = bcm_clk->init_data.name;
1202 struct bcm_clk_trig *trig;
1203
1204 BUG_ON(bcm_clk->type != bcm_clk_peri);
1205
1206 if (!policy_init(ccu, &peri->policy)) {
1207 pr_err("%s: error initializing policy for %s\n",
1208 __func__, name);
1209 return false;
1210 }
1211 if (!gate_init(ccu, &peri->gate)) {
1212 pr_err("%s: error initializing gate for %s\n", __func__, name);
1213 return false;
1214 }
1215 if (!hyst_init(ccu, &peri->hyst)) {
1216 pr_err("%s: error initializing hyst for %s\n", __func__, name);
1217 return false;
1218 }
1219 if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1220 pr_err("%s: error initializing divider for %s\n", __func__,
1221 name);
1222 return false;
1223 }
1224
1225 /*
1226 * For the pre-divider and selector, the pre-trigger is used
1227 * if it's present, otherwise we just use the regular trigger.
1228 */
1229 trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1230 : &peri->trig;
1231
1232 if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1233 pr_err("%s: error initializing pre-divider for %s\n", __func__,
1234 name);
1235 return false;
1236 }
1237
1238 if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1239 pr_err("%s: error initializing selector for %s\n", __func__,
1240 name);
1241 return false;
1242 }
1243
1244 return true;
1245 }
1246
1247 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1248 {
1249 switch (bcm_clk->type) {
1250 case bcm_clk_peri:
1251 return __peri_clk_init(bcm_clk);
1252 default:
1253 BUG();
1254 }
1255 return -EINVAL;
1256 }
1257
1258 /* Set a CCU and all its clocks into their desired initial state */
1259 bool __init kona_ccu_init(struct ccu_data *ccu)
1260 {
1261 unsigned long flags;
1262 unsigned int which;
1263 struct clk **clks = ccu->clk_data.clks;
1264 bool success = true;
1265
1266 flags = ccu_lock(ccu);
1267 __ccu_write_enable(ccu);
1268
1269 for (which = 0; which < ccu->clk_data.clk_num; which++) {
1270 struct kona_clk *bcm_clk;
1271
1272 if (!clks[which])
1273 continue;
1274 bcm_clk = to_kona_clk(__clk_get_hw(clks[which]));
1275 success &= __kona_clk_init(bcm_clk);
1276 }
1277
1278 __ccu_write_disable(ccu);
1279 ccu_unlock(ccu, flags);
1280 return success;
1281 }
This page took 0.082401 seconds and 5 git commands to generate.