clk: abstract locking out into helper functions
[deliverable/linux.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22
23 static DEFINE_SPINLOCK(enable_lock);
24 static DEFINE_MUTEX(prepare_lock);
25
26 static HLIST_HEAD(clk_root_list);
27 static HLIST_HEAD(clk_orphan_list);
28 static LIST_HEAD(clk_notifier_list);
29
30 /*** locking ***/
31 static void clk_prepare_lock(void)
32 {
33 mutex_lock(&prepare_lock);
34 }
35
36 static void clk_prepare_unlock(void)
37 {
38 mutex_unlock(&prepare_lock);
39 }
40
41 static unsigned long clk_enable_lock(void)
42 {
43 unsigned long flags;
44 spin_lock_irqsave(&enable_lock, flags);
45 return flags;
46 }
47
48 static void clk_enable_unlock(unsigned long flags)
49 {
50 spin_unlock_irqrestore(&enable_lock, flags);
51 }
52
53 /*** debugfs support ***/
54
55 #ifdef CONFIG_COMMON_CLK_DEBUG
56 #include <linux/debugfs.h>
57
58 static struct dentry *rootdir;
59 static struct dentry *orphandir;
60 static int inited = 0;
61
62 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
63 {
64 if (!c)
65 return;
66
67 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
68 level * 3 + 1, "",
69 30 - level * 3, c->name,
70 c->enable_count, c->prepare_count, c->rate);
71 seq_printf(s, "\n");
72 }
73
74 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
75 int level)
76 {
77 struct clk *child;
78
79 if (!c)
80 return;
81
82 clk_summary_show_one(s, c, level);
83
84 hlist_for_each_entry(child, &c->children, child_node)
85 clk_summary_show_subtree(s, child, level + 1);
86 }
87
88 static int clk_summary_show(struct seq_file *s, void *data)
89 {
90 struct clk *c;
91
92 seq_printf(s, " clock enable_cnt prepare_cnt rate\n");
93 seq_printf(s, "---------------------------------------------------------------------\n");
94
95 clk_prepare_lock();
96
97 hlist_for_each_entry(c, &clk_root_list, child_node)
98 clk_summary_show_subtree(s, c, 0);
99
100 hlist_for_each_entry(c, &clk_orphan_list, child_node)
101 clk_summary_show_subtree(s, c, 0);
102
103 clk_prepare_unlock();
104
105 return 0;
106 }
107
108
109 static int clk_summary_open(struct inode *inode, struct file *file)
110 {
111 return single_open(file, clk_summary_show, inode->i_private);
112 }
113
114 static const struct file_operations clk_summary_fops = {
115 .open = clk_summary_open,
116 .read = seq_read,
117 .llseek = seq_lseek,
118 .release = single_release,
119 };
120
121 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
122 {
123 if (!c)
124 return;
125
126 seq_printf(s, "\"%s\": { ", c->name);
127 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
128 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
129 seq_printf(s, "\"rate\": %lu", c->rate);
130 }
131
132 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
133 {
134 struct clk *child;
135
136 if (!c)
137 return;
138
139 clk_dump_one(s, c, level);
140
141 hlist_for_each_entry(child, &c->children, child_node) {
142 seq_printf(s, ",");
143 clk_dump_subtree(s, child, level + 1);
144 }
145
146 seq_printf(s, "}");
147 }
148
149 static int clk_dump(struct seq_file *s, void *data)
150 {
151 struct clk *c;
152 bool first_node = true;
153
154 seq_printf(s, "{");
155
156 clk_prepare_lock();
157
158 hlist_for_each_entry(c, &clk_root_list, child_node) {
159 if (!first_node)
160 seq_printf(s, ",");
161 first_node = false;
162 clk_dump_subtree(s, c, 0);
163 }
164
165 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
166 seq_printf(s, ",");
167 clk_dump_subtree(s, c, 0);
168 }
169
170 clk_prepare_unlock();
171
172 seq_printf(s, "}");
173 return 0;
174 }
175
176
177 static int clk_dump_open(struct inode *inode, struct file *file)
178 {
179 return single_open(file, clk_dump, inode->i_private);
180 }
181
182 static const struct file_operations clk_dump_fops = {
183 .open = clk_dump_open,
184 .read = seq_read,
185 .llseek = seq_lseek,
186 .release = single_release,
187 };
188
189 /* caller must hold prepare_lock */
190 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
191 {
192 struct dentry *d;
193 int ret = -ENOMEM;
194
195 if (!clk || !pdentry) {
196 ret = -EINVAL;
197 goto out;
198 }
199
200 d = debugfs_create_dir(clk->name, pdentry);
201 if (!d)
202 goto out;
203
204 clk->dentry = d;
205
206 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
207 (u32 *)&clk->rate);
208 if (!d)
209 goto err_out;
210
211 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
212 (u32 *)&clk->flags);
213 if (!d)
214 goto err_out;
215
216 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
217 (u32 *)&clk->prepare_count);
218 if (!d)
219 goto err_out;
220
221 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
222 (u32 *)&clk->enable_count);
223 if (!d)
224 goto err_out;
225
226 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
227 (u32 *)&clk->notifier_count);
228 if (!d)
229 goto err_out;
230
231 ret = 0;
232 goto out;
233
234 err_out:
235 debugfs_remove(clk->dentry);
236 out:
237 return ret;
238 }
239
240 /* caller must hold prepare_lock */
241 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
242 {
243 struct clk *child;
244 int ret = -EINVAL;;
245
246 if (!clk || !pdentry)
247 goto out;
248
249 ret = clk_debug_create_one(clk, pdentry);
250
251 if (ret)
252 goto out;
253
254 hlist_for_each_entry(child, &clk->children, child_node)
255 clk_debug_create_subtree(child, clk->dentry);
256
257 ret = 0;
258 out:
259 return ret;
260 }
261
262 /**
263 * clk_debug_register - add a clk node to the debugfs clk tree
264 * @clk: the clk being added to the debugfs clk tree
265 *
266 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
267 * initialized. Otherwise it bails out early since the debugfs clk tree
268 * will be created lazily by clk_debug_init as part of a late_initcall.
269 *
270 * Caller must hold prepare_lock. Only clk_init calls this function (so
271 * far) so this is taken care.
272 */
273 static int clk_debug_register(struct clk *clk)
274 {
275 struct clk *parent;
276 struct dentry *pdentry;
277 int ret = 0;
278
279 if (!inited)
280 goto out;
281
282 parent = clk->parent;
283
284 /*
285 * Check to see if a clk is a root clk. Also check that it is
286 * safe to add this clk to debugfs
287 */
288 if (!parent)
289 if (clk->flags & CLK_IS_ROOT)
290 pdentry = rootdir;
291 else
292 pdentry = orphandir;
293 else
294 if (parent->dentry)
295 pdentry = parent->dentry;
296 else
297 goto out;
298
299 ret = clk_debug_create_subtree(clk, pdentry);
300
301 out:
302 return ret;
303 }
304
305 /**
306 * clk_debug_init - lazily create the debugfs clk tree visualization
307 *
308 * clks are often initialized very early during boot before memory can
309 * be dynamically allocated and well before debugfs is setup.
310 * clk_debug_init walks the clk tree hierarchy while holding
311 * prepare_lock and creates the topology as part of a late_initcall,
312 * thus insuring that clks initialized very early will still be
313 * represented in the debugfs clk tree. This function should only be
314 * called once at boot-time, and all other clks added dynamically will
315 * be done so with clk_debug_register.
316 */
317 static int __init clk_debug_init(void)
318 {
319 struct clk *clk;
320 struct dentry *d;
321
322 rootdir = debugfs_create_dir("clk", NULL);
323
324 if (!rootdir)
325 return -ENOMEM;
326
327 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
328 &clk_summary_fops);
329 if (!d)
330 return -ENOMEM;
331
332 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
333 &clk_dump_fops);
334 if (!d)
335 return -ENOMEM;
336
337 orphandir = debugfs_create_dir("orphans", rootdir);
338
339 if (!orphandir)
340 return -ENOMEM;
341
342 clk_prepare_lock();
343
344 hlist_for_each_entry(clk, &clk_root_list, child_node)
345 clk_debug_create_subtree(clk, rootdir);
346
347 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
348 clk_debug_create_subtree(clk, orphandir);
349
350 inited = 1;
351
352 clk_prepare_unlock();
353
354 return 0;
355 }
356 late_initcall(clk_debug_init);
357 #else
358 static inline int clk_debug_register(struct clk *clk) { return 0; }
359 #endif
360
361 /* caller must hold prepare_lock */
362 static void clk_unprepare_unused_subtree(struct clk *clk)
363 {
364 struct clk *child;
365
366 if (!clk)
367 return;
368
369 hlist_for_each_entry(child, &clk->children, child_node)
370 clk_unprepare_unused_subtree(child);
371
372 if (clk->prepare_count)
373 return;
374
375 if (clk->flags & CLK_IGNORE_UNUSED)
376 return;
377
378 if (__clk_is_prepared(clk)) {
379 if (clk->ops->unprepare_unused)
380 clk->ops->unprepare_unused(clk->hw);
381 else if (clk->ops->unprepare)
382 clk->ops->unprepare(clk->hw);
383 }
384 }
385
386 /* caller must hold prepare_lock */
387 static void clk_disable_unused_subtree(struct clk *clk)
388 {
389 struct clk *child;
390 unsigned long flags;
391
392 if (!clk)
393 goto out;
394
395 hlist_for_each_entry(child, &clk->children, child_node)
396 clk_disable_unused_subtree(child);
397
398 flags = clk_enable_lock();
399
400 if (clk->enable_count)
401 goto unlock_out;
402
403 if (clk->flags & CLK_IGNORE_UNUSED)
404 goto unlock_out;
405
406 /*
407 * some gate clocks have special needs during the disable-unused
408 * sequence. call .disable_unused if available, otherwise fall
409 * back to .disable
410 */
411 if (__clk_is_enabled(clk)) {
412 if (clk->ops->disable_unused)
413 clk->ops->disable_unused(clk->hw);
414 else if (clk->ops->disable)
415 clk->ops->disable(clk->hw);
416 }
417
418 unlock_out:
419 clk_enable_unlock(flags);
420
421 out:
422 return;
423 }
424
425 static int clk_disable_unused(void)
426 {
427 struct clk *clk;
428
429 clk_prepare_lock();
430
431 hlist_for_each_entry(clk, &clk_root_list, child_node)
432 clk_disable_unused_subtree(clk);
433
434 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
435 clk_disable_unused_subtree(clk);
436
437 hlist_for_each_entry(clk, &clk_root_list, child_node)
438 clk_unprepare_unused_subtree(clk);
439
440 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
441 clk_unprepare_unused_subtree(clk);
442
443 clk_prepare_unlock();
444
445 return 0;
446 }
447 late_initcall(clk_disable_unused);
448
449 /*** helper functions ***/
450
451 const char *__clk_get_name(struct clk *clk)
452 {
453 return !clk ? NULL : clk->name;
454 }
455 EXPORT_SYMBOL_GPL(__clk_get_name);
456
457 struct clk_hw *__clk_get_hw(struct clk *clk)
458 {
459 return !clk ? NULL : clk->hw;
460 }
461
462 u8 __clk_get_num_parents(struct clk *clk)
463 {
464 return !clk ? 0 : clk->num_parents;
465 }
466
467 struct clk *__clk_get_parent(struct clk *clk)
468 {
469 return !clk ? NULL : clk->parent;
470 }
471
472 unsigned int __clk_get_enable_count(struct clk *clk)
473 {
474 return !clk ? 0 : clk->enable_count;
475 }
476
477 unsigned int __clk_get_prepare_count(struct clk *clk)
478 {
479 return !clk ? 0 : clk->prepare_count;
480 }
481
482 unsigned long __clk_get_rate(struct clk *clk)
483 {
484 unsigned long ret;
485
486 if (!clk) {
487 ret = 0;
488 goto out;
489 }
490
491 ret = clk->rate;
492
493 if (clk->flags & CLK_IS_ROOT)
494 goto out;
495
496 if (!clk->parent)
497 ret = 0;
498
499 out:
500 return ret;
501 }
502
503 unsigned long __clk_get_flags(struct clk *clk)
504 {
505 return !clk ? 0 : clk->flags;
506 }
507
508 bool __clk_is_prepared(struct clk *clk)
509 {
510 int ret;
511
512 if (!clk)
513 return false;
514
515 /*
516 * .is_prepared is optional for clocks that can prepare
517 * fall back to software usage counter if it is missing
518 */
519 if (!clk->ops->is_prepared) {
520 ret = clk->prepare_count ? 1 : 0;
521 goto out;
522 }
523
524 ret = clk->ops->is_prepared(clk->hw);
525 out:
526 return !!ret;
527 }
528
529 bool __clk_is_enabled(struct clk *clk)
530 {
531 int ret;
532
533 if (!clk)
534 return false;
535
536 /*
537 * .is_enabled is only mandatory for clocks that gate
538 * fall back to software usage counter if .is_enabled is missing
539 */
540 if (!clk->ops->is_enabled) {
541 ret = clk->enable_count ? 1 : 0;
542 goto out;
543 }
544
545 ret = clk->ops->is_enabled(clk->hw);
546 out:
547 return !!ret;
548 }
549
550 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
551 {
552 struct clk *child;
553 struct clk *ret;
554
555 if (!strcmp(clk->name, name))
556 return clk;
557
558 hlist_for_each_entry(child, &clk->children, child_node) {
559 ret = __clk_lookup_subtree(name, child);
560 if (ret)
561 return ret;
562 }
563
564 return NULL;
565 }
566
567 struct clk *__clk_lookup(const char *name)
568 {
569 struct clk *root_clk;
570 struct clk *ret;
571
572 if (!name)
573 return NULL;
574
575 /* search the 'proper' clk tree first */
576 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
577 ret = __clk_lookup_subtree(name, root_clk);
578 if (ret)
579 return ret;
580 }
581
582 /* if not found, then search the orphan tree */
583 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
584 ret = __clk_lookup_subtree(name, root_clk);
585 if (ret)
586 return ret;
587 }
588
589 return NULL;
590 }
591
592 /*** clk api ***/
593
594 void __clk_unprepare(struct clk *clk)
595 {
596 if (!clk)
597 return;
598
599 if (WARN_ON(clk->prepare_count == 0))
600 return;
601
602 if (--clk->prepare_count > 0)
603 return;
604
605 WARN_ON(clk->enable_count > 0);
606
607 if (clk->ops->unprepare)
608 clk->ops->unprepare(clk->hw);
609
610 __clk_unprepare(clk->parent);
611 }
612
613 /**
614 * clk_unprepare - undo preparation of a clock source
615 * @clk: the clk being unprepare
616 *
617 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
618 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
619 * if the operation may sleep. One example is a clk which is accessed over
620 * I2c. In the complex case a clk gate operation may require a fast and a slow
621 * part. It is this reason that clk_unprepare and clk_disable are not mutually
622 * exclusive. In fact clk_disable must be called before clk_unprepare.
623 */
624 void clk_unprepare(struct clk *clk)
625 {
626 clk_prepare_lock();
627 __clk_unprepare(clk);
628 clk_prepare_unlock();
629 }
630 EXPORT_SYMBOL_GPL(clk_unprepare);
631
632 int __clk_prepare(struct clk *clk)
633 {
634 int ret = 0;
635
636 if (!clk)
637 return 0;
638
639 if (clk->prepare_count == 0) {
640 ret = __clk_prepare(clk->parent);
641 if (ret)
642 return ret;
643
644 if (clk->ops->prepare) {
645 ret = clk->ops->prepare(clk->hw);
646 if (ret) {
647 __clk_unprepare(clk->parent);
648 return ret;
649 }
650 }
651 }
652
653 clk->prepare_count++;
654
655 return 0;
656 }
657
658 /**
659 * clk_prepare - prepare a clock source
660 * @clk: the clk being prepared
661 *
662 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
663 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
664 * operation may sleep. One example is a clk which is accessed over I2c. In
665 * the complex case a clk ungate operation may require a fast and a slow part.
666 * It is this reason that clk_prepare and clk_enable are not mutually
667 * exclusive. In fact clk_prepare must be called before clk_enable.
668 * Returns 0 on success, -EERROR otherwise.
669 */
670 int clk_prepare(struct clk *clk)
671 {
672 int ret;
673
674 clk_prepare_lock();
675 ret = __clk_prepare(clk);
676 clk_prepare_unlock();
677
678 return ret;
679 }
680 EXPORT_SYMBOL_GPL(clk_prepare);
681
682 static void __clk_disable(struct clk *clk)
683 {
684 if (!clk)
685 return;
686
687 if (WARN_ON(IS_ERR(clk)))
688 return;
689
690 if (WARN_ON(clk->enable_count == 0))
691 return;
692
693 if (--clk->enable_count > 0)
694 return;
695
696 if (clk->ops->disable)
697 clk->ops->disable(clk->hw);
698
699 __clk_disable(clk->parent);
700 }
701
702 /**
703 * clk_disable - gate a clock
704 * @clk: the clk being gated
705 *
706 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
707 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
708 * clk if the operation is fast and will never sleep. One example is a
709 * SoC-internal clk which is controlled via simple register writes. In the
710 * complex case a clk gate operation may require a fast and a slow part. It is
711 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
712 * In fact clk_disable must be called before clk_unprepare.
713 */
714 void clk_disable(struct clk *clk)
715 {
716 unsigned long flags;
717
718 flags = clk_enable_lock();
719 __clk_disable(clk);
720 clk_enable_unlock(flags);
721 }
722 EXPORT_SYMBOL_GPL(clk_disable);
723
724 static int __clk_enable(struct clk *clk)
725 {
726 int ret = 0;
727
728 if (!clk)
729 return 0;
730
731 if (WARN_ON(clk->prepare_count == 0))
732 return -ESHUTDOWN;
733
734 if (clk->enable_count == 0) {
735 ret = __clk_enable(clk->parent);
736
737 if (ret)
738 return ret;
739
740 if (clk->ops->enable) {
741 ret = clk->ops->enable(clk->hw);
742 if (ret) {
743 __clk_disable(clk->parent);
744 return ret;
745 }
746 }
747 }
748
749 clk->enable_count++;
750 return 0;
751 }
752
753 /**
754 * clk_enable - ungate a clock
755 * @clk: the clk being ungated
756 *
757 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
758 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
759 * if the operation will never sleep. One example is a SoC-internal clk which
760 * is controlled via simple register writes. In the complex case a clk ungate
761 * operation may require a fast and a slow part. It is this reason that
762 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
763 * must be called before clk_enable. Returns 0 on success, -EERROR
764 * otherwise.
765 */
766 int clk_enable(struct clk *clk)
767 {
768 unsigned long flags;
769 int ret;
770
771 flags = clk_enable_lock();
772 ret = __clk_enable(clk);
773 clk_enable_unlock(flags);
774
775 return ret;
776 }
777 EXPORT_SYMBOL_GPL(clk_enable);
778
779 /**
780 * __clk_round_rate - round the given rate for a clk
781 * @clk: round the rate of this clock
782 *
783 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
784 */
785 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
786 {
787 unsigned long parent_rate = 0;
788
789 if (!clk)
790 return 0;
791
792 if (!clk->ops->round_rate) {
793 if (clk->flags & CLK_SET_RATE_PARENT)
794 return __clk_round_rate(clk->parent, rate);
795 else
796 return clk->rate;
797 }
798
799 if (clk->parent)
800 parent_rate = clk->parent->rate;
801
802 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
803 }
804
805 /**
806 * clk_round_rate - round the given rate for a clk
807 * @clk: the clk for which we are rounding a rate
808 * @rate: the rate which is to be rounded
809 *
810 * Takes in a rate as input and rounds it to a rate that the clk can actually
811 * use which is then returned. If clk doesn't support round_rate operation
812 * then the parent rate is returned.
813 */
814 long clk_round_rate(struct clk *clk, unsigned long rate)
815 {
816 unsigned long ret;
817
818 clk_prepare_lock();
819 ret = __clk_round_rate(clk, rate);
820 clk_prepare_unlock();
821
822 return ret;
823 }
824 EXPORT_SYMBOL_GPL(clk_round_rate);
825
826 /**
827 * __clk_notify - call clk notifier chain
828 * @clk: struct clk * that is changing rate
829 * @msg: clk notifier type (see include/linux/clk.h)
830 * @old_rate: old clk rate
831 * @new_rate: new clk rate
832 *
833 * Triggers a notifier call chain on the clk rate-change notification
834 * for 'clk'. Passes a pointer to the struct clk and the previous
835 * and current rates to the notifier callback. Intended to be called by
836 * internal clock code only. Returns NOTIFY_DONE from the last driver
837 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
838 * a driver returns that.
839 */
840 static int __clk_notify(struct clk *clk, unsigned long msg,
841 unsigned long old_rate, unsigned long new_rate)
842 {
843 struct clk_notifier *cn;
844 struct clk_notifier_data cnd;
845 int ret = NOTIFY_DONE;
846
847 cnd.clk = clk;
848 cnd.old_rate = old_rate;
849 cnd.new_rate = new_rate;
850
851 list_for_each_entry(cn, &clk_notifier_list, node) {
852 if (cn->clk == clk) {
853 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
854 &cnd);
855 break;
856 }
857 }
858
859 return ret;
860 }
861
862 /**
863 * __clk_recalc_rates
864 * @clk: first clk in the subtree
865 * @msg: notification type (see include/linux/clk.h)
866 *
867 * Walks the subtree of clks starting with clk and recalculates rates as it
868 * goes. Note that if a clk does not implement the .recalc_rate callback then
869 * it is assumed that the clock will take on the rate of it's parent.
870 *
871 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
872 * if necessary.
873 *
874 * Caller must hold prepare_lock.
875 */
876 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
877 {
878 unsigned long old_rate;
879 unsigned long parent_rate = 0;
880 struct clk *child;
881
882 old_rate = clk->rate;
883
884 if (clk->parent)
885 parent_rate = clk->parent->rate;
886
887 if (clk->ops->recalc_rate)
888 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
889 else
890 clk->rate = parent_rate;
891
892 /*
893 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
894 * & ABORT_RATE_CHANGE notifiers
895 */
896 if (clk->notifier_count && msg)
897 __clk_notify(clk, msg, old_rate, clk->rate);
898
899 hlist_for_each_entry(child, &clk->children, child_node)
900 __clk_recalc_rates(child, msg);
901 }
902
903 /**
904 * clk_get_rate - return the rate of clk
905 * @clk: the clk whose rate is being returned
906 *
907 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
908 * is set, which means a recalc_rate will be issued.
909 * If clk is NULL then returns 0.
910 */
911 unsigned long clk_get_rate(struct clk *clk)
912 {
913 unsigned long rate;
914
915 clk_prepare_lock();
916
917 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
918 __clk_recalc_rates(clk, 0);
919
920 rate = __clk_get_rate(clk);
921 clk_prepare_unlock();
922
923 return rate;
924 }
925 EXPORT_SYMBOL_GPL(clk_get_rate);
926
927 /**
928 * __clk_speculate_rates
929 * @clk: first clk in the subtree
930 * @parent_rate: the "future" rate of clk's parent
931 *
932 * Walks the subtree of clks starting with clk, speculating rates as it
933 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
934 *
935 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
936 * pre-rate change notifications and returns early if no clks in the
937 * subtree have subscribed to the notifications. Note that if a clk does not
938 * implement the .recalc_rate callback then it is assumed that the clock will
939 * take on the rate of it's parent.
940 *
941 * Caller must hold prepare_lock.
942 */
943 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
944 {
945 struct clk *child;
946 unsigned long new_rate;
947 int ret = NOTIFY_DONE;
948
949 if (clk->ops->recalc_rate)
950 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
951 else
952 new_rate = parent_rate;
953
954 /* abort the rate change if a driver returns NOTIFY_BAD */
955 if (clk->notifier_count)
956 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
957
958 if (ret == NOTIFY_BAD)
959 goto out;
960
961 hlist_for_each_entry(child, &clk->children, child_node) {
962 ret = __clk_speculate_rates(child, new_rate);
963 if (ret == NOTIFY_BAD)
964 break;
965 }
966
967 out:
968 return ret;
969 }
970
971 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
972 {
973 struct clk *child;
974
975 clk->new_rate = new_rate;
976
977 hlist_for_each_entry(child, &clk->children, child_node) {
978 if (child->ops->recalc_rate)
979 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
980 else
981 child->new_rate = new_rate;
982 clk_calc_subtree(child, child->new_rate);
983 }
984 }
985
986 /*
987 * calculate the new rates returning the topmost clock that has to be
988 * changed.
989 */
990 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
991 {
992 struct clk *top = clk;
993 unsigned long best_parent_rate = 0;
994 unsigned long new_rate;
995
996 /* sanity */
997 if (IS_ERR_OR_NULL(clk))
998 return NULL;
999
1000 /* save parent rate, if it exists */
1001 if (clk->parent)
1002 best_parent_rate = clk->parent->rate;
1003
1004 /* never propagate up to the parent */
1005 if (!(clk->flags & CLK_SET_RATE_PARENT)) {
1006 if (!clk->ops->round_rate) {
1007 clk->new_rate = clk->rate;
1008 return NULL;
1009 }
1010 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
1011 goto out;
1012 }
1013
1014 /* need clk->parent from here on out */
1015 if (!clk->parent) {
1016 pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
1017 return NULL;
1018 }
1019
1020 if (!clk->ops->round_rate) {
1021 top = clk_calc_new_rates(clk->parent, rate);
1022 new_rate = clk->parent->new_rate;
1023
1024 goto out;
1025 }
1026
1027 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
1028
1029 if (best_parent_rate != clk->parent->rate) {
1030 top = clk_calc_new_rates(clk->parent, best_parent_rate);
1031
1032 goto out;
1033 }
1034
1035 out:
1036 clk_calc_subtree(clk, new_rate);
1037
1038 return top;
1039 }
1040
1041 /*
1042 * Notify about rate changes in a subtree. Always walk down the whole tree
1043 * so that in case of an error we can walk down the whole tree again and
1044 * abort the change.
1045 */
1046 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1047 {
1048 struct clk *child, *fail_clk = NULL;
1049 int ret = NOTIFY_DONE;
1050
1051 if (clk->rate == clk->new_rate)
1052 return NULL;
1053
1054 if (clk->notifier_count) {
1055 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1056 if (ret == NOTIFY_BAD)
1057 fail_clk = clk;
1058 }
1059
1060 hlist_for_each_entry(child, &clk->children, child_node) {
1061 clk = clk_propagate_rate_change(child, event);
1062 if (clk)
1063 fail_clk = clk;
1064 }
1065
1066 return fail_clk;
1067 }
1068
1069 /*
1070 * walk down a subtree and set the new rates notifying the rate
1071 * change on the way
1072 */
1073 static void clk_change_rate(struct clk *clk)
1074 {
1075 struct clk *child;
1076 unsigned long old_rate;
1077 unsigned long best_parent_rate = 0;
1078
1079 old_rate = clk->rate;
1080
1081 if (clk->parent)
1082 best_parent_rate = clk->parent->rate;
1083
1084 if (clk->ops->set_rate)
1085 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1086
1087 if (clk->ops->recalc_rate)
1088 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1089 else
1090 clk->rate = best_parent_rate;
1091
1092 if (clk->notifier_count && old_rate != clk->rate)
1093 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1094
1095 hlist_for_each_entry(child, &clk->children, child_node)
1096 clk_change_rate(child);
1097 }
1098
1099 /**
1100 * clk_set_rate - specify a new rate for clk
1101 * @clk: the clk whose rate is being changed
1102 * @rate: the new rate for clk
1103 *
1104 * In the simplest case clk_set_rate will only adjust the rate of clk.
1105 *
1106 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1107 * propagate up to clk's parent; whether or not this happens depends on the
1108 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1109 * after calling .round_rate then upstream parent propagation is ignored. If
1110 * *parent_rate comes back with a new rate for clk's parent then we propagate
1111 * up to clk's parent and set it's rate. Upward propagation will continue
1112 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1113 * .round_rate stops requesting changes to clk's parent_rate.
1114 *
1115 * Rate changes are accomplished via tree traversal that also recalculates the
1116 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1117 *
1118 * Returns 0 on success, -EERROR otherwise.
1119 */
1120 int clk_set_rate(struct clk *clk, unsigned long rate)
1121 {
1122 struct clk *top, *fail_clk;
1123 int ret = 0;
1124
1125 /* prevent racing with updates to the clock topology */
1126 clk_prepare_lock();
1127
1128 /* bail early if nothing to do */
1129 if (rate == clk->rate)
1130 goto out;
1131
1132 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1133 ret = -EBUSY;
1134 goto out;
1135 }
1136
1137 /* calculate new rates and get the topmost changed clock */
1138 top = clk_calc_new_rates(clk, rate);
1139 if (!top) {
1140 ret = -EINVAL;
1141 goto out;
1142 }
1143
1144 /* notify that we are about to change rates */
1145 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1146 if (fail_clk) {
1147 pr_warn("%s: failed to set %s rate\n", __func__,
1148 fail_clk->name);
1149 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1150 ret = -EBUSY;
1151 goto out;
1152 }
1153
1154 /* change the rates */
1155 clk_change_rate(top);
1156
1157 out:
1158 clk_prepare_unlock();
1159
1160 return ret;
1161 }
1162 EXPORT_SYMBOL_GPL(clk_set_rate);
1163
1164 /**
1165 * clk_get_parent - return the parent of a clk
1166 * @clk: the clk whose parent gets returned
1167 *
1168 * Simply returns clk->parent. Returns NULL if clk is NULL.
1169 */
1170 struct clk *clk_get_parent(struct clk *clk)
1171 {
1172 struct clk *parent;
1173
1174 clk_prepare_lock();
1175 parent = __clk_get_parent(clk);
1176 clk_prepare_unlock();
1177
1178 return parent;
1179 }
1180 EXPORT_SYMBOL_GPL(clk_get_parent);
1181
1182 /*
1183 * .get_parent is mandatory for clocks with multiple possible parents. It is
1184 * optional for single-parent clocks. Always call .get_parent if it is
1185 * available and WARN if it is missing for multi-parent clocks.
1186 *
1187 * For single-parent clocks without .get_parent, first check to see if the
1188 * .parents array exists, and if so use it to avoid an expensive tree
1189 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1190 */
1191 static struct clk *__clk_init_parent(struct clk *clk)
1192 {
1193 struct clk *ret = NULL;
1194 u8 index;
1195
1196 /* handle the trivial cases */
1197
1198 if (!clk->num_parents)
1199 goto out;
1200
1201 if (clk->num_parents == 1) {
1202 if (IS_ERR_OR_NULL(clk->parent))
1203 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1204 ret = clk->parent;
1205 goto out;
1206 }
1207
1208 if (!clk->ops->get_parent) {
1209 WARN(!clk->ops->get_parent,
1210 "%s: multi-parent clocks must implement .get_parent\n",
1211 __func__);
1212 goto out;
1213 };
1214
1215 /*
1216 * Do our best to cache parent clocks in clk->parents. This prevents
1217 * unnecessary and expensive calls to __clk_lookup. We don't set
1218 * clk->parent here; that is done by the calling function
1219 */
1220
1221 index = clk->ops->get_parent(clk->hw);
1222
1223 if (!clk->parents)
1224 clk->parents =
1225 kzalloc((sizeof(struct clk*) * clk->num_parents),
1226 GFP_KERNEL);
1227
1228 if (!clk->parents)
1229 ret = __clk_lookup(clk->parent_names[index]);
1230 else if (!clk->parents[index])
1231 ret = clk->parents[index] =
1232 __clk_lookup(clk->parent_names[index]);
1233 else
1234 ret = clk->parents[index];
1235
1236 out:
1237 return ret;
1238 }
1239
1240 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1241 {
1242 #ifdef CONFIG_COMMON_CLK_DEBUG
1243 struct dentry *d;
1244 struct dentry *new_parent_d;
1245 #endif
1246
1247 if (!clk || !new_parent)
1248 return;
1249
1250 hlist_del(&clk->child_node);
1251
1252 if (new_parent)
1253 hlist_add_head(&clk->child_node, &new_parent->children);
1254 else
1255 hlist_add_head(&clk->child_node, &clk_orphan_list);
1256
1257 #ifdef CONFIG_COMMON_CLK_DEBUG
1258 if (!inited)
1259 goto out;
1260
1261 if (new_parent)
1262 new_parent_d = new_parent->dentry;
1263 else
1264 new_parent_d = orphandir;
1265
1266 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1267 new_parent_d, clk->name);
1268 if (d)
1269 clk->dentry = d;
1270 else
1271 pr_debug("%s: failed to rename debugfs entry for %s\n",
1272 __func__, clk->name);
1273 out:
1274 #endif
1275
1276 clk->parent = new_parent;
1277
1278 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1279 }
1280
1281 static int __clk_set_parent(struct clk *clk, struct clk *parent)
1282 {
1283 struct clk *old_parent;
1284 unsigned long flags;
1285 int ret = -EINVAL;
1286 u8 i;
1287
1288 old_parent = clk->parent;
1289
1290 if (!clk->parents)
1291 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1292 GFP_KERNEL);
1293
1294 /*
1295 * find index of new parent clock using cached parent ptrs,
1296 * or if not yet cached, use string name comparison and cache
1297 * them now to avoid future calls to __clk_lookup.
1298 */
1299 for (i = 0; i < clk->num_parents; i++) {
1300 if (clk->parents && clk->parents[i] == parent)
1301 break;
1302 else if (!strcmp(clk->parent_names[i], parent->name)) {
1303 if (clk->parents)
1304 clk->parents[i] = __clk_lookup(parent->name);
1305 break;
1306 }
1307 }
1308
1309 if (i == clk->num_parents) {
1310 pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1311 __func__, parent->name, clk->name);
1312 goto out;
1313 }
1314
1315 /* migrate prepare and enable */
1316 if (clk->prepare_count)
1317 __clk_prepare(parent);
1318
1319 /* FIXME replace with clk_is_enabled(clk) someday */
1320 flags = clk_enable_lock();
1321 if (clk->enable_count)
1322 __clk_enable(parent);
1323 clk_enable_unlock(flags);
1324
1325 /* change clock input source */
1326 ret = clk->ops->set_parent(clk->hw, i);
1327
1328 /* clean up old prepare and enable */
1329 flags = clk_enable_lock();
1330 if (clk->enable_count)
1331 __clk_disable(old_parent);
1332 clk_enable_unlock(flags);
1333
1334 if (clk->prepare_count)
1335 __clk_unprepare(old_parent);
1336
1337 out:
1338 return ret;
1339 }
1340
1341 /**
1342 * clk_set_parent - switch the parent of a mux clk
1343 * @clk: the mux clk whose input we are switching
1344 * @parent: the new input to clk
1345 *
1346 * Re-parent clk to use parent as it's new input source. If clk has the
1347 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1348 * operation to succeed. After successfully changing clk's parent
1349 * clk_set_parent will update the clk topology, sysfs topology and
1350 * propagate rate recalculation via __clk_recalc_rates. Returns 0 on
1351 * success, -EERROR otherwise.
1352 */
1353 int clk_set_parent(struct clk *clk, struct clk *parent)
1354 {
1355 int ret = 0;
1356
1357 if (!clk || !clk->ops)
1358 return -EINVAL;
1359
1360 if (!clk->ops->set_parent)
1361 return -ENOSYS;
1362
1363 /* prevent racing with updates to the clock topology */
1364 clk_prepare_lock();
1365
1366 if (clk->parent == parent)
1367 goto out;
1368
1369 /* propagate PRE_RATE_CHANGE notifications */
1370 if (clk->notifier_count)
1371 ret = __clk_speculate_rates(clk, parent->rate);
1372
1373 /* abort if a driver objects */
1374 if (ret == NOTIFY_STOP)
1375 goto out;
1376
1377 /* only re-parent if the clock is not in use */
1378 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1379 ret = -EBUSY;
1380 else
1381 ret = __clk_set_parent(clk, parent);
1382
1383 /* propagate ABORT_RATE_CHANGE if .set_parent failed */
1384 if (ret) {
1385 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1386 goto out;
1387 }
1388
1389 /* propagate rate recalculation downstream */
1390 __clk_reparent(clk, parent);
1391
1392 out:
1393 clk_prepare_unlock();
1394
1395 return ret;
1396 }
1397 EXPORT_SYMBOL_GPL(clk_set_parent);
1398
1399 /**
1400 * __clk_init - initialize the data structures in a struct clk
1401 * @dev: device initializing this clk, placeholder for now
1402 * @clk: clk being initialized
1403 *
1404 * Initializes the lists in struct clk, queries the hardware for the
1405 * parent and rate and sets them both.
1406 */
1407 int __clk_init(struct device *dev, struct clk *clk)
1408 {
1409 int i, ret = 0;
1410 struct clk *orphan;
1411 struct hlist_node *tmp2;
1412
1413 if (!clk)
1414 return -EINVAL;
1415
1416 clk_prepare_lock();
1417
1418 /* check to see if a clock with this name is already registered */
1419 if (__clk_lookup(clk->name)) {
1420 pr_debug("%s: clk %s already initialized\n",
1421 __func__, clk->name);
1422 ret = -EEXIST;
1423 goto out;
1424 }
1425
1426 /* check that clk_ops are sane. See Documentation/clk.txt */
1427 if (clk->ops->set_rate &&
1428 !(clk->ops->round_rate && clk->ops->recalc_rate)) {
1429 pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1430 __func__, clk->name);
1431 ret = -EINVAL;
1432 goto out;
1433 }
1434
1435 if (clk->ops->set_parent && !clk->ops->get_parent) {
1436 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1437 __func__, clk->name);
1438 ret = -EINVAL;
1439 goto out;
1440 }
1441
1442 /* throw a WARN if any entries in parent_names are NULL */
1443 for (i = 0; i < clk->num_parents; i++)
1444 WARN(!clk->parent_names[i],
1445 "%s: invalid NULL in %s's .parent_names\n",
1446 __func__, clk->name);
1447
1448 /*
1449 * Allocate an array of struct clk *'s to avoid unnecessary string
1450 * look-ups of clk's possible parents. This can fail for clocks passed
1451 * in to clk_init during early boot; thus any access to clk->parents[]
1452 * must always check for a NULL pointer and try to populate it if
1453 * necessary.
1454 *
1455 * If clk->parents is not NULL we skip this entire block. This allows
1456 * for clock drivers to statically initialize clk->parents.
1457 */
1458 if (clk->num_parents > 1 && !clk->parents) {
1459 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1460 GFP_KERNEL);
1461 /*
1462 * __clk_lookup returns NULL for parents that have not been
1463 * clk_init'd; thus any access to clk->parents[] must check
1464 * for a NULL pointer. We can always perform lazy lookups for
1465 * missing parents later on.
1466 */
1467 if (clk->parents)
1468 for (i = 0; i < clk->num_parents; i++)
1469 clk->parents[i] =
1470 __clk_lookup(clk->parent_names[i]);
1471 }
1472
1473 clk->parent = __clk_init_parent(clk);
1474
1475 /*
1476 * Populate clk->parent if parent has already been __clk_init'd. If
1477 * parent has not yet been __clk_init'd then place clk in the orphan
1478 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1479 * clk list.
1480 *
1481 * Every time a new clk is clk_init'd then we walk the list of orphan
1482 * clocks and re-parent any that are children of the clock currently
1483 * being clk_init'd.
1484 */
1485 if (clk->parent)
1486 hlist_add_head(&clk->child_node,
1487 &clk->parent->children);
1488 else if (clk->flags & CLK_IS_ROOT)
1489 hlist_add_head(&clk->child_node, &clk_root_list);
1490 else
1491 hlist_add_head(&clk->child_node, &clk_orphan_list);
1492
1493 /*
1494 * Set clk's rate. The preferred method is to use .recalc_rate. For
1495 * simple clocks and lazy developers the default fallback is to use the
1496 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1497 * then rate is set to zero.
1498 */
1499 if (clk->ops->recalc_rate)
1500 clk->rate = clk->ops->recalc_rate(clk->hw,
1501 __clk_get_rate(clk->parent));
1502 else if (clk->parent)
1503 clk->rate = clk->parent->rate;
1504 else
1505 clk->rate = 0;
1506
1507 /*
1508 * walk the list of orphan clocks and reparent any that are children of
1509 * this clock
1510 */
1511 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1512 if (orphan->ops->get_parent) {
1513 i = orphan->ops->get_parent(orphan->hw);
1514 if (!strcmp(clk->name, orphan->parent_names[i]))
1515 __clk_reparent(orphan, clk);
1516 continue;
1517 }
1518
1519 for (i = 0; i < orphan->num_parents; i++)
1520 if (!strcmp(clk->name, orphan->parent_names[i])) {
1521 __clk_reparent(orphan, clk);
1522 break;
1523 }
1524 }
1525
1526 /*
1527 * optional platform-specific magic
1528 *
1529 * The .init callback is not used by any of the basic clock types, but
1530 * exists for weird hardware that must perform initialization magic.
1531 * Please consider other ways of solving initialization problems before
1532 * using this callback, as it's use is discouraged.
1533 */
1534 if (clk->ops->init)
1535 clk->ops->init(clk->hw);
1536
1537 clk_debug_register(clk);
1538
1539 out:
1540 clk_prepare_unlock();
1541
1542 return ret;
1543 }
1544
1545 /**
1546 * __clk_register - register a clock and return a cookie.
1547 *
1548 * Same as clk_register, except that the .clk field inside hw shall point to a
1549 * preallocated (generally statically allocated) struct clk. None of the fields
1550 * of the struct clk need to be initialized.
1551 *
1552 * The data pointed to by .init and .clk field shall NOT be marked as init
1553 * data.
1554 *
1555 * __clk_register is only exposed via clk-private.h and is intended for use with
1556 * very large numbers of clocks that need to be statically initialized. It is
1557 * a layering violation to include clk-private.h from any code which implements
1558 * a clock's .ops; as such any statically initialized clock data MUST be in a
1559 * separate C file from the logic that implements it's operations. Returns 0
1560 * on success, otherwise an error code.
1561 */
1562 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1563 {
1564 int ret;
1565 struct clk *clk;
1566
1567 clk = hw->clk;
1568 clk->name = hw->init->name;
1569 clk->ops = hw->init->ops;
1570 clk->hw = hw;
1571 clk->flags = hw->init->flags;
1572 clk->parent_names = hw->init->parent_names;
1573 clk->num_parents = hw->init->num_parents;
1574
1575 ret = __clk_init(dev, clk);
1576 if (ret)
1577 return ERR_PTR(ret);
1578
1579 return clk;
1580 }
1581 EXPORT_SYMBOL_GPL(__clk_register);
1582
1583 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1584 {
1585 int i, ret;
1586
1587 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1588 if (!clk->name) {
1589 pr_err("%s: could not allocate clk->name\n", __func__);
1590 ret = -ENOMEM;
1591 goto fail_name;
1592 }
1593 clk->ops = hw->init->ops;
1594 clk->hw = hw;
1595 clk->flags = hw->init->flags;
1596 clk->num_parents = hw->init->num_parents;
1597 hw->clk = clk;
1598
1599 /* allocate local copy in case parent_names is __initdata */
1600 clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1601 GFP_KERNEL);
1602
1603 if (!clk->parent_names) {
1604 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1605 ret = -ENOMEM;
1606 goto fail_parent_names;
1607 }
1608
1609
1610 /* copy each string name in case parent_names is __initdata */
1611 for (i = 0; i < clk->num_parents; i++) {
1612 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1613 GFP_KERNEL);
1614 if (!clk->parent_names[i]) {
1615 pr_err("%s: could not copy parent_names\n", __func__);
1616 ret = -ENOMEM;
1617 goto fail_parent_names_copy;
1618 }
1619 }
1620
1621 ret = __clk_init(dev, clk);
1622 if (!ret)
1623 return 0;
1624
1625 fail_parent_names_copy:
1626 while (--i >= 0)
1627 kfree(clk->parent_names[i]);
1628 kfree(clk->parent_names);
1629 fail_parent_names:
1630 kfree(clk->name);
1631 fail_name:
1632 return ret;
1633 }
1634
1635 /**
1636 * clk_register - allocate a new clock, register it and return an opaque cookie
1637 * @dev: device that is registering this clock
1638 * @hw: link to hardware-specific clock data
1639 *
1640 * clk_register is the primary interface for populating the clock tree with new
1641 * clock nodes. It returns a pointer to the newly allocated struct clk which
1642 * cannot be dereferenced by driver code but may be used in conjuction with the
1643 * rest of the clock API. In the event of an error clk_register will return an
1644 * error code; drivers must test for an error code after calling clk_register.
1645 */
1646 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1647 {
1648 int ret;
1649 struct clk *clk;
1650
1651 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1652 if (!clk) {
1653 pr_err("%s: could not allocate clk\n", __func__);
1654 ret = -ENOMEM;
1655 goto fail_out;
1656 }
1657
1658 ret = _clk_register(dev, hw, clk);
1659 if (!ret)
1660 return clk;
1661
1662 kfree(clk);
1663 fail_out:
1664 return ERR_PTR(ret);
1665 }
1666 EXPORT_SYMBOL_GPL(clk_register);
1667
1668 /**
1669 * clk_unregister - unregister a currently registered clock
1670 * @clk: clock to unregister
1671 *
1672 * Currently unimplemented.
1673 */
1674 void clk_unregister(struct clk *clk) {}
1675 EXPORT_SYMBOL_GPL(clk_unregister);
1676
1677 static void devm_clk_release(struct device *dev, void *res)
1678 {
1679 clk_unregister(res);
1680 }
1681
1682 /**
1683 * devm_clk_register - resource managed clk_register()
1684 * @dev: device that is registering this clock
1685 * @hw: link to hardware-specific clock data
1686 *
1687 * Managed clk_register(). Clocks returned from this function are
1688 * automatically clk_unregister()ed on driver detach. See clk_register() for
1689 * more information.
1690 */
1691 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1692 {
1693 struct clk *clk;
1694 int ret;
1695
1696 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1697 if (!clk)
1698 return ERR_PTR(-ENOMEM);
1699
1700 ret = _clk_register(dev, hw, clk);
1701 if (!ret) {
1702 devres_add(dev, clk);
1703 } else {
1704 devres_free(clk);
1705 clk = ERR_PTR(ret);
1706 }
1707
1708 return clk;
1709 }
1710 EXPORT_SYMBOL_GPL(devm_clk_register);
1711
1712 static int devm_clk_match(struct device *dev, void *res, void *data)
1713 {
1714 struct clk *c = res;
1715 if (WARN_ON(!c))
1716 return 0;
1717 return c == data;
1718 }
1719
1720 /**
1721 * devm_clk_unregister - resource managed clk_unregister()
1722 * @clk: clock to unregister
1723 *
1724 * Deallocate a clock allocated with devm_clk_register(). Normally
1725 * this function will not need to be called and the resource management
1726 * code will ensure that the resource is freed.
1727 */
1728 void devm_clk_unregister(struct device *dev, struct clk *clk)
1729 {
1730 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1731 }
1732 EXPORT_SYMBOL_GPL(devm_clk_unregister);
1733
1734 /*** clk rate change notifiers ***/
1735
1736 /**
1737 * clk_notifier_register - add a clk rate change notifier
1738 * @clk: struct clk * to watch
1739 * @nb: struct notifier_block * with callback info
1740 *
1741 * Request notification when clk's rate changes. This uses an SRCU
1742 * notifier because we want it to block and notifier unregistrations are
1743 * uncommon. The callbacks associated with the notifier must not
1744 * re-enter into the clk framework by calling any top-level clk APIs;
1745 * this will cause a nested prepare_lock mutex.
1746 *
1747 * Pre-change notifier callbacks will be passed the current, pre-change
1748 * rate of the clk via struct clk_notifier_data.old_rate. The new,
1749 * post-change rate of the clk is passed via struct
1750 * clk_notifier_data.new_rate.
1751 *
1752 * Post-change notifiers will pass the now-current, post-change rate of
1753 * the clk in both struct clk_notifier_data.old_rate and struct
1754 * clk_notifier_data.new_rate.
1755 *
1756 * Abort-change notifiers are effectively the opposite of pre-change
1757 * notifiers: the original pre-change clk rate is passed in via struct
1758 * clk_notifier_data.new_rate and the failed post-change rate is passed
1759 * in via struct clk_notifier_data.old_rate.
1760 *
1761 * clk_notifier_register() must be called from non-atomic context.
1762 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1763 * allocation failure; otherwise, passes along the return value of
1764 * srcu_notifier_chain_register().
1765 */
1766 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1767 {
1768 struct clk_notifier *cn;
1769 int ret = -ENOMEM;
1770
1771 if (!clk || !nb)
1772 return -EINVAL;
1773
1774 clk_prepare_lock();
1775
1776 /* search the list of notifiers for this clk */
1777 list_for_each_entry(cn, &clk_notifier_list, node)
1778 if (cn->clk == clk)
1779 break;
1780
1781 /* if clk wasn't in the notifier list, allocate new clk_notifier */
1782 if (cn->clk != clk) {
1783 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1784 if (!cn)
1785 goto out;
1786
1787 cn->clk = clk;
1788 srcu_init_notifier_head(&cn->notifier_head);
1789
1790 list_add(&cn->node, &clk_notifier_list);
1791 }
1792
1793 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1794
1795 clk->notifier_count++;
1796
1797 out:
1798 clk_prepare_unlock();
1799
1800 return ret;
1801 }
1802 EXPORT_SYMBOL_GPL(clk_notifier_register);
1803
1804 /**
1805 * clk_notifier_unregister - remove a clk rate change notifier
1806 * @clk: struct clk *
1807 * @nb: struct notifier_block * with callback info
1808 *
1809 * Request no further notification for changes to 'clk' and frees memory
1810 * allocated in clk_notifier_register.
1811 *
1812 * Returns -EINVAL if called with null arguments; otherwise, passes
1813 * along the return value of srcu_notifier_chain_unregister().
1814 */
1815 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1816 {
1817 struct clk_notifier *cn = NULL;
1818 int ret = -EINVAL;
1819
1820 if (!clk || !nb)
1821 return -EINVAL;
1822
1823 clk_prepare_lock();
1824
1825 list_for_each_entry(cn, &clk_notifier_list, node)
1826 if (cn->clk == clk)
1827 break;
1828
1829 if (cn->clk == clk) {
1830 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1831
1832 clk->notifier_count--;
1833
1834 /* XXX the notifier code should handle this better */
1835 if (!cn->notifier_head.head) {
1836 srcu_cleanup_notifier_head(&cn->notifier_head);
1837 kfree(cn);
1838 }
1839
1840 } else {
1841 ret = -ENOENT;
1842 }
1843
1844 clk_prepare_unlock();
1845
1846 return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
1849
1850 #ifdef CONFIG_OF
1851 /**
1852 * struct of_clk_provider - Clock provider registration structure
1853 * @link: Entry in global list of clock providers
1854 * @node: Pointer to device tree node of clock provider
1855 * @get: Get clock callback. Returns NULL or a struct clk for the
1856 * given clock specifier
1857 * @data: context pointer to be passed into @get callback
1858 */
1859 struct of_clk_provider {
1860 struct list_head link;
1861
1862 struct device_node *node;
1863 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
1864 void *data;
1865 };
1866
1867 extern struct of_device_id __clk_of_table[];
1868
1869 static const struct of_device_id __clk_of_table_sentinel
1870 __used __section(__clk_of_table_end);
1871
1872 static LIST_HEAD(of_clk_providers);
1873 static DEFINE_MUTEX(of_clk_lock);
1874
1875 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
1876 void *data)
1877 {
1878 return data;
1879 }
1880 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
1881
1882 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
1883 {
1884 struct clk_onecell_data *clk_data = data;
1885 unsigned int idx = clkspec->args[0];
1886
1887 if (idx >= clk_data->clk_num) {
1888 pr_err("%s: invalid clock index %d\n", __func__, idx);
1889 return ERR_PTR(-EINVAL);
1890 }
1891
1892 return clk_data->clks[idx];
1893 }
1894 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
1895
1896 /**
1897 * of_clk_add_provider() - Register a clock provider for a node
1898 * @np: Device node pointer associated with clock provider
1899 * @clk_src_get: callback for decoding clock
1900 * @data: context pointer for @clk_src_get callback.
1901 */
1902 int of_clk_add_provider(struct device_node *np,
1903 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
1904 void *data),
1905 void *data)
1906 {
1907 struct of_clk_provider *cp;
1908
1909 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
1910 if (!cp)
1911 return -ENOMEM;
1912
1913 cp->node = of_node_get(np);
1914 cp->data = data;
1915 cp->get = clk_src_get;
1916
1917 mutex_lock(&of_clk_lock);
1918 list_add(&cp->link, &of_clk_providers);
1919 mutex_unlock(&of_clk_lock);
1920 pr_debug("Added clock from %s\n", np->full_name);
1921
1922 return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(of_clk_add_provider);
1925
1926 /**
1927 * of_clk_del_provider() - Remove a previously registered clock provider
1928 * @np: Device node pointer associated with clock provider
1929 */
1930 void of_clk_del_provider(struct device_node *np)
1931 {
1932 struct of_clk_provider *cp;
1933
1934 mutex_lock(&of_clk_lock);
1935 list_for_each_entry(cp, &of_clk_providers, link) {
1936 if (cp->node == np) {
1937 list_del(&cp->link);
1938 of_node_put(cp->node);
1939 kfree(cp);
1940 break;
1941 }
1942 }
1943 mutex_unlock(&of_clk_lock);
1944 }
1945 EXPORT_SYMBOL_GPL(of_clk_del_provider);
1946
1947 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
1948 {
1949 struct of_clk_provider *provider;
1950 struct clk *clk = ERR_PTR(-ENOENT);
1951
1952 /* Check if we have such a provider in our array */
1953 mutex_lock(&of_clk_lock);
1954 list_for_each_entry(provider, &of_clk_providers, link) {
1955 if (provider->node == clkspec->np)
1956 clk = provider->get(clkspec, provider->data);
1957 if (!IS_ERR(clk))
1958 break;
1959 }
1960 mutex_unlock(&of_clk_lock);
1961
1962 return clk;
1963 }
1964
1965 const char *of_clk_get_parent_name(struct device_node *np, int index)
1966 {
1967 struct of_phandle_args clkspec;
1968 const char *clk_name;
1969 int rc;
1970
1971 if (index < 0)
1972 return NULL;
1973
1974 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
1975 &clkspec);
1976 if (rc)
1977 return NULL;
1978
1979 if (of_property_read_string_index(clkspec.np, "clock-output-names",
1980 clkspec.args_count ? clkspec.args[0] : 0,
1981 &clk_name) < 0)
1982 clk_name = clkspec.np->name;
1983
1984 of_node_put(clkspec.np);
1985 return clk_name;
1986 }
1987 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
1988
1989 /**
1990 * of_clk_init() - Scan and init clock providers from the DT
1991 * @matches: array of compatible values and init functions for providers.
1992 *
1993 * This function scans the device tree for matching clock providers and
1994 * calls their initialization functions
1995 */
1996 void __init of_clk_init(const struct of_device_id *matches)
1997 {
1998 struct device_node *np;
1999
2000 if (!matches)
2001 matches = __clk_of_table;
2002
2003 for_each_matching_node(np, matches) {
2004 const struct of_device_id *match = of_match_node(matches, np);
2005 of_clk_init_cb_t clk_init_cb = match->data;
2006 clk_init_cb(np);
2007 }
2008 }
2009 #endif
This page took 0.092959 seconds and 5 git commands to generate.