clk: Correct lookup logic in clk_fetch_parent_index()
[deliverable/linux.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23
24 static DEFINE_SPINLOCK(enable_lock);
25 static DEFINE_MUTEX(prepare_lock);
26
27 static struct task_struct *prepare_owner;
28 static struct task_struct *enable_owner;
29
30 static int prepare_refcnt;
31 static int enable_refcnt;
32
33 static HLIST_HEAD(clk_root_list);
34 static HLIST_HEAD(clk_orphan_list);
35 static LIST_HEAD(clk_notifier_list);
36
37 /*** locking ***/
38 static void clk_prepare_lock(void)
39 {
40 if (!mutex_trylock(&prepare_lock)) {
41 if (prepare_owner == current) {
42 prepare_refcnt++;
43 return;
44 }
45 mutex_lock(&prepare_lock);
46 }
47 WARN_ON_ONCE(prepare_owner != NULL);
48 WARN_ON_ONCE(prepare_refcnt != 0);
49 prepare_owner = current;
50 prepare_refcnt = 1;
51 }
52
53 static void clk_prepare_unlock(void)
54 {
55 WARN_ON_ONCE(prepare_owner != current);
56 WARN_ON_ONCE(prepare_refcnt == 0);
57
58 if (--prepare_refcnt)
59 return;
60 prepare_owner = NULL;
61 mutex_unlock(&prepare_lock);
62 }
63
64 static unsigned long clk_enable_lock(void)
65 {
66 unsigned long flags;
67
68 if (!spin_trylock_irqsave(&enable_lock, flags)) {
69 if (enable_owner == current) {
70 enable_refcnt++;
71 return flags;
72 }
73 spin_lock_irqsave(&enable_lock, flags);
74 }
75 WARN_ON_ONCE(enable_owner != NULL);
76 WARN_ON_ONCE(enable_refcnt != 0);
77 enable_owner = current;
78 enable_refcnt = 1;
79 return flags;
80 }
81
82 static void clk_enable_unlock(unsigned long flags)
83 {
84 WARN_ON_ONCE(enable_owner != current);
85 WARN_ON_ONCE(enable_refcnt == 0);
86
87 if (--enable_refcnt)
88 return;
89 enable_owner = NULL;
90 spin_unlock_irqrestore(&enable_lock, flags);
91 }
92
93 /*** debugfs support ***/
94
95 #ifdef CONFIG_COMMON_CLK_DEBUG
96 #include <linux/debugfs.h>
97
98 static struct dentry *rootdir;
99 static struct dentry *orphandir;
100 static int inited = 0;
101
102 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103 {
104 if (!c)
105 return;
106
107 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108 level * 3 + 1, "",
109 30 - level * 3, c->name,
110 c->enable_count, c->prepare_count, clk_get_rate(c));
111 seq_printf(s, "\n");
112 }
113
114 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115 int level)
116 {
117 struct clk *child;
118
119 if (!c)
120 return;
121
122 clk_summary_show_one(s, c, level);
123
124 hlist_for_each_entry(child, &c->children, child_node)
125 clk_summary_show_subtree(s, child, level + 1);
126 }
127
128 static int clk_summary_show(struct seq_file *s, void *data)
129 {
130 struct clk *c;
131
132 seq_printf(s, " clock enable_cnt prepare_cnt rate\n");
133 seq_printf(s, "---------------------------------------------------------------------\n");
134
135 clk_prepare_lock();
136
137 hlist_for_each_entry(c, &clk_root_list, child_node)
138 clk_summary_show_subtree(s, c, 0);
139
140 hlist_for_each_entry(c, &clk_orphan_list, child_node)
141 clk_summary_show_subtree(s, c, 0);
142
143 clk_prepare_unlock();
144
145 return 0;
146 }
147
148
149 static int clk_summary_open(struct inode *inode, struct file *file)
150 {
151 return single_open(file, clk_summary_show, inode->i_private);
152 }
153
154 static const struct file_operations clk_summary_fops = {
155 .open = clk_summary_open,
156 .read = seq_read,
157 .llseek = seq_lseek,
158 .release = single_release,
159 };
160
161 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
162 {
163 if (!c)
164 return;
165
166 seq_printf(s, "\"%s\": { ", c->name);
167 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
170 }
171
172 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
173 {
174 struct clk *child;
175
176 if (!c)
177 return;
178
179 clk_dump_one(s, c, level);
180
181 hlist_for_each_entry(child, &c->children, child_node) {
182 seq_printf(s, ",");
183 clk_dump_subtree(s, child, level + 1);
184 }
185
186 seq_printf(s, "}");
187 }
188
189 static int clk_dump(struct seq_file *s, void *data)
190 {
191 struct clk *c;
192 bool first_node = true;
193
194 seq_printf(s, "{");
195
196 clk_prepare_lock();
197
198 hlist_for_each_entry(c, &clk_root_list, child_node) {
199 if (!first_node)
200 seq_printf(s, ",");
201 first_node = false;
202 clk_dump_subtree(s, c, 0);
203 }
204
205 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206 seq_printf(s, ",");
207 clk_dump_subtree(s, c, 0);
208 }
209
210 clk_prepare_unlock();
211
212 seq_printf(s, "}");
213 return 0;
214 }
215
216
217 static int clk_dump_open(struct inode *inode, struct file *file)
218 {
219 return single_open(file, clk_dump, inode->i_private);
220 }
221
222 static const struct file_operations clk_dump_fops = {
223 .open = clk_dump_open,
224 .read = seq_read,
225 .llseek = seq_lseek,
226 .release = single_release,
227 };
228
229 /* caller must hold prepare_lock */
230 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
231 {
232 struct dentry *d;
233 int ret = -ENOMEM;
234
235 if (!clk || !pdentry) {
236 ret = -EINVAL;
237 goto out;
238 }
239
240 d = debugfs_create_dir(clk->name, pdentry);
241 if (!d)
242 goto out;
243
244 clk->dentry = d;
245
246 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247 (u32 *)&clk->rate);
248 if (!d)
249 goto err_out;
250
251 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252 (u32 *)&clk->flags);
253 if (!d)
254 goto err_out;
255
256 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257 (u32 *)&clk->prepare_count);
258 if (!d)
259 goto err_out;
260
261 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262 (u32 *)&clk->enable_count);
263 if (!d)
264 goto err_out;
265
266 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267 (u32 *)&clk->notifier_count);
268 if (!d)
269 goto err_out;
270
271 ret = 0;
272 goto out;
273
274 err_out:
275 debugfs_remove(clk->dentry);
276 out:
277 return ret;
278 }
279
280 /* caller must hold prepare_lock */
281 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
282 {
283 struct clk *child;
284 int ret = -EINVAL;;
285
286 if (!clk || !pdentry)
287 goto out;
288
289 ret = clk_debug_create_one(clk, pdentry);
290
291 if (ret)
292 goto out;
293
294 hlist_for_each_entry(child, &clk->children, child_node)
295 clk_debug_create_subtree(child, clk->dentry);
296
297 ret = 0;
298 out:
299 return ret;
300 }
301
302 /**
303 * clk_debug_register - add a clk node to the debugfs clk tree
304 * @clk: the clk being added to the debugfs clk tree
305 *
306 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
307 * initialized. Otherwise it bails out early since the debugfs clk tree
308 * will be created lazily by clk_debug_init as part of a late_initcall.
309 *
310 * Caller must hold prepare_lock. Only clk_init calls this function (so
311 * far) so this is taken care.
312 */
313 static int clk_debug_register(struct clk *clk)
314 {
315 struct clk *parent;
316 struct dentry *pdentry;
317 int ret = 0;
318
319 if (!inited)
320 goto out;
321
322 parent = clk->parent;
323
324 /*
325 * Check to see if a clk is a root clk. Also check that it is
326 * safe to add this clk to debugfs
327 */
328 if (!parent)
329 if (clk->flags & CLK_IS_ROOT)
330 pdentry = rootdir;
331 else
332 pdentry = orphandir;
333 else
334 if (parent->dentry)
335 pdentry = parent->dentry;
336 else
337 goto out;
338
339 ret = clk_debug_create_subtree(clk, pdentry);
340
341 out:
342 return ret;
343 }
344
345 /**
346 * clk_debug_reparent - reparent clk node in the debugfs clk tree
347 * @clk: the clk being reparented
348 * @new_parent: the new clk parent, may be NULL
349 *
350 * Rename clk entry in the debugfs clk tree if debugfs has been
351 * initialized. Otherwise it bails out early since the debugfs clk tree
352 * will be created lazily by clk_debug_init as part of a late_initcall.
353 *
354 * Caller must hold prepare_lock.
355 */
356 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
357 {
358 struct dentry *d;
359 struct dentry *new_parent_d;
360
361 if (!inited)
362 return;
363
364 if (new_parent)
365 new_parent_d = new_parent->dentry;
366 else
367 new_parent_d = orphandir;
368
369 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
370 new_parent_d, clk->name);
371 if (d)
372 clk->dentry = d;
373 else
374 pr_debug("%s: failed to rename debugfs entry for %s\n",
375 __func__, clk->name);
376 }
377
378 /**
379 * clk_debug_init - lazily create the debugfs clk tree visualization
380 *
381 * clks are often initialized very early during boot before memory can
382 * be dynamically allocated and well before debugfs is setup.
383 * clk_debug_init walks the clk tree hierarchy while holding
384 * prepare_lock and creates the topology as part of a late_initcall,
385 * thus insuring that clks initialized very early will still be
386 * represented in the debugfs clk tree. This function should only be
387 * called once at boot-time, and all other clks added dynamically will
388 * be done so with clk_debug_register.
389 */
390 static int __init clk_debug_init(void)
391 {
392 struct clk *clk;
393 struct dentry *d;
394
395 rootdir = debugfs_create_dir("clk", NULL);
396
397 if (!rootdir)
398 return -ENOMEM;
399
400 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
401 &clk_summary_fops);
402 if (!d)
403 return -ENOMEM;
404
405 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
406 &clk_dump_fops);
407 if (!d)
408 return -ENOMEM;
409
410 orphandir = debugfs_create_dir("orphans", rootdir);
411
412 if (!orphandir)
413 return -ENOMEM;
414
415 clk_prepare_lock();
416
417 hlist_for_each_entry(clk, &clk_root_list, child_node)
418 clk_debug_create_subtree(clk, rootdir);
419
420 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
421 clk_debug_create_subtree(clk, orphandir);
422
423 inited = 1;
424
425 clk_prepare_unlock();
426
427 return 0;
428 }
429 late_initcall(clk_debug_init);
430 #else
431 static inline int clk_debug_register(struct clk *clk) { return 0; }
432 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
433 {
434 }
435 #endif
436
437 /* caller must hold prepare_lock */
438 static void clk_unprepare_unused_subtree(struct clk *clk)
439 {
440 struct clk *child;
441
442 if (!clk)
443 return;
444
445 hlist_for_each_entry(child, &clk->children, child_node)
446 clk_unprepare_unused_subtree(child);
447
448 if (clk->prepare_count)
449 return;
450
451 if (clk->flags & CLK_IGNORE_UNUSED)
452 return;
453
454 if (__clk_is_prepared(clk)) {
455 if (clk->ops->unprepare_unused)
456 clk->ops->unprepare_unused(clk->hw);
457 else if (clk->ops->unprepare)
458 clk->ops->unprepare(clk->hw);
459 }
460 }
461
462 /* caller must hold prepare_lock */
463 static void clk_disable_unused_subtree(struct clk *clk)
464 {
465 struct clk *child;
466 unsigned long flags;
467
468 if (!clk)
469 goto out;
470
471 hlist_for_each_entry(child, &clk->children, child_node)
472 clk_disable_unused_subtree(child);
473
474 flags = clk_enable_lock();
475
476 if (clk->enable_count)
477 goto unlock_out;
478
479 if (clk->flags & CLK_IGNORE_UNUSED)
480 goto unlock_out;
481
482 /*
483 * some gate clocks have special needs during the disable-unused
484 * sequence. call .disable_unused if available, otherwise fall
485 * back to .disable
486 */
487 if (__clk_is_enabled(clk)) {
488 if (clk->ops->disable_unused)
489 clk->ops->disable_unused(clk->hw);
490 else if (clk->ops->disable)
491 clk->ops->disable(clk->hw);
492 }
493
494 unlock_out:
495 clk_enable_unlock(flags);
496
497 out:
498 return;
499 }
500
501 static bool clk_ignore_unused;
502 static int __init clk_ignore_unused_setup(char *__unused)
503 {
504 clk_ignore_unused = true;
505 return 1;
506 }
507 __setup("clk_ignore_unused", clk_ignore_unused_setup);
508
509 static int clk_disable_unused(void)
510 {
511 struct clk *clk;
512
513 if (clk_ignore_unused) {
514 pr_warn("clk: Not disabling unused clocks\n");
515 return 0;
516 }
517
518 clk_prepare_lock();
519
520 hlist_for_each_entry(clk, &clk_root_list, child_node)
521 clk_disable_unused_subtree(clk);
522
523 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
524 clk_disable_unused_subtree(clk);
525
526 hlist_for_each_entry(clk, &clk_root_list, child_node)
527 clk_unprepare_unused_subtree(clk);
528
529 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
530 clk_unprepare_unused_subtree(clk);
531
532 clk_prepare_unlock();
533
534 return 0;
535 }
536 late_initcall_sync(clk_disable_unused);
537
538 /*** helper functions ***/
539
540 const char *__clk_get_name(struct clk *clk)
541 {
542 return !clk ? NULL : clk->name;
543 }
544 EXPORT_SYMBOL_GPL(__clk_get_name);
545
546 struct clk_hw *__clk_get_hw(struct clk *clk)
547 {
548 return !clk ? NULL : clk->hw;
549 }
550
551 u8 __clk_get_num_parents(struct clk *clk)
552 {
553 return !clk ? 0 : clk->num_parents;
554 }
555
556 struct clk *__clk_get_parent(struct clk *clk)
557 {
558 return !clk ? NULL : clk->parent;
559 }
560
561 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
562 {
563 if (!clk || index >= clk->num_parents)
564 return NULL;
565 else if (!clk->parents)
566 return __clk_lookup(clk->parent_names[index]);
567 else if (!clk->parents[index])
568 return clk->parents[index] =
569 __clk_lookup(clk->parent_names[index]);
570 else
571 return clk->parents[index];
572 }
573
574 unsigned int __clk_get_enable_count(struct clk *clk)
575 {
576 return !clk ? 0 : clk->enable_count;
577 }
578
579 unsigned int __clk_get_prepare_count(struct clk *clk)
580 {
581 return !clk ? 0 : clk->prepare_count;
582 }
583
584 unsigned long __clk_get_rate(struct clk *clk)
585 {
586 unsigned long ret;
587
588 if (!clk) {
589 ret = 0;
590 goto out;
591 }
592
593 ret = clk->rate;
594
595 if (clk->flags & CLK_IS_ROOT)
596 goto out;
597
598 if (!clk->parent)
599 ret = 0;
600
601 out:
602 return ret;
603 }
604
605 unsigned long __clk_get_flags(struct clk *clk)
606 {
607 return !clk ? 0 : clk->flags;
608 }
609 EXPORT_SYMBOL_GPL(__clk_get_flags);
610
611 bool __clk_is_prepared(struct clk *clk)
612 {
613 int ret;
614
615 if (!clk)
616 return false;
617
618 /*
619 * .is_prepared is optional for clocks that can prepare
620 * fall back to software usage counter if it is missing
621 */
622 if (!clk->ops->is_prepared) {
623 ret = clk->prepare_count ? 1 : 0;
624 goto out;
625 }
626
627 ret = clk->ops->is_prepared(clk->hw);
628 out:
629 return !!ret;
630 }
631
632 bool __clk_is_enabled(struct clk *clk)
633 {
634 int ret;
635
636 if (!clk)
637 return false;
638
639 /*
640 * .is_enabled is only mandatory for clocks that gate
641 * fall back to software usage counter if .is_enabled is missing
642 */
643 if (!clk->ops->is_enabled) {
644 ret = clk->enable_count ? 1 : 0;
645 goto out;
646 }
647
648 ret = clk->ops->is_enabled(clk->hw);
649 out:
650 return !!ret;
651 }
652
653 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
654 {
655 struct clk *child;
656 struct clk *ret;
657
658 if (!strcmp(clk->name, name))
659 return clk;
660
661 hlist_for_each_entry(child, &clk->children, child_node) {
662 ret = __clk_lookup_subtree(name, child);
663 if (ret)
664 return ret;
665 }
666
667 return NULL;
668 }
669
670 struct clk *__clk_lookup(const char *name)
671 {
672 struct clk *root_clk;
673 struct clk *ret;
674
675 if (!name)
676 return NULL;
677
678 /* search the 'proper' clk tree first */
679 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
680 ret = __clk_lookup_subtree(name, root_clk);
681 if (ret)
682 return ret;
683 }
684
685 /* if not found, then search the orphan tree */
686 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
687 ret = __clk_lookup_subtree(name, root_clk);
688 if (ret)
689 return ret;
690 }
691
692 return NULL;
693 }
694
695 /*
696 * Helper for finding best parent to provide a given frequency. This can be used
697 * directly as a determine_rate callback (e.g. for a mux), or from a more
698 * complex clock that may combine a mux with other operations.
699 */
700 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
701 unsigned long *best_parent_rate,
702 struct clk **best_parent_p)
703 {
704 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
705 int i, num_parents;
706 unsigned long parent_rate, best = 0;
707
708 /* if NO_REPARENT flag set, pass through to current parent */
709 if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
710 parent = clk->parent;
711 if (clk->flags & CLK_SET_RATE_PARENT)
712 best = __clk_round_rate(parent, rate);
713 else if (parent)
714 best = __clk_get_rate(parent);
715 else
716 best = __clk_get_rate(clk);
717 goto out;
718 }
719
720 /* find the parent that can provide the fastest rate <= rate */
721 num_parents = clk->num_parents;
722 for (i = 0; i < num_parents; i++) {
723 parent = clk_get_parent_by_index(clk, i);
724 if (!parent)
725 continue;
726 if (clk->flags & CLK_SET_RATE_PARENT)
727 parent_rate = __clk_round_rate(parent, rate);
728 else
729 parent_rate = __clk_get_rate(parent);
730 if (parent_rate <= rate && parent_rate > best) {
731 best_parent = parent;
732 best = parent_rate;
733 }
734 }
735
736 out:
737 if (best_parent)
738 *best_parent_p = best_parent;
739 *best_parent_rate = best;
740
741 return best;
742 }
743
744 /*** clk api ***/
745
746 void __clk_unprepare(struct clk *clk)
747 {
748 if (!clk)
749 return;
750
751 if (WARN_ON(clk->prepare_count == 0))
752 return;
753
754 if (--clk->prepare_count > 0)
755 return;
756
757 WARN_ON(clk->enable_count > 0);
758
759 if (clk->ops->unprepare)
760 clk->ops->unprepare(clk->hw);
761
762 __clk_unprepare(clk->parent);
763 }
764
765 /**
766 * clk_unprepare - undo preparation of a clock source
767 * @clk: the clk being unprepared
768 *
769 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
770 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
771 * if the operation may sleep. One example is a clk which is accessed over
772 * I2c. In the complex case a clk gate operation may require a fast and a slow
773 * part. It is this reason that clk_unprepare and clk_disable are not mutually
774 * exclusive. In fact clk_disable must be called before clk_unprepare.
775 */
776 void clk_unprepare(struct clk *clk)
777 {
778 clk_prepare_lock();
779 __clk_unprepare(clk);
780 clk_prepare_unlock();
781 }
782 EXPORT_SYMBOL_GPL(clk_unprepare);
783
784 int __clk_prepare(struct clk *clk)
785 {
786 int ret = 0;
787
788 if (!clk)
789 return 0;
790
791 if (clk->prepare_count == 0) {
792 ret = __clk_prepare(clk->parent);
793 if (ret)
794 return ret;
795
796 if (clk->ops->prepare) {
797 ret = clk->ops->prepare(clk->hw);
798 if (ret) {
799 __clk_unprepare(clk->parent);
800 return ret;
801 }
802 }
803 }
804
805 clk->prepare_count++;
806
807 return 0;
808 }
809
810 /**
811 * clk_prepare - prepare a clock source
812 * @clk: the clk being prepared
813 *
814 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
815 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
816 * operation may sleep. One example is a clk which is accessed over I2c. In
817 * the complex case a clk ungate operation may require a fast and a slow part.
818 * It is this reason that clk_prepare and clk_enable are not mutually
819 * exclusive. In fact clk_prepare must be called before clk_enable.
820 * Returns 0 on success, -EERROR otherwise.
821 */
822 int clk_prepare(struct clk *clk)
823 {
824 int ret;
825
826 clk_prepare_lock();
827 ret = __clk_prepare(clk);
828 clk_prepare_unlock();
829
830 return ret;
831 }
832 EXPORT_SYMBOL_GPL(clk_prepare);
833
834 static void __clk_disable(struct clk *clk)
835 {
836 if (!clk)
837 return;
838
839 if (WARN_ON(IS_ERR(clk)))
840 return;
841
842 if (WARN_ON(clk->enable_count == 0))
843 return;
844
845 if (--clk->enable_count > 0)
846 return;
847
848 if (clk->ops->disable)
849 clk->ops->disable(clk->hw);
850
851 __clk_disable(clk->parent);
852 }
853
854 /**
855 * clk_disable - gate a clock
856 * @clk: the clk being gated
857 *
858 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
859 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
860 * clk if the operation is fast and will never sleep. One example is a
861 * SoC-internal clk which is controlled via simple register writes. In the
862 * complex case a clk gate operation may require a fast and a slow part. It is
863 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
864 * In fact clk_disable must be called before clk_unprepare.
865 */
866 void clk_disable(struct clk *clk)
867 {
868 unsigned long flags;
869
870 flags = clk_enable_lock();
871 __clk_disable(clk);
872 clk_enable_unlock(flags);
873 }
874 EXPORT_SYMBOL_GPL(clk_disable);
875
876 static int __clk_enable(struct clk *clk)
877 {
878 int ret = 0;
879
880 if (!clk)
881 return 0;
882
883 if (WARN_ON(clk->prepare_count == 0))
884 return -ESHUTDOWN;
885
886 if (clk->enable_count == 0) {
887 ret = __clk_enable(clk->parent);
888
889 if (ret)
890 return ret;
891
892 if (clk->ops->enable) {
893 ret = clk->ops->enable(clk->hw);
894 if (ret) {
895 __clk_disable(clk->parent);
896 return ret;
897 }
898 }
899 }
900
901 clk->enable_count++;
902 return 0;
903 }
904
905 /**
906 * clk_enable - ungate a clock
907 * @clk: the clk being ungated
908 *
909 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
910 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
911 * if the operation will never sleep. One example is a SoC-internal clk which
912 * is controlled via simple register writes. In the complex case a clk ungate
913 * operation may require a fast and a slow part. It is this reason that
914 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
915 * must be called before clk_enable. Returns 0 on success, -EERROR
916 * otherwise.
917 */
918 int clk_enable(struct clk *clk)
919 {
920 unsigned long flags;
921 int ret;
922
923 flags = clk_enable_lock();
924 ret = __clk_enable(clk);
925 clk_enable_unlock(flags);
926
927 return ret;
928 }
929 EXPORT_SYMBOL_GPL(clk_enable);
930
931 /**
932 * __clk_round_rate - round the given rate for a clk
933 * @clk: round the rate of this clock
934 * @rate: the rate which is to be rounded
935 *
936 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
937 */
938 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
939 {
940 unsigned long parent_rate = 0;
941 struct clk *parent;
942
943 if (!clk)
944 return 0;
945
946 parent = clk->parent;
947 if (parent)
948 parent_rate = parent->rate;
949
950 if (clk->ops->determine_rate)
951 return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
952 &parent);
953 else if (clk->ops->round_rate)
954 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
955 else if (clk->flags & CLK_SET_RATE_PARENT)
956 return __clk_round_rate(clk->parent, rate);
957 else
958 return clk->rate;
959 }
960
961 /**
962 * clk_round_rate - round the given rate for a clk
963 * @clk: the clk for which we are rounding a rate
964 * @rate: the rate which is to be rounded
965 *
966 * Takes in a rate as input and rounds it to a rate that the clk can actually
967 * use which is then returned. If clk doesn't support round_rate operation
968 * then the parent rate is returned.
969 */
970 long clk_round_rate(struct clk *clk, unsigned long rate)
971 {
972 unsigned long ret;
973
974 clk_prepare_lock();
975 ret = __clk_round_rate(clk, rate);
976 clk_prepare_unlock();
977
978 return ret;
979 }
980 EXPORT_SYMBOL_GPL(clk_round_rate);
981
982 /**
983 * __clk_notify - call clk notifier chain
984 * @clk: struct clk * that is changing rate
985 * @msg: clk notifier type (see include/linux/clk.h)
986 * @old_rate: old clk rate
987 * @new_rate: new clk rate
988 *
989 * Triggers a notifier call chain on the clk rate-change notification
990 * for 'clk'. Passes a pointer to the struct clk and the previous
991 * and current rates to the notifier callback. Intended to be called by
992 * internal clock code only. Returns NOTIFY_DONE from the last driver
993 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
994 * a driver returns that.
995 */
996 static int __clk_notify(struct clk *clk, unsigned long msg,
997 unsigned long old_rate, unsigned long new_rate)
998 {
999 struct clk_notifier *cn;
1000 struct clk_notifier_data cnd;
1001 int ret = NOTIFY_DONE;
1002
1003 cnd.clk = clk;
1004 cnd.old_rate = old_rate;
1005 cnd.new_rate = new_rate;
1006
1007 list_for_each_entry(cn, &clk_notifier_list, node) {
1008 if (cn->clk == clk) {
1009 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1010 &cnd);
1011 break;
1012 }
1013 }
1014
1015 return ret;
1016 }
1017
1018 /**
1019 * __clk_recalc_rates
1020 * @clk: first clk in the subtree
1021 * @msg: notification type (see include/linux/clk.h)
1022 *
1023 * Walks the subtree of clks starting with clk and recalculates rates as it
1024 * goes. Note that if a clk does not implement the .recalc_rate callback then
1025 * it is assumed that the clock will take on the rate of its parent.
1026 *
1027 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1028 * if necessary.
1029 *
1030 * Caller must hold prepare_lock.
1031 */
1032 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1033 {
1034 unsigned long old_rate;
1035 unsigned long parent_rate = 0;
1036 struct clk *child;
1037
1038 old_rate = clk->rate;
1039
1040 if (clk->parent)
1041 parent_rate = clk->parent->rate;
1042
1043 if (clk->ops->recalc_rate)
1044 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1045 else
1046 clk->rate = parent_rate;
1047
1048 /*
1049 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1050 * & ABORT_RATE_CHANGE notifiers
1051 */
1052 if (clk->notifier_count && msg)
1053 __clk_notify(clk, msg, old_rate, clk->rate);
1054
1055 hlist_for_each_entry(child, &clk->children, child_node)
1056 __clk_recalc_rates(child, msg);
1057 }
1058
1059 /**
1060 * clk_get_rate - return the rate of clk
1061 * @clk: the clk whose rate is being returned
1062 *
1063 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1064 * is set, which means a recalc_rate will be issued.
1065 * If clk is NULL then returns 0.
1066 */
1067 unsigned long clk_get_rate(struct clk *clk)
1068 {
1069 unsigned long rate;
1070
1071 clk_prepare_lock();
1072
1073 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1074 __clk_recalc_rates(clk, 0);
1075
1076 rate = __clk_get_rate(clk);
1077 clk_prepare_unlock();
1078
1079 return rate;
1080 }
1081 EXPORT_SYMBOL_GPL(clk_get_rate);
1082
1083 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1084 {
1085 int i;
1086
1087 if (!clk->parents) {
1088 clk->parents = kcalloc(clk->num_parents,
1089 sizeof(struct clk *), GFP_KERNEL);
1090 if (!clk->parents)
1091 return -ENOMEM;
1092 }
1093
1094 /*
1095 * find index of new parent clock using cached parent ptrs,
1096 * or if not yet cached, use string name comparison and cache
1097 * them now to avoid future calls to __clk_lookup.
1098 */
1099 for (i = 0; i < clk->num_parents; i++) {
1100 if (clk->parents[i] == parent)
1101 return i;
1102
1103 if (clk->parents[i])
1104 continue;
1105
1106 if (!strcmp(clk->parent_names[i], parent->name)) {
1107 clk->parents[i] = __clk_lookup(parent->name);
1108 return i;
1109 }
1110 }
1111
1112 return -EINVAL;
1113 }
1114
1115 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1116 {
1117 hlist_del(&clk->child_node);
1118
1119 if (new_parent) {
1120 /* avoid duplicate POST_RATE_CHANGE notifications */
1121 if (new_parent->new_child == clk)
1122 new_parent->new_child = NULL;
1123
1124 hlist_add_head(&clk->child_node, &new_parent->children);
1125 } else {
1126 hlist_add_head(&clk->child_node, &clk_orphan_list);
1127 }
1128
1129 clk->parent = new_parent;
1130 }
1131
1132 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1133 {
1134 unsigned long flags;
1135 int ret = 0;
1136 struct clk *old_parent = clk->parent;
1137
1138 /*
1139 * Migrate prepare state between parents and prevent race with
1140 * clk_enable().
1141 *
1142 * If the clock is not prepared, then a race with
1143 * clk_enable/disable() is impossible since we already have the
1144 * prepare lock (future calls to clk_enable() need to be preceded by
1145 * a clk_prepare()).
1146 *
1147 * If the clock is prepared, migrate the prepared state to the new
1148 * parent and also protect against a race with clk_enable() by
1149 * forcing the clock and the new parent on. This ensures that all
1150 * future calls to clk_enable() are practically NOPs with respect to
1151 * hardware and software states.
1152 *
1153 * See also: Comment for clk_set_parent() below.
1154 */
1155 if (clk->prepare_count) {
1156 __clk_prepare(parent);
1157 clk_enable(parent);
1158 clk_enable(clk);
1159 }
1160
1161 /* update the clk tree topology */
1162 flags = clk_enable_lock();
1163 clk_reparent(clk, parent);
1164 clk_enable_unlock(flags);
1165
1166 /* change clock input source */
1167 if (parent && clk->ops->set_parent)
1168 ret = clk->ops->set_parent(clk->hw, p_index);
1169
1170 if (ret) {
1171 flags = clk_enable_lock();
1172 clk_reparent(clk, old_parent);
1173 clk_enable_unlock(flags);
1174
1175 if (clk->prepare_count) {
1176 clk_disable(clk);
1177 clk_disable(parent);
1178 __clk_unprepare(parent);
1179 }
1180 return ret;
1181 }
1182
1183 /*
1184 * Finish the migration of prepare state and undo the changes done
1185 * for preventing a race with clk_enable().
1186 */
1187 if (clk->prepare_count) {
1188 clk_disable(clk);
1189 clk_disable(old_parent);
1190 __clk_unprepare(old_parent);
1191 }
1192
1193 /* update debugfs with new clk tree topology */
1194 clk_debug_reparent(clk, parent);
1195 return 0;
1196 }
1197
1198 /**
1199 * __clk_speculate_rates
1200 * @clk: first clk in the subtree
1201 * @parent_rate: the "future" rate of clk's parent
1202 *
1203 * Walks the subtree of clks starting with clk, speculating rates as it
1204 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1205 *
1206 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1207 * pre-rate change notifications and returns early if no clks in the
1208 * subtree have subscribed to the notifications. Note that if a clk does not
1209 * implement the .recalc_rate callback then it is assumed that the clock will
1210 * take on the rate of its parent.
1211 *
1212 * Caller must hold prepare_lock.
1213 */
1214 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1215 {
1216 struct clk *child;
1217 unsigned long new_rate;
1218 int ret = NOTIFY_DONE;
1219
1220 if (clk->ops->recalc_rate)
1221 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1222 else
1223 new_rate = parent_rate;
1224
1225 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1226 if (clk->notifier_count)
1227 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1228
1229 if (ret & NOTIFY_STOP_MASK)
1230 goto out;
1231
1232 hlist_for_each_entry(child, &clk->children, child_node) {
1233 ret = __clk_speculate_rates(child, new_rate);
1234 if (ret & NOTIFY_STOP_MASK)
1235 break;
1236 }
1237
1238 out:
1239 return ret;
1240 }
1241
1242 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1243 struct clk *new_parent, u8 p_index)
1244 {
1245 struct clk *child;
1246
1247 clk->new_rate = new_rate;
1248 clk->new_parent = new_parent;
1249 clk->new_parent_index = p_index;
1250 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1251 clk->new_child = NULL;
1252 if (new_parent && new_parent != clk->parent)
1253 new_parent->new_child = clk;
1254
1255 hlist_for_each_entry(child, &clk->children, child_node) {
1256 if (child->ops->recalc_rate)
1257 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1258 else
1259 child->new_rate = new_rate;
1260 clk_calc_subtree(child, child->new_rate, NULL, 0);
1261 }
1262 }
1263
1264 /*
1265 * calculate the new rates returning the topmost clock that has to be
1266 * changed.
1267 */
1268 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1269 {
1270 struct clk *top = clk;
1271 struct clk *old_parent, *parent;
1272 unsigned long best_parent_rate = 0;
1273 unsigned long new_rate;
1274 int p_index = 0;
1275
1276 /* sanity */
1277 if (IS_ERR_OR_NULL(clk))
1278 return NULL;
1279
1280 /* save parent rate, if it exists */
1281 parent = old_parent = clk->parent;
1282 if (parent)
1283 best_parent_rate = parent->rate;
1284
1285 /* find the closest rate and parent clk/rate */
1286 if (clk->ops->determine_rate) {
1287 new_rate = clk->ops->determine_rate(clk->hw, rate,
1288 &best_parent_rate,
1289 &parent);
1290 } else if (clk->ops->round_rate) {
1291 new_rate = clk->ops->round_rate(clk->hw, rate,
1292 &best_parent_rate);
1293 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1294 /* pass-through clock without adjustable parent */
1295 clk->new_rate = clk->rate;
1296 return NULL;
1297 } else {
1298 /* pass-through clock with adjustable parent */
1299 top = clk_calc_new_rates(parent, rate);
1300 new_rate = parent->new_rate;
1301 goto out;
1302 }
1303
1304 /* some clocks must be gated to change parent */
1305 if (parent != old_parent &&
1306 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1307 pr_debug("%s: %s not gated but wants to reparent\n",
1308 __func__, clk->name);
1309 return NULL;
1310 }
1311
1312 /* try finding the new parent index */
1313 if (parent) {
1314 p_index = clk_fetch_parent_index(clk, parent);
1315 if (p_index < 0) {
1316 pr_debug("%s: clk %s can not be parent of clk %s\n",
1317 __func__, parent->name, clk->name);
1318 return NULL;
1319 }
1320 }
1321
1322 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1323 best_parent_rate != parent->rate)
1324 top = clk_calc_new_rates(parent, best_parent_rate);
1325
1326 out:
1327 clk_calc_subtree(clk, new_rate, parent, p_index);
1328
1329 return top;
1330 }
1331
1332 /*
1333 * Notify about rate changes in a subtree. Always walk down the whole tree
1334 * so that in case of an error we can walk down the whole tree again and
1335 * abort the change.
1336 */
1337 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1338 {
1339 struct clk *child, *tmp_clk, *fail_clk = NULL;
1340 int ret = NOTIFY_DONE;
1341
1342 if (clk->rate == clk->new_rate)
1343 return NULL;
1344
1345 if (clk->notifier_count) {
1346 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1347 if (ret & NOTIFY_STOP_MASK)
1348 fail_clk = clk;
1349 }
1350
1351 hlist_for_each_entry(child, &clk->children, child_node) {
1352 /* Skip children who will be reparented to another clock */
1353 if (child->new_parent && child->new_parent != clk)
1354 continue;
1355 tmp_clk = clk_propagate_rate_change(child, event);
1356 if (tmp_clk)
1357 fail_clk = tmp_clk;
1358 }
1359
1360 /* handle the new child who might not be in clk->children yet */
1361 if (clk->new_child) {
1362 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1363 if (tmp_clk)
1364 fail_clk = tmp_clk;
1365 }
1366
1367 return fail_clk;
1368 }
1369
1370 /*
1371 * walk down a subtree and set the new rates notifying the rate
1372 * change on the way
1373 */
1374 static void clk_change_rate(struct clk *clk)
1375 {
1376 struct clk *child;
1377 unsigned long old_rate;
1378 unsigned long best_parent_rate = 0;
1379
1380 old_rate = clk->rate;
1381
1382 /* set parent */
1383 if (clk->new_parent && clk->new_parent != clk->parent)
1384 __clk_set_parent(clk, clk->new_parent, clk->new_parent_index);
1385
1386 if (clk->parent)
1387 best_parent_rate = clk->parent->rate;
1388
1389 if (clk->ops->set_rate)
1390 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1391
1392 if (clk->ops->recalc_rate)
1393 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1394 else
1395 clk->rate = best_parent_rate;
1396
1397 if (clk->notifier_count && old_rate != clk->rate)
1398 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1399
1400 hlist_for_each_entry(child, &clk->children, child_node) {
1401 /* Skip children who will be reparented to another clock */
1402 if (child->new_parent && child->new_parent != clk)
1403 continue;
1404 clk_change_rate(child);
1405 }
1406
1407 /* handle the new child who might not be in clk->children yet */
1408 if (clk->new_child)
1409 clk_change_rate(clk->new_child);
1410 }
1411
1412 /**
1413 * clk_set_rate - specify a new rate for clk
1414 * @clk: the clk whose rate is being changed
1415 * @rate: the new rate for clk
1416 *
1417 * In the simplest case clk_set_rate will only adjust the rate of clk.
1418 *
1419 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1420 * propagate up to clk's parent; whether or not this happens depends on the
1421 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1422 * after calling .round_rate then upstream parent propagation is ignored. If
1423 * *parent_rate comes back with a new rate for clk's parent then we propagate
1424 * up to clk's parent and set its rate. Upward propagation will continue
1425 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1426 * .round_rate stops requesting changes to clk's parent_rate.
1427 *
1428 * Rate changes are accomplished via tree traversal that also recalculates the
1429 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1430 *
1431 * Returns 0 on success, -EERROR otherwise.
1432 */
1433 int clk_set_rate(struct clk *clk, unsigned long rate)
1434 {
1435 struct clk *top, *fail_clk;
1436 int ret = 0;
1437
1438 if (!clk)
1439 return 0;
1440
1441 /* prevent racing with updates to the clock topology */
1442 clk_prepare_lock();
1443
1444 /* bail early if nothing to do */
1445 if (rate == clk_get_rate(clk))
1446 goto out;
1447
1448 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1449 ret = -EBUSY;
1450 goto out;
1451 }
1452
1453 /* calculate new rates and get the topmost changed clock */
1454 top = clk_calc_new_rates(clk, rate);
1455 if (!top) {
1456 ret = -EINVAL;
1457 goto out;
1458 }
1459
1460 /* notify that we are about to change rates */
1461 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1462 if (fail_clk) {
1463 pr_warn("%s: failed to set %s rate\n", __func__,
1464 fail_clk->name);
1465 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1466 ret = -EBUSY;
1467 goto out;
1468 }
1469
1470 /* change the rates */
1471 clk_change_rate(top);
1472
1473 out:
1474 clk_prepare_unlock();
1475
1476 return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(clk_set_rate);
1479
1480 /**
1481 * clk_get_parent - return the parent of a clk
1482 * @clk: the clk whose parent gets returned
1483 *
1484 * Simply returns clk->parent. Returns NULL if clk is NULL.
1485 */
1486 struct clk *clk_get_parent(struct clk *clk)
1487 {
1488 struct clk *parent;
1489
1490 clk_prepare_lock();
1491 parent = __clk_get_parent(clk);
1492 clk_prepare_unlock();
1493
1494 return parent;
1495 }
1496 EXPORT_SYMBOL_GPL(clk_get_parent);
1497
1498 /*
1499 * .get_parent is mandatory for clocks with multiple possible parents. It is
1500 * optional for single-parent clocks. Always call .get_parent if it is
1501 * available and WARN if it is missing for multi-parent clocks.
1502 *
1503 * For single-parent clocks without .get_parent, first check to see if the
1504 * .parents array exists, and if so use it to avoid an expensive tree
1505 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1506 */
1507 static struct clk *__clk_init_parent(struct clk *clk)
1508 {
1509 struct clk *ret = NULL;
1510 u8 index;
1511
1512 /* handle the trivial cases */
1513
1514 if (!clk->num_parents)
1515 goto out;
1516
1517 if (clk->num_parents == 1) {
1518 if (IS_ERR_OR_NULL(clk->parent))
1519 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1520 ret = clk->parent;
1521 goto out;
1522 }
1523
1524 if (!clk->ops->get_parent) {
1525 WARN(!clk->ops->get_parent,
1526 "%s: multi-parent clocks must implement .get_parent\n",
1527 __func__);
1528 goto out;
1529 };
1530
1531 /*
1532 * Do our best to cache parent clocks in clk->parents. This prevents
1533 * unnecessary and expensive calls to __clk_lookup. We don't set
1534 * clk->parent here; that is done by the calling function
1535 */
1536
1537 index = clk->ops->get_parent(clk->hw);
1538
1539 if (!clk->parents)
1540 clk->parents =
1541 kcalloc(clk->num_parents, sizeof(struct clk *),
1542 GFP_KERNEL);
1543
1544 ret = clk_get_parent_by_index(clk, index);
1545
1546 out:
1547 return ret;
1548 }
1549
1550 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1551 {
1552 clk_reparent(clk, new_parent);
1553 clk_debug_reparent(clk, new_parent);
1554 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1555 }
1556
1557 /**
1558 * clk_set_parent - switch the parent of a mux clk
1559 * @clk: the mux clk whose input we are switching
1560 * @parent: the new input to clk
1561 *
1562 * Re-parent clk to use parent as its new input source. If clk is in
1563 * prepared state, the clk will get enabled for the duration of this call. If
1564 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1565 * that, the reparenting is glitchy in hardware, etc), use the
1566 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1567 *
1568 * After successfully changing clk's parent clk_set_parent will update the
1569 * clk topology, sysfs topology and propagate rate recalculation via
1570 * __clk_recalc_rates.
1571 *
1572 * Returns 0 on success, -EERROR otherwise.
1573 */
1574 int clk_set_parent(struct clk *clk, struct clk *parent)
1575 {
1576 int ret = 0;
1577 int p_index = 0;
1578 unsigned long p_rate = 0;
1579
1580 if (!clk)
1581 return 0;
1582
1583 if (!clk->ops)
1584 return -EINVAL;
1585
1586 /* verify ops for for multi-parent clks */
1587 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1588 return -ENOSYS;
1589
1590 /* prevent racing with updates to the clock topology */
1591 clk_prepare_lock();
1592
1593 if (clk->parent == parent)
1594 goto out;
1595
1596 /* check that we are allowed to re-parent if the clock is in use */
1597 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1598 ret = -EBUSY;
1599 goto out;
1600 }
1601
1602 /* try finding the new parent index */
1603 if (parent) {
1604 p_index = clk_fetch_parent_index(clk, parent);
1605 p_rate = parent->rate;
1606 if (p_index < 0) {
1607 pr_debug("%s: clk %s can not be parent of clk %s\n",
1608 __func__, parent->name, clk->name);
1609 ret = p_index;
1610 goto out;
1611 }
1612 }
1613
1614 /* propagate PRE_RATE_CHANGE notifications */
1615 ret = __clk_speculate_rates(clk, p_rate);
1616
1617 /* abort if a driver objects */
1618 if (ret & NOTIFY_STOP_MASK)
1619 goto out;
1620
1621 /* do the re-parent */
1622 ret = __clk_set_parent(clk, parent, p_index);
1623
1624 /* propagate rate recalculation accordingly */
1625 if (ret)
1626 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1627 else
1628 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1629
1630 out:
1631 clk_prepare_unlock();
1632
1633 return ret;
1634 }
1635 EXPORT_SYMBOL_GPL(clk_set_parent);
1636
1637 /**
1638 * __clk_init - initialize the data structures in a struct clk
1639 * @dev: device initializing this clk, placeholder for now
1640 * @clk: clk being initialized
1641 *
1642 * Initializes the lists in struct clk, queries the hardware for the
1643 * parent and rate and sets them both.
1644 */
1645 int __clk_init(struct device *dev, struct clk *clk)
1646 {
1647 int i, ret = 0;
1648 struct clk *orphan;
1649 struct hlist_node *tmp2;
1650
1651 if (!clk)
1652 return -EINVAL;
1653
1654 clk_prepare_lock();
1655
1656 /* check to see if a clock with this name is already registered */
1657 if (__clk_lookup(clk->name)) {
1658 pr_debug("%s: clk %s already initialized\n",
1659 __func__, clk->name);
1660 ret = -EEXIST;
1661 goto out;
1662 }
1663
1664 /* check that clk_ops are sane. See Documentation/clk.txt */
1665 if (clk->ops->set_rate &&
1666 !((clk->ops->round_rate || clk->ops->determine_rate) &&
1667 clk->ops->recalc_rate)) {
1668 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1669 __func__, clk->name);
1670 ret = -EINVAL;
1671 goto out;
1672 }
1673
1674 if (clk->ops->set_parent && !clk->ops->get_parent) {
1675 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1676 __func__, clk->name);
1677 ret = -EINVAL;
1678 goto out;
1679 }
1680
1681 /* throw a WARN if any entries in parent_names are NULL */
1682 for (i = 0; i < clk->num_parents; i++)
1683 WARN(!clk->parent_names[i],
1684 "%s: invalid NULL in %s's .parent_names\n",
1685 __func__, clk->name);
1686
1687 /*
1688 * Allocate an array of struct clk *'s to avoid unnecessary string
1689 * look-ups of clk's possible parents. This can fail for clocks passed
1690 * in to clk_init during early boot; thus any access to clk->parents[]
1691 * must always check for a NULL pointer and try to populate it if
1692 * necessary.
1693 *
1694 * If clk->parents is not NULL we skip this entire block. This allows
1695 * for clock drivers to statically initialize clk->parents.
1696 */
1697 if (clk->num_parents > 1 && !clk->parents) {
1698 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1699 GFP_KERNEL);
1700 /*
1701 * __clk_lookup returns NULL for parents that have not been
1702 * clk_init'd; thus any access to clk->parents[] must check
1703 * for a NULL pointer. We can always perform lazy lookups for
1704 * missing parents later on.
1705 */
1706 if (clk->parents)
1707 for (i = 0; i < clk->num_parents; i++)
1708 clk->parents[i] =
1709 __clk_lookup(clk->parent_names[i]);
1710 }
1711
1712 clk->parent = __clk_init_parent(clk);
1713
1714 /*
1715 * Populate clk->parent if parent has already been __clk_init'd. If
1716 * parent has not yet been __clk_init'd then place clk in the orphan
1717 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1718 * clk list.
1719 *
1720 * Every time a new clk is clk_init'd then we walk the list of orphan
1721 * clocks and re-parent any that are children of the clock currently
1722 * being clk_init'd.
1723 */
1724 if (clk->parent)
1725 hlist_add_head(&clk->child_node,
1726 &clk->parent->children);
1727 else if (clk->flags & CLK_IS_ROOT)
1728 hlist_add_head(&clk->child_node, &clk_root_list);
1729 else
1730 hlist_add_head(&clk->child_node, &clk_orphan_list);
1731
1732 /*
1733 * Set clk's rate. The preferred method is to use .recalc_rate. For
1734 * simple clocks and lazy developers the default fallback is to use the
1735 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1736 * then rate is set to zero.
1737 */
1738 if (clk->ops->recalc_rate)
1739 clk->rate = clk->ops->recalc_rate(clk->hw,
1740 __clk_get_rate(clk->parent));
1741 else if (clk->parent)
1742 clk->rate = clk->parent->rate;
1743 else
1744 clk->rate = 0;
1745
1746 /*
1747 * walk the list of orphan clocks and reparent any that are children of
1748 * this clock
1749 */
1750 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1751 if (orphan->num_parents && orphan->ops->get_parent) {
1752 i = orphan->ops->get_parent(orphan->hw);
1753 if (!strcmp(clk->name, orphan->parent_names[i]))
1754 __clk_reparent(orphan, clk);
1755 continue;
1756 }
1757
1758 for (i = 0; i < orphan->num_parents; i++)
1759 if (!strcmp(clk->name, orphan->parent_names[i])) {
1760 __clk_reparent(orphan, clk);
1761 break;
1762 }
1763 }
1764
1765 /*
1766 * optional platform-specific magic
1767 *
1768 * The .init callback is not used by any of the basic clock types, but
1769 * exists for weird hardware that must perform initialization magic.
1770 * Please consider other ways of solving initialization problems before
1771 * using this callback, as its use is discouraged.
1772 */
1773 if (clk->ops->init)
1774 clk->ops->init(clk->hw);
1775
1776 clk_debug_register(clk);
1777
1778 out:
1779 clk_prepare_unlock();
1780
1781 return ret;
1782 }
1783
1784 /**
1785 * __clk_register - register a clock and return a cookie.
1786 *
1787 * Same as clk_register, except that the .clk field inside hw shall point to a
1788 * preallocated (generally statically allocated) struct clk. None of the fields
1789 * of the struct clk need to be initialized.
1790 *
1791 * The data pointed to by .init and .clk field shall NOT be marked as init
1792 * data.
1793 *
1794 * __clk_register is only exposed via clk-private.h and is intended for use with
1795 * very large numbers of clocks that need to be statically initialized. It is
1796 * a layering violation to include clk-private.h from any code which implements
1797 * a clock's .ops; as such any statically initialized clock data MUST be in a
1798 * separate C file from the logic that implements its operations. Returns 0
1799 * on success, otherwise an error code.
1800 */
1801 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1802 {
1803 int ret;
1804 struct clk *clk;
1805
1806 clk = hw->clk;
1807 clk->name = hw->init->name;
1808 clk->ops = hw->init->ops;
1809 clk->hw = hw;
1810 clk->flags = hw->init->flags;
1811 clk->parent_names = hw->init->parent_names;
1812 clk->num_parents = hw->init->num_parents;
1813
1814 ret = __clk_init(dev, clk);
1815 if (ret)
1816 return ERR_PTR(ret);
1817
1818 return clk;
1819 }
1820 EXPORT_SYMBOL_GPL(__clk_register);
1821
1822 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1823 {
1824 int i, ret;
1825
1826 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1827 if (!clk->name) {
1828 pr_err("%s: could not allocate clk->name\n", __func__);
1829 ret = -ENOMEM;
1830 goto fail_name;
1831 }
1832 clk->ops = hw->init->ops;
1833 clk->hw = hw;
1834 clk->flags = hw->init->flags;
1835 clk->num_parents = hw->init->num_parents;
1836 hw->clk = clk;
1837
1838 /* allocate local copy in case parent_names is __initdata */
1839 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
1840 GFP_KERNEL);
1841
1842 if (!clk->parent_names) {
1843 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1844 ret = -ENOMEM;
1845 goto fail_parent_names;
1846 }
1847
1848
1849 /* copy each string name in case parent_names is __initdata */
1850 for (i = 0; i < clk->num_parents; i++) {
1851 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1852 GFP_KERNEL);
1853 if (!clk->parent_names[i]) {
1854 pr_err("%s: could not copy parent_names\n", __func__);
1855 ret = -ENOMEM;
1856 goto fail_parent_names_copy;
1857 }
1858 }
1859
1860 ret = __clk_init(dev, clk);
1861 if (!ret)
1862 return 0;
1863
1864 fail_parent_names_copy:
1865 while (--i >= 0)
1866 kfree(clk->parent_names[i]);
1867 kfree(clk->parent_names);
1868 fail_parent_names:
1869 kfree(clk->name);
1870 fail_name:
1871 return ret;
1872 }
1873
1874 /**
1875 * clk_register - allocate a new clock, register it and return an opaque cookie
1876 * @dev: device that is registering this clock
1877 * @hw: link to hardware-specific clock data
1878 *
1879 * clk_register is the primary interface for populating the clock tree with new
1880 * clock nodes. It returns a pointer to the newly allocated struct clk which
1881 * cannot be dereferenced by driver code but may be used in conjuction with the
1882 * rest of the clock API. In the event of an error clk_register will return an
1883 * error code; drivers must test for an error code after calling clk_register.
1884 */
1885 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1886 {
1887 int ret;
1888 struct clk *clk;
1889
1890 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1891 if (!clk) {
1892 pr_err("%s: could not allocate clk\n", __func__);
1893 ret = -ENOMEM;
1894 goto fail_out;
1895 }
1896
1897 ret = _clk_register(dev, hw, clk);
1898 if (!ret)
1899 return clk;
1900
1901 kfree(clk);
1902 fail_out:
1903 return ERR_PTR(ret);
1904 }
1905 EXPORT_SYMBOL_GPL(clk_register);
1906
1907 /**
1908 * clk_unregister - unregister a currently registered clock
1909 * @clk: clock to unregister
1910 *
1911 * Currently unimplemented.
1912 */
1913 void clk_unregister(struct clk *clk) {}
1914 EXPORT_SYMBOL_GPL(clk_unregister);
1915
1916 static void devm_clk_release(struct device *dev, void *res)
1917 {
1918 clk_unregister(res);
1919 }
1920
1921 /**
1922 * devm_clk_register - resource managed clk_register()
1923 * @dev: device that is registering this clock
1924 * @hw: link to hardware-specific clock data
1925 *
1926 * Managed clk_register(). Clocks returned from this function are
1927 * automatically clk_unregister()ed on driver detach. See clk_register() for
1928 * more information.
1929 */
1930 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1931 {
1932 struct clk *clk;
1933 int ret;
1934
1935 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1936 if (!clk)
1937 return ERR_PTR(-ENOMEM);
1938
1939 ret = _clk_register(dev, hw, clk);
1940 if (!ret) {
1941 devres_add(dev, clk);
1942 } else {
1943 devres_free(clk);
1944 clk = ERR_PTR(ret);
1945 }
1946
1947 return clk;
1948 }
1949 EXPORT_SYMBOL_GPL(devm_clk_register);
1950
1951 static int devm_clk_match(struct device *dev, void *res, void *data)
1952 {
1953 struct clk *c = res;
1954 if (WARN_ON(!c))
1955 return 0;
1956 return c == data;
1957 }
1958
1959 /**
1960 * devm_clk_unregister - resource managed clk_unregister()
1961 * @clk: clock to unregister
1962 *
1963 * Deallocate a clock allocated with devm_clk_register(). Normally
1964 * this function will not need to be called and the resource management
1965 * code will ensure that the resource is freed.
1966 */
1967 void devm_clk_unregister(struct device *dev, struct clk *clk)
1968 {
1969 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1970 }
1971 EXPORT_SYMBOL_GPL(devm_clk_unregister);
1972
1973 /*** clk rate change notifiers ***/
1974
1975 /**
1976 * clk_notifier_register - add a clk rate change notifier
1977 * @clk: struct clk * to watch
1978 * @nb: struct notifier_block * with callback info
1979 *
1980 * Request notification when clk's rate changes. This uses an SRCU
1981 * notifier because we want it to block and notifier unregistrations are
1982 * uncommon. The callbacks associated with the notifier must not
1983 * re-enter into the clk framework by calling any top-level clk APIs;
1984 * this will cause a nested prepare_lock mutex.
1985 *
1986 * Pre-change notifier callbacks will be passed the current, pre-change
1987 * rate of the clk via struct clk_notifier_data.old_rate. The new,
1988 * post-change rate of the clk is passed via struct
1989 * clk_notifier_data.new_rate.
1990 *
1991 * Post-change notifiers will pass the now-current, post-change rate of
1992 * the clk in both struct clk_notifier_data.old_rate and struct
1993 * clk_notifier_data.new_rate.
1994 *
1995 * Abort-change notifiers are effectively the opposite of pre-change
1996 * notifiers: the original pre-change clk rate is passed in via struct
1997 * clk_notifier_data.new_rate and the failed post-change rate is passed
1998 * in via struct clk_notifier_data.old_rate.
1999 *
2000 * clk_notifier_register() must be called from non-atomic context.
2001 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2002 * allocation failure; otherwise, passes along the return value of
2003 * srcu_notifier_chain_register().
2004 */
2005 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2006 {
2007 struct clk_notifier *cn;
2008 int ret = -ENOMEM;
2009
2010 if (!clk || !nb)
2011 return -EINVAL;
2012
2013 clk_prepare_lock();
2014
2015 /* search the list of notifiers for this clk */
2016 list_for_each_entry(cn, &clk_notifier_list, node)
2017 if (cn->clk == clk)
2018 break;
2019
2020 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2021 if (cn->clk != clk) {
2022 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2023 if (!cn)
2024 goto out;
2025
2026 cn->clk = clk;
2027 srcu_init_notifier_head(&cn->notifier_head);
2028
2029 list_add(&cn->node, &clk_notifier_list);
2030 }
2031
2032 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2033
2034 clk->notifier_count++;
2035
2036 out:
2037 clk_prepare_unlock();
2038
2039 return ret;
2040 }
2041 EXPORT_SYMBOL_GPL(clk_notifier_register);
2042
2043 /**
2044 * clk_notifier_unregister - remove a clk rate change notifier
2045 * @clk: struct clk *
2046 * @nb: struct notifier_block * with callback info
2047 *
2048 * Request no further notification for changes to 'clk' and frees memory
2049 * allocated in clk_notifier_register.
2050 *
2051 * Returns -EINVAL if called with null arguments; otherwise, passes
2052 * along the return value of srcu_notifier_chain_unregister().
2053 */
2054 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2055 {
2056 struct clk_notifier *cn = NULL;
2057 int ret = -EINVAL;
2058
2059 if (!clk || !nb)
2060 return -EINVAL;
2061
2062 clk_prepare_lock();
2063
2064 list_for_each_entry(cn, &clk_notifier_list, node)
2065 if (cn->clk == clk)
2066 break;
2067
2068 if (cn->clk == clk) {
2069 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2070
2071 clk->notifier_count--;
2072
2073 /* XXX the notifier code should handle this better */
2074 if (!cn->notifier_head.head) {
2075 srcu_cleanup_notifier_head(&cn->notifier_head);
2076 list_del(&cn->node);
2077 kfree(cn);
2078 }
2079
2080 } else {
2081 ret = -ENOENT;
2082 }
2083
2084 clk_prepare_unlock();
2085
2086 return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2089
2090 #ifdef CONFIG_OF
2091 /**
2092 * struct of_clk_provider - Clock provider registration structure
2093 * @link: Entry in global list of clock providers
2094 * @node: Pointer to device tree node of clock provider
2095 * @get: Get clock callback. Returns NULL or a struct clk for the
2096 * given clock specifier
2097 * @data: context pointer to be passed into @get callback
2098 */
2099 struct of_clk_provider {
2100 struct list_head link;
2101
2102 struct device_node *node;
2103 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2104 void *data;
2105 };
2106
2107 extern struct of_device_id __clk_of_table[];
2108
2109 static const struct of_device_id __clk_of_table_sentinel
2110 __used __section(__clk_of_table_end);
2111
2112 static LIST_HEAD(of_clk_providers);
2113 static DEFINE_MUTEX(of_clk_lock);
2114
2115 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2116 void *data)
2117 {
2118 return data;
2119 }
2120 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2121
2122 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2123 {
2124 struct clk_onecell_data *clk_data = data;
2125 unsigned int idx = clkspec->args[0];
2126
2127 if (idx >= clk_data->clk_num) {
2128 pr_err("%s: invalid clock index %d\n", __func__, idx);
2129 return ERR_PTR(-EINVAL);
2130 }
2131
2132 return clk_data->clks[idx];
2133 }
2134 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2135
2136 /**
2137 * of_clk_add_provider() - Register a clock provider for a node
2138 * @np: Device node pointer associated with clock provider
2139 * @clk_src_get: callback for decoding clock
2140 * @data: context pointer for @clk_src_get callback.
2141 */
2142 int of_clk_add_provider(struct device_node *np,
2143 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2144 void *data),
2145 void *data)
2146 {
2147 struct of_clk_provider *cp;
2148
2149 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2150 if (!cp)
2151 return -ENOMEM;
2152
2153 cp->node = of_node_get(np);
2154 cp->data = data;
2155 cp->get = clk_src_get;
2156
2157 mutex_lock(&of_clk_lock);
2158 list_add(&cp->link, &of_clk_providers);
2159 mutex_unlock(&of_clk_lock);
2160 pr_debug("Added clock from %s\n", np->full_name);
2161
2162 return 0;
2163 }
2164 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2165
2166 /**
2167 * of_clk_del_provider() - Remove a previously registered clock provider
2168 * @np: Device node pointer associated with clock provider
2169 */
2170 void of_clk_del_provider(struct device_node *np)
2171 {
2172 struct of_clk_provider *cp;
2173
2174 mutex_lock(&of_clk_lock);
2175 list_for_each_entry(cp, &of_clk_providers, link) {
2176 if (cp->node == np) {
2177 list_del(&cp->link);
2178 of_node_put(cp->node);
2179 kfree(cp);
2180 break;
2181 }
2182 }
2183 mutex_unlock(&of_clk_lock);
2184 }
2185 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2186
2187 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2188 {
2189 struct of_clk_provider *provider;
2190 struct clk *clk = ERR_PTR(-ENOENT);
2191
2192 /* Check if we have such a provider in our array */
2193 mutex_lock(&of_clk_lock);
2194 list_for_each_entry(provider, &of_clk_providers, link) {
2195 if (provider->node == clkspec->np)
2196 clk = provider->get(clkspec, provider->data);
2197 if (!IS_ERR(clk))
2198 break;
2199 }
2200 mutex_unlock(&of_clk_lock);
2201
2202 return clk;
2203 }
2204
2205 const char *of_clk_get_parent_name(struct device_node *np, int index)
2206 {
2207 struct of_phandle_args clkspec;
2208 const char *clk_name;
2209 int rc;
2210
2211 if (index < 0)
2212 return NULL;
2213
2214 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2215 &clkspec);
2216 if (rc)
2217 return NULL;
2218
2219 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2220 clkspec.args_count ? clkspec.args[0] : 0,
2221 &clk_name) < 0)
2222 clk_name = clkspec.np->name;
2223
2224 of_node_put(clkspec.np);
2225 return clk_name;
2226 }
2227 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2228
2229 /**
2230 * of_clk_init() - Scan and init clock providers from the DT
2231 * @matches: array of compatible values and init functions for providers.
2232 *
2233 * This function scans the device tree for matching clock providers and
2234 * calls their initialization functions
2235 */
2236 void __init of_clk_init(const struct of_device_id *matches)
2237 {
2238 const struct of_device_id *match;
2239 struct device_node *np;
2240
2241 if (!matches)
2242 matches = __clk_of_table;
2243
2244 for_each_matching_node_and_match(np, matches, &match) {
2245 of_clk_init_cb_t clk_init_cb = match->data;
2246 clk_init_cb(np);
2247 }
2248 }
2249 #endif
This page took 0.088619 seconds and 5 git commands to generate.