Merge tag 'sound-fix-3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23
24 #include "clk.h"
25
26 static DEFINE_SPINLOCK(enable_lock);
27 static DEFINE_MUTEX(prepare_lock);
28
29 static struct task_struct *prepare_owner;
30 static struct task_struct *enable_owner;
31
32 static int prepare_refcnt;
33 static int enable_refcnt;
34
35 static HLIST_HEAD(clk_root_list);
36 static HLIST_HEAD(clk_orphan_list);
37 static LIST_HEAD(clk_notifier_list);
38
39 /*** locking ***/
40 static void clk_prepare_lock(void)
41 {
42 if (!mutex_trylock(&prepare_lock)) {
43 if (prepare_owner == current) {
44 prepare_refcnt++;
45 return;
46 }
47 mutex_lock(&prepare_lock);
48 }
49 WARN_ON_ONCE(prepare_owner != NULL);
50 WARN_ON_ONCE(prepare_refcnt != 0);
51 prepare_owner = current;
52 prepare_refcnt = 1;
53 }
54
55 static void clk_prepare_unlock(void)
56 {
57 WARN_ON_ONCE(prepare_owner != current);
58 WARN_ON_ONCE(prepare_refcnt == 0);
59
60 if (--prepare_refcnt)
61 return;
62 prepare_owner = NULL;
63 mutex_unlock(&prepare_lock);
64 }
65
66 static unsigned long clk_enable_lock(void)
67 {
68 unsigned long flags;
69
70 if (!spin_trylock_irqsave(&enable_lock, flags)) {
71 if (enable_owner == current) {
72 enable_refcnt++;
73 return flags;
74 }
75 spin_lock_irqsave(&enable_lock, flags);
76 }
77 WARN_ON_ONCE(enable_owner != NULL);
78 WARN_ON_ONCE(enable_refcnt != 0);
79 enable_owner = current;
80 enable_refcnt = 1;
81 return flags;
82 }
83
84 static void clk_enable_unlock(unsigned long flags)
85 {
86 WARN_ON_ONCE(enable_owner != current);
87 WARN_ON_ONCE(enable_refcnt == 0);
88
89 if (--enable_refcnt)
90 return;
91 enable_owner = NULL;
92 spin_unlock_irqrestore(&enable_lock, flags);
93 }
94
95 /*** debugfs support ***/
96
97 #ifdef CONFIG_DEBUG_FS
98 #include <linux/debugfs.h>
99
100 static struct dentry *rootdir;
101 static struct dentry *orphandir;
102 static int inited = 0;
103
104 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
105 {
106 if (!c)
107 return;
108
109 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu\n",
110 level * 3 + 1, "",
111 30 - level * 3, c->name,
112 c->enable_count, c->prepare_count, clk_get_rate(c),
113 clk_get_accuracy(c));
114 }
115
116 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
117 int level)
118 {
119 struct clk *child;
120
121 if (!c)
122 return;
123
124 clk_summary_show_one(s, c, level);
125
126 hlist_for_each_entry(child, &c->children, child_node)
127 clk_summary_show_subtree(s, child, level + 1);
128 }
129
130 static int clk_summary_show(struct seq_file *s, void *data)
131 {
132 struct clk *c;
133
134 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy\n");
135 seq_puts(s, "--------------------------------------------------------------------------------\n");
136
137 clk_prepare_lock();
138
139 hlist_for_each_entry(c, &clk_root_list, child_node)
140 clk_summary_show_subtree(s, c, 0);
141
142 hlist_for_each_entry(c, &clk_orphan_list, child_node)
143 clk_summary_show_subtree(s, c, 0);
144
145 clk_prepare_unlock();
146
147 return 0;
148 }
149
150
151 static int clk_summary_open(struct inode *inode, struct file *file)
152 {
153 return single_open(file, clk_summary_show, inode->i_private);
154 }
155
156 static const struct file_operations clk_summary_fops = {
157 .open = clk_summary_open,
158 .read = seq_read,
159 .llseek = seq_lseek,
160 .release = single_release,
161 };
162
163 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
164 {
165 if (!c)
166 return;
167
168 seq_printf(s, "\"%s\": { ", c->name);
169 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
170 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
171 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
172 seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
173 }
174
175 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
176 {
177 struct clk *child;
178
179 if (!c)
180 return;
181
182 clk_dump_one(s, c, level);
183
184 hlist_for_each_entry(child, &c->children, child_node) {
185 seq_printf(s, ",");
186 clk_dump_subtree(s, child, level + 1);
187 }
188
189 seq_printf(s, "}");
190 }
191
192 static int clk_dump(struct seq_file *s, void *data)
193 {
194 struct clk *c;
195 bool first_node = true;
196
197 seq_printf(s, "{");
198
199 clk_prepare_lock();
200
201 hlist_for_each_entry(c, &clk_root_list, child_node) {
202 if (!first_node)
203 seq_printf(s, ",");
204 first_node = false;
205 clk_dump_subtree(s, c, 0);
206 }
207
208 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
209 seq_printf(s, ",");
210 clk_dump_subtree(s, c, 0);
211 }
212
213 clk_prepare_unlock();
214
215 seq_printf(s, "}");
216 return 0;
217 }
218
219
220 static int clk_dump_open(struct inode *inode, struct file *file)
221 {
222 return single_open(file, clk_dump, inode->i_private);
223 }
224
225 static const struct file_operations clk_dump_fops = {
226 .open = clk_dump_open,
227 .read = seq_read,
228 .llseek = seq_lseek,
229 .release = single_release,
230 };
231
232 /* caller must hold prepare_lock */
233 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
234 {
235 struct dentry *d;
236 int ret = -ENOMEM;
237
238 if (!clk || !pdentry) {
239 ret = -EINVAL;
240 goto out;
241 }
242
243 d = debugfs_create_dir(clk->name, pdentry);
244 if (!d)
245 goto out;
246
247 clk->dentry = d;
248
249 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
250 (u32 *)&clk->rate);
251 if (!d)
252 goto err_out;
253
254 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
255 (u32 *)&clk->accuracy);
256 if (!d)
257 goto err_out;
258
259 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
260 (u32 *)&clk->flags);
261 if (!d)
262 goto err_out;
263
264 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
265 (u32 *)&clk->prepare_count);
266 if (!d)
267 goto err_out;
268
269 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
270 (u32 *)&clk->enable_count);
271 if (!d)
272 goto err_out;
273
274 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
275 (u32 *)&clk->notifier_count);
276 if (!d)
277 goto err_out;
278
279 if (clk->ops->debug_init)
280 if (clk->ops->debug_init(clk->hw, clk->dentry))
281 goto err_out;
282
283 ret = 0;
284 goto out;
285
286 err_out:
287 debugfs_remove_recursive(clk->dentry);
288 clk->dentry = NULL;
289 out:
290 return ret;
291 }
292
293 /* caller must hold prepare_lock */
294 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
295 {
296 struct clk *child;
297 int ret = -EINVAL;;
298
299 if (!clk || !pdentry)
300 goto out;
301
302 ret = clk_debug_create_one(clk, pdentry);
303
304 if (ret)
305 goto out;
306
307 hlist_for_each_entry(child, &clk->children, child_node)
308 clk_debug_create_subtree(child, clk->dentry);
309
310 ret = 0;
311 out:
312 return ret;
313 }
314
315 /**
316 * clk_debug_register - add a clk node to the debugfs clk tree
317 * @clk: the clk being added to the debugfs clk tree
318 *
319 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
320 * initialized. Otherwise it bails out early since the debugfs clk tree
321 * will be created lazily by clk_debug_init as part of a late_initcall.
322 *
323 * Caller must hold prepare_lock. Only clk_init calls this function (so
324 * far) so this is taken care.
325 */
326 static int clk_debug_register(struct clk *clk)
327 {
328 struct clk *parent;
329 struct dentry *pdentry;
330 int ret = 0;
331
332 if (!inited)
333 goto out;
334
335 parent = clk->parent;
336
337 /*
338 * Check to see if a clk is a root clk. Also check that it is
339 * safe to add this clk to debugfs
340 */
341 if (!parent)
342 if (clk->flags & CLK_IS_ROOT)
343 pdentry = rootdir;
344 else
345 pdentry = orphandir;
346 else
347 if (parent->dentry)
348 pdentry = parent->dentry;
349 else
350 goto out;
351
352 ret = clk_debug_create_subtree(clk, pdentry);
353
354 out:
355 return ret;
356 }
357
358 /**
359 * clk_debug_unregister - remove a clk node from the debugfs clk tree
360 * @clk: the clk being removed from the debugfs clk tree
361 *
362 * Dynamically removes a clk and all it's children clk nodes from the
363 * debugfs clk tree if clk->dentry points to debugfs created by
364 * clk_debug_register in __clk_init.
365 *
366 * Caller must hold prepare_lock.
367 */
368 static void clk_debug_unregister(struct clk *clk)
369 {
370 debugfs_remove_recursive(clk->dentry);
371 }
372
373 /**
374 * clk_debug_reparent - reparent clk node in the debugfs clk tree
375 * @clk: the clk being reparented
376 * @new_parent: the new clk parent, may be NULL
377 *
378 * Rename clk entry in the debugfs clk tree if debugfs has been
379 * initialized. Otherwise it bails out early since the debugfs clk tree
380 * will be created lazily by clk_debug_init as part of a late_initcall.
381 *
382 * Caller must hold prepare_lock.
383 */
384 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
385 {
386 struct dentry *d;
387 struct dentry *new_parent_d;
388
389 if (!inited)
390 return;
391
392 if (new_parent)
393 new_parent_d = new_parent->dentry;
394 else
395 new_parent_d = orphandir;
396
397 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
398 new_parent_d, clk->name);
399 if (d)
400 clk->dentry = d;
401 else
402 pr_debug("%s: failed to rename debugfs entry for %s\n",
403 __func__, clk->name);
404 }
405
406 /**
407 * clk_debug_init - lazily create the debugfs clk tree visualization
408 *
409 * clks are often initialized very early during boot before memory can
410 * be dynamically allocated and well before debugfs is setup.
411 * clk_debug_init walks the clk tree hierarchy while holding
412 * prepare_lock and creates the topology as part of a late_initcall,
413 * thus insuring that clks initialized very early will still be
414 * represented in the debugfs clk tree. This function should only be
415 * called once at boot-time, and all other clks added dynamically will
416 * be done so with clk_debug_register.
417 */
418 static int __init clk_debug_init(void)
419 {
420 struct clk *clk;
421 struct dentry *d;
422
423 rootdir = debugfs_create_dir("clk", NULL);
424
425 if (!rootdir)
426 return -ENOMEM;
427
428 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
429 &clk_summary_fops);
430 if (!d)
431 return -ENOMEM;
432
433 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
434 &clk_dump_fops);
435 if (!d)
436 return -ENOMEM;
437
438 orphandir = debugfs_create_dir("orphans", rootdir);
439
440 if (!orphandir)
441 return -ENOMEM;
442
443 clk_prepare_lock();
444
445 hlist_for_each_entry(clk, &clk_root_list, child_node)
446 clk_debug_create_subtree(clk, rootdir);
447
448 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
449 clk_debug_create_subtree(clk, orphandir);
450
451 inited = 1;
452
453 clk_prepare_unlock();
454
455 return 0;
456 }
457 late_initcall(clk_debug_init);
458 #else
459 static inline int clk_debug_register(struct clk *clk) { return 0; }
460 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
461 {
462 }
463 static inline void clk_debug_unregister(struct clk *clk)
464 {
465 }
466 #endif
467
468 /* caller must hold prepare_lock */
469 static void clk_unprepare_unused_subtree(struct clk *clk)
470 {
471 struct clk *child;
472
473 if (!clk)
474 return;
475
476 hlist_for_each_entry(child, &clk->children, child_node)
477 clk_unprepare_unused_subtree(child);
478
479 if (clk->prepare_count)
480 return;
481
482 if (clk->flags & CLK_IGNORE_UNUSED)
483 return;
484
485 if (__clk_is_prepared(clk)) {
486 if (clk->ops->unprepare_unused)
487 clk->ops->unprepare_unused(clk->hw);
488 else if (clk->ops->unprepare)
489 clk->ops->unprepare(clk->hw);
490 }
491 }
492
493 /* caller must hold prepare_lock */
494 static void clk_disable_unused_subtree(struct clk *clk)
495 {
496 struct clk *child;
497 unsigned long flags;
498
499 if (!clk)
500 goto out;
501
502 hlist_for_each_entry(child, &clk->children, child_node)
503 clk_disable_unused_subtree(child);
504
505 flags = clk_enable_lock();
506
507 if (clk->enable_count)
508 goto unlock_out;
509
510 if (clk->flags & CLK_IGNORE_UNUSED)
511 goto unlock_out;
512
513 /*
514 * some gate clocks have special needs during the disable-unused
515 * sequence. call .disable_unused if available, otherwise fall
516 * back to .disable
517 */
518 if (__clk_is_enabled(clk)) {
519 if (clk->ops->disable_unused)
520 clk->ops->disable_unused(clk->hw);
521 else if (clk->ops->disable)
522 clk->ops->disable(clk->hw);
523 }
524
525 unlock_out:
526 clk_enable_unlock(flags);
527
528 out:
529 return;
530 }
531
532 static bool clk_ignore_unused;
533 static int __init clk_ignore_unused_setup(char *__unused)
534 {
535 clk_ignore_unused = true;
536 return 1;
537 }
538 __setup("clk_ignore_unused", clk_ignore_unused_setup);
539
540 static int clk_disable_unused(void)
541 {
542 struct clk *clk;
543
544 if (clk_ignore_unused) {
545 pr_warn("clk: Not disabling unused clocks\n");
546 return 0;
547 }
548
549 clk_prepare_lock();
550
551 hlist_for_each_entry(clk, &clk_root_list, child_node)
552 clk_disable_unused_subtree(clk);
553
554 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
555 clk_disable_unused_subtree(clk);
556
557 hlist_for_each_entry(clk, &clk_root_list, child_node)
558 clk_unprepare_unused_subtree(clk);
559
560 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
561 clk_unprepare_unused_subtree(clk);
562
563 clk_prepare_unlock();
564
565 return 0;
566 }
567 late_initcall_sync(clk_disable_unused);
568
569 /*** helper functions ***/
570
571 const char *__clk_get_name(struct clk *clk)
572 {
573 return !clk ? NULL : clk->name;
574 }
575 EXPORT_SYMBOL_GPL(__clk_get_name);
576
577 struct clk_hw *__clk_get_hw(struct clk *clk)
578 {
579 return !clk ? NULL : clk->hw;
580 }
581 EXPORT_SYMBOL_GPL(__clk_get_hw);
582
583 u8 __clk_get_num_parents(struct clk *clk)
584 {
585 return !clk ? 0 : clk->num_parents;
586 }
587 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
588
589 struct clk *__clk_get_parent(struct clk *clk)
590 {
591 return !clk ? NULL : clk->parent;
592 }
593 EXPORT_SYMBOL_GPL(__clk_get_parent);
594
595 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
596 {
597 if (!clk || index >= clk->num_parents)
598 return NULL;
599 else if (!clk->parents)
600 return __clk_lookup(clk->parent_names[index]);
601 else if (!clk->parents[index])
602 return clk->parents[index] =
603 __clk_lookup(clk->parent_names[index]);
604 else
605 return clk->parents[index];
606 }
607 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
608
609 unsigned int __clk_get_enable_count(struct clk *clk)
610 {
611 return !clk ? 0 : clk->enable_count;
612 }
613
614 unsigned int __clk_get_prepare_count(struct clk *clk)
615 {
616 return !clk ? 0 : clk->prepare_count;
617 }
618
619 unsigned long __clk_get_rate(struct clk *clk)
620 {
621 unsigned long ret;
622
623 if (!clk) {
624 ret = 0;
625 goto out;
626 }
627
628 ret = clk->rate;
629
630 if (clk->flags & CLK_IS_ROOT)
631 goto out;
632
633 if (!clk->parent)
634 ret = 0;
635
636 out:
637 return ret;
638 }
639 EXPORT_SYMBOL_GPL(__clk_get_rate);
640
641 unsigned long __clk_get_accuracy(struct clk *clk)
642 {
643 if (!clk)
644 return 0;
645
646 return clk->accuracy;
647 }
648
649 unsigned long __clk_get_flags(struct clk *clk)
650 {
651 return !clk ? 0 : clk->flags;
652 }
653 EXPORT_SYMBOL_GPL(__clk_get_flags);
654
655 bool __clk_is_prepared(struct clk *clk)
656 {
657 int ret;
658
659 if (!clk)
660 return false;
661
662 /*
663 * .is_prepared is optional for clocks that can prepare
664 * fall back to software usage counter if it is missing
665 */
666 if (!clk->ops->is_prepared) {
667 ret = clk->prepare_count ? 1 : 0;
668 goto out;
669 }
670
671 ret = clk->ops->is_prepared(clk->hw);
672 out:
673 return !!ret;
674 }
675
676 bool __clk_is_enabled(struct clk *clk)
677 {
678 int ret;
679
680 if (!clk)
681 return false;
682
683 /*
684 * .is_enabled is only mandatory for clocks that gate
685 * fall back to software usage counter if .is_enabled is missing
686 */
687 if (!clk->ops->is_enabled) {
688 ret = clk->enable_count ? 1 : 0;
689 goto out;
690 }
691
692 ret = clk->ops->is_enabled(clk->hw);
693 out:
694 return !!ret;
695 }
696 EXPORT_SYMBOL_GPL(__clk_is_enabled);
697
698 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
699 {
700 struct clk *child;
701 struct clk *ret;
702
703 if (!strcmp(clk->name, name))
704 return clk;
705
706 hlist_for_each_entry(child, &clk->children, child_node) {
707 ret = __clk_lookup_subtree(name, child);
708 if (ret)
709 return ret;
710 }
711
712 return NULL;
713 }
714
715 struct clk *__clk_lookup(const char *name)
716 {
717 struct clk *root_clk;
718 struct clk *ret;
719
720 if (!name)
721 return NULL;
722
723 /* search the 'proper' clk tree first */
724 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
725 ret = __clk_lookup_subtree(name, root_clk);
726 if (ret)
727 return ret;
728 }
729
730 /* if not found, then search the orphan tree */
731 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
732 ret = __clk_lookup_subtree(name, root_clk);
733 if (ret)
734 return ret;
735 }
736
737 return NULL;
738 }
739
740 /*
741 * Helper for finding best parent to provide a given frequency. This can be used
742 * directly as a determine_rate callback (e.g. for a mux), or from a more
743 * complex clock that may combine a mux with other operations.
744 */
745 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
746 unsigned long *best_parent_rate,
747 struct clk **best_parent_p)
748 {
749 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
750 int i, num_parents;
751 unsigned long parent_rate, best = 0;
752
753 /* if NO_REPARENT flag set, pass through to current parent */
754 if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
755 parent = clk->parent;
756 if (clk->flags & CLK_SET_RATE_PARENT)
757 best = __clk_round_rate(parent, rate);
758 else if (parent)
759 best = __clk_get_rate(parent);
760 else
761 best = __clk_get_rate(clk);
762 goto out;
763 }
764
765 /* find the parent that can provide the fastest rate <= rate */
766 num_parents = clk->num_parents;
767 for (i = 0; i < num_parents; i++) {
768 parent = clk_get_parent_by_index(clk, i);
769 if (!parent)
770 continue;
771 if (clk->flags & CLK_SET_RATE_PARENT)
772 parent_rate = __clk_round_rate(parent, rate);
773 else
774 parent_rate = __clk_get_rate(parent);
775 if (parent_rate <= rate && parent_rate > best) {
776 best_parent = parent;
777 best = parent_rate;
778 }
779 }
780
781 out:
782 if (best_parent)
783 *best_parent_p = best_parent;
784 *best_parent_rate = best;
785
786 return best;
787 }
788 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
789
790 /*** clk api ***/
791
792 void __clk_unprepare(struct clk *clk)
793 {
794 if (!clk)
795 return;
796
797 if (WARN_ON(clk->prepare_count == 0))
798 return;
799
800 if (--clk->prepare_count > 0)
801 return;
802
803 WARN_ON(clk->enable_count > 0);
804
805 if (clk->ops->unprepare)
806 clk->ops->unprepare(clk->hw);
807
808 __clk_unprepare(clk->parent);
809 }
810
811 /**
812 * clk_unprepare - undo preparation of a clock source
813 * @clk: the clk being unprepared
814 *
815 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
816 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
817 * if the operation may sleep. One example is a clk which is accessed over
818 * I2c. In the complex case a clk gate operation may require a fast and a slow
819 * part. It is this reason that clk_unprepare and clk_disable are not mutually
820 * exclusive. In fact clk_disable must be called before clk_unprepare.
821 */
822 void clk_unprepare(struct clk *clk)
823 {
824 if (IS_ERR_OR_NULL(clk))
825 return;
826
827 clk_prepare_lock();
828 __clk_unprepare(clk);
829 clk_prepare_unlock();
830 }
831 EXPORT_SYMBOL_GPL(clk_unprepare);
832
833 int __clk_prepare(struct clk *clk)
834 {
835 int ret = 0;
836
837 if (!clk)
838 return 0;
839
840 if (clk->prepare_count == 0) {
841 ret = __clk_prepare(clk->parent);
842 if (ret)
843 return ret;
844
845 if (clk->ops->prepare) {
846 ret = clk->ops->prepare(clk->hw);
847 if (ret) {
848 __clk_unprepare(clk->parent);
849 return ret;
850 }
851 }
852 }
853
854 clk->prepare_count++;
855
856 return 0;
857 }
858
859 /**
860 * clk_prepare - prepare a clock source
861 * @clk: the clk being prepared
862 *
863 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
864 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
865 * operation may sleep. One example is a clk which is accessed over I2c. In
866 * the complex case a clk ungate operation may require a fast and a slow part.
867 * It is this reason that clk_prepare and clk_enable are not mutually
868 * exclusive. In fact clk_prepare must be called before clk_enable.
869 * Returns 0 on success, -EERROR otherwise.
870 */
871 int clk_prepare(struct clk *clk)
872 {
873 int ret;
874
875 clk_prepare_lock();
876 ret = __clk_prepare(clk);
877 clk_prepare_unlock();
878
879 return ret;
880 }
881 EXPORT_SYMBOL_GPL(clk_prepare);
882
883 static void __clk_disable(struct clk *clk)
884 {
885 if (!clk)
886 return;
887
888 if (WARN_ON(clk->enable_count == 0))
889 return;
890
891 if (--clk->enable_count > 0)
892 return;
893
894 if (clk->ops->disable)
895 clk->ops->disable(clk->hw);
896
897 __clk_disable(clk->parent);
898 }
899
900 /**
901 * clk_disable - gate a clock
902 * @clk: the clk being gated
903 *
904 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
905 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
906 * clk if the operation is fast and will never sleep. One example is a
907 * SoC-internal clk which is controlled via simple register writes. In the
908 * complex case a clk gate operation may require a fast and a slow part. It is
909 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
910 * In fact clk_disable must be called before clk_unprepare.
911 */
912 void clk_disable(struct clk *clk)
913 {
914 unsigned long flags;
915
916 if (IS_ERR_OR_NULL(clk))
917 return;
918
919 flags = clk_enable_lock();
920 __clk_disable(clk);
921 clk_enable_unlock(flags);
922 }
923 EXPORT_SYMBOL_GPL(clk_disable);
924
925 static int __clk_enable(struct clk *clk)
926 {
927 int ret = 0;
928
929 if (!clk)
930 return 0;
931
932 if (WARN_ON(clk->prepare_count == 0))
933 return -ESHUTDOWN;
934
935 if (clk->enable_count == 0) {
936 ret = __clk_enable(clk->parent);
937
938 if (ret)
939 return ret;
940
941 if (clk->ops->enable) {
942 ret = clk->ops->enable(clk->hw);
943 if (ret) {
944 __clk_disable(clk->parent);
945 return ret;
946 }
947 }
948 }
949
950 clk->enable_count++;
951 return 0;
952 }
953
954 /**
955 * clk_enable - ungate a clock
956 * @clk: the clk being ungated
957 *
958 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
959 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
960 * if the operation will never sleep. One example is a SoC-internal clk which
961 * is controlled via simple register writes. In the complex case a clk ungate
962 * operation may require a fast and a slow part. It is this reason that
963 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
964 * must be called before clk_enable. Returns 0 on success, -EERROR
965 * otherwise.
966 */
967 int clk_enable(struct clk *clk)
968 {
969 unsigned long flags;
970 int ret;
971
972 flags = clk_enable_lock();
973 ret = __clk_enable(clk);
974 clk_enable_unlock(flags);
975
976 return ret;
977 }
978 EXPORT_SYMBOL_GPL(clk_enable);
979
980 /**
981 * __clk_round_rate - round the given rate for a clk
982 * @clk: round the rate of this clock
983 * @rate: the rate which is to be rounded
984 *
985 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
986 */
987 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
988 {
989 unsigned long parent_rate = 0;
990 struct clk *parent;
991
992 if (!clk)
993 return 0;
994
995 parent = clk->parent;
996 if (parent)
997 parent_rate = parent->rate;
998
999 if (clk->ops->determine_rate)
1000 return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
1001 &parent);
1002 else if (clk->ops->round_rate)
1003 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1004 else if (clk->flags & CLK_SET_RATE_PARENT)
1005 return __clk_round_rate(clk->parent, rate);
1006 else
1007 return clk->rate;
1008 }
1009 EXPORT_SYMBOL_GPL(__clk_round_rate);
1010
1011 /**
1012 * clk_round_rate - round the given rate for a clk
1013 * @clk: the clk for which we are rounding a rate
1014 * @rate: the rate which is to be rounded
1015 *
1016 * Takes in a rate as input and rounds it to a rate that the clk can actually
1017 * use which is then returned. If clk doesn't support round_rate operation
1018 * then the parent rate is returned.
1019 */
1020 long clk_round_rate(struct clk *clk, unsigned long rate)
1021 {
1022 unsigned long ret;
1023
1024 clk_prepare_lock();
1025 ret = __clk_round_rate(clk, rate);
1026 clk_prepare_unlock();
1027
1028 return ret;
1029 }
1030 EXPORT_SYMBOL_GPL(clk_round_rate);
1031
1032 /**
1033 * __clk_notify - call clk notifier chain
1034 * @clk: struct clk * that is changing rate
1035 * @msg: clk notifier type (see include/linux/clk.h)
1036 * @old_rate: old clk rate
1037 * @new_rate: new clk rate
1038 *
1039 * Triggers a notifier call chain on the clk rate-change notification
1040 * for 'clk'. Passes a pointer to the struct clk and the previous
1041 * and current rates to the notifier callback. Intended to be called by
1042 * internal clock code only. Returns NOTIFY_DONE from the last driver
1043 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1044 * a driver returns that.
1045 */
1046 static int __clk_notify(struct clk *clk, unsigned long msg,
1047 unsigned long old_rate, unsigned long new_rate)
1048 {
1049 struct clk_notifier *cn;
1050 struct clk_notifier_data cnd;
1051 int ret = NOTIFY_DONE;
1052
1053 cnd.clk = clk;
1054 cnd.old_rate = old_rate;
1055 cnd.new_rate = new_rate;
1056
1057 list_for_each_entry(cn, &clk_notifier_list, node) {
1058 if (cn->clk == clk) {
1059 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1060 &cnd);
1061 break;
1062 }
1063 }
1064
1065 return ret;
1066 }
1067
1068 /**
1069 * __clk_recalc_accuracies
1070 * @clk: first clk in the subtree
1071 *
1072 * Walks the subtree of clks starting with clk and recalculates accuracies as
1073 * it goes. Note that if a clk does not implement the .recalc_accuracy
1074 * callback then it is assumed that the clock will take on the accuracy of it's
1075 * parent.
1076 *
1077 * Caller must hold prepare_lock.
1078 */
1079 static void __clk_recalc_accuracies(struct clk *clk)
1080 {
1081 unsigned long parent_accuracy = 0;
1082 struct clk *child;
1083
1084 if (clk->parent)
1085 parent_accuracy = clk->parent->accuracy;
1086
1087 if (clk->ops->recalc_accuracy)
1088 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1089 parent_accuracy);
1090 else
1091 clk->accuracy = parent_accuracy;
1092
1093 hlist_for_each_entry(child, &clk->children, child_node)
1094 __clk_recalc_accuracies(child);
1095 }
1096
1097 /**
1098 * clk_get_accuracy - return the accuracy of clk
1099 * @clk: the clk whose accuracy is being returned
1100 *
1101 * Simply returns the cached accuracy of the clk, unless
1102 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1103 * issued.
1104 * If clk is NULL then returns 0.
1105 */
1106 long clk_get_accuracy(struct clk *clk)
1107 {
1108 unsigned long accuracy;
1109
1110 clk_prepare_lock();
1111 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1112 __clk_recalc_accuracies(clk);
1113
1114 accuracy = __clk_get_accuracy(clk);
1115 clk_prepare_unlock();
1116
1117 return accuracy;
1118 }
1119 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1120
1121 static unsigned long clk_recalc(struct clk *clk, unsigned long parent_rate)
1122 {
1123 if (clk->ops->recalc_rate)
1124 return clk->ops->recalc_rate(clk->hw, parent_rate);
1125 return parent_rate;
1126 }
1127
1128 /**
1129 * __clk_recalc_rates
1130 * @clk: first clk in the subtree
1131 * @msg: notification type (see include/linux/clk.h)
1132 *
1133 * Walks the subtree of clks starting with clk and recalculates rates as it
1134 * goes. Note that if a clk does not implement the .recalc_rate callback then
1135 * it is assumed that the clock will take on the rate of its parent.
1136 *
1137 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1138 * if necessary.
1139 *
1140 * Caller must hold prepare_lock.
1141 */
1142 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1143 {
1144 unsigned long old_rate;
1145 unsigned long parent_rate = 0;
1146 struct clk *child;
1147
1148 old_rate = clk->rate;
1149
1150 if (clk->parent)
1151 parent_rate = clk->parent->rate;
1152
1153 clk->rate = clk_recalc(clk, parent_rate);
1154
1155 /*
1156 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1157 * & ABORT_RATE_CHANGE notifiers
1158 */
1159 if (clk->notifier_count && msg)
1160 __clk_notify(clk, msg, old_rate, clk->rate);
1161
1162 hlist_for_each_entry(child, &clk->children, child_node)
1163 __clk_recalc_rates(child, msg);
1164 }
1165
1166 /**
1167 * clk_get_rate - return the rate of clk
1168 * @clk: the clk whose rate is being returned
1169 *
1170 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1171 * is set, which means a recalc_rate will be issued.
1172 * If clk is NULL then returns 0.
1173 */
1174 unsigned long clk_get_rate(struct clk *clk)
1175 {
1176 unsigned long rate;
1177
1178 clk_prepare_lock();
1179
1180 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1181 __clk_recalc_rates(clk, 0);
1182
1183 rate = __clk_get_rate(clk);
1184 clk_prepare_unlock();
1185
1186 return rate;
1187 }
1188 EXPORT_SYMBOL_GPL(clk_get_rate);
1189
1190 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1191 {
1192 int i;
1193
1194 if (!clk->parents) {
1195 clk->parents = kcalloc(clk->num_parents,
1196 sizeof(struct clk *), GFP_KERNEL);
1197 if (!clk->parents)
1198 return -ENOMEM;
1199 }
1200
1201 /*
1202 * find index of new parent clock using cached parent ptrs,
1203 * or if not yet cached, use string name comparison and cache
1204 * them now to avoid future calls to __clk_lookup.
1205 */
1206 for (i = 0; i < clk->num_parents; i++) {
1207 if (clk->parents[i] == parent)
1208 return i;
1209
1210 if (clk->parents[i])
1211 continue;
1212
1213 if (!strcmp(clk->parent_names[i], parent->name)) {
1214 clk->parents[i] = __clk_lookup(parent->name);
1215 return i;
1216 }
1217 }
1218
1219 return -EINVAL;
1220 }
1221
1222 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1223 {
1224 hlist_del(&clk->child_node);
1225
1226 if (new_parent) {
1227 /* avoid duplicate POST_RATE_CHANGE notifications */
1228 if (new_parent->new_child == clk)
1229 new_parent->new_child = NULL;
1230
1231 hlist_add_head(&clk->child_node, &new_parent->children);
1232 } else {
1233 hlist_add_head(&clk->child_node, &clk_orphan_list);
1234 }
1235
1236 clk->parent = new_parent;
1237 }
1238
1239 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1240 {
1241 unsigned long flags;
1242 struct clk *old_parent = clk->parent;
1243
1244 /*
1245 * Migrate prepare state between parents and prevent race with
1246 * clk_enable().
1247 *
1248 * If the clock is not prepared, then a race with
1249 * clk_enable/disable() is impossible since we already have the
1250 * prepare lock (future calls to clk_enable() need to be preceded by
1251 * a clk_prepare()).
1252 *
1253 * If the clock is prepared, migrate the prepared state to the new
1254 * parent and also protect against a race with clk_enable() by
1255 * forcing the clock and the new parent on. This ensures that all
1256 * future calls to clk_enable() are practically NOPs with respect to
1257 * hardware and software states.
1258 *
1259 * See also: Comment for clk_set_parent() below.
1260 */
1261 if (clk->prepare_count) {
1262 __clk_prepare(parent);
1263 clk_enable(parent);
1264 clk_enable(clk);
1265 }
1266
1267 /* update the clk tree topology */
1268 flags = clk_enable_lock();
1269 clk_reparent(clk, parent);
1270 clk_enable_unlock(flags);
1271
1272 return old_parent;
1273 }
1274
1275 static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1276 struct clk *old_parent)
1277 {
1278 /*
1279 * Finish the migration of prepare state and undo the changes done
1280 * for preventing a race with clk_enable().
1281 */
1282 if (clk->prepare_count) {
1283 clk_disable(clk);
1284 clk_disable(old_parent);
1285 __clk_unprepare(old_parent);
1286 }
1287
1288 /* update debugfs with new clk tree topology */
1289 clk_debug_reparent(clk, parent);
1290 }
1291
1292 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1293 {
1294 unsigned long flags;
1295 int ret = 0;
1296 struct clk *old_parent;
1297
1298 old_parent = __clk_set_parent_before(clk, parent);
1299
1300 /* change clock input source */
1301 if (parent && clk->ops->set_parent)
1302 ret = clk->ops->set_parent(clk->hw, p_index);
1303
1304 if (ret) {
1305 flags = clk_enable_lock();
1306 clk_reparent(clk, old_parent);
1307 clk_enable_unlock(flags);
1308
1309 if (clk->prepare_count) {
1310 clk_disable(clk);
1311 clk_disable(parent);
1312 __clk_unprepare(parent);
1313 }
1314 return ret;
1315 }
1316
1317 __clk_set_parent_after(clk, parent, old_parent);
1318
1319 return 0;
1320 }
1321
1322 /**
1323 * __clk_speculate_rates
1324 * @clk: first clk in the subtree
1325 * @parent_rate: the "future" rate of clk's parent
1326 *
1327 * Walks the subtree of clks starting with clk, speculating rates as it
1328 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1329 *
1330 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1331 * pre-rate change notifications and returns early if no clks in the
1332 * subtree have subscribed to the notifications. Note that if a clk does not
1333 * implement the .recalc_rate callback then it is assumed that the clock will
1334 * take on the rate of its parent.
1335 *
1336 * Caller must hold prepare_lock.
1337 */
1338 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1339 {
1340 struct clk *child;
1341 unsigned long new_rate;
1342 int ret = NOTIFY_DONE;
1343
1344 new_rate = clk_recalc(clk, parent_rate);
1345
1346 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1347 if (clk->notifier_count)
1348 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1349
1350 if (ret & NOTIFY_STOP_MASK) {
1351 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1352 __func__, clk->name, ret);
1353 goto out;
1354 }
1355
1356 hlist_for_each_entry(child, &clk->children, child_node) {
1357 ret = __clk_speculate_rates(child, new_rate);
1358 if (ret & NOTIFY_STOP_MASK)
1359 break;
1360 }
1361
1362 out:
1363 return ret;
1364 }
1365
1366 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1367 struct clk *new_parent, u8 p_index)
1368 {
1369 struct clk *child;
1370
1371 clk->new_rate = new_rate;
1372 clk->new_parent = new_parent;
1373 clk->new_parent_index = p_index;
1374 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1375 clk->new_child = NULL;
1376 if (new_parent && new_parent != clk->parent)
1377 new_parent->new_child = clk;
1378
1379 hlist_for_each_entry(child, &clk->children, child_node) {
1380 child->new_rate = clk_recalc(child, new_rate);
1381 clk_calc_subtree(child, child->new_rate, NULL, 0);
1382 }
1383 }
1384
1385 /*
1386 * calculate the new rates returning the topmost clock that has to be
1387 * changed.
1388 */
1389 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1390 {
1391 struct clk *top = clk;
1392 struct clk *old_parent, *parent;
1393 unsigned long best_parent_rate = 0;
1394 unsigned long new_rate;
1395 int p_index = 0;
1396
1397 /* sanity */
1398 if (IS_ERR_OR_NULL(clk))
1399 return NULL;
1400
1401 /* save parent rate, if it exists */
1402 parent = old_parent = clk->parent;
1403 if (parent)
1404 best_parent_rate = parent->rate;
1405
1406 /* find the closest rate and parent clk/rate */
1407 if (clk->ops->determine_rate) {
1408 new_rate = clk->ops->determine_rate(clk->hw, rate,
1409 &best_parent_rate,
1410 &parent);
1411 } else if (clk->ops->round_rate) {
1412 new_rate = clk->ops->round_rate(clk->hw, rate,
1413 &best_parent_rate);
1414 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1415 /* pass-through clock without adjustable parent */
1416 clk->new_rate = clk->rate;
1417 return NULL;
1418 } else {
1419 /* pass-through clock with adjustable parent */
1420 top = clk_calc_new_rates(parent, rate);
1421 new_rate = parent->new_rate;
1422 goto out;
1423 }
1424
1425 /* some clocks must be gated to change parent */
1426 if (parent != old_parent &&
1427 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1428 pr_debug("%s: %s not gated but wants to reparent\n",
1429 __func__, clk->name);
1430 return NULL;
1431 }
1432
1433 /* try finding the new parent index */
1434 if (parent) {
1435 p_index = clk_fetch_parent_index(clk, parent);
1436 if (p_index < 0) {
1437 pr_debug("%s: clk %s can not be parent of clk %s\n",
1438 __func__, parent->name, clk->name);
1439 return NULL;
1440 }
1441 }
1442
1443 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1444 best_parent_rate != parent->rate)
1445 top = clk_calc_new_rates(parent, best_parent_rate);
1446
1447 out:
1448 clk_calc_subtree(clk, new_rate, parent, p_index);
1449
1450 return top;
1451 }
1452
1453 /*
1454 * Notify about rate changes in a subtree. Always walk down the whole tree
1455 * so that in case of an error we can walk down the whole tree again and
1456 * abort the change.
1457 */
1458 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1459 {
1460 struct clk *child, *tmp_clk, *fail_clk = NULL;
1461 int ret = NOTIFY_DONE;
1462
1463 if (clk->rate == clk->new_rate)
1464 return NULL;
1465
1466 if (clk->notifier_count) {
1467 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1468 if (ret & NOTIFY_STOP_MASK)
1469 fail_clk = clk;
1470 }
1471
1472 hlist_for_each_entry(child, &clk->children, child_node) {
1473 /* Skip children who will be reparented to another clock */
1474 if (child->new_parent && child->new_parent != clk)
1475 continue;
1476 tmp_clk = clk_propagate_rate_change(child, event);
1477 if (tmp_clk)
1478 fail_clk = tmp_clk;
1479 }
1480
1481 /* handle the new child who might not be in clk->children yet */
1482 if (clk->new_child) {
1483 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1484 if (tmp_clk)
1485 fail_clk = tmp_clk;
1486 }
1487
1488 return fail_clk;
1489 }
1490
1491 /*
1492 * walk down a subtree and set the new rates notifying the rate
1493 * change on the way
1494 */
1495 static void clk_change_rate(struct clk *clk)
1496 {
1497 struct clk *child;
1498 unsigned long old_rate;
1499 unsigned long best_parent_rate = 0;
1500 bool skip_set_rate = false;
1501 struct clk *old_parent;
1502
1503 old_rate = clk->rate;
1504
1505 if (clk->new_parent)
1506 best_parent_rate = clk->new_parent->rate;
1507 else if (clk->parent)
1508 best_parent_rate = clk->parent->rate;
1509
1510 if (clk->new_parent && clk->new_parent != clk->parent) {
1511 old_parent = __clk_set_parent_before(clk, clk->new_parent);
1512
1513 if (clk->ops->set_rate_and_parent) {
1514 skip_set_rate = true;
1515 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1516 best_parent_rate,
1517 clk->new_parent_index);
1518 } else if (clk->ops->set_parent) {
1519 clk->ops->set_parent(clk->hw, clk->new_parent_index);
1520 }
1521
1522 __clk_set_parent_after(clk, clk->new_parent, old_parent);
1523 }
1524
1525 if (!skip_set_rate && clk->ops->set_rate)
1526 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1527
1528 clk->rate = clk_recalc(clk, best_parent_rate);
1529
1530 if (clk->notifier_count && old_rate != clk->rate)
1531 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1532
1533 hlist_for_each_entry(child, &clk->children, child_node) {
1534 /* Skip children who will be reparented to another clock */
1535 if (child->new_parent && child->new_parent != clk)
1536 continue;
1537 clk_change_rate(child);
1538 }
1539
1540 /* handle the new child who might not be in clk->children yet */
1541 if (clk->new_child)
1542 clk_change_rate(clk->new_child);
1543 }
1544
1545 /**
1546 * clk_set_rate - specify a new rate for clk
1547 * @clk: the clk whose rate is being changed
1548 * @rate: the new rate for clk
1549 *
1550 * In the simplest case clk_set_rate will only adjust the rate of clk.
1551 *
1552 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1553 * propagate up to clk's parent; whether or not this happens depends on the
1554 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1555 * after calling .round_rate then upstream parent propagation is ignored. If
1556 * *parent_rate comes back with a new rate for clk's parent then we propagate
1557 * up to clk's parent and set its rate. Upward propagation will continue
1558 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1559 * .round_rate stops requesting changes to clk's parent_rate.
1560 *
1561 * Rate changes are accomplished via tree traversal that also recalculates the
1562 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1563 *
1564 * Returns 0 on success, -EERROR otherwise.
1565 */
1566 int clk_set_rate(struct clk *clk, unsigned long rate)
1567 {
1568 struct clk *top, *fail_clk;
1569 int ret = 0;
1570
1571 if (!clk)
1572 return 0;
1573
1574 /* prevent racing with updates to the clock topology */
1575 clk_prepare_lock();
1576
1577 /* bail early if nothing to do */
1578 if (rate == clk_get_rate(clk))
1579 goto out;
1580
1581 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1582 ret = -EBUSY;
1583 goto out;
1584 }
1585
1586 /* calculate new rates and get the topmost changed clock */
1587 top = clk_calc_new_rates(clk, rate);
1588 if (!top) {
1589 ret = -EINVAL;
1590 goto out;
1591 }
1592
1593 /* notify that we are about to change rates */
1594 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1595 if (fail_clk) {
1596 pr_debug("%s: failed to set %s rate\n", __func__,
1597 fail_clk->name);
1598 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1599 ret = -EBUSY;
1600 goto out;
1601 }
1602
1603 /* change the rates */
1604 clk_change_rate(top);
1605
1606 out:
1607 clk_prepare_unlock();
1608
1609 return ret;
1610 }
1611 EXPORT_SYMBOL_GPL(clk_set_rate);
1612
1613 /**
1614 * clk_get_parent - return the parent of a clk
1615 * @clk: the clk whose parent gets returned
1616 *
1617 * Simply returns clk->parent. Returns NULL if clk is NULL.
1618 */
1619 struct clk *clk_get_parent(struct clk *clk)
1620 {
1621 struct clk *parent;
1622
1623 clk_prepare_lock();
1624 parent = __clk_get_parent(clk);
1625 clk_prepare_unlock();
1626
1627 return parent;
1628 }
1629 EXPORT_SYMBOL_GPL(clk_get_parent);
1630
1631 /*
1632 * .get_parent is mandatory for clocks with multiple possible parents. It is
1633 * optional for single-parent clocks. Always call .get_parent if it is
1634 * available and WARN if it is missing for multi-parent clocks.
1635 *
1636 * For single-parent clocks without .get_parent, first check to see if the
1637 * .parents array exists, and if so use it to avoid an expensive tree
1638 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1639 */
1640 static struct clk *__clk_init_parent(struct clk *clk)
1641 {
1642 struct clk *ret = NULL;
1643 u8 index;
1644
1645 /* handle the trivial cases */
1646
1647 if (!clk->num_parents)
1648 goto out;
1649
1650 if (clk->num_parents == 1) {
1651 if (IS_ERR_OR_NULL(clk->parent))
1652 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1653 ret = clk->parent;
1654 goto out;
1655 }
1656
1657 if (!clk->ops->get_parent) {
1658 WARN(!clk->ops->get_parent,
1659 "%s: multi-parent clocks must implement .get_parent\n",
1660 __func__);
1661 goto out;
1662 };
1663
1664 /*
1665 * Do our best to cache parent clocks in clk->parents. This prevents
1666 * unnecessary and expensive calls to __clk_lookup. We don't set
1667 * clk->parent here; that is done by the calling function
1668 */
1669
1670 index = clk->ops->get_parent(clk->hw);
1671
1672 if (!clk->parents)
1673 clk->parents =
1674 kcalloc(clk->num_parents, sizeof(struct clk *),
1675 GFP_KERNEL);
1676
1677 ret = clk_get_parent_by_index(clk, index);
1678
1679 out:
1680 return ret;
1681 }
1682
1683 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1684 {
1685 clk_reparent(clk, new_parent);
1686 clk_debug_reparent(clk, new_parent);
1687 __clk_recalc_accuracies(clk);
1688 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1689 }
1690
1691 /**
1692 * clk_set_parent - switch the parent of a mux clk
1693 * @clk: the mux clk whose input we are switching
1694 * @parent: the new input to clk
1695 *
1696 * Re-parent clk to use parent as its new input source. If clk is in
1697 * prepared state, the clk will get enabled for the duration of this call. If
1698 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1699 * that, the reparenting is glitchy in hardware, etc), use the
1700 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1701 *
1702 * After successfully changing clk's parent clk_set_parent will update the
1703 * clk topology, sysfs topology and propagate rate recalculation via
1704 * __clk_recalc_rates.
1705 *
1706 * Returns 0 on success, -EERROR otherwise.
1707 */
1708 int clk_set_parent(struct clk *clk, struct clk *parent)
1709 {
1710 int ret = 0;
1711 int p_index = 0;
1712 unsigned long p_rate = 0;
1713
1714 if (!clk)
1715 return 0;
1716
1717 /* verify ops for for multi-parent clks */
1718 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1719 return -ENOSYS;
1720
1721 /* prevent racing with updates to the clock topology */
1722 clk_prepare_lock();
1723
1724 if (clk->parent == parent)
1725 goto out;
1726
1727 /* check that we are allowed to re-parent if the clock is in use */
1728 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1729 ret = -EBUSY;
1730 goto out;
1731 }
1732
1733 /* try finding the new parent index */
1734 if (parent) {
1735 p_index = clk_fetch_parent_index(clk, parent);
1736 p_rate = parent->rate;
1737 if (p_index < 0) {
1738 pr_debug("%s: clk %s can not be parent of clk %s\n",
1739 __func__, parent->name, clk->name);
1740 ret = p_index;
1741 goto out;
1742 }
1743 }
1744
1745 /* propagate PRE_RATE_CHANGE notifications */
1746 ret = __clk_speculate_rates(clk, p_rate);
1747
1748 /* abort if a driver objects */
1749 if (ret & NOTIFY_STOP_MASK)
1750 goto out;
1751
1752 /* do the re-parent */
1753 ret = __clk_set_parent(clk, parent, p_index);
1754
1755 /* propagate rate an accuracy recalculation accordingly */
1756 if (ret) {
1757 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1758 } else {
1759 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1760 __clk_recalc_accuracies(clk);
1761 }
1762
1763 out:
1764 clk_prepare_unlock();
1765
1766 return ret;
1767 }
1768 EXPORT_SYMBOL_GPL(clk_set_parent);
1769
1770 /**
1771 * __clk_init - initialize the data structures in a struct clk
1772 * @dev: device initializing this clk, placeholder for now
1773 * @clk: clk being initialized
1774 *
1775 * Initializes the lists in struct clk, queries the hardware for the
1776 * parent and rate and sets them both.
1777 */
1778 int __clk_init(struct device *dev, struct clk *clk)
1779 {
1780 int i, ret = 0;
1781 struct clk *orphan;
1782 struct hlist_node *tmp2;
1783
1784 if (!clk)
1785 return -EINVAL;
1786
1787 clk_prepare_lock();
1788
1789 /* check to see if a clock with this name is already registered */
1790 if (__clk_lookup(clk->name)) {
1791 pr_debug("%s: clk %s already initialized\n",
1792 __func__, clk->name);
1793 ret = -EEXIST;
1794 goto out;
1795 }
1796
1797 /* check that clk_ops are sane. See Documentation/clk.txt */
1798 if (clk->ops->set_rate &&
1799 !((clk->ops->round_rate || clk->ops->determine_rate) &&
1800 clk->ops->recalc_rate)) {
1801 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1802 __func__, clk->name);
1803 ret = -EINVAL;
1804 goto out;
1805 }
1806
1807 if (clk->ops->set_parent && !clk->ops->get_parent) {
1808 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1809 __func__, clk->name);
1810 ret = -EINVAL;
1811 goto out;
1812 }
1813
1814 if (clk->ops->set_rate_and_parent &&
1815 !(clk->ops->set_parent && clk->ops->set_rate)) {
1816 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1817 __func__, clk->name);
1818 ret = -EINVAL;
1819 goto out;
1820 }
1821
1822 /* throw a WARN if any entries in parent_names are NULL */
1823 for (i = 0; i < clk->num_parents; i++)
1824 WARN(!clk->parent_names[i],
1825 "%s: invalid NULL in %s's .parent_names\n",
1826 __func__, clk->name);
1827
1828 /*
1829 * Allocate an array of struct clk *'s to avoid unnecessary string
1830 * look-ups of clk's possible parents. This can fail for clocks passed
1831 * in to clk_init during early boot; thus any access to clk->parents[]
1832 * must always check for a NULL pointer and try to populate it if
1833 * necessary.
1834 *
1835 * If clk->parents is not NULL we skip this entire block. This allows
1836 * for clock drivers to statically initialize clk->parents.
1837 */
1838 if (clk->num_parents > 1 && !clk->parents) {
1839 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1840 GFP_KERNEL);
1841 /*
1842 * __clk_lookup returns NULL for parents that have not been
1843 * clk_init'd; thus any access to clk->parents[] must check
1844 * for a NULL pointer. We can always perform lazy lookups for
1845 * missing parents later on.
1846 */
1847 if (clk->parents)
1848 for (i = 0; i < clk->num_parents; i++)
1849 clk->parents[i] =
1850 __clk_lookup(clk->parent_names[i]);
1851 }
1852
1853 clk->parent = __clk_init_parent(clk);
1854
1855 /*
1856 * Populate clk->parent if parent has already been __clk_init'd. If
1857 * parent has not yet been __clk_init'd then place clk in the orphan
1858 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1859 * clk list.
1860 *
1861 * Every time a new clk is clk_init'd then we walk the list of orphan
1862 * clocks and re-parent any that are children of the clock currently
1863 * being clk_init'd.
1864 */
1865 if (clk->parent)
1866 hlist_add_head(&clk->child_node,
1867 &clk->parent->children);
1868 else if (clk->flags & CLK_IS_ROOT)
1869 hlist_add_head(&clk->child_node, &clk_root_list);
1870 else
1871 hlist_add_head(&clk->child_node, &clk_orphan_list);
1872
1873 /*
1874 * Set clk's accuracy. The preferred method is to use
1875 * .recalc_accuracy. For simple clocks and lazy developers the default
1876 * fallback is to use the parent's accuracy. If a clock doesn't have a
1877 * parent (or is orphaned) then accuracy is set to zero (perfect
1878 * clock).
1879 */
1880 if (clk->ops->recalc_accuracy)
1881 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1882 __clk_get_accuracy(clk->parent));
1883 else if (clk->parent)
1884 clk->accuracy = clk->parent->accuracy;
1885 else
1886 clk->accuracy = 0;
1887
1888 /*
1889 * Set clk's rate. The preferred method is to use .recalc_rate. For
1890 * simple clocks and lazy developers the default fallback is to use the
1891 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1892 * then rate is set to zero.
1893 */
1894 if (clk->ops->recalc_rate)
1895 clk->rate = clk->ops->recalc_rate(clk->hw,
1896 __clk_get_rate(clk->parent));
1897 else if (clk->parent)
1898 clk->rate = clk->parent->rate;
1899 else
1900 clk->rate = 0;
1901
1902 clk_debug_register(clk);
1903 /*
1904 * walk the list of orphan clocks and reparent any that are children of
1905 * this clock
1906 */
1907 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1908 if (orphan->num_parents && orphan->ops->get_parent) {
1909 i = orphan->ops->get_parent(orphan->hw);
1910 if (!strcmp(clk->name, orphan->parent_names[i]))
1911 __clk_reparent(orphan, clk);
1912 continue;
1913 }
1914
1915 for (i = 0; i < orphan->num_parents; i++)
1916 if (!strcmp(clk->name, orphan->parent_names[i])) {
1917 __clk_reparent(orphan, clk);
1918 break;
1919 }
1920 }
1921
1922 /*
1923 * optional platform-specific magic
1924 *
1925 * The .init callback is not used by any of the basic clock types, but
1926 * exists for weird hardware that must perform initialization magic.
1927 * Please consider other ways of solving initialization problems before
1928 * using this callback, as its use is discouraged.
1929 */
1930 if (clk->ops->init)
1931 clk->ops->init(clk->hw);
1932
1933 kref_init(&clk->ref);
1934 out:
1935 clk_prepare_unlock();
1936
1937 return ret;
1938 }
1939
1940 /**
1941 * __clk_register - register a clock and return a cookie.
1942 *
1943 * Same as clk_register, except that the .clk field inside hw shall point to a
1944 * preallocated (generally statically allocated) struct clk. None of the fields
1945 * of the struct clk need to be initialized.
1946 *
1947 * The data pointed to by .init and .clk field shall NOT be marked as init
1948 * data.
1949 *
1950 * __clk_register is only exposed via clk-private.h and is intended for use with
1951 * very large numbers of clocks that need to be statically initialized. It is
1952 * a layering violation to include clk-private.h from any code which implements
1953 * a clock's .ops; as such any statically initialized clock data MUST be in a
1954 * separate C file from the logic that implements its operations. Returns 0
1955 * on success, otherwise an error code.
1956 */
1957 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1958 {
1959 int ret;
1960 struct clk *clk;
1961
1962 clk = hw->clk;
1963 clk->name = hw->init->name;
1964 clk->ops = hw->init->ops;
1965 clk->hw = hw;
1966 clk->flags = hw->init->flags;
1967 clk->parent_names = hw->init->parent_names;
1968 clk->num_parents = hw->init->num_parents;
1969 if (dev && dev->driver)
1970 clk->owner = dev->driver->owner;
1971 else
1972 clk->owner = NULL;
1973
1974 ret = __clk_init(dev, clk);
1975 if (ret)
1976 return ERR_PTR(ret);
1977
1978 return clk;
1979 }
1980 EXPORT_SYMBOL_GPL(__clk_register);
1981
1982 /**
1983 * clk_register - allocate a new clock, register it and return an opaque cookie
1984 * @dev: device that is registering this clock
1985 * @hw: link to hardware-specific clock data
1986 *
1987 * clk_register is the primary interface for populating the clock tree with new
1988 * clock nodes. It returns a pointer to the newly allocated struct clk which
1989 * cannot be dereferenced by driver code but may be used in conjuction with the
1990 * rest of the clock API. In the event of an error clk_register will return an
1991 * error code; drivers must test for an error code after calling clk_register.
1992 */
1993 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1994 {
1995 int i, ret;
1996 struct clk *clk;
1997
1998 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1999 if (!clk) {
2000 pr_err("%s: could not allocate clk\n", __func__);
2001 ret = -ENOMEM;
2002 goto fail_out;
2003 }
2004
2005 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
2006 if (!clk->name) {
2007 pr_err("%s: could not allocate clk->name\n", __func__);
2008 ret = -ENOMEM;
2009 goto fail_name;
2010 }
2011 clk->ops = hw->init->ops;
2012 if (dev && dev->driver)
2013 clk->owner = dev->driver->owner;
2014 clk->hw = hw;
2015 clk->flags = hw->init->flags;
2016 clk->num_parents = hw->init->num_parents;
2017 hw->clk = clk;
2018
2019 /* allocate local copy in case parent_names is __initdata */
2020 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2021 GFP_KERNEL);
2022
2023 if (!clk->parent_names) {
2024 pr_err("%s: could not allocate clk->parent_names\n", __func__);
2025 ret = -ENOMEM;
2026 goto fail_parent_names;
2027 }
2028
2029
2030 /* copy each string name in case parent_names is __initdata */
2031 for (i = 0; i < clk->num_parents; i++) {
2032 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2033 GFP_KERNEL);
2034 if (!clk->parent_names[i]) {
2035 pr_err("%s: could not copy parent_names\n", __func__);
2036 ret = -ENOMEM;
2037 goto fail_parent_names_copy;
2038 }
2039 }
2040
2041 ret = __clk_init(dev, clk);
2042 if (!ret)
2043 return clk;
2044
2045 fail_parent_names_copy:
2046 while (--i >= 0)
2047 kfree(clk->parent_names[i]);
2048 kfree(clk->parent_names);
2049 fail_parent_names:
2050 kfree(clk->name);
2051 fail_name:
2052 kfree(clk);
2053 fail_out:
2054 return ERR_PTR(ret);
2055 }
2056 EXPORT_SYMBOL_GPL(clk_register);
2057
2058 /*
2059 * Free memory allocated for a clock.
2060 * Caller must hold prepare_lock.
2061 */
2062 static void __clk_release(struct kref *ref)
2063 {
2064 struct clk *clk = container_of(ref, struct clk, ref);
2065 int i = clk->num_parents;
2066
2067 kfree(clk->parents);
2068 while (--i >= 0)
2069 kfree(clk->parent_names[i]);
2070
2071 kfree(clk->parent_names);
2072 kfree(clk->name);
2073 kfree(clk);
2074 }
2075
2076 /*
2077 * Empty clk_ops for unregistered clocks. These are used temporarily
2078 * after clk_unregister() was called on a clock and until last clock
2079 * consumer calls clk_put() and the struct clk object is freed.
2080 */
2081 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2082 {
2083 return -ENXIO;
2084 }
2085
2086 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2087 {
2088 WARN_ON_ONCE(1);
2089 }
2090
2091 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2092 unsigned long parent_rate)
2093 {
2094 return -ENXIO;
2095 }
2096
2097 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2098 {
2099 return -ENXIO;
2100 }
2101
2102 static const struct clk_ops clk_nodrv_ops = {
2103 .enable = clk_nodrv_prepare_enable,
2104 .disable = clk_nodrv_disable_unprepare,
2105 .prepare = clk_nodrv_prepare_enable,
2106 .unprepare = clk_nodrv_disable_unprepare,
2107 .set_rate = clk_nodrv_set_rate,
2108 .set_parent = clk_nodrv_set_parent,
2109 };
2110
2111 /**
2112 * clk_unregister - unregister a currently registered clock
2113 * @clk: clock to unregister
2114 */
2115 void clk_unregister(struct clk *clk)
2116 {
2117 unsigned long flags;
2118
2119 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2120 return;
2121
2122 clk_prepare_lock();
2123
2124 if (clk->ops == &clk_nodrv_ops) {
2125 pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2126 goto out;
2127 }
2128 /*
2129 * Assign empty clock ops for consumers that might still hold
2130 * a reference to this clock.
2131 */
2132 flags = clk_enable_lock();
2133 clk->ops = &clk_nodrv_ops;
2134 clk_enable_unlock(flags);
2135
2136 if (!hlist_empty(&clk->children)) {
2137 struct clk *child;
2138 struct hlist_node *t;
2139
2140 /* Reparent all children to the orphan list. */
2141 hlist_for_each_entry_safe(child, t, &clk->children, child_node)
2142 clk_set_parent(child, NULL);
2143 }
2144
2145 clk_debug_unregister(clk);
2146
2147 hlist_del_init(&clk->child_node);
2148
2149 if (clk->prepare_count)
2150 pr_warn("%s: unregistering prepared clock: %s\n",
2151 __func__, clk->name);
2152
2153 kref_put(&clk->ref, __clk_release);
2154 out:
2155 clk_prepare_unlock();
2156 }
2157 EXPORT_SYMBOL_GPL(clk_unregister);
2158
2159 static void devm_clk_release(struct device *dev, void *res)
2160 {
2161 clk_unregister(*(struct clk **)res);
2162 }
2163
2164 /**
2165 * devm_clk_register - resource managed clk_register()
2166 * @dev: device that is registering this clock
2167 * @hw: link to hardware-specific clock data
2168 *
2169 * Managed clk_register(). Clocks returned from this function are
2170 * automatically clk_unregister()ed on driver detach. See clk_register() for
2171 * more information.
2172 */
2173 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2174 {
2175 struct clk *clk;
2176 struct clk **clkp;
2177
2178 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2179 if (!clkp)
2180 return ERR_PTR(-ENOMEM);
2181
2182 clk = clk_register(dev, hw);
2183 if (!IS_ERR(clk)) {
2184 *clkp = clk;
2185 devres_add(dev, clkp);
2186 } else {
2187 devres_free(clkp);
2188 }
2189
2190 return clk;
2191 }
2192 EXPORT_SYMBOL_GPL(devm_clk_register);
2193
2194 static int devm_clk_match(struct device *dev, void *res, void *data)
2195 {
2196 struct clk *c = res;
2197 if (WARN_ON(!c))
2198 return 0;
2199 return c == data;
2200 }
2201
2202 /**
2203 * devm_clk_unregister - resource managed clk_unregister()
2204 * @clk: clock to unregister
2205 *
2206 * Deallocate a clock allocated with devm_clk_register(). Normally
2207 * this function will not need to be called and the resource management
2208 * code will ensure that the resource is freed.
2209 */
2210 void devm_clk_unregister(struct device *dev, struct clk *clk)
2211 {
2212 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2213 }
2214 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2215
2216 /*
2217 * clkdev helpers
2218 */
2219 int __clk_get(struct clk *clk)
2220 {
2221 if (clk) {
2222 if (!try_module_get(clk->owner))
2223 return 0;
2224
2225 kref_get(&clk->ref);
2226 }
2227 return 1;
2228 }
2229
2230 void __clk_put(struct clk *clk)
2231 {
2232 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2233 return;
2234
2235 clk_prepare_lock();
2236 kref_put(&clk->ref, __clk_release);
2237 clk_prepare_unlock();
2238
2239 module_put(clk->owner);
2240 }
2241
2242 /*** clk rate change notifiers ***/
2243
2244 /**
2245 * clk_notifier_register - add a clk rate change notifier
2246 * @clk: struct clk * to watch
2247 * @nb: struct notifier_block * with callback info
2248 *
2249 * Request notification when clk's rate changes. This uses an SRCU
2250 * notifier because we want it to block and notifier unregistrations are
2251 * uncommon. The callbacks associated with the notifier must not
2252 * re-enter into the clk framework by calling any top-level clk APIs;
2253 * this will cause a nested prepare_lock mutex.
2254 *
2255 * In all notification cases cases (pre, post and abort rate change) the
2256 * original clock rate is passed to the callback via struct
2257 * clk_notifier_data.old_rate and the new frequency is passed via struct
2258 * clk_notifier_data.new_rate.
2259 *
2260 * clk_notifier_register() must be called from non-atomic context.
2261 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2262 * allocation failure; otherwise, passes along the return value of
2263 * srcu_notifier_chain_register().
2264 */
2265 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2266 {
2267 struct clk_notifier *cn;
2268 int ret = -ENOMEM;
2269
2270 if (!clk || !nb)
2271 return -EINVAL;
2272
2273 clk_prepare_lock();
2274
2275 /* search the list of notifiers for this clk */
2276 list_for_each_entry(cn, &clk_notifier_list, node)
2277 if (cn->clk == clk)
2278 break;
2279
2280 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2281 if (cn->clk != clk) {
2282 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2283 if (!cn)
2284 goto out;
2285
2286 cn->clk = clk;
2287 srcu_init_notifier_head(&cn->notifier_head);
2288
2289 list_add(&cn->node, &clk_notifier_list);
2290 }
2291
2292 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2293
2294 clk->notifier_count++;
2295
2296 out:
2297 clk_prepare_unlock();
2298
2299 return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(clk_notifier_register);
2302
2303 /**
2304 * clk_notifier_unregister - remove a clk rate change notifier
2305 * @clk: struct clk *
2306 * @nb: struct notifier_block * with callback info
2307 *
2308 * Request no further notification for changes to 'clk' and frees memory
2309 * allocated in clk_notifier_register.
2310 *
2311 * Returns -EINVAL if called with null arguments; otherwise, passes
2312 * along the return value of srcu_notifier_chain_unregister().
2313 */
2314 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2315 {
2316 struct clk_notifier *cn = NULL;
2317 int ret = -EINVAL;
2318
2319 if (!clk || !nb)
2320 return -EINVAL;
2321
2322 clk_prepare_lock();
2323
2324 list_for_each_entry(cn, &clk_notifier_list, node)
2325 if (cn->clk == clk)
2326 break;
2327
2328 if (cn->clk == clk) {
2329 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2330
2331 clk->notifier_count--;
2332
2333 /* XXX the notifier code should handle this better */
2334 if (!cn->notifier_head.head) {
2335 srcu_cleanup_notifier_head(&cn->notifier_head);
2336 list_del(&cn->node);
2337 kfree(cn);
2338 }
2339
2340 } else {
2341 ret = -ENOENT;
2342 }
2343
2344 clk_prepare_unlock();
2345
2346 return ret;
2347 }
2348 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2349
2350 #ifdef CONFIG_OF
2351 /**
2352 * struct of_clk_provider - Clock provider registration structure
2353 * @link: Entry in global list of clock providers
2354 * @node: Pointer to device tree node of clock provider
2355 * @get: Get clock callback. Returns NULL or a struct clk for the
2356 * given clock specifier
2357 * @data: context pointer to be passed into @get callback
2358 */
2359 struct of_clk_provider {
2360 struct list_head link;
2361
2362 struct device_node *node;
2363 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2364 void *data;
2365 };
2366
2367 static const struct of_device_id __clk_of_table_sentinel
2368 __used __section(__clk_of_table_end);
2369
2370 static LIST_HEAD(of_clk_providers);
2371 static DEFINE_MUTEX(of_clk_mutex);
2372
2373 /* of_clk_provider list locking helpers */
2374 void of_clk_lock(void)
2375 {
2376 mutex_lock(&of_clk_mutex);
2377 }
2378
2379 void of_clk_unlock(void)
2380 {
2381 mutex_unlock(&of_clk_mutex);
2382 }
2383
2384 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2385 void *data)
2386 {
2387 return data;
2388 }
2389 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2390
2391 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2392 {
2393 struct clk_onecell_data *clk_data = data;
2394 unsigned int idx = clkspec->args[0];
2395
2396 if (idx >= clk_data->clk_num) {
2397 pr_err("%s: invalid clock index %d\n", __func__, idx);
2398 return ERR_PTR(-EINVAL);
2399 }
2400
2401 return clk_data->clks[idx];
2402 }
2403 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2404
2405 /**
2406 * of_clk_add_provider() - Register a clock provider for a node
2407 * @np: Device node pointer associated with clock provider
2408 * @clk_src_get: callback for decoding clock
2409 * @data: context pointer for @clk_src_get callback.
2410 */
2411 int of_clk_add_provider(struct device_node *np,
2412 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2413 void *data),
2414 void *data)
2415 {
2416 struct of_clk_provider *cp;
2417
2418 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2419 if (!cp)
2420 return -ENOMEM;
2421
2422 cp->node = of_node_get(np);
2423 cp->data = data;
2424 cp->get = clk_src_get;
2425
2426 mutex_lock(&of_clk_mutex);
2427 list_add(&cp->link, &of_clk_providers);
2428 mutex_unlock(&of_clk_mutex);
2429 pr_debug("Added clock from %s\n", np->full_name);
2430
2431 return 0;
2432 }
2433 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2434
2435 /**
2436 * of_clk_del_provider() - Remove a previously registered clock provider
2437 * @np: Device node pointer associated with clock provider
2438 */
2439 void of_clk_del_provider(struct device_node *np)
2440 {
2441 struct of_clk_provider *cp;
2442
2443 mutex_lock(&of_clk_mutex);
2444 list_for_each_entry(cp, &of_clk_providers, link) {
2445 if (cp->node == np) {
2446 list_del(&cp->link);
2447 of_node_put(cp->node);
2448 kfree(cp);
2449 break;
2450 }
2451 }
2452 mutex_unlock(&of_clk_mutex);
2453 }
2454 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2455
2456 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2457 {
2458 struct of_clk_provider *provider;
2459 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2460
2461 /* Check if we have such a provider in our array */
2462 list_for_each_entry(provider, &of_clk_providers, link) {
2463 if (provider->node == clkspec->np)
2464 clk = provider->get(clkspec, provider->data);
2465 if (!IS_ERR(clk))
2466 break;
2467 }
2468
2469 return clk;
2470 }
2471
2472 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2473 {
2474 struct clk *clk;
2475
2476 mutex_lock(&of_clk_mutex);
2477 clk = __of_clk_get_from_provider(clkspec);
2478 mutex_unlock(&of_clk_mutex);
2479
2480 return clk;
2481 }
2482
2483 int of_clk_get_parent_count(struct device_node *np)
2484 {
2485 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2486 }
2487 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2488
2489 const char *of_clk_get_parent_name(struct device_node *np, int index)
2490 {
2491 struct of_phandle_args clkspec;
2492 struct property *prop;
2493 const char *clk_name;
2494 const __be32 *vp;
2495 u32 pv;
2496 int rc;
2497 int count;
2498
2499 if (index < 0)
2500 return NULL;
2501
2502 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2503 &clkspec);
2504 if (rc)
2505 return NULL;
2506
2507 index = clkspec.args_count ? clkspec.args[0] : 0;
2508 count = 0;
2509
2510 /* if there is an indices property, use it to transfer the index
2511 * specified into an array offset for the clock-output-names property.
2512 */
2513 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2514 if (index == pv) {
2515 index = count;
2516 break;
2517 }
2518 count++;
2519 }
2520
2521 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2522 index,
2523 &clk_name) < 0)
2524 clk_name = clkspec.np->name;
2525
2526 of_node_put(clkspec.np);
2527 return clk_name;
2528 }
2529 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2530
2531 struct clock_provider {
2532 of_clk_init_cb_t clk_init_cb;
2533 struct device_node *np;
2534 struct list_head node;
2535 };
2536
2537 static LIST_HEAD(clk_provider_list);
2538
2539 /*
2540 * This function looks for a parent clock. If there is one, then it
2541 * checks that the provider for this parent clock was initialized, in
2542 * this case the parent clock will be ready.
2543 */
2544 static int parent_ready(struct device_node *np)
2545 {
2546 int i = 0;
2547
2548 while (true) {
2549 struct clk *clk = of_clk_get(np, i);
2550
2551 /* this parent is ready we can check the next one */
2552 if (!IS_ERR(clk)) {
2553 clk_put(clk);
2554 i++;
2555 continue;
2556 }
2557
2558 /* at least one parent is not ready, we exit now */
2559 if (PTR_ERR(clk) == -EPROBE_DEFER)
2560 return 0;
2561
2562 /*
2563 * Here we make assumption that the device tree is
2564 * written correctly. So an error means that there is
2565 * no more parent. As we didn't exit yet, then the
2566 * previous parent are ready. If there is no clock
2567 * parent, no need to wait for them, then we can
2568 * consider their absence as being ready
2569 */
2570 return 1;
2571 }
2572 }
2573
2574 /**
2575 * of_clk_init() - Scan and init clock providers from the DT
2576 * @matches: array of compatible values and init functions for providers.
2577 *
2578 * This function scans the device tree for matching clock providers
2579 * and calls their initialization functions. It also does it by trying
2580 * to follow the dependencies.
2581 */
2582 void __init of_clk_init(const struct of_device_id *matches)
2583 {
2584 const struct of_device_id *match;
2585 struct device_node *np;
2586 struct clock_provider *clk_provider, *next;
2587 bool is_init_done;
2588 bool force = false;
2589
2590 if (!matches)
2591 matches = &__clk_of_table;
2592
2593 /* First prepare the list of the clocks providers */
2594 for_each_matching_node_and_match(np, matches, &match) {
2595 struct clock_provider *parent =
2596 kzalloc(sizeof(struct clock_provider), GFP_KERNEL);
2597
2598 parent->clk_init_cb = match->data;
2599 parent->np = np;
2600 list_add_tail(&parent->node, &clk_provider_list);
2601 }
2602
2603 while (!list_empty(&clk_provider_list)) {
2604 is_init_done = false;
2605 list_for_each_entry_safe(clk_provider, next,
2606 &clk_provider_list, node) {
2607 if (force || parent_ready(clk_provider->np)) {
2608 clk_provider->clk_init_cb(clk_provider->np);
2609 list_del(&clk_provider->node);
2610 kfree(clk_provider);
2611 is_init_done = true;
2612 }
2613 }
2614
2615 /*
2616 * We didn't manage to initialize any of the
2617 * remaining providers during the last loop, so now we
2618 * initialize all the remaining ones unconditionally
2619 * in case the clock parent was not mandatory
2620 */
2621 if (!is_init_done)
2622 force = true;
2623
2624 }
2625 }
2626 #endif
This page took 0.120187 seconds and 5 git commands to generate.