Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23
24 static DEFINE_SPINLOCK(enable_lock);
25 static DEFINE_MUTEX(prepare_lock);
26
27 static struct task_struct *prepare_owner;
28 static struct task_struct *enable_owner;
29
30 static int prepare_refcnt;
31 static int enable_refcnt;
32
33 static HLIST_HEAD(clk_root_list);
34 static HLIST_HEAD(clk_orphan_list);
35 static LIST_HEAD(clk_notifier_list);
36
37 /*** locking ***/
38 static void clk_prepare_lock(void)
39 {
40 if (!mutex_trylock(&prepare_lock)) {
41 if (prepare_owner == current) {
42 prepare_refcnt++;
43 return;
44 }
45 mutex_lock(&prepare_lock);
46 }
47 WARN_ON_ONCE(prepare_owner != NULL);
48 WARN_ON_ONCE(prepare_refcnt != 0);
49 prepare_owner = current;
50 prepare_refcnt = 1;
51 }
52
53 static void clk_prepare_unlock(void)
54 {
55 WARN_ON_ONCE(prepare_owner != current);
56 WARN_ON_ONCE(prepare_refcnt == 0);
57
58 if (--prepare_refcnt)
59 return;
60 prepare_owner = NULL;
61 mutex_unlock(&prepare_lock);
62 }
63
64 static unsigned long clk_enable_lock(void)
65 {
66 unsigned long flags;
67
68 if (!spin_trylock_irqsave(&enable_lock, flags)) {
69 if (enable_owner == current) {
70 enable_refcnt++;
71 return flags;
72 }
73 spin_lock_irqsave(&enable_lock, flags);
74 }
75 WARN_ON_ONCE(enable_owner != NULL);
76 WARN_ON_ONCE(enable_refcnt != 0);
77 enable_owner = current;
78 enable_refcnt = 1;
79 return flags;
80 }
81
82 static void clk_enable_unlock(unsigned long flags)
83 {
84 WARN_ON_ONCE(enable_owner != current);
85 WARN_ON_ONCE(enable_refcnt == 0);
86
87 if (--enable_refcnt)
88 return;
89 enable_owner = NULL;
90 spin_unlock_irqrestore(&enable_lock, flags);
91 }
92
93 /*** debugfs support ***/
94
95 #ifdef CONFIG_COMMON_CLK_DEBUG
96 #include <linux/debugfs.h>
97
98 static struct dentry *rootdir;
99 static struct dentry *orphandir;
100 static int inited = 0;
101
102 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103 {
104 if (!c)
105 return;
106
107 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108 level * 3 + 1, "",
109 30 - level * 3, c->name,
110 c->enable_count, c->prepare_count, clk_get_rate(c));
111 seq_printf(s, "\n");
112 }
113
114 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115 int level)
116 {
117 struct clk *child;
118
119 if (!c)
120 return;
121
122 clk_summary_show_one(s, c, level);
123
124 hlist_for_each_entry(child, &c->children, child_node)
125 clk_summary_show_subtree(s, child, level + 1);
126 }
127
128 static int clk_summary_show(struct seq_file *s, void *data)
129 {
130 struct clk *c;
131
132 seq_printf(s, " clock enable_cnt prepare_cnt rate\n");
133 seq_printf(s, "---------------------------------------------------------------------\n");
134
135 clk_prepare_lock();
136
137 hlist_for_each_entry(c, &clk_root_list, child_node)
138 clk_summary_show_subtree(s, c, 0);
139
140 hlist_for_each_entry(c, &clk_orphan_list, child_node)
141 clk_summary_show_subtree(s, c, 0);
142
143 clk_prepare_unlock();
144
145 return 0;
146 }
147
148
149 static int clk_summary_open(struct inode *inode, struct file *file)
150 {
151 return single_open(file, clk_summary_show, inode->i_private);
152 }
153
154 static const struct file_operations clk_summary_fops = {
155 .open = clk_summary_open,
156 .read = seq_read,
157 .llseek = seq_lseek,
158 .release = single_release,
159 };
160
161 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
162 {
163 if (!c)
164 return;
165
166 seq_printf(s, "\"%s\": { ", c->name);
167 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
170 }
171
172 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
173 {
174 struct clk *child;
175
176 if (!c)
177 return;
178
179 clk_dump_one(s, c, level);
180
181 hlist_for_each_entry(child, &c->children, child_node) {
182 seq_printf(s, ",");
183 clk_dump_subtree(s, child, level + 1);
184 }
185
186 seq_printf(s, "}");
187 }
188
189 static int clk_dump(struct seq_file *s, void *data)
190 {
191 struct clk *c;
192 bool first_node = true;
193
194 seq_printf(s, "{");
195
196 clk_prepare_lock();
197
198 hlist_for_each_entry(c, &clk_root_list, child_node) {
199 if (!first_node)
200 seq_printf(s, ",");
201 first_node = false;
202 clk_dump_subtree(s, c, 0);
203 }
204
205 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206 seq_printf(s, ",");
207 clk_dump_subtree(s, c, 0);
208 }
209
210 clk_prepare_unlock();
211
212 seq_printf(s, "}");
213 return 0;
214 }
215
216
217 static int clk_dump_open(struct inode *inode, struct file *file)
218 {
219 return single_open(file, clk_dump, inode->i_private);
220 }
221
222 static const struct file_operations clk_dump_fops = {
223 .open = clk_dump_open,
224 .read = seq_read,
225 .llseek = seq_lseek,
226 .release = single_release,
227 };
228
229 /* caller must hold prepare_lock */
230 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
231 {
232 struct dentry *d;
233 int ret = -ENOMEM;
234
235 if (!clk || !pdentry) {
236 ret = -EINVAL;
237 goto out;
238 }
239
240 d = debugfs_create_dir(clk->name, pdentry);
241 if (!d)
242 goto out;
243
244 clk->dentry = d;
245
246 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247 (u32 *)&clk->rate);
248 if (!d)
249 goto err_out;
250
251 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252 (u32 *)&clk->flags);
253 if (!d)
254 goto err_out;
255
256 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257 (u32 *)&clk->prepare_count);
258 if (!d)
259 goto err_out;
260
261 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262 (u32 *)&clk->enable_count);
263 if (!d)
264 goto err_out;
265
266 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267 (u32 *)&clk->notifier_count);
268 if (!d)
269 goto err_out;
270
271 ret = 0;
272 goto out;
273
274 err_out:
275 debugfs_remove(clk->dentry);
276 out:
277 return ret;
278 }
279
280 /* caller must hold prepare_lock */
281 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
282 {
283 struct clk *child;
284 int ret = -EINVAL;;
285
286 if (!clk || !pdentry)
287 goto out;
288
289 ret = clk_debug_create_one(clk, pdentry);
290
291 if (ret)
292 goto out;
293
294 hlist_for_each_entry(child, &clk->children, child_node)
295 clk_debug_create_subtree(child, clk->dentry);
296
297 ret = 0;
298 out:
299 return ret;
300 }
301
302 /**
303 * clk_debug_register - add a clk node to the debugfs clk tree
304 * @clk: the clk being added to the debugfs clk tree
305 *
306 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
307 * initialized. Otherwise it bails out early since the debugfs clk tree
308 * will be created lazily by clk_debug_init as part of a late_initcall.
309 *
310 * Caller must hold prepare_lock. Only clk_init calls this function (so
311 * far) so this is taken care.
312 */
313 static int clk_debug_register(struct clk *clk)
314 {
315 struct clk *parent;
316 struct dentry *pdentry;
317 int ret = 0;
318
319 if (!inited)
320 goto out;
321
322 parent = clk->parent;
323
324 /*
325 * Check to see if a clk is a root clk. Also check that it is
326 * safe to add this clk to debugfs
327 */
328 if (!parent)
329 if (clk->flags & CLK_IS_ROOT)
330 pdentry = rootdir;
331 else
332 pdentry = orphandir;
333 else
334 if (parent->dentry)
335 pdentry = parent->dentry;
336 else
337 goto out;
338
339 ret = clk_debug_create_subtree(clk, pdentry);
340
341 out:
342 return ret;
343 }
344
345 /**
346 * clk_debug_reparent - reparent clk node in the debugfs clk tree
347 * @clk: the clk being reparented
348 * @new_parent: the new clk parent, may be NULL
349 *
350 * Rename clk entry in the debugfs clk tree if debugfs has been
351 * initialized. Otherwise it bails out early since the debugfs clk tree
352 * will be created lazily by clk_debug_init as part of a late_initcall.
353 *
354 * Caller must hold prepare_lock.
355 */
356 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
357 {
358 struct dentry *d;
359 struct dentry *new_parent_d;
360
361 if (!inited)
362 return;
363
364 if (new_parent)
365 new_parent_d = new_parent->dentry;
366 else
367 new_parent_d = orphandir;
368
369 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
370 new_parent_d, clk->name);
371 if (d)
372 clk->dentry = d;
373 else
374 pr_debug("%s: failed to rename debugfs entry for %s\n",
375 __func__, clk->name);
376 }
377
378 /**
379 * clk_debug_init - lazily create the debugfs clk tree visualization
380 *
381 * clks are often initialized very early during boot before memory can
382 * be dynamically allocated and well before debugfs is setup.
383 * clk_debug_init walks the clk tree hierarchy while holding
384 * prepare_lock and creates the topology as part of a late_initcall,
385 * thus insuring that clks initialized very early will still be
386 * represented in the debugfs clk tree. This function should only be
387 * called once at boot-time, and all other clks added dynamically will
388 * be done so with clk_debug_register.
389 */
390 static int __init clk_debug_init(void)
391 {
392 struct clk *clk;
393 struct dentry *d;
394
395 rootdir = debugfs_create_dir("clk", NULL);
396
397 if (!rootdir)
398 return -ENOMEM;
399
400 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
401 &clk_summary_fops);
402 if (!d)
403 return -ENOMEM;
404
405 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
406 &clk_dump_fops);
407 if (!d)
408 return -ENOMEM;
409
410 orphandir = debugfs_create_dir("orphans", rootdir);
411
412 if (!orphandir)
413 return -ENOMEM;
414
415 clk_prepare_lock();
416
417 hlist_for_each_entry(clk, &clk_root_list, child_node)
418 clk_debug_create_subtree(clk, rootdir);
419
420 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
421 clk_debug_create_subtree(clk, orphandir);
422
423 inited = 1;
424
425 clk_prepare_unlock();
426
427 return 0;
428 }
429 late_initcall(clk_debug_init);
430 #else
431 static inline int clk_debug_register(struct clk *clk) { return 0; }
432 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
433 {
434 }
435 #endif
436
437 /* caller must hold prepare_lock */
438 static void clk_unprepare_unused_subtree(struct clk *clk)
439 {
440 struct clk *child;
441
442 if (!clk)
443 return;
444
445 hlist_for_each_entry(child, &clk->children, child_node)
446 clk_unprepare_unused_subtree(child);
447
448 if (clk->prepare_count)
449 return;
450
451 if (clk->flags & CLK_IGNORE_UNUSED)
452 return;
453
454 if (__clk_is_prepared(clk)) {
455 if (clk->ops->unprepare_unused)
456 clk->ops->unprepare_unused(clk->hw);
457 else if (clk->ops->unprepare)
458 clk->ops->unprepare(clk->hw);
459 }
460 }
461
462 /* caller must hold prepare_lock */
463 static void clk_disable_unused_subtree(struct clk *clk)
464 {
465 struct clk *child;
466 unsigned long flags;
467
468 if (!clk)
469 goto out;
470
471 hlist_for_each_entry(child, &clk->children, child_node)
472 clk_disable_unused_subtree(child);
473
474 flags = clk_enable_lock();
475
476 if (clk->enable_count)
477 goto unlock_out;
478
479 if (clk->flags & CLK_IGNORE_UNUSED)
480 goto unlock_out;
481
482 /*
483 * some gate clocks have special needs during the disable-unused
484 * sequence. call .disable_unused if available, otherwise fall
485 * back to .disable
486 */
487 if (__clk_is_enabled(clk)) {
488 if (clk->ops->disable_unused)
489 clk->ops->disable_unused(clk->hw);
490 else if (clk->ops->disable)
491 clk->ops->disable(clk->hw);
492 }
493
494 unlock_out:
495 clk_enable_unlock(flags);
496
497 out:
498 return;
499 }
500
501 static bool clk_ignore_unused;
502 static int __init clk_ignore_unused_setup(char *__unused)
503 {
504 clk_ignore_unused = true;
505 return 1;
506 }
507 __setup("clk_ignore_unused", clk_ignore_unused_setup);
508
509 static int clk_disable_unused(void)
510 {
511 struct clk *clk;
512
513 if (clk_ignore_unused) {
514 pr_warn("clk: Not disabling unused clocks\n");
515 return 0;
516 }
517
518 clk_prepare_lock();
519
520 hlist_for_each_entry(clk, &clk_root_list, child_node)
521 clk_disable_unused_subtree(clk);
522
523 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
524 clk_disable_unused_subtree(clk);
525
526 hlist_for_each_entry(clk, &clk_root_list, child_node)
527 clk_unprepare_unused_subtree(clk);
528
529 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
530 clk_unprepare_unused_subtree(clk);
531
532 clk_prepare_unlock();
533
534 return 0;
535 }
536 late_initcall_sync(clk_disable_unused);
537
538 /*** helper functions ***/
539
540 const char *__clk_get_name(struct clk *clk)
541 {
542 return !clk ? NULL : clk->name;
543 }
544 EXPORT_SYMBOL_GPL(__clk_get_name);
545
546 struct clk_hw *__clk_get_hw(struct clk *clk)
547 {
548 return !clk ? NULL : clk->hw;
549 }
550
551 u8 __clk_get_num_parents(struct clk *clk)
552 {
553 return !clk ? 0 : clk->num_parents;
554 }
555
556 struct clk *__clk_get_parent(struct clk *clk)
557 {
558 return !clk ? NULL : clk->parent;
559 }
560
561 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
562 {
563 if (!clk || index >= clk->num_parents)
564 return NULL;
565 else if (!clk->parents)
566 return __clk_lookup(clk->parent_names[index]);
567 else if (!clk->parents[index])
568 return clk->parents[index] =
569 __clk_lookup(clk->parent_names[index]);
570 else
571 return clk->parents[index];
572 }
573
574 unsigned int __clk_get_enable_count(struct clk *clk)
575 {
576 return !clk ? 0 : clk->enable_count;
577 }
578
579 unsigned int __clk_get_prepare_count(struct clk *clk)
580 {
581 return !clk ? 0 : clk->prepare_count;
582 }
583
584 unsigned long __clk_get_rate(struct clk *clk)
585 {
586 unsigned long ret;
587
588 if (!clk) {
589 ret = 0;
590 goto out;
591 }
592
593 ret = clk->rate;
594
595 if (clk->flags & CLK_IS_ROOT)
596 goto out;
597
598 if (!clk->parent)
599 ret = 0;
600
601 out:
602 return ret;
603 }
604
605 unsigned long __clk_get_flags(struct clk *clk)
606 {
607 return !clk ? 0 : clk->flags;
608 }
609 EXPORT_SYMBOL_GPL(__clk_get_flags);
610
611 bool __clk_is_prepared(struct clk *clk)
612 {
613 int ret;
614
615 if (!clk)
616 return false;
617
618 /*
619 * .is_prepared is optional for clocks that can prepare
620 * fall back to software usage counter if it is missing
621 */
622 if (!clk->ops->is_prepared) {
623 ret = clk->prepare_count ? 1 : 0;
624 goto out;
625 }
626
627 ret = clk->ops->is_prepared(clk->hw);
628 out:
629 return !!ret;
630 }
631
632 bool __clk_is_enabled(struct clk *clk)
633 {
634 int ret;
635
636 if (!clk)
637 return false;
638
639 /*
640 * .is_enabled is only mandatory for clocks that gate
641 * fall back to software usage counter if .is_enabled is missing
642 */
643 if (!clk->ops->is_enabled) {
644 ret = clk->enable_count ? 1 : 0;
645 goto out;
646 }
647
648 ret = clk->ops->is_enabled(clk->hw);
649 out:
650 return !!ret;
651 }
652
653 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
654 {
655 struct clk *child;
656 struct clk *ret;
657
658 if (!strcmp(clk->name, name))
659 return clk;
660
661 hlist_for_each_entry(child, &clk->children, child_node) {
662 ret = __clk_lookup_subtree(name, child);
663 if (ret)
664 return ret;
665 }
666
667 return NULL;
668 }
669
670 struct clk *__clk_lookup(const char *name)
671 {
672 struct clk *root_clk;
673 struct clk *ret;
674
675 if (!name)
676 return NULL;
677
678 /* search the 'proper' clk tree first */
679 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
680 ret = __clk_lookup_subtree(name, root_clk);
681 if (ret)
682 return ret;
683 }
684
685 /* if not found, then search the orphan tree */
686 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
687 ret = __clk_lookup_subtree(name, root_clk);
688 if (ret)
689 return ret;
690 }
691
692 return NULL;
693 }
694
695 /*
696 * Helper for finding best parent to provide a given frequency. This can be used
697 * directly as a determine_rate callback (e.g. for a mux), or from a more
698 * complex clock that may combine a mux with other operations.
699 */
700 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
701 unsigned long *best_parent_rate,
702 struct clk **best_parent_p)
703 {
704 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
705 int i, num_parents;
706 unsigned long parent_rate, best = 0;
707
708 /* if NO_REPARENT flag set, pass through to current parent */
709 if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
710 parent = clk->parent;
711 if (clk->flags & CLK_SET_RATE_PARENT)
712 best = __clk_round_rate(parent, rate);
713 else if (parent)
714 best = __clk_get_rate(parent);
715 else
716 best = __clk_get_rate(clk);
717 goto out;
718 }
719
720 /* find the parent that can provide the fastest rate <= rate */
721 num_parents = clk->num_parents;
722 for (i = 0; i < num_parents; i++) {
723 parent = clk_get_parent_by_index(clk, i);
724 if (!parent)
725 continue;
726 if (clk->flags & CLK_SET_RATE_PARENT)
727 parent_rate = __clk_round_rate(parent, rate);
728 else
729 parent_rate = __clk_get_rate(parent);
730 if (parent_rate <= rate && parent_rate > best) {
731 best_parent = parent;
732 best = parent_rate;
733 }
734 }
735
736 out:
737 if (best_parent)
738 *best_parent_p = best_parent;
739 *best_parent_rate = best;
740
741 return best;
742 }
743
744 /*** clk api ***/
745
746 void __clk_unprepare(struct clk *clk)
747 {
748 if (!clk)
749 return;
750
751 if (WARN_ON(clk->prepare_count == 0))
752 return;
753
754 if (--clk->prepare_count > 0)
755 return;
756
757 WARN_ON(clk->enable_count > 0);
758
759 if (clk->ops->unprepare)
760 clk->ops->unprepare(clk->hw);
761
762 __clk_unprepare(clk->parent);
763 }
764
765 /**
766 * clk_unprepare - undo preparation of a clock source
767 * @clk: the clk being unprepared
768 *
769 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
770 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
771 * if the operation may sleep. One example is a clk which is accessed over
772 * I2c. In the complex case a clk gate operation may require a fast and a slow
773 * part. It is this reason that clk_unprepare and clk_disable are not mutually
774 * exclusive. In fact clk_disable must be called before clk_unprepare.
775 */
776 void clk_unprepare(struct clk *clk)
777 {
778 clk_prepare_lock();
779 __clk_unprepare(clk);
780 clk_prepare_unlock();
781 }
782 EXPORT_SYMBOL_GPL(clk_unprepare);
783
784 int __clk_prepare(struct clk *clk)
785 {
786 int ret = 0;
787
788 if (!clk)
789 return 0;
790
791 if (clk->prepare_count == 0) {
792 ret = __clk_prepare(clk->parent);
793 if (ret)
794 return ret;
795
796 if (clk->ops->prepare) {
797 ret = clk->ops->prepare(clk->hw);
798 if (ret) {
799 __clk_unprepare(clk->parent);
800 return ret;
801 }
802 }
803 }
804
805 clk->prepare_count++;
806
807 return 0;
808 }
809
810 /**
811 * clk_prepare - prepare a clock source
812 * @clk: the clk being prepared
813 *
814 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
815 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
816 * operation may sleep. One example is a clk which is accessed over I2c. In
817 * the complex case a clk ungate operation may require a fast and a slow part.
818 * It is this reason that clk_prepare and clk_enable are not mutually
819 * exclusive. In fact clk_prepare must be called before clk_enable.
820 * Returns 0 on success, -EERROR otherwise.
821 */
822 int clk_prepare(struct clk *clk)
823 {
824 int ret;
825
826 clk_prepare_lock();
827 ret = __clk_prepare(clk);
828 clk_prepare_unlock();
829
830 return ret;
831 }
832 EXPORT_SYMBOL_GPL(clk_prepare);
833
834 static void __clk_disable(struct clk *clk)
835 {
836 if (!clk)
837 return;
838
839 if (WARN_ON(IS_ERR(clk)))
840 return;
841
842 if (WARN_ON(clk->enable_count == 0))
843 return;
844
845 if (--clk->enable_count > 0)
846 return;
847
848 if (clk->ops->disable)
849 clk->ops->disable(clk->hw);
850
851 __clk_disable(clk->parent);
852 }
853
854 /**
855 * clk_disable - gate a clock
856 * @clk: the clk being gated
857 *
858 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
859 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
860 * clk if the operation is fast and will never sleep. One example is a
861 * SoC-internal clk which is controlled via simple register writes. In the
862 * complex case a clk gate operation may require a fast and a slow part. It is
863 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
864 * In fact clk_disable must be called before clk_unprepare.
865 */
866 void clk_disable(struct clk *clk)
867 {
868 unsigned long flags;
869
870 flags = clk_enable_lock();
871 __clk_disable(clk);
872 clk_enable_unlock(flags);
873 }
874 EXPORT_SYMBOL_GPL(clk_disable);
875
876 static int __clk_enable(struct clk *clk)
877 {
878 int ret = 0;
879
880 if (!clk)
881 return 0;
882
883 if (WARN_ON(clk->prepare_count == 0))
884 return -ESHUTDOWN;
885
886 if (clk->enable_count == 0) {
887 ret = __clk_enable(clk->parent);
888
889 if (ret)
890 return ret;
891
892 if (clk->ops->enable) {
893 ret = clk->ops->enable(clk->hw);
894 if (ret) {
895 __clk_disable(clk->parent);
896 return ret;
897 }
898 }
899 }
900
901 clk->enable_count++;
902 return 0;
903 }
904
905 /**
906 * clk_enable - ungate a clock
907 * @clk: the clk being ungated
908 *
909 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
910 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
911 * if the operation will never sleep. One example is a SoC-internal clk which
912 * is controlled via simple register writes. In the complex case a clk ungate
913 * operation may require a fast and a slow part. It is this reason that
914 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
915 * must be called before clk_enable. Returns 0 on success, -EERROR
916 * otherwise.
917 */
918 int clk_enable(struct clk *clk)
919 {
920 unsigned long flags;
921 int ret;
922
923 flags = clk_enable_lock();
924 ret = __clk_enable(clk);
925 clk_enable_unlock(flags);
926
927 return ret;
928 }
929 EXPORT_SYMBOL_GPL(clk_enable);
930
931 /**
932 * __clk_round_rate - round the given rate for a clk
933 * @clk: round the rate of this clock
934 * @rate: the rate which is to be rounded
935 *
936 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
937 */
938 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
939 {
940 unsigned long parent_rate = 0;
941 struct clk *parent;
942
943 if (!clk)
944 return 0;
945
946 parent = clk->parent;
947 if (parent)
948 parent_rate = parent->rate;
949
950 if (clk->ops->determine_rate)
951 return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
952 &parent);
953 else if (clk->ops->round_rate)
954 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
955 else if (clk->flags & CLK_SET_RATE_PARENT)
956 return __clk_round_rate(clk->parent, rate);
957 else
958 return clk->rate;
959 }
960
961 /**
962 * clk_round_rate - round the given rate for a clk
963 * @clk: the clk for which we are rounding a rate
964 * @rate: the rate which is to be rounded
965 *
966 * Takes in a rate as input and rounds it to a rate that the clk can actually
967 * use which is then returned. If clk doesn't support round_rate operation
968 * then the parent rate is returned.
969 */
970 long clk_round_rate(struct clk *clk, unsigned long rate)
971 {
972 unsigned long ret;
973
974 clk_prepare_lock();
975 ret = __clk_round_rate(clk, rate);
976 clk_prepare_unlock();
977
978 return ret;
979 }
980 EXPORT_SYMBOL_GPL(clk_round_rate);
981
982 /**
983 * __clk_notify - call clk notifier chain
984 * @clk: struct clk * that is changing rate
985 * @msg: clk notifier type (see include/linux/clk.h)
986 * @old_rate: old clk rate
987 * @new_rate: new clk rate
988 *
989 * Triggers a notifier call chain on the clk rate-change notification
990 * for 'clk'. Passes a pointer to the struct clk and the previous
991 * and current rates to the notifier callback. Intended to be called by
992 * internal clock code only. Returns NOTIFY_DONE from the last driver
993 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
994 * a driver returns that.
995 */
996 static int __clk_notify(struct clk *clk, unsigned long msg,
997 unsigned long old_rate, unsigned long new_rate)
998 {
999 struct clk_notifier *cn;
1000 struct clk_notifier_data cnd;
1001 int ret = NOTIFY_DONE;
1002
1003 cnd.clk = clk;
1004 cnd.old_rate = old_rate;
1005 cnd.new_rate = new_rate;
1006
1007 list_for_each_entry(cn, &clk_notifier_list, node) {
1008 if (cn->clk == clk) {
1009 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1010 &cnd);
1011 break;
1012 }
1013 }
1014
1015 return ret;
1016 }
1017
1018 /**
1019 * __clk_recalc_rates
1020 * @clk: first clk in the subtree
1021 * @msg: notification type (see include/linux/clk.h)
1022 *
1023 * Walks the subtree of clks starting with clk and recalculates rates as it
1024 * goes. Note that if a clk does not implement the .recalc_rate callback then
1025 * it is assumed that the clock will take on the rate of its parent.
1026 *
1027 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1028 * if necessary.
1029 *
1030 * Caller must hold prepare_lock.
1031 */
1032 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1033 {
1034 unsigned long old_rate;
1035 unsigned long parent_rate = 0;
1036 struct clk *child;
1037
1038 old_rate = clk->rate;
1039
1040 if (clk->parent)
1041 parent_rate = clk->parent->rate;
1042
1043 if (clk->ops->recalc_rate)
1044 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1045 else
1046 clk->rate = parent_rate;
1047
1048 /*
1049 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1050 * & ABORT_RATE_CHANGE notifiers
1051 */
1052 if (clk->notifier_count && msg)
1053 __clk_notify(clk, msg, old_rate, clk->rate);
1054
1055 hlist_for_each_entry(child, &clk->children, child_node)
1056 __clk_recalc_rates(child, msg);
1057 }
1058
1059 /**
1060 * clk_get_rate - return the rate of clk
1061 * @clk: the clk whose rate is being returned
1062 *
1063 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1064 * is set, which means a recalc_rate will be issued.
1065 * If clk is NULL then returns 0.
1066 */
1067 unsigned long clk_get_rate(struct clk *clk)
1068 {
1069 unsigned long rate;
1070
1071 clk_prepare_lock();
1072
1073 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1074 __clk_recalc_rates(clk, 0);
1075
1076 rate = __clk_get_rate(clk);
1077 clk_prepare_unlock();
1078
1079 return rate;
1080 }
1081 EXPORT_SYMBOL_GPL(clk_get_rate);
1082
1083 static u8 clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1084 {
1085 u8 i;
1086
1087 if (!clk->parents)
1088 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1089 GFP_KERNEL);
1090
1091 /*
1092 * find index of new parent clock using cached parent ptrs,
1093 * or if not yet cached, use string name comparison and cache
1094 * them now to avoid future calls to __clk_lookup.
1095 */
1096 for (i = 0; i < clk->num_parents; i++) {
1097 if (clk->parents && clk->parents[i] == parent)
1098 break;
1099 else if (!strcmp(clk->parent_names[i], parent->name)) {
1100 if (clk->parents)
1101 clk->parents[i] = __clk_lookup(parent->name);
1102 break;
1103 }
1104 }
1105
1106 return i;
1107 }
1108
1109 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1110 {
1111 hlist_del(&clk->child_node);
1112
1113 if (new_parent) {
1114 /* avoid duplicate POST_RATE_CHANGE notifications */
1115 if (new_parent->new_child == clk)
1116 new_parent->new_child = NULL;
1117
1118 hlist_add_head(&clk->child_node, &new_parent->children);
1119 } else {
1120 hlist_add_head(&clk->child_node, &clk_orphan_list);
1121 }
1122
1123 clk->parent = new_parent;
1124 }
1125
1126 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1127 {
1128 unsigned long flags;
1129 int ret = 0;
1130 struct clk *old_parent = clk->parent;
1131
1132 /*
1133 * Migrate prepare state between parents and prevent race with
1134 * clk_enable().
1135 *
1136 * If the clock is not prepared, then a race with
1137 * clk_enable/disable() is impossible since we already have the
1138 * prepare lock (future calls to clk_enable() need to be preceded by
1139 * a clk_prepare()).
1140 *
1141 * If the clock is prepared, migrate the prepared state to the new
1142 * parent and also protect against a race with clk_enable() by
1143 * forcing the clock and the new parent on. This ensures that all
1144 * future calls to clk_enable() are practically NOPs with respect to
1145 * hardware and software states.
1146 *
1147 * See also: Comment for clk_set_parent() below.
1148 */
1149 if (clk->prepare_count) {
1150 __clk_prepare(parent);
1151 clk_enable(parent);
1152 clk_enable(clk);
1153 }
1154
1155 /* update the clk tree topology */
1156 flags = clk_enable_lock();
1157 clk_reparent(clk, parent);
1158 clk_enable_unlock(flags);
1159
1160 /* change clock input source */
1161 if (parent && clk->ops->set_parent)
1162 ret = clk->ops->set_parent(clk->hw, p_index);
1163
1164 if (ret) {
1165 flags = clk_enable_lock();
1166 clk_reparent(clk, old_parent);
1167 clk_enable_unlock(flags);
1168
1169 if (clk->prepare_count) {
1170 clk_disable(clk);
1171 clk_disable(parent);
1172 __clk_unprepare(parent);
1173 }
1174 return ret;
1175 }
1176
1177 /*
1178 * Finish the migration of prepare state and undo the changes done
1179 * for preventing a race with clk_enable().
1180 */
1181 if (clk->prepare_count) {
1182 clk_disable(clk);
1183 clk_disable(old_parent);
1184 __clk_unprepare(old_parent);
1185 }
1186
1187 /* update debugfs with new clk tree topology */
1188 clk_debug_reparent(clk, parent);
1189 return 0;
1190 }
1191
1192 /**
1193 * __clk_speculate_rates
1194 * @clk: first clk in the subtree
1195 * @parent_rate: the "future" rate of clk's parent
1196 *
1197 * Walks the subtree of clks starting with clk, speculating rates as it
1198 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1199 *
1200 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1201 * pre-rate change notifications and returns early if no clks in the
1202 * subtree have subscribed to the notifications. Note that if a clk does not
1203 * implement the .recalc_rate callback then it is assumed that the clock will
1204 * take on the rate of its parent.
1205 *
1206 * Caller must hold prepare_lock.
1207 */
1208 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1209 {
1210 struct clk *child;
1211 unsigned long new_rate;
1212 int ret = NOTIFY_DONE;
1213
1214 if (clk->ops->recalc_rate)
1215 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1216 else
1217 new_rate = parent_rate;
1218
1219 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1220 if (clk->notifier_count)
1221 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1222
1223 if (ret & NOTIFY_STOP_MASK)
1224 goto out;
1225
1226 hlist_for_each_entry(child, &clk->children, child_node) {
1227 ret = __clk_speculate_rates(child, new_rate);
1228 if (ret & NOTIFY_STOP_MASK)
1229 break;
1230 }
1231
1232 out:
1233 return ret;
1234 }
1235
1236 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1237 struct clk *new_parent, u8 p_index)
1238 {
1239 struct clk *child;
1240
1241 clk->new_rate = new_rate;
1242 clk->new_parent = new_parent;
1243 clk->new_parent_index = p_index;
1244 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1245 clk->new_child = NULL;
1246 if (new_parent && new_parent != clk->parent)
1247 new_parent->new_child = clk;
1248
1249 hlist_for_each_entry(child, &clk->children, child_node) {
1250 if (child->ops->recalc_rate)
1251 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1252 else
1253 child->new_rate = new_rate;
1254 clk_calc_subtree(child, child->new_rate, NULL, 0);
1255 }
1256 }
1257
1258 /*
1259 * calculate the new rates returning the topmost clock that has to be
1260 * changed.
1261 */
1262 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1263 {
1264 struct clk *top = clk;
1265 struct clk *old_parent, *parent;
1266 unsigned long best_parent_rate = 0;
1267 unsigned long new_rate;
1268 u8 p_index = 0;
1269
1270 /* sanity */
1271 if (IS_ERR_OR_NULL(clk))
1272 return NULL;
1273
1274 /* save parent rate, if it exists */
1275 parent = old_parent = clk->parent;
1276 if (parent)
1277 best_parent_rate = parent->rate;
1278
1279 /* find the closest rate and parent clk/rate */
1280 if (clk->ops->determine_rate) {
1281 new_rate = clk->ops->determine_rate(clk->hw, rate,
1282 &best_parent_rate,
1283 &parent);
1284 } else if (clk->ops->round_rate) {
1285 new_rate = clk->ops->round_rate(clk->hw, rate,
1286 &best_parent_rate);
1287 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1288 /* pass-through clock without adjustable parent */
1289 clk->new_rate = clk->rate;
1290 return NULL;
1291 } else {
1292 /* pass-through clock with adjustable parent */
1293 top = clk_calc_new_rates(parent, rate);
1294 new_rate = parent->new_rate;
1295 goto out;
1296 }
1297
1298 /* some clocks must be gated to change parent */
1299 if (parent != old_parent &&
1300 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1301 pr_debug("%s: %s not gated but wants to reparent\n",
1302 __func__, clk->name);
1303 return NULL;
1304 }
1305
1306 /* try finding the new parent index */
1307 if (parent) {
1308 p_index = clk_fetch_parent_index(clk, parent);
1309 if (p_index == clk->num_parents) {
1310 pr_debug("%s: clk %s can not be parent of clk %s\n",
1311 __func__, parent->name, clk->name);
1312 return NULL;
1313 }
1314 }
1315
1316 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1317 best_parent_rate != parent->rate)
1318 top = clk_calc_new_rates(parent, best_parent_rate);
1319
1320 out:
1321 clk_calc_subtree(clk, new_rate, parent, p_index);
1322
1323 return top;
1324 }
1325
1326 /*
1327 * Notify about rate changes in a subtree. Always walk down the whole tree
1328 * so that in case of an error we can walk down the whole tree again and
1329 * abort the change.
1330 */
1331 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1332 {
1333 struct clk *child, *tmp_clk, *fail_clk = NULL;
1334 int ret = NOTIFY_DONE;
1335
1336 if (clk->rate == clk->new_rate)
1337 return NULL;
1338
1339 if (clk->notifier_count) {
1340 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1341 if (ret & NOTIFY_STOP_MASK)
1342 fail_clk = clk;
1343 }
1344
1345 hlist_for_each_entry(child, &clk->children, child_node) {
1346 /* Skip children who will be reparented to another clock */
1347 if (child->new_parent && child->new_parent != clk)
1348 continue;
1349 tmp_clk = clk_propagate_rate_change(child, event);
1350 if (tmp_clk)
1351 fail_clk = tmp_clk;
1352 }
1353
1354 /* handle the new child who might not be in clk->children yet */
1355 if (clk->new_child) {
1356 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1357 if (tmp_clk)
1358 fail_clk = tmp_clk;
1359 }
1360
1361 return fail_clk;
1362 }
1363
1364 /*
1365 * walk down a subtree and set the new rates notifying the rate
1366 * change on the way
1367 */
1368 static void clk_change_rate(struct clk *clk)
1369 {
1370 struct clk *child;
1371 unsigned long old_rate;
1372 unsigned long best_parent_rate = 0;
1373
1374 old_rate = clk->rate;
1375
1376 /* set parent */
1377 if (clk->new_parent && clk->new_parent != clk->parent)
1378 __clk_set_parent(clk, clk->new_parent, clk->new_parent_index);
1379
1380 if (clk->parent)
1381 best_parent_rate = clk->parent->rate;
1382
1383 if (clk->ops->set_rate)
1384 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1385
1386 if (clk->ops->recalc_rate)
1387 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1388 else
1389 clk->rate = best_parent_rate;
1390
1391 if (clk->notifier_count && old_rate != clk->rate)
1392 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1393
1394 hlist_for_each_entry(child, &clk->children, child_node) {
1395 /* Skip children who will be reparented to another clock */
1396 if (child->new_parent && child->new_parent != clk)
1397 continue;
1398 clk_change_rate(child);
1399 }
1400
1401 /* handle the new child who might not be in clk->children yet */
1402 if (clk->new_child)
1403 clk_change_rate(clk->new_child);
1404 }
1405
1406 /**
1407 * clk_set_rate - specify a new rate for clk
1408 * @clk: the clk whose rate is being changed
1409 * @rate: the new rate for clk
1410 *
1411 * In the simplest case clk_set_rate will only adjust the rate of clk.
1412 *
1413 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1414 * propagate up to clk's parent; whether or not this happens depends on the
1415 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1416 * after calling .round_rate then upstream parent propagation is ignored. If
1417 * *parent_rate comes back with a new rate for clk's parent then we propagate
1418 * up to clk's parent and set its rate. Upward propagation will continue
1419 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1420 * .round_rate stops requesting changes to clk's parent_rate.
1421 *
1422 * Rate changes are accomplished via tree traversal that also recalculates the
1423 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1424 *
1425 * Returns 0 on success, -EERROR otherwise.
1426 */
1427 int clk_set_rate(struct clk *clk, unsigned long rate)
1428 {
1429 struct clk *top, *fail_clk;
1430 int ret = 0;
1431
1432 if (!clk)
1433 return 0;
1434
1435 /* prevent racing with updates to the clock topology */
1436 clk_prepare_lock();
1437
1438 /* bail early if nothing to do */
1439 if (rate == clk_get_rate(clk))
1440 goto out;
1441
1442 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1443 ret = -EBUSY;
1444 goto out;
1445 }
1446
1447 /* calculate new rates and get the topmost changed clock */
1448 top = clk_calc_new_rates(clk, rate);
1449 if (!top) {
1450 ret = -EINVAL;
1451 goto out;
1452 }
1453
1454 /* notify that we are about to change rates */
1455 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1456 if (fail_clk) {
1457 pr_warn("%s: failed to set %s rate\n", __func__,
1458 fail_clk->name);
1459 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1460 ret = -EBUSY;
1461 goto out;
1462 }
1463
1464 /* change the rates */
1465 clk_change_rate(top);
1466
1467 out:
1468 clk_prepare_unlock();
1469
1470 return ret;
1471 }
1472 EXPORT_SYMBOL_GPL(clk_set_rate);
1473
1474 /**
1475 * clk_get_parent - return the parent of a clk
1476 * @clk: the clk whose parent gets returned
1477 *
1478 * Simply returns clk->parent. Returns NULL if clk is NULL.
1479 */
1480 struct clk *clk_get_parent(struct clk *clk)
1481 {
1482 struct clk *parent;
1483
1484 clk_prepare_lock();
1485 parent = __clk_get_parent(clk);
1486 clk_prepare_unlock();
1487
1488 return parent;
1489 }
1490 EXPORT_SYMBOL_GPL(clk_get_parent);
1491
1492 /*
1493 * .get_parent is mandatory for clocks with multiple possible parents. It is
1494 * optional for single-parent clocks. Always call .get_parent if it is
1495 * available and WARN if it is missing for multi-parent clocks.
1496 *
1497 * For single-parent clocks without .get_parent, first check to see if the
1498 * .parents array exists, and if so use it to avoid an expensive tree
1499 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1500 */
1501 static struct clk *__clk_init_parent(struct clk *clk)
1502 {
1503 struct clk *ret = NULL;
1504 u8 index;
1505
1506 /* handle the trivial cases */
1507
1508 if (!clk->num_parents)
1509 goto out;
1510
1511 if (clk->num_parents == 1) {
1512 if (IS_ERR_OR_NULL(clk->parent))
1513 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1514 ret = clk->parent;
1515 goto out;
1516 }
1517
1518 if (!clk->ops->get_parent) {
1519 WARN(!clk->ops->get_parent,
1520 "%s: multi-parent clocks must implement .get_parent\n",
1521 __func__);
1522 goto out;
1523 };
1524
1525 /*
1526 * Do our best to cache parent clocks in clk->parents. This prevents
1527 * unnecessary and expensive calls to __clk_lookup. We don't set
1528 * clk->parent here; that is done by the calling function
1529 */
1530
1531 index = clk->ops->get_parent(clk->hw);
1532
1533 if (!clk->parents)
1534 clk->parents =
1535 kzalloc((sizeof(struct clk*) * clk->num_parents),
1536 GFP_KERNEL);
1537
1538 ret = clk_get_parent_by_index(clk, index);
1539
1540 out:
1541 return ret;
1542 }
1543
1544 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1545 {
1546 clk_reparent(clk, new_parent);
1547 clk_debug_reparent(clk, new_parent);
1548 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1549 }
1550
1551 /**
1552 * clk_set_parent - switch the parent of a mux clk
1553 * @clk: the mux clk whose input we are switching
1554 * @parent: the new input to clk
1555 *
1556 * Re-parent clk to use parent as its new input source. If clk is in
1557 * prepared state, the clk will get enabled for the duration of this call. If
1558 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1559 * that, the reparenting is glitchy in hardware, etc), use the
1560 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1561 *
1562 * After successfully changing clk's parent clk_set_parent will update the
1563 * clk topology, sysfs topology and propagate rate recalculation via
1564 * __clk_recalc_rates.
1565 *
1566 * Returns 0 on success, -EERROR otherwise.
1567 */
1568 int clk_set_parent(struct clk *clk, struct clk *parent)
1569 {
1570 int ret = 0;
1571 u8 p_index = 0;
1572 unsigned long p_rate = 0;
1573
1574 if (!clk)
1575 return 0;
1576
1577 if (!clk->ops)
1578 return -EINVAL;
1579
1580 /* verify ops for for multi-parent clks */
1581 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1582 return -ENOSYS;
1583
1584 /* prevent racing with updates to the clock topology */
1585 clk_prepare_lock();
1586
1587 if (clk->parent == parent)
1588 goto out;
1589
1590 /* check that we are allowed to re-parent if the clock is in use */
1591 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1592 ret = -EBUSY;
1593 goto out;
1594 }
1595
1596 /* try finding the new parent index */
1597 if (parent) {
1598 p_index = clk_fetch_parent_index(clk, parent);
1599 p_rate = parent->rate;
1600 if (p_index == clk->num_parents) {
1601 pr_debug("%s: clk %s can not be parent of clk %s\n",
1602 __func__, parent->name, clk->name);
1603 ret = -EINVAL;
1604 goto out;
1605 }
1606 }
1607
1608 /* propagate PRE_RATE_CHANGE notifications */
1609 ret = __clk_speculate_rates(clk, p_rate);
1610
1611 /* abort if a driver objects */
1612 if (ret & NOTIFY_STOP_MASK)
1613 goto out;
1614
1615 /* do the re-parent */
1616 ret = __clk_set_parent(clk, parent, p_index);
1617
1618 /* propagate rate recalculation accordingly */
1619 if (ret)
1620 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1621 else
1622 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1623
1624 out:
1625 clk_prepare_unlock();
1626
1627 return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(clk_set_parent);
1630
1631 /**
1632 * __clk_init - initialize the data structures in a struct clk
1633 * @dev: device initializing this clk, placeholder for now
1634 * @clk: clk being initialized
1635 *
1636 * Initializes the lists in struct clk, queries the hardware for the
1637 * parent and rate and sets them both.
1638 */
1639 int __clk_init(struct device *dev, struct clk *clk)
1640 {
1641 int i, ret = 0;
1642 struct clk *orphan;
1643 struct hlist_node *tmp2;
1644
1645 if (!clk)
1646 return -EINVAL;
1647
1648 clk_prepare_lock();
1649
1650 /* check to see if a clock with this name is already registered */
1651 if (__clk_lookup(clk->name)) {
1652 pr_debug("%s: clk %s already initialized\n",
1653 __func__, clk->name);
1654 ret = -EEXIST;
1655 goto out;
1656 }
1657
1658 /* check that clk_ops are sane. See Documentation/clk.txt */
1659 if (clk->ops->set_rate &&
1660 !((clk->ops->round_rate || clk->ops->determine_rate) &&
1661 clk->ops->recalc_rate)) {
1662 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1663 __func__, clk->name);
1664 ret = -EINVAL;
1665 goto out;
1666 }
1667
1668 if (clk->ops->set_parent && !clk->ops->get_parent) {
1669 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1670 __func__, clk->name);
1671 ret = -EINVAL;
1672 goto out;
1673 }
1674
1675 /* throw a WARN if any entries in parent_names are NULL */
1676 for (i = 0; i < clk->num_parents; i++)
1677 WARN(!clk->parent_names[i],
1678 "%s: invalid NULL in %s's .parent_names\n",
1679 __func__, clk->name);
1680
1681 /*
1682 * Allocate an array of struct clk *'s to avoid unnecessary string
1683 * look-ups of clk's possible parents. This can fail for clocks passed
1684 * in to clk_init during early boot; thus any access to clk->parents[]
1685 * must always check for a NULL pointer and try to populate it if
1686 * necessary.
1687 *
1688 * If clk->parents is not NULL we skip this entire block. This allows
1689 * for clock drivers to statically initialize clk->parents.
1690 */
1691 if (clk->num_parents > 1 && !clk->parents) {
1692 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1693 GFP_KERNEL);
1694 /*
1695 * __clk_lookup returns NULL for parents that have not been
1696 * clk_init'd; thus any access to clk->parents[] must check
1697 * for a NULL pointer. We can always perform lazy lookups for
1698 * missing parents later on.
1699 */
1700 if (clk->parents)
1701 for (i = 0; i < clk->num_parents; i++)
1702 clk->parents[i] =
1703 __clk_lookup(clk->parent_names[i]);
1704 }
1705
1706 clk->parent = __clk_init_parent(clk);
1707
1708 /*
1709 * Populate clk->parent if parent has already been __clk_init'd. If
1710 * parent has not yet been __clk_init'd then place clk in the orphan
1711 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1712 * clk list.
1713 *
1714 * Every time a new clk is clk_init'd then we walk the list of orphan
1715 * clocks and re-parent any that are children of the clock currently
1716 * being clk_init'd.
1717 */
1718 if (clk->parent)
1719 hlist_add_head(&clk->child_node,
1720 &clk->parent->children);
1721 else if (clk->flags & CLK_IS_ROOT)
1722 hlist_add_head(&clk->child_node, &clk_root_list);
1723 else
1724 hlist_add_head(&clk->child_node, &clk_orphan_list);
1725
1726 /*
1727 * Set clk's rate. The preferred method is to use .recalc_rate. For
1728 * simple clocks and lazy developers the default fallback is to use the
1729 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1730 * then rate is set to zero.
1731 */
1732 if (clk->ops->recalc_rate)
1733 clk->rate = clk->ops->recalc_rate(clk->hw,
1734 __clk_get_rate(clk->parent));
1735 else if (clk->parent)
1736 clk->rate = clk->parent->rate;
1737 else
1738 clk->rate = 0;
1739
1740 /*
1741 * walk the list of orphan clocks and reparent any that are children of
1742 * this clock
1743 */
1744 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1745 if (orphan->num_parents && orphan->ops->get_parent) {
1746 i = orphan->ops->get_parent(orphan->hw);
1747 if (!strcmp(clk->name, orphan->parent_names[i]))
1748 __clk_reparent(orphan, clk);
1749 continue;
1750 }
1751
1752 for (i = 0; i < orphan->num_parents; i++)
1753 if (!strcmp(clk->name, orphan->parent_names[i])) {
1754 __clk_reparent(orphan, clk);
1755 break;
1756 }
1757 }
1758
1759 /*
1760 * optional platform-specific magic
1761 *
1762 * The .init callback is not used by any of the basic clock types, but
1763 * exists for weird hardware that must perform initialization magic.
1764 * Please consider other ways of solving initialization problems before
1765 * using this callback, as its use is discouraged.
1766 */
1767 if (clk->ops->init)
1768 clk->ops->init(clk->hw);
1769
1770 clk_debug_register(clk);
1771
1772 out:
1773 clk_prepare_unlock();
1774
1775 return ret;
1776 }
1777
1778 /**
1779 * __clk_register - register a clock and return a cookie.
1780 *
1781 * Same as clk_register, except that the .clk field inside hw shall point to a
1782 * preallocated (generally statically allocated) struct clk. None of the fields
1783 * of the struct clk need to be initialized.
1784 *
1785 * The data pointed to by .init and .clk field shall NOT be marked as init
1786 * data.
1787 *
1788 * __clk_register is only exposed via clk-private.h and is intended for use with
1789 * very large numbers of clocks that need to be statically initialized. It is
1790 * a layering violation to include clk-private.h from any code which implements
1791 * a clock's .ops; as such any statically initialized clock data MUST be in a
1792 * separate C file from the logic that implements its operations. Returns 0
1793 * on success, otherwise an error code.
1794 */
1795 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1796 {
1797 int ret;
1798 struct clk *clk;
1799
1800 clk = hw->clk;
1801 clk->name = hw->init->name;
1802 clk->ops = hw->init->ops;
1803 clk->hw = hw;
1804 clk->flags = hw->init->flags;
1805 clk->parent_names = hw->init->parent_names;
1806 clk->num_parents = hw->init->num_parents;
1807
1808 ret = __clk_init(dev, clk);
1809 if (ret)
1810 return ERR_PTR(ret);
1811
1812 return clk;
1813 }
1814 EXPORT_SYMBOL_GPL(__clk_register);
1815
1816 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1817 {
1818 int i, ret;
1819
1820 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1821 if (!clk->name) {
1822 pr_err("%s: could not allocate clk->name\n", __func__);
1823 ret = -ENOMEM;
1824 goto fail_name;
1825 }
1826 clk->ops = hw->init->ops;
1827 clk->hw = hw;
1828 clk->flags = hw->init->flags;
1829 clk->num_parents = hw->init->num_parents;
1830 hw->clk = clk;
1831
1832 /* allocate local copy in case parent_names is __initdata */
1833 clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1834 GFP_KERNEL);
1835
1836 if (!clk->parent_names) {
1837 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1838 ret = -ENOMEM;
1839 goto fail_parent_names;
1840 }
1841
1842
1843 /* copy each string name in case parent_names is __initdata */
1844 for (i = 0; i < clk->num_parents; i++) {
1845 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1846 GFP_KERNEL);
1847 if (!clk->parent_names[i]) {
1848 pr_err("%s: could not copy parent_names\n", __func__);
1849 ret = -ENOMEM;
1850 goto fail_parent_names_copy;
1851 }
1852 }
1853
1854 ret = __clk_init(dev, clk);
1855 if (!ret)
1856 return 0;
1857
1858 fail_parent_names_copy:
1859 while (--i >= 0)
1860 kfree(clk->parent_names[i]);
1861 kfree(clk->parent_names);
1862 fail_parent_names:
1863 kfree(clk->name);
1864 fail_name:
1865 return ret;
1866 }
1867
1868 /**
1869 * clk_register - allocate a new clock, register it and return an opaque cookie
1870 * @dev: device that is registering this clock
1871 * @hw: link to hardware-specific clock data
1872 *
1873 * clk_register is the primary interface for populating the clock tree with new
1874 * clock nodes. It returns a pointer to the newly allocated struct clk which
1875 * cannot be dereferenced by driver code but may be used in conjuction with the
1876 * rest of the clock API. In the event of an error clk_register will return an
1877 * error code; drivers must test for an error code after calling clk_register.
1878 */
1879 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1880 {
1881 int ret;
1882 struct clk *clk;
1883
1884 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1885 if (!clk) {
1886 pr_err("%s: could not allocate clk\n", __func__);
1887 ret = -ENOMEM;
1888 goto fail_out;
1889 }
1890
1891 ret = _clk_register(dev, hw, clk);
1892 if (!ret)
1893 return clk;
1894
1895 kfree(clk);
1896 fail_out:
1897 return ERR_PTR(ret);
1898 }
1899 EXPORT_SYMBOL_GPL(clk_register);
1900
1901 /**
1902 * clk_unregister - unregister a currently registered clock
1903 * @clk: clock to unregister
1904 *
1905 * Currently unimplemented.
1906 */
1907 void clk_unregister(struct clk *clk) {}
1908 EXPORT_SYMBOL_GPL(clk_unregister);
1909
1910 static void devm_clk_release(struct device *dev, void *res)
1911 {
1912 clk_unregister(res);
1913 }
1914
1915 /**
1916 * devm_clk_register - resource managed clk_register()
1917 * @dev: device that is registering this clock
1918 * @hw: link to hardware-specific clock data
1919 *
1920 * Managed clk_register(). Clocks returned from this function are
1921 * automatically clk_unregister()ed on driver detach. See clk_register() for
1922 * more information.
1923 */
1924 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1925 {
1926 struct clk *clk;
1927 int ret;
1928
1929 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1930 if (!clk)
1931 return ERR_PTR(-ENOMEM);
1932
1933 ret = _clk_register(dev, hw, clk);
1934 if (!ret) {
1935 devres_add(dev, clk);
1936 } else {
1937 devres_free(clk);
1938 clk = ERR_PTR(ret);
1939 }
1940
1941 return clk;
1942 }
1943 EXPORT_SYMBOL_GPL(devm_clk_register);
1944
1945 static int devm_clk_match(struct device *dev, void *res, void *data)
1946 {
1947 struct clk *c = res;
1948 if (WARN_ON(!c))
1949 return 0;
1950 return c == data;
1951 }
1952
1953 /**
1954 * devm_clk_unregister - resource managed clk_unregister()
1955 * @clk: clock to unregister
1956 *
1957 * Deallocate a clock allocated with devm_clk_register(). Normally
1958 * this function will not need to be called and the resource management
1959 * code will ensure that the resource is freed.
1960 */
1961 void devm_clk_unregister(struct device *dev, struct clk *clk)
1962 {
1963 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1964 }
1965 EXPORT_SYMBOL_GPL(devm_clk_unregister);
1966
1967 /*** clk rate change notifiers ***/
1968
1969 /**
1970 * clk_notifier_register - add a clk rate change notifier
1971 * @clk: struct clk * to watch
1972 * @nb: struct notifier_block * with callback info
1973 *
1974 * Request notification when clk's rate changes. This uses an SRCU
1975 * notifier because we want it to block and notifier unregistrations are
1976 * uncommon. The callbacks associated with the notifier must not
1977 * re-enter into the clk framework by calling any top-level clk APIs;
1978 * this will cause a nested prepare_lock mutex.
1979 *
1980 * Pre-change notifier callbacks will be passed the current, pre-change
1981 * rate of the clk via struct clk_notifier_data.old_rate. The new,
1982 * post-change rate of the clk is passed via struct
1983 * clk_notifier_data.new_rate.
1984 *
1985 * Post-change notifiers will pass the now-current, post-change rate of
1986 * the clk in both struct clk_notifier_data.old_rate and struct
1987 * clk_notifier_data.new_rate.
1988 *
1989 * Abort-change notifiers are effectively the opposite of pre-change
1990 * notifiers: the original pre-change clk rate is passed in via struct
1991 * clk_notifier_data.new_rate and the failed post-change rate is passed
1992 * in via struct clk_notifier_data.old_rate.
1993 *
1994 * clk_notifier_register() must be called from non-atomic context.
1995 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1996 * allocation failure; otherwise, passes along the return value of
1997 * srcu_notifier_chain_register().
1998 */
1999 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2000 {
2001 struct clk_notifier *cn;
2002 int ret = -ENOMEM;
2003
2004 if (!clk || !nb)
2005 return -EINVAL;
2006
2007 clk_prepare_lock();
2008
2009 /* search the list of notifiers for this clk */
2010 list_for_each_entry(cn, &clk_notifier_list, node)
2011 if (cn->clk == clk)
2012 break;
2013
2014 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2015 if (cn->clk != clk) {
2016 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2017 if (!cn)
2018 goto out;
2019
2020 cn->clk = clk;
2021 srcu_init_notifier_head(&cn->notifier_head);
2022
2023 list_add(&cn->node, &clk_notifier_list);
2024 }
2025
2026 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2027
2028 clk->notifier_count++;
2029
2030 out:
2031 clk_prepare_unlock();
2032
2033 return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(clk_notifier_register);
2036
2037 /**
2038 * clk_notifier_unregister - remove a clk rate change notifier
2039 * @clk: struct clk *
2040 * @nb: struct notifier_block * with callback info
2041 *
2042 * Request no further notification for changes to 'clk' and frees memory
2043 * allocated in clk_notifier_register.
2044 *
2045 * Returns -EINVAL if called with null arguments; otherwise, passes
2046 * along the return value of srcu_notifier_chain_unregister().
2047 */
2048 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2049 {
2050 struct clk_notifier *cn = NULL;
2051 int ret = -EINVAL;
2052
2053 if (!clk || !nb)
2054 return -EINVAL;
2055
2056 clk_prepare_lock();
2057
2058 list_for_each_entry(cn, &clk_notifier_list, node)
2059 if (cn->clk == clk)
2060 break;
2061
2062 if (cn->clk == clk) {
2063 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2064
2065 clk->notifier_count--;
2066
2067 /* XXX the notifier code should handle this better */
2068 if (!cn->notifier_head.head) {
2069 srcu_cleanup_notifier_head(&cn->notifier_head);
2070 list_del(&cn->node);
2071 kfree(cn);
2072 }
2073
2074 } else {
2075 ret = -ENOENT;
2076 }
2077
2078 clk_prepare_unlock();
2079
2080 return ret;
2081 }
2082 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2083
2084 #ifdef CONFIG_OF
2085 /**
2086 * struct of_clk_provider - Clock provider registration structure
2087 * @link: Entry in global list of clock providers
2088 * @node: Pointer to device tree node of clock provider
2089 * @get: Get clock callback. Returns NULL or a struct clk for the
2090 * given clock specifier
2091 * @data: context pointer to be passed into @get callback
2092 */
2093 struct of_clk_provider {
2094 struct list_head link;
2095
2096 struct device_node *node;
2097 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2098 void *data;
2099 };
2100
2101 extern struct of_device_id __clk_of_table[];
2102
2103 static const struct of_device_id __clk_of_table_sentinel
2104 __used __section(__clk_of_table_end);
2105
2106 static LIST_HEAD(of_clk_providers);
2107 static DEFINE_MUTEX(of_clk_lock);
2108
2109 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2110 void *data)
2111 {
2112 return data;
2113 }
2114 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2115
2116 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2117 {
2118 struct clk_onecell_data *clk_data = data;
2119 unsigned int idx = clkspec->args[0];
2120
2121 if (idx >= clk_data->clk_num) {
2122 pr_err("%s: invalid clock index %d\n", __func__, idx);
2123 return ERR_PTR(-EINVAL);
2124 }
2125
2126 return clk_data->clks[idx];
2127 }
2128 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2129
2130 /**
2131 * of_clk_add_provider() - Register a clock provider for a node
2132 * @np: Device node pointer associated with clock provider
2133 * @clk_src_get: callback for decoding clock
2134 * @data: context pointer for @clk_src_get callback.
2135 */
2136 int of_clk_add_provider(struct device_node *np,
2137 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2138 void *data),
2139 void *data)
2140 {
2141 struct of_clk_provider *cp;
2142
2143 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2144 if (!cp)
2145 return -ENOMEM;
2146
2147 cp->node = of_node_get(np);
2148 cp->data = data;
2149 cp->get = clk_src_get;
2150
2151 mutex_lock(&of_clk_lock);
2152 list_add(&cp->link, &of_clk_providers);
2153 mutex_unlock(&of_clk_lock);
2154 pr_debug("Added clock from %s\n", np->full_name);
2155
2156 return 0;
2157 }
2158 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2159
2160 /**
2161 * of_clk_del_provider() - Remove a previously registered clock provider
2162 * @np: Device node pointer associated with clock provider
2163 */
2164 void of_clk_del_provider(struct device_node *np)
2165 {
2166 struct of_clk_provider *cp;
2167
2168 mutex_lock(&of_clk_lock);
2169 list_for_each_entry(cp, &of_clk_providers, link) {
2170 if (cp->node == np) {
2171 list_del(&cp->link);
2172 of_node_put(cp->node);
2173 kfree(cp);
2174 break;
2175 }
2176 }
2177 mutex_unlock(&of_clk_lock);
2178 }
2179 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2180
2181 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2182 {
2183 struct of_clk_provider *provider;
2184 struct clk *clk = ERR_PTR(-ENOENT);
2185
2186 /* Check if we have such a provider in our array */
2187 mutex_lock(&of_clk_lock);
2188 list_for_each_entry(provider, &of_clk_providers, link) {
2189 if (provider->node == clkspec->np)
2190 clk = provider->get(clkspec, provider->data);
2191 if (!IS_ERR(clk))
2192 break;
2193 }
2194 mutex_unlock(&of_clk_lock);
2195
2196 return clk;
2197 }
2198
2199 const char *of_clk_get_parent_name(struct device_node *np, int index)
2200 {
2201 struct of_phandle_args clkspec;
2202 const char *clk_name;
2203 int rc;
2204
2205 if (index < 0)
2206 return NULL;
2207
2208 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2209 &clkspec);
2210 if (rc)
2211 return NULL;
2212
2213 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2214 clkspec.args_count ? clkspec.args[0] : 0,
2215 &clk_name) < 0)
2216 clk_name = clkspec.np->name;
2217
2218 of_node_put(clkspec.np);
2219 return clk_name;
2220 }
2221 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2222
2223 /**
2224 * of_clk_init() - Scan and init clock providers from the DT
2225 * @matches: array of compatible values and init functions for providers.
2226 *
2227 * This function scans the device tree for matching clock providers and
2228 * calls their initialization functions
2229 */
2230 void __init of_clk_init(const struct of_device_id *matches)
2231 {
2232 const struct of_device_id *match;
2233 struct device_node *np;
2234
2235 if (!matches)
2236 matches = __clk_of_table;
2237
2238 for_each_matching_node_and_match(np, matches, &match) {
2239 of_clk_init_cb_t clk_init_cb = match->data;
2240 clk_init_cb(np);
2241 }
2242 }
2243 #endif
This page took 0.134153 seconds and 5 git commands to generate.