i40e: Implement ndo_features_check()
[deliverable/linux.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-provider.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24 #include <linux/clkdev.h>
25
26 #include "clk.h"
27
28 static DEFINE_SPINLOCK(enable_lock);
29 static DEFINE_MUTEX(prepare_lock);
30
31 static struct task_struct *prepare_owner;
32 static struct task_struct *enable_owner;
33
34 static int prepare_refcnt;
35 static int enable_refcnt;
36
37 static HLIST_HEAD(clk_root_list);
38 static HLIST_HEAD(clk_orphan_list);
39 static LIST_HEAD(clk_notifier_list);
40
41 /*** private data structures ***/
42
43 struct clk_core {
44 const char *name;
45 const struct clk_ops *ops;
46 struct clk_hw *hw;
47 struct module *owner;
48 struct clk_core *parent;
49 const char **parent_names;
50 struct clk_core **parents;
51 u8 num_parents;
52 u8 new_parent_index;
53 unsigned long rate;
54 unsigned long req_rate;
55 unsigned long new_rate;
56 struct clk_core *new_parent;
57 struct clk_core *new_child;
58 unsigned long flags;
59 unsigned int enable_count;
60 unsigned int prepare_count;
61 unsigned long accuracy;
62 int phase;
63 struct hlist_head children;
64 struct hlist_node child_node;
65 struct hlist_head clks;
66 unsigned int notifier_count;
67 #ifdef CONFIG_DEBUG_FS
68 struct dentry *dentry;
69 struct hlist_node debug_node;
70 #endif
71 struct kref ref;
72 };
73
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/clk.h>
76
77 struct clk {
78 struct clk_core *core;
79 const char *dev_id;
80 const char *con_id;
81 unsigned long min_rate;
82 unsigned long max_rate;
83 struct hlist_node clks_node;
84 };
85
86 /*** locking ***/
87 static void clk_prepare_lock(void)
88 {
89 if (!mutex_trylock(&prepare_lock)) {
90 if (prepare_owner == current) {
91 prepare_refcnt++;
92 return;
93 }
94 mutex_lock(&prepare_lock);
95 }
96 WARN_ON_ONCE(prepare_owner != NULL);
97 WARN_ON_ONCE(prepare_refcnt != 0);
98 prepare_owner = current;
99 prepare_refcnt = 1;
100 }
101
102 static void clk_prepare_unlock(void)
103 {
104 WARN_ON_ONCE(prepare_owner != current);
105 WARN_ON_ONCE(prepare_refcnt == 0);
106
107 if (--prepare_refcnt)
108 return;
109 prepare_owner = NULL;
110 mutex_unlock(&prepare_lock);
111 }
112
113 static unsigned long clk_enable_lock(void)
114 {
115 unsigned long flags;
116
117 if (!spin_trylock_irqsave(&enable_lock, flags)) {
118 if (enable_owner == current) {
119 enable_refcnt++;
120 return flags;
121 }
122 spin_lock_irqsave(&enable_lock, flags);
123 }
124 WARN_ON_ONCE(enable_owner != NULL);
125 WARN_ON_ONCE(enable_refcnt != 0);
126 enable_owner = current;
127 enable_refcnt = 1;
128 return flags;
129 }
130
131 static void clk_enable_unlock(unsigned long flags)
132 {
133 WARN_ON_ONCE(enable_owner != current);
134 WARN_ON_ONCE(enable_refcnt == 0);
135
136 if (--enable_refcnt)
137 return;
138 enable_owner = NULL;
139 spin_unlock_irqrestore(&enable_lock, flags);
140 }
141
142 static bool clk_core_is_prepared(struct clk_core *core)
143 {
144 /*
145 * .is_prepared is optional for clocks that can prepare
146 * fall back to software usage counter if it is missing
147 */
148 if (!core->ops->is_prepared)
149 return core->prepare_count;
150
151 return core->ops->is_prepared(core->hw);
152 }
153
154 static bool clk_core_is_enabled(struct clk_core *core)
155 {
156 /*
157 * .is_enabled is only mandatory for clocks that gate
158 * fall back to software usage counter if .is_enabled is missing
159 */
160 if (!core->ops->is_enabled)
161 return core->enable_count;
162
163 return core->ops->is_enabled(core->hw);
164 }
165
166 static void clk_unprepare_unused_subtree(struct clk_core *core)
167 {
168 struct clk_core *child;
169
170 lockdep_assert_held(&prepare_lock);
171
172 hlist_for_each_entry(child, &core->children, child_node)
173 clk_unprepare_unused_subtree(child);
174
175 if (core->prepare_count)
176 return;
177
178 if (core->flags & CLK_IGNORE_UNUSED)
179 return;
180
181 if (clk_core_is_prepared(core)) {
182 trace_clk_unprepare(core);
183 if (core->ops->unprepare_unused)
184 core->ops->unprepare_unused(core->hw);
185 else if (core->ops->unprepare)
186 core->ops->unprepare(core->hw);
187 trace_clk_unprepare_complete(core);
188 }
189 }
190
191 static void clk_disable_unused_subtree(struct clk_core *core)
192 {
193 struct clk_core *child;
194 unsigned long flags;
195
196 lockdep_assert_held(&prepare_lock);
197
198 hlist_for_each_entry(child, &core->children, child_node)
199 clk_disable_unused_subtree(child);
200
201 flags = clk_enable_lock();
202
203 if (core->enable_count)
204 goto unlock_out;
205
206 if (core->flags & CLK_IGNORE_UNUSED)
207 goto unlock_out;
208
209 /*
210 * some gate clocks have special needs during the disable-unused
211 * sequence. call .disable_unused if available, otherwise fall
212 * back to .disable
213 */
214 if (clk_core_is_enabled(core)) {
215 trace_clk_disable(core);
216 if (core->ops->disable_unused)
217 core->ops->disable_unused(core->hw);
218 else if (core->ops->disable)
219 core->ops->disable(core->hw);
220 trace_clk_disable_complete(core);
221 }
222
223 unlock_out:
224 clk_enable_unlock(flags);
225 }
226
227 static bool clk_ignore_unused;
228 static int __init clk_ignore_unused_setup(char *__unused)
229 {
230 clk_ignore_unused = true;
231 return 1;
232 }
233 __setup("clk_ignore_unused", clk_ignore_unused_setup);
234
235 static int clk_disable_unused(void)
236 {
237 struct clk_core *core;
238
239 if (clk_ignore_unused) {
240 pr_warn("clk: Not disabling unused clocks\n");
241 return 0;
242 }
243
244 clk_prepare_lock();
245
246 hlist_for_each_entry(core, &clk_root_list, child_node)
247 clk_disable_unused_subtree(core);
248
249 hlist_for_each_entry(core, &clk_orphan_list, child_node)
250 clk_disable_unused_subtree(core);
251
252 hlist_for_each_entry(core, &clk_root_list, child_node)
253 clk_unprepare_unused_subtree(core);
254
255 hlist_for_each_entry(core, &clk_orphan_list, child_node)
256 clk_unprepare_unused_subtree(core);
257
258 clk_prepare_unlock();
259
260 return 0;
261 }
262 late_initcall_sync(clk_disable_unused);
263
264 /*** helper functions ***/
265
266 const char *__clk_get_name(struct clk *clk)
267 {
268 return !clk ? NULL : clk->core->name;
269 }
270 EXPORT_SYMBOL_GPL(__clk_get_name);
271
272 struct clk_hw *__clk_get_hw(struct clk *clk)
273 {
274 return !clk ? NULL : clk->core->hw;
275 }
276 EXPORT_SYMBOL_GPL(__clk_get_hw);
277
278 u8 __clk_get_num_parents(struct clk *clk)
279 {
280 return !clk ? 0 : clk->core->num_parents;
281 }
282 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
283
284 struct clk *__clk_get_parent(struct clk *clk)
285 {
286 if (!clk)
287 return NULL;
288
289 /* TODO: Create a per-user clk and change callers to call clk_put */
290 return !clk->core->parent ? NULL : clk->core->parent->hw->clk;
291 }
292 EXPORT_SYMBOL_GPL(__clk_get_parent);
293
294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 struct clk_core *core)
296 {
297 struct clk_core *child;
298 struct clk_core *ret;
299
300 if (!strcmp(core->name, name))
301 return core;
302
303 hlist_for_each_entry(child, &core->children, child_node) {
304 ret = __clk_lookup_subtree(name, child);
305 if (ret)
306 return ret;
307 }
308
309 return NULL;
310 }
311
312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 struct clk_core *root_clk;
315 struct clk_core *ret;
316
317 if (!name)
318 return NULL;
319
320 /* search the 'proper' clk tree first */
321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 ret = __clk_lookup_subtree(name, root_clk);
323 if (ret)
324 return ret;
325 }
326
327 /* if not found, then search the orphan tree */
328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 ret = __clk_lookup_subtree(name, root_clk);
330 if (ret)
331 return ret;
332 }
333
334 return NULL;
335 }
336
337 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
338 u8 index)
339 {
340 if (!core || index >= core->num_parents)
341 return NULL;
342 else if (!core->parents)
343 return clk_core_lookup(core->parent_names[index]);
344 else if (!core->parents[index])
345 return core->parents[index] =
346 clk_core_lookup(core->parent_names[index]);
347 else
348 return core->parents[index];
349 }
350
351 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
352 {
353 struct clk_core *parent;
354
355 if (!clk)
356 return NULL;
357
358 parent = clk_core_get_parent_by_index(clk->core, index);
359
360 return !parent ? NULL : parent->hw->clk;
361 }
362 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
363
364 unsigned int __clk_get_enable_count(struct clk *clk)
365 {
366 return !clk ? 0 : clk->core->enable_count;
367 }
368
369 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
370 {
371 unsigned long ret;
372
373 if (!core) {
374 ret = 0;
375 goto out;
376 }
377
378 ret = core->rate;
379
380 if (core->flags & CLK_IS_ROOT)
381 goto out;
382
383 if (!core->parent)
384 ret = 0;
385
386 out:
387 return ret;
388 }
389
390 unsigned long __clk_get_rate(struct clk *clk)
391 {
392 if (!clk)
393 return 0;
394
395 return clk_core_get_rate_nolock(clk->core);
396 }
397 EXPORT_SYMBOL_GPL(__clk_get_rate);
398
399 static unsigned long __clk_get_accuracy(struct clk_core *core)
400 {
401 if (!core)
402 return 0;
403
404 return core->accuracy;
405 }
406
407 unsigned long __clk_get_flags(struct clk *clk)
408 {
409 return !clk ? 0 : clk->core->flags;
410 }
411 EXPORT_SYMBOL_GPL(__clk_get_flags);
412
413 bool __clk_is_prepared(struct clk *clk)
414 {
415 if (!clk)
416 return false;
417
418 return clk_core_is_prepared(clk->core);
419 }
420
421 bool __clk_is_enabled(struct clk *clk)
422 {
423 if (!clk)
424 return false;
425
426 return clk_core_is_enabled(clk->core);
427 }
428 EXPORT_SYMBOL_GPL(__clk_is_enabled);
429
430 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
431 unsigned long best, unsigned long flags)
432 {
433 if (flags & CLK_MUX_ROUND_CLOSEST)
434 return abs(now - rate) < abs(best - rate);
435
436 return now <= rate && now > best;
437 }
438
439 static long
440 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate,
441 unsigned long min_rate,
442 unsigned long max_rate,
443 unsigned long *best_parent_rate,
444 struct clk_hw **best_parent_p,
445 unsigned long flags)
446 {
447 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
448 int i, num_parents;
449 unsigned long parent_rate, best = 0;
450
451 /* if NO_REPARENT flag set, pass through to current parent */
452 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
453 parent = core->parent;
454 if (core->flags & CLK_SET_RATE_PARENT)
455 best = __clk_determine_rate(parent ? parent->hw : NULL,
456 rate, min_rate, max_rate);
457 else if (parent)
458 best = clk_core_get_rate_nolock(parent);
459 else
460 best = clk_core_get_rate_nolock(core);
461 goto out;
462 }
463
464 /* find the parent that can provide the fastest rate <= rate */
465 num_parents = core->num_parents;
466 for (i = 0; i < num_parents; i++) {
467 parent = clk_core_get_parent_by_index(core, i);
468 if (!parent)
469 continue;
470 if (core->flags & CLK_SET_RATE_PARENT)
471 parent_rate = __clk_determine_rate(parent->hw, rate,
472 min_rate,
473 max_rate);
474 else
475 parent_rate = clk_core_get_rate_nolock(parent);
476 if (mux_is_better_rate(rate, parent_rate, best, flags)) {
477 best_parent = parent;
478 best = parent_rate;
479 }
480 }
481
482 out:
483 if (best_parent)
484 *best_parent_p = best_parent->hw;
485 *best_parent_rate = best;
486
487 return best;
488 }
489
490 struct clk *__clk_lookup(const char *name)
491 {
492 struct clk_core *core = clk_core_lookup(name);
493
494 return !core ? NULL : core->hw->clk;
495 }
496
497 static void clk_core_get_boundaries(struct clk_core *core,
498 unsigned long *min_rate,
499 unsigned long *max_rate)
500 {
501 struct clk *clk_user;
502
503 *min_rate = 0;
504 *max_rate = ULONG_MAX;
505
506 hlist_for_each_entry(clk_user, &core->clks, clks_node)
507 *min_rate = max(*min_rate, clk_user->min_rate);
508
509 hlist_for_each_entry(clk_user, &core->clks, clks_node)
510 *max_rate = min(*max_rate, clk_user->max_rate);
511 }
512
513 /*
514 * Helper for finding best parent to provide a given frequency. This can be used
515 * directly as a determine_rate callback (e.g. for a mux), or from a more
516 * complex clock that may combine a mux with other operations.
517 */
518 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
519 unsigned long min_rate,
520 unsigned long max_rate,
521 unsigned long *best_parent_rate,
522 struct clk_hw **best_parent_p)
523 {
524 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
525 best_parent_rate,
526 best_parent_p, 0);
527 }
528 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
529
530 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate,
531 unsigned long min_rate,
532 unsigned long max_rate,
533 unsigned long *best_parent_rate,
534 struct clk_hw **best_parent_p)
535 {
536 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
537 best_parent_rate,
538 best_parent_p,
539 CLK_MUX_ROUND_CLOSEST);
540 }
541 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
542
543 /*** clk api ***/
544
545 static void clk_core_unprepare(struct clk_core *core)
546 {
547 lockdep_assert_held(&prepare_lock);
548
549 if (!core)
550 return;
551
552 if (WARN_ON(core->prepare_count == 0))
553 return;
554
555 if (--core->prepare_count > 0)
556 return;
557
558 WARN_ON(core->enable_count > 0);
559
560 trace_clk_unprepare(core);
561
562 if (core->ops->unprepare)
563 core->ops->unprepare(core->hw);
564
565 trace_clk_unprepare_complete(core);
566 clk_core_unprepare(core->parent);
567 }
568
569 /**
570 * clk_unprepare - undo preparation of a clock source
571 * @clk: the clk being unprepared
572 *
573 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
574 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
575 * if the operation may sleep. One example is a clk which is accessed over
576 * I2c. In the complex case a clk gate operation may require a fast and a slow
577 * part. It is this reason that clk_unprepare and clk_disable are not mutually
578 * exclusive. In fact clk_disable must be called before clk_unprepare.
579 */
580 void clk_unprepare(struct clk *clk)
581 {
582 if (IS_ERR_OR_NULL(clk))
583 return;
584
585 clk_prepare_lock();
586 clk_core_unprepare(clk->core);
587 clk_prepare_unlock();
588 }
589 EXPORT_SYMBOL_GPL(clk_unprepare);
590
591 static int clk_core_prepare(struct clk_core *core)
592 {
593 int ret = 0;
594
595 lockdep_assert_held(&prepare_lock);
596
597 if (!core)
598 return 0;
599
600 if (core->prepare_count == 0) {
601 ret = clk_core_prepare(core->parent);
602 if (ret)
603 return ret;
604
605 trace_clk_prepare(core);
606
607 if (core->ops->prepare)
608 ret = core->ops->prepare(core->hw);
609
610 trace_clk_prepare_complete(core);
611
612 if (ret) {
613 clk_core_unprepare(core->parent);
614 return ret;
615 }
616 }
617
618 core->prepare_count++;
619
620 return 0;
621 }
622
623 /**
624 * clk_prepare - prepare a clock source
625 * @clk: the clk being prepared
626 *
627 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
628 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
629 * operation may sleep. One example is a clk which is accessed over I2c. In
630 * the complex case a clk ungate operation may require a fast and a slow part.
631 * It is this reason that clk_prepare and clk_enable are not mutually
632 * exclusive. In fact clk_prepare must be called before clk_enable.
633 * Returns 0 on success, -EERROR otherwise.
634 */
635 int clk_prepare(struct clk *clk)
636 {
637 int ret;
638
639 if (!clk)
640 return 0;
641
642 clk_prepare_lock();
643 ret = clk_core_prepare(clk->core);
644 clk_prepare_unlock();
645
646 return ret;
647 }
648 EXPORT_SYMBOL_GPL(clk_prepare);
649
650 static void clk_core_disable(struct clk_core *core)
651 {
652 lockdep_assert_held(&enable_lock);
653
654 if (!core)
655 return;
656
657 if (WARN_ON(core->enable_count == 0))
658 return;
659
660 if (--core->enable_count > 0)
661 return;
662
663 trace_clk_disable(core);
664
665 if (core->ops->disable)
666 core->ops->disable(core->hw);
667
668 trace_clk_disable_complete(core);
669
670 clk_core_disable(core->parent);
671 }
672
673 /**
674 * clk_disable - gate a clock
675 * @clk: the clk being gated
676 *
677 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
678 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
679 * clk if the operation is fast and will never sleep. One example is a
680 * SoC-internal clk which is controlled via simple register writes. In the
681 * complex case a clk gate operation may require a fast and a slow part. It is
682 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
683 * In fact clk_disable must be called before clk_unprepare.
684 */
685 void clk_disable(struct clk *clk)
686 {
687 unsigned long flags;
688
689 if (IS_ERR_OR_NULL(clk))
690 return;
691
692 flags = clk_enable_lock();
693 clk_core_disable(clk->core);
694 clk_enable_unlock(flags);
695 }
696 EXPORT_SYMBOL_GPL(clk_disable);
697
698 static int clk_core_enable(struct clk_core *core)
699 {
700 int ret = 0;
701
702 lockdep_assert_held(&enable_lock);
703
704 if (!core)
705 return 0;
706
707 if (WARN_ON(core->prepare_count == 0))
708 return -ESHUTDOWN;
709
710 if (core->enable_count == 0) {
711 ret = clk_core_enable(core->parent);
712
713 if (ret)
714 return ret;
715
716 trace_clk_enable(core);
717
718 if (core->ops->enable)
719 ret = core->ops->enable(core->hw);
720
721 trace_clk_enable_complete(core);
722
723 if (ret) {
724 clk_core_disable(core->parent);
725 return ret;
726 }
727 }
728
729 core->enable_count++;
730 return 0;
731 }
732
733 /**
734 * clk_enable - ungate a clock
735 * @clk: the clk being ungated
736 *
737 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
738 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
739 * if the operation will never sleep. One example is a SoC-internal clk which
740 * is controlled via simple register writes. In the complex case a clk ungate
741 * operation may require a fast and a slow part. It is this reason that
742 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
743 * must be called before clk_enable. Returns 0 on success, -EERROR
744 * otherwise.
745 */
746 int clk_enable(struct clk *clk)
747 {
748 unsigned long flags;
749 int ret;
750
751 if (!clk)
752 return 0;
753
754 flags = clk_enable_lock();
755 ret = clk_core_enable(clk->core);
756 clk_enable_unlock(flags);
757
758 return ret;
759 }
760 EXPORT_SYMBOL_GPL(clk_enable);
761
762 static unsigned long clk_core_round_rate_nolock(struct clk_core *core,
763 unsigned long rate,
764 unsigned long min_rate,
765 unsigned long max_rate)
766 {
767 unsigned long parent_rate = 0;
768 struct clk_core *parent;
769 struct clk_hw *parent_hw;
770
771 lockdep_assert_held(&prepare_lock);
772
773 if (!core)
774 return 0;
775
776 parent = core->parent;
777 if (parent)
778 parent_rate = parent->rate;
779
780 if (core->ops->determine_rate) {
781 parent_hw = parent ? parent->hw : NULL;
782 return core->ops->determine_rate(core->hw, rate,
783 min_rate, max_rate,
784 &parent_rate, &parent_hw);
785 } else if (core->ops->round_rate)
786 return core->ops->round_rate(core->hw, rate, &parent_rate);
787 else if (core->flags & CLK_SET_RATE_PARENT)
788 return clk_core_round_rate_nolock(core->parent, rate, min_rate,
789 max_rate);
790 else
791 return core->rate;
792 }
793
794 /**
795 * __clk_determine_rate - get the closest rate actually supported by a clock
796 * @hw: determine the rate of this clock
797 * @rate: target rate
798 * @min_rate: returned rate must be greater than this rate
799 * @max_rate: returned rate must be less than this rate
800 *
801 * Useful for clk_ops such as .set_rate and .determine_rate.
802 */
803 unsigned long __clk_determine_rate(struct clk_hw *hw,
804 unsigned long rate,
805 unsigned long min_rate,
806 unsigned long max_rate)
807 {
808 if (!hw)
809 return 0;
810
811 return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate);
812 }
813 EXPORT_SYMBOL_GPL(__clk_determine_rate);
814
815 /**
816 * __clk_round_rate - round the given rate for a clk
817 * @clk: round the rate of this clock
818 * @rate: the rate which is to be rounded
819 *
820 * Useful for clk_ops such as .set_rate
821 */
822 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
823 {
824 unsigned long min_rate;
825 unsigned long max_rate;
826
827 if (!clk)
828 return 0;
829
830 clk_core_get_boundaries(clk->core, &min_rate, &max_rate);
831
832 return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate);
833 }
834 EXPORT_SYMBOL_GPL(__clk_round_rate);
835
836 /**
837 * clk_round_rate - round the given rate for a clk
838 * @clk: the clk for which we are rounding a rate
839 * @rate: the rate which is to be rounded
840 *
841 * Takes in a rate as input and rounds it to a rate that the clk can actually
842 * use which is then returned. If clk doesn't support round_rate operation
843 * then the parent rate is returned.
844 */
845 long clk_round_rate(struct clk *clk, unsigned long rate)
846 {
847 unsigned long ret;
848
849 if (!clk)
850 return 0;
851
852 clk_prepare_lock();
853 ret = __clk_round_rate(clk, rate);
854 clk_prepare_unlock();
855
856 return ret;
857 }
858 EXPORT_SYMBOL_GPL(clk_round_rate);
859
860 /**
861 * __clk_notify - call clk notifier chain
862 * @core: clk that is changing rate
863 * @msg: clk notifier type (see include/linux/clk.h)
864 * @old_rate: old clk rate
865 * @new_rate: new clk rate
866 *
867 * Triggers a notifier call chain on the clk rate-change notification
868 * for 'clk'. Passes a pointer to the struct clk and the previous
869 * and current rates to the notifier callback. Intended to be called by
870 * internal clock code only. Returns NOTIFY_DONE from the last driver
871 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
872 * a driver returns that.
873 */
874 static int __clk_notify(struct clk_core *core, unsigned long msg,
875 unsigned long old_rate, unsigned long new_rate)
876 {
877 struct clk_notifier *cn;
878 struct clk_notifier_data cnd;
879 int ret = NOTIFY_DONE;
880
881 cnd.old_rate = old_rate;
882 cnd.new_rate = new_rate;
883
884 list_for_each_entry(cn, &clk_notifier_list, node) {
885 if (cn->clk->core == core) {
886 cnd.clk = cn->clk;
887 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
888 &cnd);
889 }
890 }
891
892 return ret;
893 }
894
895 /**
896 * __clk_recalc_accuracies
897 * @core: first clk in the subtree
898 *
899 * Walks the subtree of clks starting with clk and recalculates accuracies as
900 * it goes. Note that if a clk does not implement the .recalc_accuracy
901 * callback then it is assumed that the clock will take on the accuracy of its
902 * parent.
903 */
904 static void __clk_recalc_accuracies(struct clk_core *core)
905 {
906 unsigned long parent_accuracy = 0;
907 struct clk_core *child;
908
909 lockdep_assert_held(&prepare_lock);
910
911 if (core->parent)
912 parent_accuracy = core->parent->accuracy;
913
914 if (core->ops->recalc_accuracy)
915 core->accuracy = core->ops->recalc_accuracy(core->hw,
916 parent_accuracy);
917 else
918 core->accuracy = parent_accuracy;
919
920 hlist_for_each_entry(child, &core->children, child_node)
921 __clk_recalc_accuracies(child);
922 }
923
924 static long clk_core_get_accuracy(struct clk_core *core)
925 {
926 unsigned long accuracy;
927
928 clk_prepare_lock();
929 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
930 __clk_recalc_accuracies(core);
931
932 accuracy = __clk_get_accuracy(core);
933 clk_prepare_unlock();
934
935 return accuracy;
936 }
937
938 /**
939 * clk_get_accuracy - return the accuracy of clk
940 * @clk: the clk whose accuracy is being returned
941 *
942 * Simply returns the cached accuracy of the clk, unless
943 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
944 * issued.
945 * If clk is NULL then returns 0.
946 */
947 long clk_get_accuracy(struct clk *clk)
948 {
949 if (!clk)
950 return 0;
951
952 return clk_core_get_accuracy(clk->core);
953 }
954 EXPORT_SYMBOL_GPL(clk_get_accuracy);
955
956 static unsigned long clk_recalc(struct clk_core *core,
957 unsigned long parent_rate)
958 {
959 if (core->ops->recalc_rate)
960 return core->ops->recalc_rate(core->hw, parent_rate);
961 return parent_rate;
962 }
963
964 /**
965 * __clk_recalc_rates
966 * @core: first clk in the subtree
967 * @msg: notification type (see include/linux/clk.h)
968 *
969 * Walks the subtree of clks starting with clk and recalculates rates as it
970 * goes. Note that if a clk does not implement the .recalc_rate callback then
971 * it is assumed that the clock will take on the rate of its parent.
972 *
973 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
974 * if necessary.
975 */
976 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
977 {
978 unsigned long old_rate;
979 unsigned long parent_rate = 0;
980 struct clk_core *child;
981
982 lockdep_assert_held(&prepare_lock);
983
984 old_rate = core->rate;
985
986 if (core->parent)
987 parent_rate = core->parent->rate;
988
989 core->rate = clk_recalc(core, parent_rate);
990
991 /*
992 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
993 * & ABORT_RATE_CHANGE notifiers
994 */
995 if (core->notifier_count && msg)
996 __clk_notify(core, msg, old_rate, core->rate);
997
998 hlist_for_each_entry(child, &core->children, child_node)
999 __clk_recalc_rates(child, msg);
1000 }
1001
1002 static unsigned long clk_core_get_rate(struct clk_core *core)
1003 {
1004 unsigned long rate;
1005
1006 clk_prepare_lock();
1007
1008 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1009 __clk_recalc_rates(core, 0);
1010
1011 rate = clk_core_get_rate_nolock(core);
1012 clk_prepare_unlock();
1013
1014 return rate;
1015 }
1016
1017 /**
1018 * clk_get_rate - return the rate of clk
1019 * @clk: the clk whose rate is being returned
1020 *
1021 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1022 * is set, which means a recalc_rate will be issued.
1023 * If clk is NULL then returns 0.
1024 */
1025 unsigned long clk_get_rate(struct clk *clk)
1026 {
1027 if (!clk)
1028 return 0;
1029
1030 return clk_core_get_rate(clk->core);
1031 }
1032 EXPORT_SYMBOL_GPL(clk_get_rate);
1033
1034 static int clk_fetch_parent_index(struct clk_core *core,
1035 struct clk_core *parent)
1036 {
1037 int i;
1038
1039 if (!core->parents) {
1040 core->parents = kcalloc(core->num_parents,
1041 sizeof(struct clk *), GFP_KERNEL);
1042 if (!core->parents)
1043 return -ENOMEM;
1044 }
1045
1046 /*
1047 * find index of new parent clock using cached parent ptrs,
1048 * or if not yet cached, use string name comparison and cache
1049 * them now to avoid future calls to clk_core_lookup.
1050 */
1051 for (i = 0; i < core->num_parents; i++) {
1052 if (core->parents[i] == parent)
1053 return i;
1054
1055 if (core->parents[i])
1056 continue;
1057
1058 if (!strcmp(core->parent_names[i], parent->name)) {
1059 core->parents[i] = clk_core_lookup(parent->name);
1060 return i;
1061 }
1062 }
1063
1064 return -EINVAL;
1065 }
1066
1067 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1068 {
1069 hlist_del(&core->child_node);
1070
1071 if (new_parent) {
1072 /* avoid duplicate POST_RATE_CHANGE notifications */
1073 if (new_parent->new_child == core)
1074 new_parent->new_child = NULL;
1075
1076 hlist_add_head(&core->child_node, &new_parent->children);
1077 } else {
1078 hlist_add_head(&core->child_node, &clk_orphan_list);
1079 }
1080
1081 core->parent = new_parent;
1082 }
1083
1084 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1085 struct clk_core *parent)
1086 {
1087 unsigned long flags;
1088 struct clk_core *old_parent = core->parent;
1089
1090 /*
1091 * Migrate prepare state between parents and prevent race with
1092 * clk_enable().
1093 *
1094 * If the clock is not prepared, then a race with
1095 * clk_enable/disable() is impossible since we already have the
1096 * prepare lock (future calls to clk_enable() need to be preceded by
1097 * a clk_prepare()).
1098 *
1099 * If the clock is prepared, migrate the prepared state to the new
1100 * parent and also protect against a race with clk_enable() by
1101 * forcing the clock and the new parent on. This ensures that all
1102 * future calls to clk_enable() are practically NOPs with respect to
1103 * hardware and software states.
1104 *
1105 * See also: Comment for clk_set_parent() below.
1106 */
1107 if (core->prepare_count) {
1108 clk_core_prepare(parent);
1109 flags = clk_enable_lock();
1110 clk_core_enable(parent);
1111 clk_core_enable(core);
1112 clk_enable_unlock(flags);
1113 }
1114
1115 /* update the clk tree topology */
1116 flags = clk_enable_lock();
1117 clk_reparent(core, parent);
1118 clk_enable_unlock(flags);
1119
1120 return old_parent;
1121 }
1122
1123 static void __clk_set_parent_after(struct clk_core *core,
1124 struct clk_core *parent,
1125 struct clk_core *old_parent)
1126 {
1127 unsigned long flags;
1128
1129 /*
1130 * Finish the migration of prepare state and undo the changes done
1131 * for preventing a race with clk_enable().
1132 */
1133 if (core->prepare_count) {
1134 flags = clk_enable_lock();
1135 clk_core_disable(core);
1136 clk_core_disable(old_parent);
1137 clk_enable_unlock(flags);
1138 clk_core_unprepare(old_parent);
1139 }
1140 }
1141
1142 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1143 u8 p_index)
1144 {
1145 unsigned long flags;
1146 int ret = 0;
1147 struct clk_core *old_parent;
1148
1149 old_parent = __clk_set_parent_before(core, parent);
1150
1151 trace_clk_set_parent(core, parent);
1152
1153 /* change clock input source */
1154 if (parent && core->ops->set_parent)
1155 ret = core->ops->set_parent(core->hw, p_index);
1156
1157 trace_clk_set_parent_complete(core, parent);
1158
1159 if (ret) {
1160 flags = clk_enable_lock();
1161 clk_reparent(core, old_parent);
1162 clk_enable_unlock(flags);
1163
1164 if (core->prepare_count) {
1165 flags = clk_enable_lock();
1166 clk_core_disable(core);
1167 clk_core_disable(parent);
1168 clk_enable_unlock(flags);
1169 clk_core_unprepare(parent);
1170 }
1171 return ret;
1172 }
1173
1174 __clk_set_parent_after(core, parent, old_parent);
1175
1176 return 0;
1177 }
1178
1179 /**
1180 * __clk_speculate_rates
1181 * @core: first clk in the subtree
1182 * @parent_rate: the "future" rate of clk's parent
1183 *
1184 * Walks the subtree of clks starting with clk, speculating rates as it
1185 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1186 *
1187 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1188 * pre-rate change notifications and returns early if no clks in the
1189 * subtree have subscribed to the notifications. Note that if a clk does not
1190 * implement the .recalc_rate callback then it is assumed that the clock will
1191 * take on the rate of its parent.
1192 */
1193 static int __clk_speculate_rates(struct clk_core *core,
1194 unsigned long parent_rate)
1195 {
1196 struct clk_core *child;
1197 unsigned long new_rate;
1198 int ret = NOTIFY_DONE;
1199
1200 lockdep_assert_held(&prepare_lock);
1201
1202 new_rate = clk_recalc(core, parent_rate);
1203
1204 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1205 if (core->notifier_count)
1206 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1207
1208 if (ret & NOTIFY_STOP_MASK) {
1209 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1210 __func__, core->name, ret);
1211 goto out;
1212 }
1213
1214 hlist_for_each_entry(child, &core->children, child_node) {
1215 ret = __clk_speculate_rates(child, new_rate);
1216 if (ret & NOTIFY_STOP_MASK)
1217 break;
1218 }
1219
1220 out:
1221 return ret;
1222 }
1223
1224 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1225 struct clk_core *new_parent, u8 p_index)
1226 {
1227 struct clk_core *child;
1228
1229 core->new_rate = new_rate;
1230 core->new_parent = new_parent;
1231 core->new_parent_index = p_index;
1232 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1233 core->new_child = NULL;
1234 if (new_parent && new_parent != core->parent)
1235 new_parent->new_child = core;
1236
1237 hlist_for_each_entry(child, &core->children, child_node) {
1238 child->new_rate = clk_recalc(child, new_rate);
1239 clk_calc_subtree(child, child->new_rate, NULL, 0);
1240 }
1241 }
1242
1243 /*
1244 * calculate the new rates returning the topmost clock that has to be
1245 * changed.
1246 */
1247 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1248 unsigned long rate)
1249 {
1250 struct clk_core *top = core;
1251 struct clk_core *old_parent, *parent;
1252 struct clk_hw *parent_hw;
1253 unsigned long best_parent_rate = 0;
1254 unsigned long new_rate;
1255 unsigned long min_rate;
1256 unsigned long max_rate;
1257 int p_index = 0;
1258 long ret;
1259
1260 /* sanity */
1261 if (IS_ERR_OR_NULL(core))
1262 return NULL;
1263
1264 /* save parent rate, if it exists */
1265 parent = old_parent = core->parent;
1266 if (parent)
1267 best_parent_rate = parent->rate;
1268
1269 clk_core_get_boundaries(core, &min_rate, &max_rate);
1270
1271 /* find the closest rate and parent clk/rate */
1272 if (core->ops->determine_rate) {
1273 parent_hw = parent ? parent->hw : NULL;
1274 ret = core->ops->determine_rate(core->hw, rate,
1275 min_rate,
1276 max_rate,
1277 &best_parent_rate,
1278 &parent_hw);
1279 if (ret < 0)
1280 return NULL;
1281
1282 new_rate = ret;
1283 parent = parent_hw ? parent_hw->core : NULL;
1284 } else if (core->ops->round_rate) {
1285 ret = core->ops->round_rate(core->hw, rate,
1286 &best_parent_rate);
1287 if (ret < 0)
1288 return NULL;
1289
1290 new_rate = ret;
1291 if (new_rate < min_rate || new_rate > max_rate)
1292 return NULL;
1293 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1294 /* pass-through clock without adjustable parent */
1295 core->new_rate = core->rate;
1296 return NULL;
1297 } else {
1298 /* pass-through clock with adjustable parent */
1299 top = clk_calc_new_rates(parent, rate);
1300 new_rate = parent->new_rate;
1301 goto out;
1302 }
1303
1304 /* some clocks must be gated to change parent */
1305 if (parent != old_parent &&
1306 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1307 pr_debug("%s: %s not gated but wants to reparent\n",
1308 __func__, core->name);
1309 return NULL;
1310 }
1311
1312 /* try finding the new parent index */
1313 if (parent && core->num_parents > 1) {
1314 p_index = clk_fetch_parent_index(core, parent);
1315 if (p_index < 0) {
1316 pr_debug("%s: clk %s can not be parent of clk %s\n",
1317 __func__, parent->name, core->name);
1318 return NULL;
1319 }
1320 }
1321
1322 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1323 best_parent_rate != parent->rate)
1324 top = clk_calc_new_rates(parent, best_parent_rate);
1325
1326 out:
1327 clk_calc_subtree(core, new_rate, parent, p_index);
1328
1329 return top;
1330 }
1331
1332 /*
1333 * Notify about rate changes in a subtree. Always walk down the whole tree
1334 * so that in case of an error we can walk down the whole tree again and
1335 * abort the change.
1336 */
1337 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1338 unsigned long event)
1339 {
1340 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1341 int ret = NOTIFY_DONE;
1342
1343 if (core->rate == core->new_rate)
1344 return NULL;
1345
1346 if (core->notifier_count) {
1347 ret = __clk_notify(core, event, core->rate, core->new_rate);
1348 if (ret & NOTIFY_STOP_MASK)
1349 fail_clk = core;
1350 }
1351
1352 hlist_for_each_entry(child, &core->children, child_node) {
1353 /* Skip children who will be reparented to another clock */
1354 if (child->new_parent && child->new_parent != core)
1355 continue;
1356 tmp_clk = clk_propagate_rate_change(child, event);
1357 if (tmp_clk)
1358 fail_clk = tmp_clk;
1359 }
1360
1361 /* handle the new child who might not be in core->children yet */
1362 if (core->new_child) {
1363 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1364 if (tmp_clk)
1365 fail_clk = tmp_clk;
1366 }
1367
1368 return fail_clk;
1369 }
1370
1371 /*
1372 * walk down a subtree and set the new rates notifying the rate
1373 * change on the way
1374 */
1375 static void clk_change_rate(struct clk_core *core)
1376 {
1377 struct clk_core *child;
1378 struct hlist_node *tmp;
1379 unsigned long old_rate;
1380 unsigned long best_parent_rate = 0;
1381 bool skip_set_rate = false;
1382 struct clk_core *old_parent;
1383
1384 old_rate = core->rate;
1385
1386 if (core->new_parent)
1387 best_parent_rate = core->new_parent->rate;
1388 else if (core->parent)
1389 best_parent_rate = core->parent->rate;
1390
1391 if (core->new_parent && core->new_parent != core->parent) {
1392 old_parent = __clk_set_parent_before(core, core->new_parent);
1393 trace_clk_set_parent(core, core->new_parent);
1394
1395 if (core->ops->set_rate_and_parent) {
1396 skip_set_rate = true;
1397 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1398 best_parent_rate,
1399 core->new_parent_index);
1400 } else if (core->ops->set_parent) {
1401 core->ops->set_parent(core->hw, core->new_parent_index);
1402 }
1403
1404 trace_clk_set_parent_complete(core, core->new_parent);
1405 __clk_set_parent_after(core, core->new_parent, old_parent);
1406 }
1407
1408 trace_clk_set_rate(core, core->new_rate);
1409
1410 if (!skip_set_rate && core->ops->set_rate)
1411 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1412
1413 trace_clk_set_rate_complete(core, core->new_rate);
1414
1415 core->rate = clk_recalc(core, best_parent_rate);
1416
1417 if (core->notifier_count && old_rate != core->rate)
1418 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1419
1420 if (core->flags & CLK_RECALC_NEW_RATES)
1421 (void)clk_calc_new_rates(core, core->new_rate);
1422
1423 /*
1424 * Use safe iteration, as change_rate can actually swap parents
1425 * for certain clock types.
1426 */
1427 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1428 /* Skip children who will be reparented to another clock */
1429 if (child->new_parent && child->new_parent != core)
1430 continue;
1431 clk_change_rate(child);
1432 }
1433
1434 /* handle the new child who might not be in core->children yet */
1435 if (core->new_child)
1436 clk_change_rate(core->new_child);
1437 }
1438
1439 static int clk_core_set_rate_nolock(struct clk_core *core,
1440 unsigned long req_rate)
1441 {
1442 struct clk_core *top, *fail_clk;
1443 unsigned long rate = req_rate;
1444 int ret = 0;
1445
1446 if (!core)
1447 return 0;
1448
1449 /* bail early if nothing to do */
1450 if (rate == clk_core_get_rate_nolock(core))
1451 return 0;
1452
1453 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1454 return -EBUSY;
1455
1456 /* calculate new rates and get the topmost changed clock */
1457 top = clk_calc_new_rates(core, rate);
1458 if (!top)
1459 return -EINVAL;
1460
1461 /* notify that we are about to change rates */
1462 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1463 if (fail_clk) {
1464 pr_debug("%s: failed to set %s rate\n", __func__,
1465 fail_clk->name);
1466 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1467 return -EBUSY;
1468 }
1469
1470 /* change the rates */
1471 clk_change_rate(top);
1472
1473 core->req_rate = req_rate;
1474
1475 return ret;
1476 }
1477
1478 /**
1479 * clk_set_rate - specify a new rate for clk
1480 * @clk: the clk whose rate is being changed
1481 * @rate: the new rate for clk
1482 *
1483 * In the simplest case clk_set_rate will only adjust the rate of clk.
1484 *
1485 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1486 * propagate up to clk's parent; whether or not this happens depends on the
1487 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1488 * after calling .round_rate then upstream parent propagation is ignored. If
1489 * *parent_rate comes back with a new rate for clk's parent then we propagate
1490 * up to clk's parent and set its rate. Upward propagation will continue
1491 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1492 * .round_rate stops requesting changes to clk's parent_rate.
1493 *
1494 * Rate changes are accomplished via tree traversal that also recalculates the
1495 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1496 *
1497 * Returns 0 on success, -EERROR otherwise.
1498 */
1499 int clk_set_rate(struct clk *clk, unsigned long rate)
1500 {
1501 int ret;
1502
1503 if (!clk)
1504 return 0;
1505
1506 /* prevent racing with updates to the clock topology */
1507 clk_prepare_lock();
1508
1509 ret = clk_core_set_rate_nolock(clk->core, rate);
1510
1511 clk_prepare_unlock();
1512
1513 return ret;
1514 }
1515 EXPORT_SYMBOL_GPL(clk_set_rate);
1516
1517 /**
1518 * clk_set_rate_range - set a rate range for a clock source
1519 * @clk: clock source
1520 * @min: desired minimum clock rate in Hz, inclusive
1521 * @max: desired maximum clock rate in Hz, inclusive
1522 *
1523 * Returns success (0) or negative errno.
1524 */
1525 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1526 {
1527 int ret = 0;
1528
1529 if (!clk)
1530 return 0;
1531
1532 if (min > max) {
1533 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1534 __func__, clk->core->name, clk->dev_id, clk->con_id,
1535 min, max);
1536 return -EINVAL;
1537 }
1538
1539 clk_prepare_lock();
1540
1541 if (min != clk->min_rate || max != clk->max_rate) {
1542 clk->min_rate = min;
1543 clk->max_rate = max;
1544 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1545 }
1546
1547 clk_prepare_unlock();
1548
1549 return ret;
1550 }
1551 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1552
1553 /**
1554 * clk_set_min_rate - set a minimum clock rate for a clock source
1555 * @clk: clock source
1556 * @rate: desired minimum clock rate in Hz, inclusive
1557 *
1558 * Returns success (0) or negative errno.
1559 */
1560 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1561 {
1562 if (!clk)
1563 return 0;
1564
1565 return clk_set_rate_range(clk, rate, clk->max_rate);
1566 }
1567 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1568
1569 /**
1570 * clk_set_max_rate - set a maximum clock rate for a clock source
1571 * @clk: clock source
1572 * @rate: desired maximum clock rate in Hz, inclusive
1573 *
1574 * Returns success (0) or negative errno.
1575 */
1576 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1577 {
1578 if (!clk)
1579 return 0;
1580
1581 return clk_set_rate_range(clk, clk->min_rate, rate);
1582 }
1583 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1584
1585 /**
1586 * clk_get_parent - return the parent of a clk
1587 * @clk: the clk whose parent gets returned
1588 *
1589 * Simply returns clk->parent. Returns NULL if clk is NULL.
1590 */
1591 struct clk *clk_get_parent(struct clk *clk)
1592 {
1593 struct clk *parent;
1594
1595 clk_prepare_lock();
1596 parent = __clk_get_parent(clk);
1597 clk_prepare_unlock();
1598
1599 return parent;
1600 }
1601 EXPORT_SYMBOL_GPL(clk_get_parent);
1602
1603 /*
1604 * .get_parent is mandatory for clocks with multiple possible parents. It is
1605 * optional for single-parent clocks. Always call .get_parent if it is
1606 * available and WARN if it is missing for multi-parent clocks.
1607 *
1608 * For single-parent clocks without .get_parent, first check to see if the
1609 * .parents array exists, and if so use it to avoid an expensive tree
1610 * traversal. If .parents does not exist then walk the tree.
1611 */
1612 static struct clk_core *__clk_init_parent(struct clk_core *core)
1613 {
1614 struct clk_core *ret = NULL;
1615 u8 index;
1616
1617 /* handle the trivial cases */
1618
1619 if (!core->num_parents)
1620 goto out;
1621
1622 if (core->num_parents == 1) {
1623 if (IS_ERR_OR_NULL(core->parent))
1624 core->parent = clk_core_lookup(core->parent_names[0]);
1625 ret = core->parent;
1626 goto out;
1627 }
1628
1629 if (!core->ops->get_parent) {
1630 WARN(!core->ops->get_parent,
1631 "%s: multi-parent clocks must implement .get_parent\n",
1632 __func__);
1633 goto out;
1634 };
1635
1636 /*
1637 * Do our best to cache parent clocks in core->parents. This prevents
1638 * unnecessary and expensive lookups. We don't set core->parent here;
1639 * that is done by the calling function.
1640 */
1641
1642 index = core->ops->get_parent(core->hw);
1643
1644 if (!core->parents)
1645 core->parents =
1646 kcalloc(core->num_parents, sizeof(struct clk *),
1647 GFP_KERNEL);
1648
1649 ret = clk_core_get_parent_by_index(core, index);
1650
1651 out:
1652 return ret;
1653 }
1654
1655 static void clk_core_reparent(struct clk_core *core,
1656 struct clk_core *new_parent)
1657 {
1658 clk_reparent(core, new_parent);
1659 __clk_recalc_accuracies(core);
1660 __clk_recalc_rates(core, POST_RATE_CHANGE);
1661 }
1662
1663 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1664 {
1665 if (!hw)
1666 return;
1667
1668 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1669 }
1670
1671 /**
1672 * clk_has_parent - check if a clock is a possible parent for another
1673 * @clk: clock source
1674 * @parent: parent clock source
1675 *
1676 * This function can be used in drivers that need to check that a clock can be
1677 * the parent of another without actually changing the parent.
1678 *
1679 * Returns true if @parent is a possible parent for @clk, false otherwise.
1680 */
1681 bool clk_has_parent(struct clk *clk, struct clk *parent)
1682 {
1683 struct clk_core *core, *parent_core;
1684 unsigned int i;
1685
1686 /* NULL clocks should be nops, so return success if either is NULL. */
1687 if (!clk || !parent)
1688 return true;
1689
1690 core = clk->core;
1691 parent_core = parent->core;
1692
1693 /* Optimize for the case where the parent is already the parent. */
1694 if (core->parent == parent_core)
1695 return true;
1696
1697 for (i = 0; i < core->num_parents; i++)
1698 if (strcmp(core->parent_names[i], parent_core->name) == 0)
1699 return true;
1700
1701 return false;
1702 }
1703 EXPORT_SYMBOL_GPL(clk_has_parent);
1704
1705 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1706 {
1707 int ret = 0;
1708 int p_index = 0;
1709 unsigned long p_rate = 0;
1710
1711 if (!core)
1712 return 0;
1713
1714 /* prevent racing with updates to the clock topology */
1715 clk_prepare_lock();
1716
1717 if (core->parent == parent)
1718 goto out;
1719
1720 /* verify ops for for multi-parent clks */
1721 if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1722 ret = -ENOSYS;
1723 goto out;
1724 }
1725
1726 /* check that we are allowed to re-parent if the clock is in use */
1727 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1728 ret = -EBUSY;
1729 goto out;
1730 }
1731
1732 /* try finding the new parent index */
1733 if (parent) {
1734 p_index = clk_fetch_parent_index(core, parent);
1735 p_rate = parent->rate;
1736 if (p_index < 0) {
1737 pr_debug("%s: clk %s can not be parent of clk %s\n",
1738 __func__, parent->name, core->name);
1739 ret = p_index;
1740 goto out;
1741 }
1742 }
1743
1744 /* propagate PRE_RATE_CHANGE notifications */
1745 ret = __clk_speculate_rates(core, p_rate);
1746
1747 /* abort if a driver objects */
1748 if (ret & NOTIFY_STOP_MASK)
1749 goto out;
1750
1751 /* do the re-parent */
1752 ret = __clk_set_parent(core, parent, p_index);
1753
1754 /* propagate rate an accuracy recalculation accordingly */
1755 if (ret) {
1756 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
1757 } else {
1758 __clk_recalc_rates(core, POST_RATE_CHANGE);
1759 __clk_recalc_accuracies(core);
1760 }
1761
1762 out:
1763 clk_prepare_unlock();
1764
1765 return ret;
1766 }
1767
1768 /**
1769 * clk_set_parent - switch the parent of a mux clk
1770 * @clk: the mux clk whose input we are switching
1771 * @parent: the new input to clk
1772 *
1773 * Re-parent clk to use parent as its new input source. If clk is in
1774 * prepared state, the clk will get enabled for the duration of this call. If
1775 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1776 * that, the reparenting is glitchy in hardware, etc), use the
1777 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1778 *
1779 * After successfully changing clk's parent clk_set_parent will update the
1780 * clk topology, sysfs topology and propagate rate recalculation via
1781 * __clk_recalc_rates.
1782 *
1783 * Returns 0 on success, -EERROR otherwise.
1784 */
1785 int clk_set_parent(struct clk *clk, struct clk *parent)
1786 {
1787 if (!clk)
1788 return 0;
1789
1790 return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1791 }
1792 EXPORT_SYMBOL_GPL(clk_set_parent);
1793
1794 /**
1795 * clk_set_phase - adjust the phase shift of a clock signal
1796 * @clk: clock signal source
1797 * @degrees: number of degrees the signal is shifted
1798 *
1799 * Shifts the phase of a clock signal by the specified
1800 * degrees. Returns 0 on success, -EERROR otherwise.
1801 *
1802 * This function makes no distinction about the input or reference
1803 * signal that we adjust the clock signal phase against. For example
1804 * phase locked-loop clock signal generators we may shift phase with
1805 * respect to feedback clock signal input, but for other cases the
1806 * clock phase may be shifted with respect to some other, unspecified
1807 * signal.
1808 *
1809 * Additionally the concept of phase shift does not propagate through
1810 * the clock tree hierarchy, which sets it apart from clock rates and
1811 * clock accuracy. A parent clock phase attribute does not have an
1812 * impact on the phase attribute of a child clock.
1813 */
1814 int clk_set_phase(struct clk *clk, int degrees)
1815 {
1816 int ret = -EINVAL;
1817
1818 if (!clk)
1819 return 0;
1820
1821 /* sanity check degrees */
1822 degrees %= 360;
1823 if (degrees < 0)
1824 degrees += 360;
1825
1826 clk_prepare_lock();
1827
1828 trace_clk_set_phase(clk->core, degrees);
1829
1830 if (clk->core->ops->set_phase)
1831 ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1832
1833 trace_clk_set_phase_complete(clk->core, degrees);
1834
1835 if (!ret)
1836 clk->core->phase = degrees;
1837
1838 clk_prepare_unlock();
1839
1840 return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(clk_set_phase);
1843
1844 static int clk_core_get_phase(struct clk_core *core)
1845 {
1846 int ret;
1847
1848 clk_prepare_lock();
1849 ret = core->phase;
1850 clk_prepare_unlock();
1851
1852 return ret;
1853 }
1854
1855 /**
1856 * clk_get_phase - return the phase shift of a clock signal
1857 * @clk: clock signal source
1858 *
1859 * Returns the phase shift of a clock node in degrees, otherwise returns
1860 * -EERROR.
1861 */
1862 int clk_get_phase(struct clk *clk)
1863 {
1864 if (!clk)
1865 return 0;
1866
1867 return clk_core_get_phase(clk->core);
1868 }
1869 EXPORT_SYMBOL_GPL(clk_get_phase);
1870
1871 /**
1872 * clk_is_match - check if two clk's point to the same hardware clock
1873 * @p: clk compared against q
1874 * @q: clk compared against p
1875 *
1876 * Returns true if the two struct clk pointers both point to the same hardware
1877 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1878 * share the same struct clk_core object.
1879 *
1880 * Returns false otherwise. Note that two NULL clks are treated as matching.
1881 */
1882 bool clk_is_match(const struct clk *p, const struct clk *q)
1883 {
1884 /* trivial case: identical struct clk's or both NULL */
1885 if (p == q)
1886 return true;
1887
1888 /* true if clk->core pointers match. Avoid derefing garbage */
1889 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1890 if (p->core == q->core)
1891 return true;
1892
1893 return false;
1894 }
1895 EXPORT_SYMBOL_GPL(clk_is_match);
1896
1897 /*** debugfs support ***/
1898
1899 #ifdef CONFIG_DEBUG_FS
1900 #include <linux/debugfs.h>
1901
1902 static struct dentry *rootdir;
1903 static int inited = 0;
1904 static DEFINE_MUTEX(clk_debug_lock);
1905 static HLIST_HEAD(clk_debug_list);
1906
1907 static struct hlist_head *all_lists[] = {
1908 &clk_root_list,
1909 &clk_orphan_list,
1910 NULL,
1911 };
1912
1913 static struct hlist_head *orphan_list[] = {
1914 &clk_orphan_list,
1915 NULL,
1916 };
1917
1918 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1919 int level)
1920 {
1921 if (!c)
1922 return;
1923
1924 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1925 level * 3 + 1, "",
1926 30 - level * 3, c->name,
1927 c->enable_count, c->prepare_count, clk_core_get_rate(c),
1928 clk_core_get_accuracy(c), clk_core_get_phase(c));
1929 }
1930
1931 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1932 int level)
1933 {
1934 struct clk_core *child;
1935
1936 if (!c)
1937 return;
1938
1939 clk_summary_show_one(s, c, level);
1940
1941 hlist_for_each_entry(child, &c->children, child_node)
1942 clk_summary_show_subtree(s, child, level + 1);
1943 }
1944
1945 static int clk_summary_show(struct seq_file *s, void *data)
1946 {
1947 struct clk_core *c;
1948 struct hlist_head **lists = (struct hlist_head **)s->private;
1949
1950 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n");
1951 seq_puts(s, "----------------------------------------------------------------------------------------\n");
1952
1953 clk_prepare_lock();
1954
1955 for (; *lists; lists++)
1956 hlist_for_each_entry(c, *lists, child_node)
1957 clk_summary_show_subtree(s, c, 0);
1958
1959 clk_prepare_unlock();
1960
1961 return 0;
1962 }
1963
1964
1965 static int clk_summary_open(struct inode *inode, struct file *file)
1966 {
1967 return single_open(file, clk_summary_show, inode->i_private);
1968 }
1969
1970 static const struct file_operations clk_summary_fops = {
1971 .open = clk_summary_open,
1972 .read = seq_read,
1973 .llseek = seq_lseek,
1974 .release = single_release,
1975 };
1976
1977 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
1978 {
1979 if (!c)
1980 return;
1981
1982 /* This should be JSON format, i.e. elements separated with a comma */
1983 seq_printf(s, "\"%s\": { ", c->name);
1984 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
1985 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
1986 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
1987 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
1988 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
1989 }
1990
1991 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
1992 {
1993 struct clk_core *child;
1994
1995 if (!c)
1996 return;
1997
1998 clk_dump_one(s, c, level);
1999
2000 hlist_for_each_entry(child, &c->children, child_node) {
2001 seq_printf(s, ",");
2002 clk_dump_subtree(s, child, level + 1);
2003 }
2004
2005 seq_printf(s, "}");
2006 }
2007
2008 static int clk_dump(struct seq_file *s, void *data)
2009 {
2010 struct clk_core *c;
2011 bool first_node = true;
2012 struct hlist_head **lists = (struct hlist_head **)s->private;
2013
2014 seq_printf(s, "{");
2015
2016 clk_prepare_lock();
2017
2018 for (; *lists; lists++) {
2019 hlist_for_each_entry(c, *lists, child_node) {
2020 if (!first_node)
2021 seq_puts(s, ",");
2022 first_node = false;
2023 clk_dump_subtree(s, c, 0);
2024 }
2025 }
2026
2027 clk_prepare_unlock();
2028
2029 seq_puts(s, "}\n");
2030 return 0;
2031 }
2032
2033
2034 static int clk_dump_open(struct inode *inode, struct file *file)
2035 {
2036 return single_open(file, clk_dump, inode->i_private);
2037 }
2038
2039 static const struct file_operations clk_dump_fops = {
2040 .open = clk_dump_open,
2041 .read = seq_read,
2042 .llseek = seq_lseek,
2043 .release = single_release,
2044 };
2045
2046 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2047 {
2048 struct dentry *d;
2049 int ret = -ENOMEM;
2050
2051 if (!core || !pdentry) {
2052 ret = -EINVAL;
2053 goto out;
2054 }
2055
2056 d = debugfs_create_dir(core->name, pdentry);
2057 if (!d)
2058 goto out;
2059
2060 core->dentry = d;
2061
2062 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2063 (u32 *)&core->rate);
2064 if (!d)
2065 goto err_out;
2066
2067 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2068 (u32 *)&core->accuracy);
2069 if (!d)
2070 goto err_out;
2071
2072 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2073 (u32 *)&core->phase);
2074 if (!d)
2075 goto err_out;
2076
2077 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2078 (u32 *)&core->flags);
2079 if (!d)
2080 goto err_out;
2081
2082 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2083 (u32 *)&core->prepare_count);
2084 if (!d)
2085 goto err_out;
2086
2087 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2088 (u32 *)&core->enable_count);
2089 if (!d)
2090 goto err_out;
2091
2092 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2093 (u32 *)&core->notifier_count);
2094 if (!d)
2095 goto err_out;
2096
2097 if (core->ops->debug_init) {
2098 ret = core->ops->debug_init(core->hw, core->dentry);
2099 if (ret)
2100 goto err_out;
2101 }
2102
2103 ret = 0;
2104 goto out;
2105
2106 err_out:
2107 debugfs_remove_recursive(core->dentry);
2108 core->dentry = NULL;
2109 out:
2110 return ret;
2111 }
2112
2113 /**
2114 * clk_debug_register - add a clk node to the debugfs clk directory
2115 * @core: the clk being added to the debugfs clk directory
2116 *
2117 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2118 * initialized. Otherwise it bails out early since the debugfs clk directory
2119 * will be created lazily by clk_debug_init as part of a late_initcall.
2120 */
2121 static int clk_debug_register(struct clk_core *core)
2122 {
2123 int ret = 0;
2124
2125 mutex_lock(&clk_debug_lock);
2126 hlist_add_head(&core->debug_node, &clk_debug_list);
2127
2128 if (!inited)
2129 goto unlock;
2130
2131 ret = clk_debug_create_one(core, rootdir);
2132 unlock:
2133 mutex_unlock(&clk_debug_lock);
2134
2135 return ret;
2136 }
2137
2138 /**
2139 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2140 * @core: the clk being removed from the debugfs clk directory
2141 *
2142 * Dynamically removes a clk and all its child nodes from the
2143 * debugfs clk directory if clk->dentry points to debugfs created by
2144 * clk_debug_register in __clk_init.
2145 */
2146 static void clk_debug_unregister(struct clk_core *core)
2147 {
2148 mutex_lock(&clk_debug_lock);
2149 hlist_del_init(&core->debug_node);
2150 debugfs_remove_recursive(core->dentry);
2151 core->dentry = NULL;
2152 mutex_unlock(&clk_debug_lock);
2153 }
2154
2155 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2156 void *data, const struct file_operations *fops)
2157 {
2158 struct dentry *d = NULL;
2159
2160 if (hw->core->dentry)
2161 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2162 fops);
2163
2164 return d;
2165 }
2166 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2167
2168 /**
2169 * clk_debug_init - lazily populate the debugfs clk directory
2170 *
2171 * clks are often initialized very early during boot before memory can be
2172 * dynamically allocated and well before debugfs is setup. This function
2173 * populates the debugfs clk directory once at boot-time when we know that
2174 * debugfs is setup. It should only be called once at boot-time, all other clks
2175 * added dynamically will be done so with clk_debug_register.
2176 */
2177 static int __init clk_debug_init(void)
2178 {
2179 struct clk_core *core;
2180 struct dentry *d;
2181
2182 rootdir = debugfs_create_dir("clk", NULL);
2183
2184 if (!rootdir)
2185 return -ENOMEM;
2186
2187 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2188 &clk_summary_fops);
2189 if (!d)
2190 return -ENOMEM;
2191
2192 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2193 &clk_dump_fops);
2194 if (!d)
2195 return -ENOMEM;
2196
2197 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2198 &orphan_list, &clk_summary_fops);
2199 if (!d)
2200 return -ENOMEM;
2201
2202 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2203 &orphan_list, &clk_dump_fops);
2204 if (!d)
2205 return -ENOMEM;
2206
2207 mutex_lock(&clk_debug_lock);
2208 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2209 clk_debug_create_one(core, rootdir);
2210
2211 inited = 1;
2212 mutex_unlock(&clk_debug_lock);
2213
2214 return 0;
2215 }
2216 late_initcall(clk_debug_init);
2217 #else
2218 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2219 static inline void clk_debug_reparent(struct clk_core *core,
2220 struct clk_core *new_parent)
2221 {
2222 }
2223 static inline void clk_debug_unregister(struct clk_core *core)
2224 {
2225 }
2226 #endif
2227
2228 /**
2229 * __clk_init - initialize the data structures in a struct clk
2230 * @dev: device initializing this clk, placeholder for now
2231 * @clk: clk being initialized
2232 *
2233 * Initializes the lists in struct clk_core, queries the hardware for the
2234 * parent and rate and sets them both.
2235 */
2236 static int __clk_init(struct device *dev, struct clk *clk_user)
2237 {
2238 int i, ret = 0;
2239 struct clk_core *orphan;
2240 struct hlist_node *tmp2;
2241 struct clk_core *core;
2242 unsigned long rate;
2243
2244 if (!clk_user)
2245 return -EINVAL;
2246
2247 core = clk_user->core;
2248
2249 clk_prepare_lock();
2250
2251 /* check to see if a clock with this name is already registered */
2252 if (clk_core_lookup(core->name)) {
2253 pr_debug("%s: clk %s already initialized\n",
2254 __func__, core->name);
2255 ret = -EEXIST;
2256 goto out;
2257 }
2258
2259 /* check that clk_ops are sane. See Documentation/clk.txt */
2260 if (core->ops->set_rate &&
2261 !((core->ops->round_rate || core->ops->determine_rate) &&
2262 core->ops->recalc_rate)) {
2263 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2264 __func__, core->name);
2265 ret = -EINVAL;
2266 goto out;
2267 }
2268
2269 if (core->ops->set_parent && !core->ops->get_parent) {
2270 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2271 __func__, core->name);
2272 ret = -EINVAL;
2273 goto out;
2274 }
2275
2276 if (core->ops->set_rate_and_parent &&
2277 !(core->ops->set_parent && core->ops->set_rate)) {
2278 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2279 __func__, core->name);
2280 ret = -EINVAL;
2281 goto out;
2282 }
2283
2284 /* throw a WARN if any entries in parent_names are NULL */
2285 for (i = 0; i < core->num_parents; i++)
2286 WARN(!core->parent_names[i],
2287 "%s: invalid NULL in %s's .parent_names\n",
2288 __func__, core->name);
2289
2290 /*
2291 * Allocate an array of struct clk *'s to avoid unnecessary string
2292 * look-ups of clk's possible parents. This can fail for clocks passed
2293 * in to clk_init during early boot; thus any access to core->parents[]
2294 * must always check for a NULL pointer and try to populate it if
2295 * necessary.
2296 *
2297 * If core->parents is not NULL we skip this entire block. This allows
2298 * for clock drivers to statically initialize core->parents.
2299 */
2300 if (core->num_parents > 1 && !core->parents) {
2301 core->parents = kcalloc(core->num_parents, sizeof(struct clk *),
2302 GFP_KERNEL);
2303 /*
2304 * clk_core_lookup returns NULL for parents that have not been
2305 * clk_init'd; thus any access to clk->parents[] must check
2306 * for a NULL pointer. We can always perform lazy lookups for
2307 * missing parents later on.
2308 */
2309 if (core->parents)
2310 for (i = 0; i < core->num_parents; i++)
2311 core->parents[i] =
2312 clk_core_lookup(core->parent_names[i]);
2313 }
2314
2315 core->parent = __clk_init_parent(core);
2316
2317 /*
2318 * Populate core->parent if parent has already been __clk_init'd. If
2319 * parent has not yet been __clk_init'd then place clk in the orphan
2320 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
2321 * clk list.
2322 *
2323 * Every time a new clk is clk_init'd then we walk the list of orphan
2324 * clocks and re-parent any that are children of the clock currently
2325 * being clk_init'd.
2326 */
2327 if (core->parent)
2328 hlist_add_head(&core->child_node,
2329 &core->parent->children);
2330 else if (core->flags & CLK_IS_ROOT)
2331 hlist_add_head(&core->child_node, &clk_root_list);
2332 else
2333 hlist_add_head(&core->child_node, &clk_orphan_list);
2334
2335 /*
2336 * Set clk's accuracy. The preferred method is to use
2337 * .recalc_accuracy. For simple clocks and lazy developers the default
2338 * fallback is to use the parent's accuracy. If a clock doesn't have a
2339 * parent (or is orphaned) then accuracy is set to zero (perfect
2340 * clock).
2341 */
2342 if (core->ops->recalc_accuracy)
2343 core->accuracy = core->ops->recalc_accuracy(core->hw,
2344 __clk_get_accuracy(core->parent));
2345 else if (core->parent)
2346 core->accuracy = core->parent->accuracy;
2347 else
2348 core->accuracy = 0;
2349
2350 /*
2351 * Set clk's phase.
2352 * Since a phase is by definition relative to its parent, just
2353 * query the current clock phase, or just assume it's in phase.
2354 */
2355 if (core->ops->get_phase)
2356 core->phase = core->ops->get_phase(core->hw);
2357 else
2358 core->phase = 0;
2359
2360 /*
2361 * Set clk's rate. The preferred method is to use .recalc_rate. For
2362 * simple clocks and lazy developers the default fallback is to use the
2363 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2364 * then rate is set to zero.
2365 */
2366 if (core->ops->recalc_rate)
2367 rate = core->ops->recalc_rate(core->hw,
2368 clk_core_get_rate_nolock(core->parent));
2369 else if (core->parent)
2370 rate = core->parent->rate;
2371 else
2372 rate = 0;
2373 core->rate = core->req_rate = rate;
2374
2375 /*
2376 * walk the list of orphan clocks and reparent any that are children of
2377 * this clock
2378 */
2379 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2380 if (orphan->num_parents && orphan->ops->get_parent) {
2381 i = orphan->ops->get_parent(orphan->hw);
2382 if (!strcmp(core->name, orphan->parent_names[i]))
2383 clk_core_reparent(orphan, core);
2384 continue;
2385 }
2386
2387 for (i = 0; i < orphan->num_parents; i++)
2388 if (!strcmp(core->name, orphan->parent_names[i])) {
2389 clk_core_reparent(orphan, core);
2390 break;
2391 }
2392 }
2393
2394 /*
2395 * optional platform-specific magic
2396 *
2397 * The .init callback is not used by any of the basic clock types, but
2398 * exists for weird hardware that must perform initialization magic.
2399 * Please consider other ways of solving initialization problems before
2400 * using this callback, as its use is discouraged.
2401 */
2402 if (core->ops->init)
2403 core->ops->init(core->hw);
2404
2405 kref_init(&core->ref);
2406 out:
2407 clk_prepare_unlock();
2408
2409 if (!ret)
2410 clk_debug_register(core);
2411
2412 return ret;
2413 }
2414
2415 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2416 const char *con_id)
2417 {
2418 struct clk *clk;
2419
2420 /* This is to allow this function to be chained to others */
2421 if (!hw || IS_ERR(hw))
2422 return (struct clk *) hw;
2423
2424 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2425 if (!clk)
2426 return ERR_PTR(-ENOMEM);
2427
2428 clk->core = hw->core;
2429 clk->dev_id = dev_id;
2430 clk->con_id = con_id;
2431 clk->max_rate = ULONG_MAX;
2432
2433 clk_prepare_lock();
2434 hlist_add_head(&clk->clks_node, &hw->core->clks);
2435 clk_prepare_unlock();
2436
2437 return clk;
2438 }
2439
2440 void __clk_free_clk(struct clk *clk)
2441 {
2442 clk_prepare_lock();
2443 hlist_del(&clk->clks_node);
2444 clk_prepare_unlock();
2445
2446 kfree(clk);
2447 }
2448
2449 /**
2450 * clk_register - allocate a new clock, register it and return an opaque cookie
2451 * @dev: device that is registering this clock
2452 * @hw: link to hardware-specific clock data
2453 *
2454 * clk_register is the primary interface for populating the clock tree with new
2455 * clock nodes. It returns a pointer to the newly allocated struct clk which
2456 * cannot be dereferenced by driver code but may be used in conjunction with the
2457 * rest of the clock API. In the event of an error clk_register will return an
2458 * error code; drivers must test for an error code after calling clk_register.
2459 */
2460 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2461 {
2462 int i, ret;
2463 struct clk_core *core;
2464
2465 core = kzalloc(sizeof(*core), GFP_KERNEL);
2466 if (!core) {
2467 ret = -ENOMEM;
2468 goto fail_out;
2469 }
2470
2471 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2472 if (!core->name) {
2473 ret = -ENOMEM;
2474 goto fail_name;
2475 }
2476 core->ops = hw->init->ops;
2477 if (dev && dev->driver)
2478 core->owner = dev->driver->owner;
2479 core->hw = hw;
2480 core->flags = hw->init->flags;
2481 core->num_parents = hw->init->num_parents;
2482 hw->core = core;
2483
2484 /* allocate local copy in case parent_names is __initdata */
2485 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2486 GFP_KERNEL);
2487
2488 if (!core->parent_names) {
2489 ret = -ENOMEM;
2490 goto fail_parent_names;
2491 }
2492
2493
2494 /* copy each string name in case parent_names is __initdata */
2495 for (i = 0; i < core->num_parents; i++) {
2496 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2497 GFP_KERNEL);
2498 if (!core->parent_names[i]) {
2499 ret = -ENOMEM;
2500 goto fail_parent_names_copy;
2501 }
2502 }
2503
2504 INIT_HLIST_HEAD(&core->clks);
2505
2506 hw->clk = __clk_create_clk(hw, NULL, NULL);
2507 if (IS_ERR(hw->clk)) {
2508 ret = PTR_ERR(hw->clk);
2509 goto fail_parent_names_copy;
2510 }
2511
2512 ret = __clk_init(dev, hw->clk);
2513 if (!ret)
2514 return hw->clk;
2515
2516 __clk_free_clk(hw->clk);
2517 hw->clk = NULL;
2518
2519 fail_parent_names_copy:
2520 while (--i >= 0)
2521 kfree_const(core->parent_names[i]);
2522 kfree(core->parent_names);
2523 fail_parent_names:
2524 kfree_const(core->name);
2525 fail_name:
2526 kfree(core);
2527 fail_out:
2528 return ERR_PTR(ret);
2529 }
2530 EXPORT_SYMBOL_GPL(clk_register);
2531
2532 /* Free memory allocated for a clock. */
2533 static void __clk_release(struct kref *ref)
2534 {
2535 struct clk_core *core = container_of(ref, struct clk_core, ref);
2536 int i = core->num_parents;
2537
2538 lockdep_assert_held(&prepare_lock);
2539
2540 kfree(core->parents);
2541 while (--i >= 0)
2542 kfree_const(core->parent_names[i]);
2543
2544 kfree(core->parent_names);
2545 kfree_const(core->name);
2546 kfree(core);
2547 }
2548
2549 /*
2550 * Empty clk_ops for unregistered clocks. These are used temporarily
2551 * after clk_unregister() was called on a clock and until last clock
2552 * consumer calls clk_put() and the struct clk object is freed.
2553 */
2554 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2555 {
2556 return -ENXIO;
2557 }
2558
2559 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2560 {
2561 WARN_ON_ONCE(1);
2562 }
2563
2564 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2565 unsigned long parent_rate)
2566 {
2567 return -ENXIO;
2568 }
2569
2570 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2571 {
2572 return -ENXIO;
2573 }
2574
2575 static const struct clk_ops clk_nodrv_ops = {
2576 .enable = clk_nodrv_prepare_enable,
2577 .disable = clk_nodrv_disable_unprepare,
2578 .prepare = clk_nodrv_prepare_enable,
2579 .unprepare = clk_nodrv_disable_unprepare,
2580 .set_rate = clk_nodrv_set_rate,
2581 .set_parent = clk_nodrv_set_parent,
2582 };
2583
2584 /**
2585 * clk_unregister - unregister a currently registered clock
2586 * @clk: clock to unregister
2587 */
2588 void clk_unregister(struct clk *clk)
2589 {
2590 unsigned long flags;
2591
2592 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2593 return;
2594
2595 clk_debug_unregister(clk->core);
2596
2597 clk_prepare_lock();
2598
2599 if (clk->core->ops == &clk_nodrv_ops) {
2600 pr_err("%s: unregistered clock: %s\n", __func__,
2601 clk->core->name);
2602 return;
2603 }
2604 /*
2605 * Assign empty clock ops for consumers that might still hold
2606 * a reference to this clock.
2607 */
2608 flags = clk_enable_lock();
2609 clk->core->ops = &clk_nodrv_ops;
2610 clk_enable_unlock(flags);
2611
2612 if (!hlist_empty(&clk->core->children)) {
2613 struct clk_core *child;
2614 struct hlist_node *t;
2615
2616 /* Reparent all children to the orphan list. */
2617 hlist_for_each_entry_safe(child, t, &clk->core->children,
2618 child_node)
2619 clk_core_set_parent(child, NULL);
2620 }
2621
2622 hlist_del_init(&clk->core->child_node);
2623
2624 if (clk->core->prepare_count)
2625 pr_warn("%s: unregistering prepared clock: %s\n",
2626 __func__, clk->core->name);
2627 kref_put(&clk->core->ref, __clk_release);
2628
2629 clk_prepare_unlock();
2630 }
2631 EXPORT_SYMBOL_GPL(clk_unregister);
2632
2633 static void devm_clk_release(struct device *dev, void *res)
2634 {
2635 clk_unregister(*(struct clk **)res);
2636 }
2637
2638 /**
2639 * devm_clk_register - resource managed clk_register()
2640 * @dev: device that is registering this clock
2641 * @hw: link to hardware-specific clock data
2642 *
2643 * Managed clk_register(). Clocks returned from this function are
2644 * automatically clk_unregister()ed on driver detach. See clk_register() for
2645 * more information.
2646 */
2647 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2648 {
2649 struct clk *clk;
2650 struct clk **clkp;
2651
2652 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2653 if (!clkp)
2654 return ERR_PTR(-ENOMEM);
2655
2656 clk = clk_register(dev, hw);
2657 if (!IS_ERR(clk)) {
2658 *clkp = clk;
2659 devres_add(dev, clkp);
2660 } else {
2661 devres_free(clkp);
2662 }
2663
2664 return clk;
2665 }
2666 EXPORT_SYMBOL_GPL(devm_clk_register);
2667
2668 static int devm_clk_match(struct device *dev, void *res, void *data)
2669 {
2670 struct clk *c = res;
2671 if (WARN_ON(!c))
2672 return 0;
2673 return c == data;
2674 }
2675
2676 /**
2677 * devm_clk_unregister - resource managed clk_unregister()
2678 * @clk: clock to unregister
2679 *
2680 * Deallocate a clock allocated with devm_clk_register(). Normally
2681 * this function will not need to be called and the resource management
2682 * code will ensure that the resource is freed.
2683 */
2684 void devm_clk_unregister(struct device *dev, struct clk *clk)
2685 {
2686 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2687 }
2688 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2689
2690 /*
2691 * clkdev helpers
2692 */
2693 int __clk_get(struct clk *clk)
2694 {
2695 struct clk_core *core = !clk ? NULL : clk->core;
2696
2697 if (core) {
2698 if (!try_module_get(core->owner))
2699 return 0;
2700
2701 kref_get(&core->ref);
2702 }
2703 return 1;
2704 }
2705
2706 void __clk_put(struct clk *clk)
2707 {
2708 struct module *owner;
2709
2710 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2711 return;
2712
2713 clk_prepare_lock();
2714
2715 hlist_del(&clk->clks_node);
2716 if (clk->min_rate > clk->core->req_rate ||
2717 clk->max_rate < clk->core->req_rate)
2718 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2719
2720 owner = clk->core->owner;
2721 kref_put(&clk->core->ref, __clk_release);
2722
2723 clk_prepare_unlock();
2724
2725 module_put(owner);
2726
2727 kfree(clk);
2728 }
2729
2730 /*** clk rate change notifiers ***/
2731
2732 /**
2733 * clk_notifier_register - add a clk rate change notifier
2734 * @clk: struct clk * to watch
2735 * @nb: struct notifier_block * with callback info
2736 *
2737 * Request notification when clk's rate changes. This uses an SRCU
2738 * notifier because we want it to block and notifier unregistrations are
2739 * uncommon. The callbacks associated with the notifier must not
2740 * re-enter into the clk framework by calling any top-level clk APIs;
2741 * this will cause a nested prepare_lock mutex.
2742 *
2743 * In all notification cases cases (pre, post and abort rate change) the
2744 * original clock rate is passed to the callback via struct
2745 * clk_notifier_data.old_rate and the new frequency is passed via struct
2746 * clk_notifier_data.new_rate.
2747 *
2748 * clk_notifier_register() must be called from non-atomic context.
2749 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2750 * allocation failure; otherwise, passes along the return value of
2751 * srcu_notifier_chain_register().
2752 */
2753 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2754 {
2755 struct clk_notifier *cn;
2756 int ret = -ENOMEM;
2757
2758 if (!clk || !nb)
2759 return -EINVAL;
2760
2761 clk_prepare_lock();
2762
2763 /* search the list of notifiers for this clk */
2764 list_for_each_entry(cn, &clk_notifier_list, node)
2765 if (cn->clk == clk)
2766 break;
2767
2768 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2769 if (cn->clk != clk) {
2770 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2771 if (!cn)
2772 goto out;
2773
2774 cn->clk = clk;
2775 srcu_init_notifier_head(&cn->notifier_head);
2776
2777 list_add(&cn->node, &clk_notifier_list);
2778 }
2779
2780 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2781
2782 clk->core->notifier_count++;
2783
2784 out:
2785 clk_prepare_unlock();
2786
2787 return ret;
2788 }
2789 EXPORT_SYMBOL_GPL(clk_notifier_register);
2790
2791 /**
2792 * clk_notifier_unregister - remove a clk rate change notifier
2793 * @clk: struct clk *
2794 * @nb: struct notifier_block * with callback info
2795 *
2796 * Request no further notification for changes to 'clk' and frees memory
2797 * allocated in clk_notifier_register.
2798 *
2799 * Returns -EINVAL if called with null arguments; otherwise, passes
2800 * along the return value of srcu_notifier_chain_unregister().
2801 */
2802 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2803 {
2804 struct clk_notifier *cn = NULL;
2805 int ret = -EINVAL;
2806
2807 if (!clk || !nb)
2808 return -EINVAL;
2809
2810 clk_prepare_lock();
2811
2812 list_for_each_entry(cn, &clk_notifier_list, node)
2813 if (cn->clk == clk)
2814 break;
2815
2816 if (cn->clk == clk) {
2817 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2818
2819 clk->core->notifier_count--;
2820
2821 /* XXX the notifier code should handle this better */
2822 if (!cn->notifier_head.head) {
2823 srcu_cleanup_notifier_head(&cn->notifier_head);
2824 list_del(&cn->node);
2825 kfree(cn);
2826 }
2827
2828 } else {
2829 ret = -ENOENT;
2830 }
2831
2832 clk_prepare_unlock();
2833
2834 return ret;
2835 }
2836 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2837
2838 #ifdef CONFIG_OF
2839 /**
2840 * struct of_clk_provider - Clock provider registration structure
2841 * @link: Entry in global list of clock providers
2842 * @node: Pointer to device tree node of clock provider
2843 * @get: Get clock callback. Returns NULL or a struct clk for the
2844 * given clock specifier
2845 * @data: context pointer to be passed into @get callback
2846 */
2847 struct of_clk_provider {
2848 struct list_head link;
2849
2850 struct device_node *node;
2851 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2852 void *data;
2853 };
2854
2855 static const struct of_device_id __clk_of_table_sentinel
2856 __used __section(__clk_of_table_end);
2857
2858 static LIST_HEAD(of_clk_providers);
2859 static DEFINE_MUTEX(of_clk_mutex);
2860
2861 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2862 void *data)
2863 {
2864 return data;
2865 }
2866 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2867
2868 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2869 {
2870 struct clk_onecell_data *clk_data = data;
2871 unsigned int idx = clkspec->args[0];
2872
2873 if (idx >= clk_data->clk_num) {
2874 pr_err("%s: invalid clock index %d\n", __func__, idx);
2875 return ERR_PTR(-EINVAL);
2876 }
2877
2878 return clk_data->clks[idx];
2879 }
2880 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2881
2882 /**
2883 * of_clk_add_provider() - Register a clock provider for a node
2884 * @np: Device node pointer associated with clock provider
2885 * @clk_src_get: callback for decoding clock
2886 * @data: context pointer for @clk_src_get callback.
2887 */
2888 int of_clk_add_provider(struct device_node *np,
2889 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2890 void *data),
2891 void *data)
2892 {
2893 struct of_clk_provider *cp;
2894 int ret;
2895
2896 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2897 if (!cp)
2898 return -ENOMEM;
2899
2900 cp->node = of_node_get(np);
2901 cp->data = data;
2902 cp->get = clk_src_get;
2903
2904 mutex_lock(&of_clk_mutex);
2905 list_add(&cp->link, &of_clk_providers);
2906 mutex_unlock(&of_clk_mutex);
2907 pr_debug("Added clock from %s\n", np->full_name);
2908
2909 ret = of_clk_set_defaults(np, true);
2910 if (ret < 0)
2911 of_clk_del_provider(np);
2912
2913 return ret;
2914 }
2915 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2916
2917 /**
2918 * of_clk_del_provider() - Remove a previously registered clock provider
2919 * @np: Device node pointer associated with clock provider
2920 */
2921 void of_clk_del_provider(struct device_node *np)
2922 {
2923 struct of_clk_provider *cp;
2924
2925 mutex_lock(&of_clk_mutex);
2926 list_for_each_entry(cp, &of_clk_providers, link) {
2927 if (cp->node == np) {
2928 list_del(&cp->link);
2929 of_node_put(cp->node);
2930 kfree(cp);
2931 break;
2932 }
2933 }
2934 mutex_unlock(&of_clk_mutex);
2935 }
2936 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2937
2938 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2939 const char *dev_id, const char *con_id)
2940 {
2941 struct of_clk_provider *provider;
2942 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2943
2944 if (!clkspec)
2945 return ERR_PTR(-EINVAL);
2946
2947 /* Check if we have such a provider in our array */
2948 mutex_lock(&of_clk_mutex);
2949 list_for_each_entry(provider, &of_clk_providers, link) {
2950 if (provider->node == clkspec->np)
2951 clk = provider->get(clkspec, provider->data);
2952 if (!IS_ERR(clk)) {
2953 clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2954 con_id);
2955
2956 if (!IS_ERR(clk) && !__clk_get(clk)) {
2957 __clk_free_clk(clk);
2958 clk = ERR_PTR(-ENOENT);
2959 }
2960
2961 break;
2962 }
2963 }
2964 mutex_unlock(&of_clk_mutex);
2965
2966 return clk;
2967 }
2968
2969 /**
2970 * of_clk_get_from_provider() - Lookup a clock from a clock provider
2971 * @clkspec: pointer to a clock specifier data structure
2972 *
2973 * This function looks up a struct clk from the registered list of clock
2974 * providers, an input is a clock specifier data structure as returned
2975 * from the of_parse_phandle_with_args() function call.
2976 */
2977 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2978 {
2979 return __of_clk_get_from_provider(clkspec, NULL, __func__);
2980 }
2981
2982 int of_clk_get_parent_count(struct device_node *np)
2983 {
2984 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2985 }
2986 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2987
2988 const char *of_clk_get_parent_name(struct device_node *np, int index)
2989 {
2990 struct of_phandle_args clkspec;
2991 struct property *prop;
2992 const char *clk_name;
2993 const __be32 *vp;
2994 u32 pv;
2995 int rc;
2996 int count;
2997
2998 if (index < 0)
2999 return NULL;
3000
3001 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3002 &clkspec);
3003 if (rc)
3004 return NULL;
3005
3006 index = clkspec.args_count ? clkspec.args[0] : 0;
3007 count = 0;
3008
3009 /* if there is an indices property, use it to transfer the index
3010 * specified into an array offset for the clock-output-names property.
3011 */
3012 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3013 if (index == pv) {
3014 index = count;
3015 break;
3016 }
3017 count++;
3018 }
3019
3020 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3021 index,
3022 &clk_name) < 0)
3023 clk_name = clkspec.np->name;
3024
3025 of_node_put(clkspec.np);
3026 return clk_name;
3027 }
3028 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3029
3030 /**
3031 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3032 * number of parents
3033 * @np: Device node pointer associated with clock provider
3034 * @parents: pointer to char array that hold the parents' names
3035 * @size: size of the @parents array
3036 *
3037 * Return: number of parents for the clock node.
3038 */
3039 int of_clk_parent_fill(struct device_node *np, const char **parents,
3040 unsigned int size)
3041 {
3042 unsigned int i = 0;
3043
3044 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3045 i++;
3046
3047 return i;
3048 }
3049 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3050
3051 struct clock_provider {
3052 of_clk_init_cb_t clk_init_cb;
3053 struct device_node *np;
3054 struct list_head node;
3055 };
3056
3057 static LIST_HEAD(clk_provider_list);
3058
3059 /*
3060 * This function looks for a parent clock. If there is one, then it
3061 * checks that the provider for this parent clock was initialized, in
3062 * this case the parent clock will be ready.
3063 */
3064 static int parent_ready(struct device_node *np)
3065 {
3066 int i = 0;
3067
3068 while (true) {
3069 struct clk *clk = of_clk_get(np, i);
3070
3071 /* this parent is ready we can check the next one */
3072 if (!IS_ERR(clk)) {
3073 clk_put(clk);
3074 i++;
3075 continue;
3076 }
3077
3078 /* at least one parent is not ready, we exit now */
3079 if (PTR_ERR(clk) == -EPROBE_DEFER)
3080 return 0;
3081
3082 /*
3083 * Here we make assumption that the device tree is
3084 * written correctly. So an error means that there is
3085 * no more parent. As we didn't exit yet, then the
3086 * previous parent are ready. If there is no clock
3087 * parent, no need to wait for them, then we can
3088 * consider their absence as being ready
3089 */
3090 return 1;
3091 }
3092 }
3093
3094 /**
3095 * of_clk_init() - Scan and init clock providers from the DT
3096 * @matches: array of compatible values and init functions for providers.
3097 *
3098 * This function scans the device tree for matching clock providers
3099 * and calls their initialization functions. It also does it by trying
3100 * to follow the dependencies.
3101 */
3102 void __init of_clk_init(const struct of_device_id *matches)
3103 {
3104 const struct of_device_id *match;
3105 struct device_node *np;
3106 struct clock_provider *clk_provider, *next;
3107 bool is_init_done;
3108 bool force = false;
3109
3110 if (!matches)
3111 matches = &__clk_of_table;
3112
3113 /* First prepare the list of the clocks providers */
3114 for_each_matching_node_and_match(np, matches, &match) {
3115 struct clock_provider *parent =
3116 kzalloc(sizeof(struct clock_provider), GFP_KERNEL);
3117
3118 parent->clk_init_cb = match->data;
3119 parent->np = np;
3120 list_add_tail(&parent->node, &clk_provider_list);
3121 }
3122
3123 while (!list_empty(&clk_provider_list)) {
3124 is_init_done = false;
3125 list_for_each_entry_safe(clk_provider, next,
3126 &clk_provider_list, node) {
3127 if (force || parent_ready(clk_provider->np)) {
3128
3129 clk_provider->clk_init_cb(clk_provider->np);
3130 of_clk_set_defaults(clk_provider->np, true);
3131
3132 list_del(&clk_provider->node);
3133 kfree(clk_provider);
3134 is_init_done = true;
3135 }
3136 }
3137
3138 /*
3139 * We didn't manage to initialize any of the
3140 * remaining providers during the last loop, so now we
3141 * initialize all the remaining ones unconditionally
3142 * in case the clock parent was not mandatory
3143 */
3144 if (!is_init_done)
3145 force = true;
3146 }
3147 }
3148 #endif
This page took 0.124889 seconds and 5 git commands to generate.