Merge tag 'zynq-clk-for-3.12' of git://git.xilinx.com/linux-xlnx into clk-next
[deliverable/linux.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23
24 static DEFINE_SPINLOCK(enable_lock);
25 static DEFINE_MUTEX(prepare_lock);
26
27 static struct task_struct *prepare_owner;
28 static struct task_struct *enable_owner;
29
30 static int prepare_refcnt;
31 static int enable_refcnt;
32
33 static HLIST_HEAD(clk_root_list);
34 static HLIST_HEAD(clk_orphan_list);
35 static LIST_HEAD(clk_notifier_list);
36
37 /*** locking ***/
38 static void clk_prepare_lock(void)
39 {
40 if (!mutex_trylock(&prepare_lock)) {
41 if (prepare_owner == current) {
42 prepare_refcnt++;
43 return;
44 }
45 mutex_lock(&prepare_lock);
46 }
47 WARN_ON_ONCE(prepare_owner != NULL);
48 WARN_ON_ONCE(prepare_refcnt != 0);
49 prepare_owner = current;
50 prepare_refcnt = 1;
51 }
52
53 static void clk_prepare_unlock(void)
54 {
55 WARN_ON_ONCE(prepare_owner != current);
56 WARN_ON_ONCE(prepare_refcnt == 0);
57
58 if (--prepare_refcnt)
59 return;
60 prepare_owner = NULL;
61 mutex_unlock(&prepare_lock);
62 }
63
64 static unsigned long clk_enable_lock(void)
65 {
66 unsigned long flags;
67
68 if (!spin_trylock_irqsave(&enable_lock, flags)) {
69 if (enable_owner == current) {
70 enable_refcnt++;
71 return flags;
72 }
73 spin_lock_irqsave(&enable_lock, flags);
74 }
75 WARN_ON_ONCE(enable_owner != NULL);
76 WARN_ON_ONCE(enable_refcnt != 0);
77 enable_owner = current;
78 enable_refcnt = 1;
79 return flags;
80 }
81
82 static void clk_enable_unlock(unsigned long flags)
83 {
84 WARN_ON_ONCE(enable_owner != current);
85 WARN_ON_ONCE(enable_refcnt == 0);
86
87 if (--enable_refcnt)
88 return;
89 enable_owner = NULL;
90 spin_unlock_irqrestore(&enable_lock, flags);
91 }
92
93 /*** debugfs support ***/
94
95 #ifdef CONFIG_COMMON_CLK_DEBUG
96 #include <linux/debugfs.h>
97
98 static struct dentry *rootdir;
99 static struct dentry *orphandir;
100 static int inited = 0;
101
102 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103 {
104 if (!c)
105 return;
106
107 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108 level * 3 + 1, "",
109 30 - level * 3, c->name,
110 c->enable_count, c->prepare_count, clk_get_rate(c));
111 seq_printf(s, "\n");
112 }
113
114 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115 int level)
116 {
117 struct clk *child;
118
119 if (!c)
120 return;
121
122 clk_summary_show_one(s, c, level);
123
124 hlist_for_each_entry(child, &c->children, child_node)
125 clk_summary_show_subtree(s, child, level + 1);
126 }
127
128 static int clk_summary_show(struct seq_file *s, void *data)
129 {
130 struct clk *c;
131
132 seq_printf(s, " clock enable_cnt prepare_cnt rate\n");
133 seq_printf(s, "---------------------------------------------------------------------\n");
134
135 clk_prepare_lock();
136
137 hlist_for_each_entry(c, &clk_root_list, child_node)
138 clk_summary_show_subtree(s, c, 0);
139
140 hlist_for_each_entry(c, &clk_orphan_list, child_node)
141 clk_summary_show_subtree(s, c, 0);
142
143 clk_prepare_unlock();
144
145 return 0;
146 }
147
148
149 static int clk_summary_open(struct inode *inode, struct file *file)
150 {
151 return single_open(file, clk_summary_show, inode->i_private);
152 }
153
154 static const struct file_operations clk_summary_fops = {
155 .open = clk_summary_open,
156 .read = seq_read,
157 .llseek = seq_lseek,
158 .release = single_release,
159 };
160
161 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
162 {
163 if (!c)
164 return;
165
166 seq_printf(s, "\"%s\": { ", c->name);
167 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
170 }
171
172 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
173 {
174 struct clk *child;
175
176 if (!c)
177 return;
178
179 clk_dump_one(s, c, level);
180
181 hlist_for_each_entry(child, &c->children, child_node) {
182 seq_printf(s, ",");
183 clk_dump_subtree(s, child, level + 1);
184 }
185
186 seq_printf(s, "}");
187 }
188
189 static int clk_dump(struct seq_file *s, void *data)
190 {
191 struct clk *c;
192 bool first_node = true;
193
194 seq_printf(s, "{");
195
196 clk_prepare_lock();
197
198 hlist_for_each_entry(c, &clk_root_list, child_node) {
199 if (!first_node)
200 seq_printf(s, ",");
201 first_node = false;
202 clk_dump_subtree(s, c, 0);
203 }
204
205 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206 seq_printf(s, ",");
207 clk_dump_subtree(s, c, 0);
208 }
209
210 clk_prepare_unlock();
211
212 seq_printf(s, "}");
213 return 0;
214 }
215
216
217 static int clk_dump_open(struct inode *inode, struct file *file)
218 {
219 return single_open(file, clk_dump, inode->i_private);
220 }
221
222 static const struct file_operations clk_dump_fops = {
223 .open = clk_dump_open,
224 .read = seq_read,
225 .llseek = seq_lseek,
226 .release = single_release,
227 };
228
229 /* caller must hold prepare_lock */
230 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
231 {
232 struct dentry *d;
233 int ret = -ENOMEM;
234
235 if (!clk || !pdentry) {
236 ret = -EINVAL;
237 goto out;
238 }
239
240 d = debugfs_create_dir(clk->name, pdentry);
241 if (!d)
242 goto out;
243
244 clk->dentry = d;
245
246 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247 (u32 *)&clk->rate);
248 if (!d)
249 goto err_out;
250
251 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252 (u32 *)&clk->flags);
253 if (!d)
254 goto err_out;
255
256 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257 (u32 *)&clk->prepare_count);
258 if (!d)
259 goto err_out;
260
261 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262 (u32 *)&clk->enable_count);
263 if (!d)
264 goto err_out;
265
266 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267 (u32 *)&clk->notifier_count);
268 if (!d)
269 goto err_out;
270
271 ret = 0;
272 goto out;
273
274 err_out:
275 debugfs_remove(clk->dentry);
276 out:
277 return ret;
278 }
279
280 /* caller must hold prepare_lock */
281 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
282 {
283 struct clk *child;
284 int ret = -EINVAL;;
285
286 if (!clk || !pdentry)
287 goto out;
288
289 ret = clk_debug_create_one(clk, pdentry);
290
291 if (ret)
292 goto out;
293
294 hlist_for_each_entry(child, &clk->children, child_node)
295 clk_debug_create_subtree(child, clk->dentry);
296
297 ret = 0;
298 out:
299 return ret;
300 }
301
302 /**
303 * clk_debug_register - add a clk node to the debugfs clk tree
304 * @clk: the clk being added to the debugfs clk tree
305 *
306 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
307 * initialized. Otherwise it bails out early since the debugfs clk tree
308 * will be created lazily by clk_debug_init as part of a late_initcall.
309 *
310 * Caller must hold prepare_lock. Only clk_init calls this function (so
311 * far) so this is taken care.
312 */
313 static int clk_debug_register(struct clk *clk)
314 {
315 struct clk *parent;
316 struct dentry *pdentry;
317 int ret = 0;
318
319 if (!inited)
320 goto out;
321
322 parent = clk->parent;
323
324 /*
325 * Check to see if a clk is a root clk. Also check that it is
326 * safe to add this clk to debugfs
327 */
328 if (!parent)
329 if (clk->flags & CLK_IS_ROOT)
330 pdentry = rootdir;
331 else
332 pdentry = orphandir;
333 else
334 if (parent->dentry)
335 pdentry = parent->dentry;
336 else
337 goto out;
338
339 ret = clk_debug_create_subtree(clk, pdentry);
340
341 out:
342 return ret;
343 }
344
345 /**
346 * clk_debug_reparent - reparent clk node in the debugfs clk tree
347 * @clk: the clk being reparented
348 * @new_parent: the new clk parent, may be NULL
349 *
350 * Rename clk entry in the debugfs clk tree if debugfs has been
351 * initialized. Otherwise it bails out early since the debugfs clk tree
352 * will be created lazily by clk_debug_init as part of a late_initcall.
353 *
354 * Caller must hold prepare_lock.
355 */
356 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
357 {
358 struct dentry *d;
359 struct dentry *new_parent_d;
360
361 if (!inited)
362 return;
363
364 if (new_parent)
365 new_parent_d = new_parent->dentry;
366 else
367 new_parent_d = orphandir;
368
369 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
370 new_parent_d, clk->name);
371 if (d)
372 clk->dentry = d;
373 else
374 pr_debug("%s: failed to rename debugfs entry for %s\n",
375 __func__, clk->name);
376 }
377
378 /**
379 * clk_debug_init - lazily create the debugfs clk tree visualization
380 *
381 * clks are often initialized very early during boot before memory can
382 * be dynamically allocated and well before debugfs is setup.
383 * clk_debug_init walks the clk tree hierarchy while holding
384 * prepare_lock and creates the topology as part of a late_initcall,
385 * thus insuring that clks initialized very early will still be
386 * represented in the debugfs clk tree. This function should only be
387 * called once at boot-time, and all other clks added dynamically will
388 * be done so with clk_debug_register.
389 */
390 static int __init clk_debug_init(void)
391 {
392 struct clk *clk;
393 struct dentry *d;
394
395 rootdir = debugfs_create_dir("clk", NULL);
396
397 if (!rootdir)
398 return -ENOMEM;
399
400 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
401 &clk_summary_fops);
402 if (!d)
403 return -ENOMEM;
404
405 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
406 &clk_dump_fops);
407 if (!d)
408 return -ENOMEM;
409
410 orphandir = debugfs_create_dir("orphans", rootdir);
411
412 if (!orphandir)
413 return -ENOMEM;
414
415 clk_prepare_lock();
416
417 hlist_for_each_entry(clk, &clk_root_list, child_node)
418 clk_debug_create_subtree(clk, rootdir);
419
420 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
421 clk_debug_create_subtree(clk, orphandir);
422
423 inited = 1;
424
425 clk_prepare_unlock();
426
427 return 0;
428 }
429 late_initcall(clk_debug_init);
430 #else
431 static inline int clk_debug_register(struct clk *clk) { return 0; }
432 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
433 {
434 }
435 #endif
436
437 /* caller must hold prepare_lock */
438 static void clk_unprepare_unused_subtree(struct clk *clk)
439 {
440 struct clk *child;
441
442 if (!clk)
443 return;
444
445 hlist_for_each_entry(child, &clk->children, child_node)
446 clk_unprepare_unused_subtree(child);
447
448 if (clk->prepare_count)
449 return;
450
451 if (clk->flags & CLK_IGNORE_UNUSED)
452 return;
453
454 if (__clk_is_prepared(clk)) {
455 if (clk->ops->unprepare_unused)
456 clk->ops->unprepare_unused(clk->hw);
457 else if (clk->ops->unprepare)
458 clk->ops->unprepare(clk->hw);
459 }
460 }
461 EXPORT_SYMBOL_GPL(__clk_get_flags);
462
463 /* caller must hold prepare_lock */
464 static void clk_disable_unused_subtree(struct clk *clk)
465 {
466 struct clk *child;
467 unsigned long flags;
468
469 if (!clk)
470 goto out;
471
472 hlist_for_each_entry(child, &clk->children, child_node)
473 clk_disable_unused_subtree(child);
474
475 flags = clk_enable_lock();
476
477 if (clk->enable_count)
478 goto unlock_out;
479
480 if (clk->flags & CLK_IGNORE_UNUSED)
481 goto unlock_out;
482
483 /*
484 * some gate clocks have special needs during the disable-unused
485 * sequence. call .disable_unused if available, otherwise fall
486 * back to .disable
487 */
488 if (__clk_is_enabled(clk)) {
489 if (clk->ops->disable_unused)
490 clk->ops->disable_unused(clk->hw);
491 else if (clk->ops->disable)
492 clk->ops->disable(clk->hw);
493 }
494
495 unlock_out:
496 clk_enable_unlock(flags);
497
498 out:
499 return;
500 }
501
502 static bool clk_ignore_unused;
503 static int __init clk_ignore_unused_setup(char *__unused)
504 {
505 clk_ignore_unused = true;
506 return 1;
507 }
508 __setup("clk_ignore_unused", clk_ignore_unused_setup);
509
510 static int clk_disable_unused(void)
511 {
512 struct clk *clk;
513
514 if (clk_ignore_unused) {
515 pr_warn("clk: Not disabling unused clocks\n");
516 return 0;
517 }
518
519 clk_prepare_lock();
520
521 hlist_for_each_entry(clk, &clk_root_list, child_node)
522 clk_disable_unused_subtree(clk);
523
524 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
525 clk_disable_unused_subtree(clk);
526
527 hlist_for_each_entry(clk, &clk_root_list, child_node)
528 clk_unprepare_unused_subtree(clk);
529
530 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
531 clk_unprepare_unused_subtree(clk);
532
533 clk_prepare_unlock();
534
535 return 0;
536 }
537 late_initcall_sync(clk_disable_unused);
538
539 /*** helper functions ***/
540
541 const char *__clk_get_name(struct clk *clk)
542 {
543 return !clk ? NULL : clk->name;
544 }
545 EXPORT_SYMBOL_GPL(__clk_get_name);
546
547 struct clk_hw *__clk_get_hw(struct clk *clk)
548 {
549 return !clk ? NULL : clk->hw;
550 }
551
552 u8 __clk_get_num_parents(struct clk *clk)
553 {
554 return !clk ? 0 : clk->num_parents;
555 }
556
557 struct clk *__clk_get_parent(struct clk *clk)
558 {
559 return !clk ? NULL : clk->parent;
560 }
561
562 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
563 {
564 if (!clk || index >= clk->num_parents)
565 return NULL;
566 else if (!clk->parents)
567 return __clk_lookup(clk->parent_names[index]);
568 else if (!clk->parents[index])
569 return clk->parents[index] =
570 __clk_lookup(clk->parent_names[index]);
571 else
572 return clk->parents[index];
573 }
574
575 unsigned int __clk_get_enable_count(struct clk *clk)
576 {
577 return !clk ? 0 : clk->enable_count;
578 }
579
580 unsigned int __clk_get_prepare_count(struct clk *clk)
581 {
582 return !clk ? 0 : clk->prepare_count;
583 }
584
585 unsigned long __clk_get_rate(struct clk *clk)
586 {
587 unsigned long ret;
588
589 if (!clk) {
590 ret = 0;
591 goto out;
592 }
593
594 ret = clk->rate;
595
596 if (clk->flags & CLK_IS_ROOT)
597 goto out;
598
599 if (!clk->parent)
600 ret = 0;
601
602 out:
603 return ret;
604 }
605
606 unsigned long __clk_get_flags(struct clk *clk)
607 {
608 return !clk ? 0 : clk->flags;
609 }
610
611 bool __clk_is_prepared(struct clk *clk)
612 {
613 int ret;
614
615 if (!clk)
616 return false;
617
618 /*
619 * .is_prepared is optional for clocks that can prepare
620 * fall back to software usage counter if it is missing
621 */
622 if (!clk->ops->is_prepared) {
623 ret = clk->prepare_count ? 1 : 0;
624 goto out;
625 }
626
627 ret = clk->ops->is_prepared(clk->hw);
628 out:
629 return !!ret;
630 }
631
632 bool __clk_is_enabled(struct clk *clk)
633 {
634 int ret;
635
636 if (!clk)
637 return false;
638
639 /*
640 * .is_enabled is only mandatory for clocks that gate
641 * fall back to software usage counter if .is_enabled is missing
642 */
643 if (!clk->ops->is_enabled) {
644 ret = clk->enable_count ? 1 : 0;
645 goto out;
646 }
647
648 ret = clk->ops->is_enabled(clk->hw);
649 out:
650 return !!ret;
651 }
652
653 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
654 {
655 struct clk *child;
656 struct clk *ret;
657
658 if (!strcmp(clk->name, name))
659 return clk;
660
661 hlist_for_each_entry(child, &clk->children, child_node) {
662 ret = __clk_lookup_subtree(name, child);
663 if (ret)
664 return ret;
665 }
666
667 return NULL;
668 }
669
670 struct clk *__clk_lookup(const char *name)
671 {
672 struct clk *root_clk;
673 struct clk *ret;
674
675 if (!name)
676 return NULL;
677
678 /* search the 'proper' clk tree first */
679 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
680 ret = __clk_lookup_subtree(name, root_clk);
681 if (ret)
682 return ret;
683 }
684
685 /* if not found, then search the orphan tree */
686 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
687 ret = __clk_lookup_subtree(name, root_clk);
688 if (ret)
689 return ret;
690 }
691
692 return NULL;
693 }
694
695 /*
696 * Helper for finding best parent to provide a given frequency. This can be used
697 * directly as a determine_rate callback (e.g. for a mux), or from a more
698 * complex clock that may combine a mux with other operations.
699 */
700 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
701 unsigned long *best_parent_rate,
702 struct clk **best_parent_p)
703 {
704 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
705 int i, num_parents;
706 unsigned long parent_rate, best = 0;
707
708 /* if NO_REPARENT flag set, pass through to current parent */
709 if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
710 parent = clk->parent;
711 if (clk->flags & CLK_SET_RATE_PARENT)
712 best = __clk_round_rate(parent, rate);
713 else if (parent)
714 best = __clk_get_rate(parent);
715 else
716 best = __clk_get_rate(clk);
717 goto out;
718 }
719
720 /* find the parent that can provide the fastest rate <= rate */
721 num_parents = clk->num_parents;
722 for (i = 0; i < num_parents; i++) {
723 parent = clk_get_parent_by_index(clk, i);
724 if (!parent)
725 continue;
726 if (clk->flags & CLK_SET_RATE_PARENT)
727 parent_rate = __clk_round_rate(parent, rate);
728 else
729 parent_rate = __clk_get_rate(parent);
730 if (parent_rate <= rate && parent_rate > best) {
731 best_parent = parent;
732 best = parent_rate;
733 }
734 }
735
736 out:
737 if (best_parent)
738 *best_parent_p = best_parent;
739 *best_parent_rate = best;
740
741 return best;
742 }
743
744 /*** clk api ***/
745
746 void __clk_unprepare(struct clk *clk)
747 {
748 if (!clk)
749 return;
750
751 if (WARN_ON(clk->prepare_count == 0))
752 return;
753
754 if (--clk->prepare_count > 0)
755 return;
756
757 WARN_ON(clk->enable_count > 0);
758
759 if (clk->ops->unprepare)
760 clk->ops->unprepare(clk->hw);
761
762 __clk_unprepare(clk->parent);
763 }
764
765 /**
766 * clk_unprepare - undo preparation of a clock source
767 * @clk: the clk being unprepared
768 *
769 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
770 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
771 * if the operation may sleep. One example is a clk which is accessed over
772 * I2c. In the complex case a clk gate operation may require a fast and a slow
773 * part. It is this reason that clk_unprepare and clk_disable are not mutually
774 * exclusive. In fact clk_disable must be called before clk_unprepare.
775 */
776 void clk_unprepare(struct clk *clk)
777 {
778 clk_prepare_lock();
779 __clk_unprepare(clk);
780 clk_prepare_unlock();
781 }
782 EXPORT_SYMBOL_GPL(clk_unprepare);
783
784 int __clk_prepare(struct clk *clk)
785 {
786 int ret = 0;
787
788 if (!clk)
789 return 0;
790
791 if (clk->prepare_count == 0) {
792 ret = __clk_prepare(clk->parent);
793 if (ret)
794 return ret;
795
796 if (clk->ops->prepare) {
797 ret = clk->ops->prepare(clk->hw);
798 if (ret) {
799 __clk_unprepare(clk->parent);
800 return ret;
801 }
802 }
803 }
804
805 clk->prepare_count++;
806
807 return 0;
808 }
809
810 /**
811 * clk_prepare - prepare a clock source
812 * @clk: the clk being prepared
813 *
814 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
815 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
816 * operation may sleep. One example is a clk which is accessed over I2c. In
817 * the complex case a clk ungate operation may require a fast and a slow part.
818 * It is this reason that clk_prepare and clk_enable are not mutually
819 * exclusive. In fact clk_prepare must be called before clk_enable.
820 * Returns 0 on success, -EERROR otherwise.
821 */
822 int clk_prepare(struct clk *clk)
823 {
824 int ret;
825
826 clk_prepare_lock();
827 ret = __clk_prepare(clk);
828 clk_prepare_unlock();
829
830 return ret;
831 }
832 EXPORT_SYMBOL_GPL(clk_prepare);
833
834 static void __clk_disable(struct clk *clk)
835 {
836 if (!clk)
837 return;
838
839 if (WARN_ON(IS_ERR(clk)))
840 return;
841
842 if (WARN_ON(clk->enable_count == 0))
843 return;
844
845 if (--clk->enable_count > 0)
846 return;
847
848 if (clk->ops->disable)
849 clk->ops->disable(clk->hw);
850
851 __clk_disable(clk->parent);
852 }
853
854 /**
855 * clk_disable - gate a clock
856 * @clk: the clk being gated
857 *
858 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
859 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
860 * clk if the operation is fast and will never sleep. One example is a
861 * SoC-internal clk which is controlled via simple register writes. In the
862 * complex case a clk gate operation may require a fast and a slow part. It is
863 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
864 * In fact clk_disable must be called before clk_unprepare.
865 */
866 void clk_disable(struct clk *clk)
867 {
868 unsigned long flags;
869
870 flags = clk_enable_lock();
871 __clk_disable(clk);
872 clk_enable_unlock(flags);
873 }
874 EXPORT_SYMBOL_GPL(clk_disable);
875
876 static int __clk_enable(struct clk *clk)
877 {
878 int ret = 0;
879
880 if (!clk)
881 return 0;
882
883 if (WARN_ON(clk->prepare_count == 0))
884 return -ESHUTDOWN;
885
886 if (clk->enable_count == 0) {
887 ret = __clk_enable(clk->parent);
888
889 if (ret)
890 return ret;
891
892 if (clk->ops->enable) {
893 ret = clk->ops->enable(clk->hw);
894 if (ret) {
895 __clk_disable(clk->parent);
896 return ret;
897 }
898 }
899 }
900
901 clk->enable_count++;
902 return 0;
903 }
904
905 /**
906 * clk_enable - ungate a clock
907 * @clk: the clk being ungated
908 *
909 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
910 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
911 * if the operation will never sleep. One example is a SoC-internal clk which
912 * is controlled via simple register writes. In the complex case a clk ungate
913 * operation may require a fast and a slow part. It is this reason that
914 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
915 * must be called before clk_enable. Returns 0 on success, -EERROR
916 * otherwise.
917 */
918 int clk_enable(struct clk *clk)
919 {
920 unsigned long flags;
921 int ret;
922
923 flags = clk_enable_lock();
924 ret = __clk_enable(clk);
925 clk_enable_unlock(flags);
926
927 return ret;
928 }
929 EXPORT_SYMBOL_GPL(clk_enable);
930
931 /**
932 * __clk_round_rate - round the given rate for a clk
933 * @clk: round the rate of this clock
934 * @rate: the rate which is to be rounded
935 *
936 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
937 */
938 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
939 {
940 unsigned long parent_rate = 0;
941 struct clk *parent;
942
943 if (!clk)
944 return 0;
945
946 parent = clk->parent;
947 if (parent)
948 parent_rate = parent->rate;
949
950 if (clk->ops->determine_rate)
951 return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
952 &parent);
953 else if (clk->ops->round_rate)
954 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
955 else if (clk->flags & CLK_SET_RATE_PARENT)
956 return __clk_round_rate(clk->parent, rate);
957 else
958 return clk->rate;
959 }
960
961 /**
962 * clk_round_rate - round the given rate for a clk
963 * @clk: the clk for which we are rounding a rate
964 * @rate: the rate which is to be rounded
965 *
966 * Takes in a rate as input and rounds it to a rate that the clk can actually
967 * use which is then returned. If clk doesn't support round_rate operation
968 * then the parent rate is returned.
969 */
970 long clk_round_rate(struct clk *clk, unsigned long rate)
971 {
972 unsigned long ret;
973
974 clk_prepare_lock();
975 ret = __clk_round_rate(clk, rate);
976 clk_prepare_unlock();
977
978 return ret;
979 }
980 EXPORT_SYMBOL_GPL(clk_round_rate);
981
982 /**
983 * __clk_notify - call clk notifier chain
984 * @clk: struct clk * that is changing rate
985 * @msg: clk notifier type (see include/linux/clk.h)
986 * @old_rate: old clk rate
987 * @new_rate: new clk rate
988 *
989 * Triggers a notifier call chain on the clk rate-change notification
990 * for 'clk'. Passes a pointer to the struct clk and the previous
991 * and current rates to the notifier callback. Intended to be called by
992 * internal clock code only. Returns NOTIFY_DONE from the last driver
993 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
994 * a driver returns that.
995 */
996 static int __clk_notify(struct clk *clk, unsigned long msg,
997 unsigned long old_rate, unsigned long new_rate)
998 {
999 struct clk_notifier *cn;
1000 struct clk_notifier_data cnd;
1001 int ret = NOTIFY_DONE;
1002
1003 cnd.clk = clk;
1004 cnd.old_rate = old_rate;
1005 cnd.new_rate = new_rate;
1006
1007 list_for_each_entry(cn, &clk_notifier_list, node) {
1008 if (cn->clk == clk) {
1009 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1010 &cnd);
1011 break;
1012 }
1013 }
1014
1015 return ret;
1016 }
1017
1018 /**
1019 * __clk_recalc_rates
1020 * @clk: first clk in the subtree
1021 * @msg: notification type (see include/linux/clk.h)
1022 *
1023 * Walks the subtree of clks starting with clk and recalculates rates as it
1024 * goes. Note that if a clk does not implement the .recalc_rate callback then
1025 * it is assumed that the clock will take on the rate of its parent.
1026 *
1027 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1028 * if necessary.
1029 *
1030 * Caller must hold prepare_lock.
1031 */
1032 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1033 {
1034 unsigned long old_rate;
1035 unsigned long parent_rate = 0;
1036 struct clk *child;
1037
1038 old_rate = clk->rate;
1039
1040 if (clk->parent)
1041 parent_rate = clk->parent->rate;
1042
1043 if (clk->ops->recalc_rate)
1044 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1045 else
1046 clk->rate = parent_rate;
1047
1048 /*
1049 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1050 * & ABORT_RATE_CHANGE notifiers
1051 */
1052 if (clk->notifier_count && msg)
1053 __clk_notify(clk, msg, old_rate, clk->rate);
1054
1055 hlist_for_each_entry(child, &clk->children, child_node)
1056 __clk_recalc_rates(child, msg);
1057 }
1058
1059 /**
1060 * clk_get_rate - return the rate of clk
1061 * @clk: the clk whose rate is being returned
1062 *
1063 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1064 * is set, which means a recalc_rate will be issued.
1065 * If clk is NULL then returns 0.
1066 */
1067 unsigned long clk_get_rate(struct clk *clk)
1068 {
1069 unsigned long rate;
1070
1071 clk_prepare_lock();
1072
1073 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1074 __clk_recalc_rates(clk, 0);
1075
1076 rate = __clk_get_rate(clk);
1077 clk_prepare_unlock();
1078
1079 return rate;
1080 }
1081 EXPORT_SYMBOL_GPL(clk_get_rate);
1082
1083 static u8 clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1084 {
1085 u8 i;
1086
1087 if (!clk->parents)
1088 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1089 GFP_KERNEL);
1090
1091 /*
1092 * find index of new parent clock using cached parent ptrs,
1093 * or if not yet cached, use string name comparison and cache
1094 * them now to avoid future calls to __clk_lookup.
1095 */
1096 for (i = 0; i < clk->num_parents; i++) {
1097 if (clk->parents && clk->parents[i] == parent)
1098 break;
1099 else if (!strcmp(clk->parent_names[i], parent->name)) {
1100 if (clk->parents)
1101 clk->parents[i] = __clk_lookup(parent->name);
1102 break;
1103 }
1104 }
1105
1106 return i;
1107 }
1108
1109 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1110 {
1111 /* avoid duplicate POST_RATE_CHANGE notifications */
1112 if (new_parent->new_child == clk)
1113 new_parent->new_child = NULL;
1114
1115 hlist_del(&clk->child_node);
1116
1117 if (new_parent)
1118 hlist_add_head(&clk->child_node, &new_parent->children);
1119 else
1120 hlist_add_head(&clk->child_node, &clk_orphan_list);
1121
1122 clk->parent = new_parent;
1123 }
1124
1125 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1126 {
1127 unsigned long flags;
1128 int ret = 0;
1129 struct clk *old_parent = clk->parent;
1130
1131 /*
1132 * Migrate prepare state between parents and prevent race with
1133 * clk_enable().
1134 *
1135 * If the clock is not prepared, then a race with
1136 * clk_enable/disable() is impossible since we already have the
1137 * prepare lock (future calls to clk_enable() need to be preceded by
1138 * a clk_prepare()).
1139 *
1140 * If the clock is prepared, migrate the prepared state to the new
1141 * parent and also protect against a race with clk_enable() by
1142 * forcing the clock and the new parent on. This ensures that all
1143 * future calls to clk_enable() are practically NOPs with respect to
1144 * hardware and software states.
1145 *
1146 * See also: Comment for clk_set_parent() below.
1147 */
1148 if (clk->prepare_count) {
1149 __clk_prepare(parent);
1150 clk_enable(parent);
1151 clk_enable(clk);
1152 }
1153
1154 /* update the clk tree topology */
1155 flags = clk_enable_lock();
1156 clk_reparent(clk, parent);
1157 clk_enable_unlock(flags);
1158
1159 /* change clock input source */
1160 if (parent && clk->ops->set_parent)
1161 ret = clk->ops->set_parent(clk->hw, p_index);
1162
1163 if (ret) {
1164 flags = clk_enable_lock();
1165 clk_reparent(clk, old_parent);
1166 clk_enable_unlock(flags);
1167
1168 if (clk->prepare_count) {
1169 clk_disable(clk);
1170 clk_disable(parent);
1171 __clk_unprepare(parent);
1172 }
1173 return ret;
1174 }
1175
1176 /*
1177 * Finish the migration of prepare state and undo the changes done
1178 * for preventing a race with clk_enable().
1179 */
1180 if (clk->prepare_count) {
1181 clk_disable(clk);
1182 clk_disable(old_parent);
1183 __clk_unprepare(old_parent);
1184 }
1185
1186 /* update debugfs with new clk tree topology */
1187 clk_debug_reparent(clk, parent);
1188 return 0;
1189 }
1190
1191 /**
1192 * __clk_speculate_rates
1193 * @clk: first clk in the subtree
1194 * @parent_rate: the "future" rate of clk's parent
1195 *
1196 * Walks the subtree of clks starting with clk, speculating rates as it
1197 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1198 *
1199 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1200 * pre-rate change notifications and returns early if no clks in the
1201 * subtree have subscribed to the notifications. Note that if a clk does not
1202 * implement the .recalc_rate callback then it is assumed that the clock will
1203 * take on the rate of its parent.
1204 *
1205 * Caller must hold prepare_lock.
1206 */
1207 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1208 {
1209 struct clk *child;
1210 unsigned long new_rate;
1211 int ret = NOTIFY_DONE;
1212
1213 if (clk->ops->recalc_rate)
1214 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1215 else
1216 new_rate = parent_rate;
1217
1218 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1219 if (clk->notifier_count)
1220 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1221
1222 if (ret & NOTIFY_STOP_MASK)
1223 goto out;
1224
1225 hlist_for_each_entry(child, &clk->children, child_node) {
1226 ret = __clk_speculate_rates(child, new_rate);
1227 if (ret & NOTIFY_STOP_MASK)
1228 break;
1229 }
1230
1231 out:
1232 return ret;
1233 }
1234
1235 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1236 struct clk *new_parent, u8 p_index)
1237 {
1238 struct clk *child;
1239
1240 clk->new_rate = new_rate;
1241 clk->new_parent = new_parent;
1242 clk->new_parent_index = p_index;
1243 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1244 clk->new_child = NULL;
1245 if (new_parent && new_parent != clk->parent)
1246 new_parent->new_child = clk;
1247
1248 hlist_for_each_entry(child, &clk->children, child_node) {
1249 if (child->ops->recalc_rate)
1250 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1251 else
1252 child->new_rate = new_rate;
1253 clk_calc_subtree(child, child->new_rate, NULL, 0);
1254 }
1255 }
1256
1257 /*
1258 * calculate the new rates returning the topmost clock that has to be
1259 * changed.
1260 */
1261 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1262 {
1263 struct clk *top = clk;
1264 struct clk *old_parent, *parent;
1265 unsigned long best_parent_rate = 0;
1266 unsigned long new_rate;
1267 u8 p_index = 0;
1268
1269 /* sanity */
1270 if (IS_ERR_OR_NULL(clk))
1271 return NULL;
1272
1273 /* save parent rate, if it exists */
1274 parent = old_parent = clk->parent;
1275 if (parent)
1276 best_parent_rate = parent->rate;
1277
1278 /* find the closest rate and parent clk/rate */
1279 if (clk->ops->determine_rate) {
1280 new_rate = clk->ops->determine_rate(clk->hw, rate,
1281 &best_parent_rate,
1282 &parent);
1283 } else if (clk->ops->round_rate) {
1284 new_rate = clk->ops->round_rate(clk->hw, rate,
1285 &best_parent_rate);
1286 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1287 /* pass-through clock without adjustable parent */
1288 clk->new_rate = clk->rate;
1289 return NULL;
1290 } else {
1291 /* pass-through clock with adjustable parent */
1292 top = clk_calc_new_rates(parent, rate);
1293 new_rate = parent->new_rate;
1294 goto out;
1295 }
1296
1297 /* some clocks must be gated to change parent */
1298 if (parent != old_parent &&
1299 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1300 pr_debug("%s: %s not gated but wants to reparent\n",
1301 __func__, clk->name);
1302 return NULL;
1303 }
1304
1305 /* try finding the new parent index */
1306 if (parent) {
1307 p_index = clk_fetch_parent_index(clk, parent);
1308 if (p_index == clk->num_parents) {
1309 pr_debug("%s: clk %s can not be parent of clk %s\n",
1310 __func__, parent->name, clk->name);
1311 return NULL;
1312 }
1313 }
1314
1315 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1316 best_parent_rate != parent->rate)
1317 top = clk_calc_new_rates(parent, best_parent_rate);
1318
1319 out:
1320 clk_calc_subtree(clk, new_rate, parent, p_index);
1321
1322 return top;
1323 }
1324
1325 /*
1326 * Notify about rate changes in a subtree. Always walk down the whole tree
1327 * so that in case of an error we can walk down the whole tree again and
1328 * abort the change.
1329 */
1330 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1331 {
1332 struct clk *child, *tmp_clk, *fail_clk = NULL;
1333 int ret = NOTIFY_DONE;
1334
1335 if (clk->rate == clk->new_rate)
1336 return NULL;
1337
1338 if (clk->notifier_count) {
1339 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1340 if (ret & NOTIFY_STOP_MASK)
1341 fail_clk = clk;
1342 }
1343
1344 hlist_for_each_entry(child, &clk->children, child_node) {
1345 /* Skip children who will be reparented to another clock */
1346 if (child->new_parent && child->new_parent != clk)
1347 continue;
1348 tmp_clk = clk_propagate_rate_change(child, event);
1349 if (tmp_clk)
1350 fail_clk = tmp_clk;
1351 }
1352
1353 /* handle the new child who might not be in clk->children yet */
1354 if (clk->new_child) {
1355 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1356 if (tmp_clk)
1357 fail_clk = tmp_clk;
1358 }
1359
1360 return fail_clk;
1361 }
1362
1363 /*
1364 * walk down a subtree and set the new rates notifying the rate
1365 * change on the way
1366 */
1367 static void clk_change_rate(struct clk *clk)
1368 {
1369 struct clk *child;
1370 unsigned long old_rate;
1371 unsigned long best_parent_rate = 0;
1372
1373 old_rate = clk->rate;
1374
1375 /* set parent */
1376 if (clk->new_parent && clk->new_parent != clk->parent)
1377 __clk_set_parent(clk, clk->new_parent, clk->new_parent_index);
1378
1379 if (clk->parent)
1380 best_parent_rate = clk->parent->rate;
1381
1382 if (clk->ops->set_rate)
1383 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1384
1385 if (clk->ops->recalc_rate)
1386 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1387 else
1388 clk->rate = best_parent_rate;
1389
1390 if (clk->notifier_count && old_rate != clk->rate)
1391 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1392
1393 hlist_for_each_entry(child, &clk->children, child_node) {
1394 /* Skip children who will be reparented to another clock */
1395 if (child->new_parent && child->new_parent != clk)
1396 continue;
1397 clk_change_rate(child);
1398 }
1399
1400 /* handle the new child who might not be in clk->children yet */
1401 if (clk->new_child)
1402 clk_change_rate(clk->new_child);
1403 }
1404
1405 /**
1406 * clk_set_rate - specify a new rate for clk
1407 * @clk: the clk whose rate is being changed
1408 * @rate: the new rate for clk
1409 *
1410 * In the simplest case clk_set_rate will only adjust the rate of clk.
1411 *
1412 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1413 * propagate up to clk's parent; whether or not this happens depends on the
1414 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1415 * after calling .round_rate then upstream parent propagation is ignored. If
1416 * *parent_rate comes back with a new rate for clk's parent then we propagate
1417 * up to clk's parent and set its rate. Upward propagation will continue
1418 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1419 * .round_rate stops requesting changes to clk's parent_rate.
1420 *
1421 * Rate changes are accomplished via tree traversal that also recalculates the
1422 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1423 *
1424 * Returns 0 on success, -EERROR otherwise.
1425 */
1426 int clk_set_rate(struct clk *clk, unsigned long rate)
1427 {
1428 struct clk *top, *fail_clk;
1429 int ret = 0;
1430
1431 /* prevent racing with updates to the clock topology */
1432 clk_prepare_lock();
1433
1434 /* bail early if nothing to do */
1435 if (rate == clk_get_rate(clk))
1436 goto out;
1437
1438 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1439 ret = -EBUSY;
1440 goto out;
1441 }
1442
1443 /* calculate new rates and get the topmost changed clock */
1444 top = clk_calc_new_rates(clk, rate);
1445 if (!top) {
1446 ret = -EINVAL;
1447 goto out;
1448 }
1449
1450 /* notify that we are about to change rates */
1451 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1452 if (fail_clk) {
1453 pr_warn("%s: failed to set %s rate\n", __func__,
1454 fail_clk->name);
1455 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1456 ret = -EBUSY;
1457 goto out;
1458 }
1459
1460 /* change the rates */
1461 clk_change_rate(top);
1462
1463 out:
1464 clk_prepare_unlock();
1465
1466 return ret;
1467 }
1468 EXPORT_SYMBOL_GPL(clk_set_rate);
1469
1470 /**
1471 * clk_get_parent - return the parent of a clk
1472 * @clk: the clk whose parent gets returned
1473 *
1474 * Simply returns clk->parent. Returns NULL if clk is NULL.
1475 */
1476 struct clk *clk_get_parent(struct clk *clk)
1477 {
1478 struct clk *parent;
1479
1480 clk_prepare_lock();
1481 parent = __clk_get_parent(clk);
1482 clk_prepare_unlock();
1483
1484 return parent;
1485 }
1486 EXPORT_SYMBOL_GPL(clk_get_parent);
1487
1488 /*
1489 * .get_parent is mandatory for clocks with multiple possible parents. It is
1490 * optional for single-parent clocks. Always call .get_parent if it is
1491 * available and WARN if it is missing for multi-parent clocks.
1492 *
1493 * For single-parent clocks without .get_parent, first check to see if the
1494 * .parents array exists, and if so use it to avoid an expensive tree
1495 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1496 */
1497 static struct clk *__clk_init_parent(struct clk *clk)
1498 {
1499 struct clk *ret = NULL;
1500 u8 index;
1501
1502 /* handle the trivial cases */
1503
1504 if (!clk->num_parents)
1505 goto out;
1506
1507 if (clk->num_parents == 1) {
1508 if (IS_ERR_OR_NULL(clk->parent))
1509 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1510 ret = clk->parent;
1511 goto out;
1512 }
1513
1514 if (!clk->ops->get_parent) {
1515 WARN(!clk->ops->get_parent,
1516 "%s: multi-parent clocks must implement .get_parent\n",
1517 __func__);
1518 goto out;
1519 };
1520
1521 /*
1522 * Do our best to cache parent clocks in clk->parents. This prevents
1523 * unnecessary and expensive calls to __clk_lookup. We don't set
1524 * clk->parent here; that is done by the calling function
1525 */
1526
1527 index = clk->ops->get_parent(clk->hw);
1528
1529 if (!clk->parents)
1530 clk->parents =
1531 kzalloc((sizeof(struct clk*) * clk->num_parents),
1532 GFP_KERNEL);
1533
1534 ret = clk_get_parent_by_index(clk, index);
1535
1536 out:
1537 return ret;
1538 }
1539
1540 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1541 {
1542 clk_reparent(clk, new_parent);
1543 clk_debug_reparent(clk, new_parent);
1544 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1545 }
1546
1547 /**
1548 * clk_set_parent - switch the parent of a mux clk
1549 * @clk: the mux clk whose input we are switching
1550 * @parent: the new input to clk
1551 *
1552 * Re-parent clk to use parent as its new input source. If clk is in
1553 * prepared state, the clk will get enabled for the duration of this call. If
1554 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1555 * that, the reparenting is glitchy in hardware, etc), use the
1556 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1557 *
1558 * After successfully changing clk's parent clk_set_parent will update the
1559 * clk topology, sysfs topology and propagate rate recalculation via
1560 * __clk_recalc_rates.
1561 *
1562 * Returns 0 on success, -EERROR otherwise.
1563 */
1564 int clk_set_parent(struct clk *clk, struct clk *parent)
1565 {
1566 int ret = 0;
1567 u8 p_index = 0;
1568 unsigned long p_rate = 0;
1569
1570 if (!clk || !clk->ops)
1571 return -EINVAL;
1572
1573 /* verify ops for for multi-parent clks */
1574 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1575 return -ENOSYS;
1576
1577 /* prevent racing with updates to the clock topology */
1578 clk_prepare_lock();
1579
1580 if (clk->parent == parent)
1581 goto out;
1582
1583 /* check that we are allowed to re-parent if the clock is in use */
1584 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1585 ret = -EBUSY;
1586 goto out;
1587 }
1588
1589 /* try finding the new parent index */
1590 if (parent) {
1591 p_index = clk_fetch_parent_index(clk, parent);
1592 p_rate = parent->rate;
1593 if (p_index == clk->num_parents) {
1594 pr_debug("%s: clk %s can not be parent of clk %s\n",
1595 __func__, parent->name, clk->name);
1596 ret = -EINVAL;
1597 goto out;
1598 }
1599 }
1600
1601 /* propagate PRE_RATE_CHANGE notifications */
1602 ret = __clk_speculate_rates(clk, p_rate);
1603
1604 /* abort if a driver objects */
1605 if (ret & NOTIFY_STOP_MASK)
1606 goto out;
1607
1608 /* do the re-parent */
1609 ret = __clk_set_parent(clk, parent, p_index);
1610
1611 /* propagate rate recalculation accordingly */
1612 if (ret)
1613 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1614 else
1615 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1616
1617 out:
1618 clk_prepare_unlock();
1619
1620 return ret;
1621 }
1622 EXPORT_SYMBOL_GPL(clk_set_parent);
1623
1624 /**
1625 * __clk_init - initialize the data structures in a struct clk
1626 * @dev: device initializing this clk, placeholder for now
1627 * @clk: clk being initialized
1628 *
1629 * Initializes the lists in struct clk, queries the hardware for the
1630 * parent and rate and sets them both.
1631 */
1632 int __clk_init(struct device *dev, struct clk *clk)
1633 {
1634 int i, ret = 0;
1635 struct clk *orphan;
1636 struct hlist_node *tmp2;
1637
1638 if (!clk)
1639 return -EINVAL;
1640
1641 clk_prepare_lock();
1642
1643 /* check to see if a clock with this name is already registered */
1644 if (__clk_lookup(clk->name)) {
1645 pr_debug("%s: clk %s already initialized\n",
1646 __func__, clk->name);
1647 ret = -EEXIST;
1648 goto out;
1649 }
1650
1651 /* check that clk_ops are sane. See Documentation/clk.txt */
1652 if (clk->ops->set_rate &&
1653 !((clk->ops->round_rate || clk->ops->determine_rate) &&
1654 clk->ops->recalc_rate)) {
1655 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1656 __func__, clk->name);
1657 ret = -EINVAL;
1658 goto out;
1659 }
1660
1661 if (clk->ops->set_parent && !clk->ops->get_parent) {
1662 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1663 __func__, clk->name);
1664 ret = -EINVAL;
1665 goto out;
1666 }
1667
1668 /* throw a WARN if any entries in parent_names are NULL */
1669 for (i = 0; i < clk->num_parents; i++)
1670 WARN(!clk->parent_names[i],
1671 "%s: invalid NULL in %s's .parent_names\n",
1672 __func__, clk->name);
1673
1674 /*
1675 * Allocate an array of struct clk *'s to avoid unnecessary string
1676 * look-ups of clk's possible parents. This can fail for clocks passed
1677 * in to clk_init during early boot; thus any access to clk->parents[]
1678 * must always check for a NULL pointer and try to populate it if
1679 * necessary.
1680 *
1681 * If clk->parents is not NULL we skip this entire block. This allows
1682 * for clock drivers to statically initialize clk->parents.
1683 */
1684 if (clk->num_parents > 1 && !clk->parents) {
1685 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1686 GFP_KERNEL);
1687 /*
1688 * __clk_lookup returns NULL for parents that have not been
1689 * clk_init'd; thus any access to clk->parents[] must check
1690 * for a NULL pointer. We can always perform lazy lookups for
1691 * missing parents later on.
1692 */
1693 if (clk->parents)
1694 for (i = 0; i < clk->num_parents; i++)
1695 clk->parents[i] =
1696 __clk_lookup(clk->parent_names[i]);
1697 }
1698
1699 clk->parent = __clk_init_parent(clk);
1700
1701 /*
1702 * Populate clk->parent if parent has already been __clk_init'd. If
1703 * parent has not yet been __clk_init'd then place clk in the orphan
1704 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1705 * clk list.
1706 *
1707 * Every time a new clk is clk_init'd then we walk the list of orphan
1708 * clocks and re-parent any that are children of the clock currently
1709 * being clk_init'd.
1710 */
1711 if (clk->parent)
1712 hlist_add_head(&clk->child_node,
1713 &clk->parent->children);
1714 else if (clk->flags & CLK_IS_ROOT)
1715 hlist_add_head(&clk->child_node, &clk_root_list);
1716 else
1717 hlist_add_head(&clk->child_node, &clk_orphan_list);
1718
1719 /*
1720 * Set clk's rate. The preferred method is to use .recalc_rate. For
1721 * simple clocks and lazy developers the default fallback is to use the
1722 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1723 * then rate is set to zero.
1724 */
1725 if (clk->ops->recalc_rate)
1726 clk->rate = clk->ops->recalc_rate(clk->hw,
1727 __clk_get_rate(clk->parent));
1728 else if (clk->parent)
1729 clk->rate = clk->parent->rate;
1730 else
1731 clk->rate = 0;
1732
1733 /*
1734 * walk the list of orphan clocks and reparent any that are children of
1735 * this clock
1736 */
1737 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1738 if (orphan->ops->get_parent) {
1739 i = orphan->ops->get_parent(orphan->hw);
1740 if (!strcmp(clk->name, orphan->parent_names[i]))
1741 __clk_reparent(orphan, clk);
1742 continue;
1743 }
1744
1745 for (i = 0; i < orphan->num_parents; i++)
1746 if (!strcmp(clk->name, orphan->parent_names[i])) {
1747 __clk_reparent(orphan, clk);
1748 break;
1749 }
1750 }
1751
1752 /*
1753 * optional platform-specific magic
1754 *
1755 * The .init callback is not used by any of the basic clock types, but
1756 * exists for weird hardware that must perform initialization magic.
1757 * Please consider other ways of solving initialization problems before
1758 * using this callback, as its use is discouraged.
1759 */
1760 if (clk->ops->init)
1761 clk->ops->init(clk->hw);
1762
1763 clk_debug_register(clk);
1764
1765 out:
1766 clk_prepare_unlock();
1767
1768 return ret;
1769 }
1770
1771 /**
1772 * __clk_register - register a clock and return a cookie.
1773 *
1774 * Same as clk_register, except that the .clk field inside hw shall point to a
1775 * preallocated (generally statically allocated) struct clk. None of the fields
1776 * of the struct clk need to be initialized.
1777 *
1778 * The data pointed to by .init and .clk field shall NOT be marked as init
1779 * data.
1780 *
1781 * __clk_register is only exposed via clk-private.h and is intended for use with
1782 * very large numbers of clocks that need to be statically initialized. It is
1783 * a layering violation to include clk-private.h from any code which implements
1784 * a clock's .ops; as such any statically initialized clock data MUST be in a
1785 * separate C file from the logic that implements its operations. Returns 0
1786 * on success, otherwise an error code.
1787 */
1788 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1789 {
1790 int ret;
1791 struct clk *clk;
1792
1793 clk = hw->clk;
1794 clk->name = hw->init->name;
1795 clk->ops = hw->init->ops;
1796 clk->hw = hw;
1797 clk->flags = hw->init->flags;
1798 clk->parent_names = hw->init->parent_names;
1799 clk->num_parents = hw->init->num_parents;
1800
1801 ret = __clk_init(dev, clk);
1802 if (ret)
1803 return ERR_PTR(ret);
1804
1805 return clk;
1806 }
1807 EXPORT_SYMBOL_GPL(__clk_register);
1808
1809 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1810 {
1811 int i, ret;
1812
1813 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1814 if (!clk->name) {
1815 pr_err("%s: could not allocate clk->name\n", __func__);
1816 ret = -ENOMEM;
1817 goto fail_name;
1818 }
1819 clk->ops = hw->init->ops;
1820 clk->hw = hw;
1821 clk->flags = hw->init->flags;
1822 clk->num_parents = hw->init->num_parents;
1823 hw->clk = clk;
1824
1825 /* allocate local copy in case parent_names is __initdata */
1826 clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1827 GFP_KERNEL);
1828
1829 if (!clk->parent_names) {
1830 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1831 ret = -ENOMEM;
1832 goto fail_parent_names;
1833 }
1834
1835
1836 /* copy each string name in case parent_names is __initdata */
1837 for (i = 0; i < clk->num_parents; i++) {
1838 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1839 GFP_KERNEL);
1840 if (!clk->parent_names[i]) {
1841 pr_err("%s: could not copy parent_names\n", __func__);
1842 ret = -ENOMEM;
1843 goto fail_parent_names_copy;
1844 }
1845 }
1846
1847 ret = __clk_init(dev, clk);
1848 if (!ret)
1849 return 0;
1850
1851 fail_parent_names_copy:
1852 while (--i >= 0)
1853 kfree(clk->parent_names[i]);
1854 kfree(clk->parent_names);
1855 fail_parent_names:
1856 kfree(clk->name);
1857 fail_name:
1858 return ret;
1859 }
1860
1861 /**
1862 * clk_register - allocate a new clock, register it and return an opaque cookie
1863 * @dev: device that is registering this clock
1864 * @hw: link to hardware-specific clock data
1865 *
1866 * clk_register is the primary interface for populating the clock tree with new
1867 * clock nodes. It returns a pointer to the newly allocated struct clk which
1868 * cannot be dereferenced by driver code but may be used in conjuction with the
1869 * rest of the clock API. In the event of an error clk_register will return an
1870 * error code; drivers must test for an error code after calling clk_register.
1871 */
1872 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1873 {
1874 int ret;
1875 struct clk *clk;
1876
1877 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1878 if (!clk) {
1879 pr_err("%s: could not allocate clk\n", __func__);
1880 ret = -ENOMEM;
1881 goto fail_out;
1882 }
1883
1884 ret = _clk_register(dev, hw, clk);
1885 if (!ret)
1886 return clk;
1887
1888 kfree(clk);
1889 fail_out:
1890 return ERR_PTR(ret);
1891 }
1892 EXPORT_SYMBOL_GPL(clk_register);
1893
1894 /**
1895 * clk_unregister - unregister a currently registered clock
1896 * @clk: clock to unregister
1897 *
1898 * Currently unimplemented.
1899 */
1900 void clk_unregister(struct clk *clk) {}
1901 EXPORT_SYMBOL_GPL(clk_unregister);
1902
1903 static void devm_clk_release(struct device *dev, void *res)
1904 {
1905 clk_unregister(res);
1906 }
1907
1908 /**
1909 * devm_clk_register - resource managed clk_register()
1910 * @dev: device that is registering this clock
1911 * @hw: link to hardware-specific clock data
1912 *
1913 * Managed clk_register(). Clocks returned from this function are
1914 * automatically clk_unregister()ed on driver detach. See clk_register() for
1915 * more information.
1916 */
1917 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1918 {
1919 struct clk *clk;
1920 int ret;
1921
1922 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1923 if (!clk)
1924 return ERR_PTR(-ENOMEM);
1925
1926 ret = _clk_register(dev, hw, clk);
1927 if (!ret) {
1928 devres_add(dev, clk);
1929 } else {
1930 devres_free(clk);
1931 clk = ERR_PTR(ret);
1932 }
1933
1934 return clk;
1935 }
1936 EXPORT_SYMBOL_GPL(devm_clk_register);
1937
1938 static int devm_clk_match(struct device *dev, void *res, void *data)
1939 {
1940 struct clk *c = res;
1941 if (WARN_ON(!c))
1942 return 0;
1943 return c == data;
1944 }
1945
1946 /**
1947 * devm_clk_unregister - resource managed clk_unregister()
1948 * @clk: clock to unregister
1949 *
1950 * Deallocate a clock allocated with devm_clk_register(). Normally
1951 * this function will not need to be called and the resource management
1952 * code will ensure that the resource is freed.
1953 */
1954 void devm_clk_unregister(struct device *dev, struct clk *clk)
1955 {
1956 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1957 }
1958 EXPORT_SYMBOL_GPL(devm_clk_unregister);
1959
1960 /*** clk rate change notifiers ***/
1961
1962 /**
1963 * clk_notifier_register - add a clk rate change notifier
1964 * @clk: struct clk * to watch
1965 * @nb: struct notifier_block * with callback info
1966 *
1967 * Request notification when clk's rate changes. This uses an SRCU
1968 * notifier because we want it to block and notifier unregistrations are
1969 * uncommon. The callbacks associated with the notifier must not
1970 * re-enter into the clk framework by calling any top-level clk APIs;
1971 * this will cause a nested prepare_lock mutex.
1972 *
1973 * Pre-change notifier callbacks will be passed the current, pre-change
1974 * rate of the clk via struct clk_notifier_data.old_rate. The new,
1975 * post-change rate of the clk is passed via struct
1976 * clk_notifier_data.new_rate.
1977 *
1978 * Post-change notifiers will pass the now-current, post-change rate of
1979 * the clk in both struct clk_notifier_data.old_rate and struct
1980 * clk_notifier_data.new_rate.
1981 *
1982 * Abort-change notifiers are effectively the opposite of pre-change
1983 * notifiers: the original pre-change clk rate is passed in via struct
1984 * clk_notifier_data.new_rate and the failed post-change rate is passed
1985 * in via struct clk_notifier_data.old_rate.
1986 *
1987 * clk_notifier_register() must be called from non-atomic context.
1988 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1989 * allocation failure; otherwise, passes along the return value of
1990 * srcu_notifier_chain_register().
1991 */
1992 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1993 {
1994 struct clk_notifier *cn;
1995 int ret = -ENOMEM;
1996
1997 if (!clk || !nb)
1998 return -EINVAL;
1999
2000 clk_prepare_lock();
2001
2002 /* search the list of notifiers for this clk */
2003 list_for_each_entry(cn, &clk_notifier_list, node)
2004 if (cn->clk == clk)
2005 break;
2006
2007 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2008 if (cn->clk != clk) {
2009 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2010 if (!cn)
2011 goto out;
2012
2013 cn->clk = clk;
2014 srcu_init_notifier_head(&cn->notifier_head);
2015
2016 list_add(&cn->node, &clk_notifier_list);
2017 }
2018
2019 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2020
2021 clk->notifier_count++;
2022
2023 out:
2024 clk_prepare_unlock();
2025
2026 return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(clk_notifier_register);
2029
2030 /**
2031 * clk_notifier_unregister - remove a clk rate change notifier
2032 * @clk: struct clk *
2033 * @nb: struct notifier_block * with callback info
2034 *
2035 * Request no further notification for changes to 'clk' and frees memory
2036 * allocated in clk_notifier_register.
2037 *
2038 * Returns -EINVAL if called with null arguments; otherwise, passes
2039 * along the return value of srcu_notifier_chain_unregister().
2040 */
2041 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2042 {
2043 struct clk_notifier *cn = NULL;
2044 int ret = -EINVAL;
2045
2046 if (!clk || !nb)
2047 return -EINVAL;
2048
2049 clk_prepare_lock();
2050
2051 list_for_each_entry(cn, &clk_notifier_list, node)
2052 if (cn->clk == clk)
2053 break;
2054
2055 if (cn->clk == clk) {
2056 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2057
2058 clk->notifier_count--;
2059
2060 /* XXX the notifier code should handle this better */
2061 if (!cn->notifier_head.head) {
2062 srcu_cleanup_notifier_head(&cn->notifier_head);
2063 list_del(&cn->node);
2064 kfree(cn);
2065 }
2066
2067 } else {
2068 ret = -ENOENT;
2069 }
2070
2071 clk_prepare_unlock();
2072
2073 return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2076
2077 #ifdef CONFIG_OF
2078 /**
2079 * struct of_clk_provider - Clock provider registration structure
2080 * @link: Entry in global list of clock providers
2081 * @node: Pointer to device tree node of clock provider
2082 * @get: Get clock callback. Returns NULL or a struct clk for the
2083 * given clock specifier
2084 * @data: context pointer to be passed into @get callback
2085 */
2086 struct of_clk_provider {
2087 struct list_head link;
2088
2089 struct device_node *node;
2090 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2091 void *data;
2092 };
2093
2094 extern struct of_device_id __clk_of_table[];
2095
2096 static const struct of_device_id __clk_of_table_sentinel
2097 __used __section(__clk_of_table_end);
2098
2099 static LIST_HEAD(of_clk_providers);
2100 static DEFINE_MUTEX(of_clk_lock);
2101
2102 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2103 void *data)
2104 {
2105 return data;
2106 }
2107 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2108
2109 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2110 {
2111 struct clk_onecell_data *clk_data = data;
2112 unsigned int idx = clkspec->args[0];
2113
2114 if (idx >= clk_data->clk_num) {
2115 pr_err("%s: invalid clock index %d\n", __func__, idx);
2116 return ERR_PTR(-EINVAL);
2117 }
2118
2119 return clk_data->clks[idx];
2120 }
2121 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2122
2123 /**
2124 * of_clk_add_provider() - Register a clock provider for a node
2125 * @np: Device node pointer associated with clock provider
2126 * @clk_src_get: callback for decoding clock
2127 * @data: context pointer for @clk_src_get callback.
2128 */
2129 int of_clk_add_provider(struct device_node *np,
2130 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2131 void *data),
2132 void *data)
2133 {
2134 struct of_clk_provider *cp;
2135
2136 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2137 if (!cp)
2138 return -ENOMEM;
2139
2140 cp->node = of_node_get(np);
2141 cp->data = data;
2142 cp->get = clk_src_get;
2143
2144 mutex_lock(&of_clk_lock);
2145 list_add(&cp->link, &of_clk_providers);
2146 mutex_unlock(&of_clk_lock);
2147 pr_debug("Added clock from %s\n", np->full_name);
2148
2149 return 0;
2150 }
2151 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2152
2153 /**
2154 * of_clk_del_provider() - Remove a previously registered clock provider
2155 * @np: Device node pointer associated with clock provider
2156 */
2157 void of_clk_del_provider(struct device_node *np)
2158 {
2159 struct of_clk_provider *cp;
2160
2161 mutex_lock(&of_clk_lock);
2162 list_for_each_entry(cp, &of_clk_providers, link) {
2163 if (cp->node == np) {
2164 list_del(&cp->link);
2165 of_node_put(cp->node);
2166 kfree(cp);
2167 break;
2168 }
2169 }
2170 mutex_unlock(&of_clk_lock);
2171 }
2172 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2173
2174 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2175 {
2176 struct of_clk_provider *provider;
2177 struct clk *clk = ERR_PTR(-ENOENT);
2178
2179 /* Check if we have such a provider in our array */
2180 mutex_lock(&of_clk_lock);
2181 list_for_each_entry(provider, &of_clk_providers, link) {
2182 if (provider->node == clkspec->np)
2183 clk = provider->get(clkspec, provider->data);
2184 if (!IS_ERR(clk))
2185 break;
2186 }
2187 mutex_unlock(&of_clk_lock);
2188
2189 return clk;
2190 }
2191
2192 const char *of_clk_get_parent_name(struct device_node *np, int index)
2193 {
2194 struct of_phandle_args clkspec;
2195 const char *clk_name;
2196 int rc;
2197
2198 if (index < 0)
2199 return NULL;
2200
2201 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2202 &clkspec);
2203 if (rc)
2204 return NULL;
2205
2206 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2207 clkspec.args_count ? clkspec.args[0] : 0,
2208 &clk_name) < 0)
2209 clk_name = clkspec.np->name;
2210
2211 of_node_put(clkspec.np);
2212 return clk_name;
2213 }
2214 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2215
2216 /**
2217 * of_clk_init() - Scan and init clock providers from the DT
2218 * @matches: array of compatible values and init functions for providers.
2219 *
2220 * This function scans the device tree for matching clock providers and
2221 * calls their initialization functions
2222 */
2223 void __init of_clk_init(const struct of_device_id *matches)
2224 {
2225 struct device_node *np;
2226
2227 if (!matches)
2228 matches = __clk_of_table;
2229
2230 for_each_matching_node(np, matches) {
2231 const struct of_device_id *match = of_match_node(matches, np);
2232 of_clk_init_cb_t clk_init_cb = match->data;
2233 clk_init_cb(np);
2234 }
2235 }
2236 #endif
This page took 0.072601 seconds and 6 git commands to generate.