Sync to Linus v4.4-rc2 for LSM developers.
[deliverable/linux.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26
27 #include "clk.h"
28
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34
35 static int prepare_refcnt;
36 static int enable_refcnt;
37
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41
42 /*** private data structures ***/
43
44 struct clk_core {
45 const char *name;
46 const struct clk_ops *ops;
47 struct clk_hw *hw;
48 struct module *owner;
49 struct clk_core *parent;
50 const char **parent_names;
51 struct clk_core **parents;
52 u8 num_parents;
53 u8 new_parent_index;
54 unsigned long rate;
55 unsigned long req_rate;
56 unsigned long new_rate;
57 struct clk_core *new_parent;
58 struct clk_core *new_child;
59 unsigned long flags;
60 bool orphan;
61 unsigned int enable_count;
62 unsigned int prepare_count;
63 unsigned long min_rate;
64 unsigned long max_rate;
65 unsigned long accuracy;
66 int phase;
67 struct hlist_head children;
68 struct hlist_node child_node;
69 struct hlist_head clks;
70 unsigned int notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 struct dentry *dentry;
73 struct hlist_node debug_node;
74 #endif
75 struct kref ref;
76 };
77
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80
81 struct clk {
82 struct clk_core *core;
83 const char *dev_id;
84 const char *con_id;
85 unsigned long min_rate;
86 unsigned long max_rate;
87 struct hlist_node clks_node;
88 };
89
90 /*** locking ***/
91 static void clk_prepare_lock(void)
92 {
93 if (!mutex_trylock(&prepare_lock)) {
94 if (prepare_owner == current) {
95 prepare_refcnt++;
96 return;
97 }
98 mutex_lock(&prepare_lock);
99 }
100 WARN_ON_ONCE(prepare_owner != NULL);
101 WARN_ON_ONCE(prepare_refcnt != 0);
102 prepare_owner = current;
103 prepare_refcnt = 1;
104 }
105
106 static void clk_prepare_unlock(void)
107 {
108 WARN_ON_ONCE(prepare_owner != current);
109 WARN_ON_ONCE(prepare_refcnt == 0);
110
111 if (--prepare_refcnt)
112 return;
113 prepare_owner = NULL;
114 mutex_unlock(&prepare_lock);
115 }
116
117 static unsigned long clk_enable_lock(void)
118 __acquires(enable_lock)
119 {
120 unsigned long flags;
121
122 if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 if (enable_owner == current) {
124 enable_refcnt++;
125 __acquire(enable_lock);
126 return flags;
127 }
128 spin_lock_irqsave(&enable_lock, flags);
129 }
130 WARN_ON_ONCE(enable_owner != NULL);
131 WARN_ON_ONCE(enable_refcnt != 0);
132 enable_owner = current;
133 enable_refcnt = 1;
134 return flags;
135 }
136
137 static void clk_enable_unlock(unsigned long flags)
138 __releases(enable_lock)
139 {
140 WARN_ON_ONCE(enable_owner != current);
141 WARN_ON_ONCE(enable_refcnt == 0);
142
143 if (--enable_refcnt) {
144 __release(enable_lock);
145 return;
146 }
147 enable_owner = NULL;
148 spin_unlock_irqrestore(&enable_lock, flags);
149 }
150
151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 /*
154 * .is_prepared is optional for clocks that can prepare
155 * fall back to software usage counter if it is missing
156 */
157 if (!core->ops->is_prepared)
158 return core->prepare_count;
159
160 return core->ops->is_prepared(core->hw);
161 }
162
163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 /*
166 * .is_enabled is only mandatory for clocks that gate
167 * fall back to software usage counter if .is_enabled is missing
168 */
169 if (!core->ops->is_enabled)
170 return core->enable_count;
171
172 return core->ops->is_enabled(core->hw);
173 }
174
175 static void clk_unprepare_unused_subtree(struct clk_core *core)
176 {
177 struct clk_core *child;
178
179 lockdep_assert_held(&prepare_lock);
180
181 hlist_for_each_entry(child, &core->children, child_node)
182 clk_unprepare_unused_subtree(child);
183
184 if (core->prepare_count)
185 return;
186
187 if (core->flags & CLK_IGNORE_UNUSED)
188 return;
189
190 if (clk_core_is_prepared(core)) {
191 trace_clk_unprepare(core);
192 if (core->ops->unprepare_unused)
193 core->ops->unprepare_unused(core->hw);
194 else if (core->ops->unprepare)
195 core->ops->unprepare(core->hw);
196 trace_clk_unprepare_complete(core);
197 }
198 }
199
200 static void clk_disable_unused_subtree(struct clk_core *core)
201 {
202 struct clk_core *child;
203 unsigned long flags;
204
205 lockdep_assert_held(&prepare_lock);
206
207 hlist_for_each_entry(child, &core->children, child_node)
208 clk_disable_unused_subtree(child);
209
210 flags = clk_enable_lock();
211
212 if (core->enable_count)
213 goto unlock_out;
214
215 if (core->flags & CLK_IGNORE_UNUSED)
216 goto unlock_out;
217
218 /*
219 * some gate clocks have special needs during the disable-unused
220 * sequence. call .disable_unused if available, otherwise fall
221 * back to .disable
222 */
223 if (clk_core_is_enabled(core)) {
224 trace_clk_disable(core);
225 if (core->ops->disable_unused)
226 core->ops->disable_unused(core->hw);
227 else if (core->ops->disable)
228 core->ops->disable(core->hw);
229 trace_clk_disable_complete(core);
230 }
231
232 unlock_out:
233 clk_enable_unlock(flags);
234 }
235
236 static bool clk_ignore_unused;
237 static int __init clk_ignore_unused_setup(char *__unused)
238 {
239 clk_ignore_unused = true;
240 return 1;
241 }
242 __setup("clk_ignore_unused", clk_ignore_unused_setup);
243
244 static int clk_disable_unused(void)
245 {
246 struct clk_core *core;
247
248 if (clk_ignore_unused) {
249 pr_warn("clk: Not disabling unused clocks\n");
250 return 0;
251 }
252
253 clk_prepare_lock();
254
255 hlist_for_each_entry(core, &clk_root_list, child_node)
256 clk_disable_unused_subtree(core);
257
258 hlist_for_each_entry(core, &clk_orphan_list, child_node)
259 clk_disable_unused_subtree(core);
260
261 hlist_for_each_entry(core, &clk_root_list, child_node)
262 clk_unprepare_unused_subtree(core);
263
264 hlist_for_each_entry(core, &clk_orphan_list, child_node)
265 clk_unprepare_unused_subtree(core);
266
267 clk_prepare_unlock();
268
269 return 0;
270 }
271 late_initcall_sync(clk_disable_unused);
272
273 /*** helper functions ***/
274
275 const char *__clk_get_name(const struct clk *clk)
276 {
277 return !clk ? NULL : clk->core->name;
278 }
279 EXPORT_SYMBOL_GPL(__clk_get_name);
280
281 const char *clk_hw_get_name(const struct clk_hw *hw)
282 {
283 return hw->core->name;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_name);
286
287 struct clk_hw *__clk_get_hw(struct clk *clk)
288 {
289 return !clk ? NULL : clk->core->hw;
290 }
291 EXPORT_SYMBOL_GPL(__clk_get_hw);
292
293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 {
295 return hw->core->num_parents;
296 }
297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
298
299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 {
301 return hw->core->parent ? hw->core->parent->hw : NULL;
302 }
303 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
304
305 static struct clk_core *__clk_lookup_subtree(const char *name,
306 struct clk_core *core)
307 {
308 struct clk_core *child;
309 struct clk_core *ret;
310
311 if (!strcmp(core->name, name))
312 return core;
313
314 hlist_for_each_entry(child, &core->children, child_node) {
315 ret = __clk_lookup_subtree(name, child);
316 if (ret)
317 return ret;
318 }
319
320 return NULL;
321 }
322
323 static struct clk_core *clk_core_lookup(const char *name)
324 {
325 struct clk_core *root_clk;
326 struct clk_core *ret;
327
328 if (!name)
329 return NULL;
330
331 /* search the 'proper' clk tree first */
332 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
333 ret = __clk_lookup_subtree(name, root_clk);
334 if (ret)
335 return ret;
336 }
337
338 /* if not found, then search the orphan tree */
339 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
340 ret = __clk_lookup_subtree(name, root_clk);
341 if (ret)
342 return ret;
343 }
344
345 return NULL;
346 }
347
348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
349 u8 index)
350 {
351 if (!core || index >= core->num_parents)
352 return NULL;
353 else if (!core->parents)
354 return clk_core_lookup(core->parent_names[index]);
355 else if (!core->parents[index])
356 return core->parents[index] =
357 clk_core_lookup(core->parent_names[index]);
358 else
359 return core->parents[index];
360 }
361
362 struct clk_hw *
363 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
364 {
365 struct clk_core *parent;
366
367 parent = clk_core_get_parent_by_index(hw->core, index);
368
369 return !parent ? NULL : parent->hw;
370 }
371 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
372
373 unsigned int __clk_get_enable_count(struct clk *clk)
374 {
375 return !clk ? 0 : clk->core->enable_count;
376 }
377
378 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
379 {
380 unsigned long ret;
381
382 if (!core) {
383 ret = 0;
384 goto out;
385 }
386
387 ret = core->rate;
388
389 if (core->flags & CLK_IS_ROOT)
390 goto out;
391
392 if (!core->parent)
393 ret = 0;
394
395 out:
396 return ret;
397 }
398
399 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
400 {
401 return clk_core_get_rate_nolock(hw->core);
402 }
403 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
404
405 static unsigned long __clk_get_accuracy(struct clk_core *core)
406 {
407 if (!core)
408 return 0;
409
410 return core->accuracy;
411 }
412
413 unsigned long __clk_get_flags(struct clk *clk)
414 {
415 return !clk ? 0 : clk->core->flags;
416 }
417 EXPORT_SYMBOL_GPL(__clk_get_flags);
418
419 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
420 {
421 return hw->core->flags;
422 }
423 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
424
425 bool clk_hw_is_prepared(const struct clk_hw *hw)
426 {
427 return clk_core_is_prepared(hw->core);
428 }
429
430 bool clk_hw_is_enabled(const struct clk_hw *hw)
431 {
432 return clk_core_is_enabled(hw->core);
433 }
434
435 bool __clk_is_enabled(struct clk *clk)
436 {
437 if (!clk)
438 return false;
439
440 return clk_core_is_enabled(clk->core);
441 }
442 EXPORT_SYMBOL_GPL(__clk_is_enabled);
443
444 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
445 unsigned long best, unsigned long flags)
446 {
447 if (flags & CLK_MUX_ROUND_CLOSEST)
448 return abs(now - rate) < abs(best - rate);
449
450 return now <= rate && now > best;
451 }
452
453 static int
454 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
455 unsigned long flags)
456 {
457 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
458 int i, num_parents, ret;
459 unsigned long best = 0;
460 struct clk_rate_request parent_req = *req;
461
462 /* if NO_REPARENT flag set, pass through to current parent */
463 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
464 parent = core->parent;
465 if (core->flags & CLK_SET_RATE_PARENT) {
466 ret = __clk_determine_rate(parent ? parent->hw : NULL,
467 &parent_req);
468 if (ret)
469 return ret;
470
471 best = parent_req.rate;
472 } else if (parent) {
473 best = clk_core_get_rate_nolock(parent);
474 } else {
475 best = clk_core_get_rate_nolock(core);
476 }
477
478 goto out;
479 }
480
481 /* find the parent that can provide the fastest rate <= rate */
482 num_parents = core->num_parents;
483 for (i = 0; i < num_parents; i++) {
484 parent = clk_core_get_parent_by_index(core, i);
485 if (!parent)
486 continue;
487
488 if (core->flags & CLK_SET_RATE_PARENT) {
489 parent_req = *req;
490 ret = __clk_determine_rate(parent->hw, &parent_req);
491 if (ret)
492 continue;
493 } else {
494 parent_req.rate = clk_core_get_rate_nolock(parent);
495 }
496
497 if (mux_is_better_rate(req->rate, parent_req.rate,
498 best, flags)) {
499 best_parent = parent;
500 best = parent_req.rate;
501 }
502 }
503
504 if (!best_parent)
505 return -EINVAL;
506
507 out:
508 if (best_parent)
509 req->best_parent_hw = best_parent->hw;
510 req->best_parent_rate = best;
511 req->rate = best;
512
513 return 0;
514 }
515
516 struct clk *__clk_lookup(const char *name)
517 {
518 struct clk_core *core = clk_core_lookup(name);
519
520 return !core ? NULL : core->hw->clk;
521 }
522
523 static void clk_core_get_boundaries(struct clk_core *core,
524 unsigned long *min_rate,
525 unsigned long *max_rate)
526 {
527 struct clk *clk_user;
528
529 *min_rate = core->min_rate;
530 *max_rate = core->max_rate;
531
532 hlist_for_each_entry(clk_user, &core->clks, clks_node)
533 *min_rate = max(*min_rate, clk_user->min_rate);
534
535 hlist_for_each_entry(clk_user, &core->clks, clks_node)
536 *max_rate = min(*max_rate, clk_user->max_rate);
537 }
538
539 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
540 unsigned long max_rate)
541 {
542 hw->core->min_rate = min_rate;
543 hw->core->max_rate = max_rate;
544 }
545 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
546
547 /*
548 * Helper for finding best parent to provide a given frequency. This can be used
549 * directly as a determine_rate callback (e.g. for a mux), or from a more
550 * complex clock that may combine a mux with other operations.
551 */
552 int __clk_mux_determine_rate(struct clk_hw *hw,
553 struct clk_rate_request *req)
554 {
555 return clk_mux_determine_rate_flags(hw, req, 0);
556 }
557 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
558
559 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
560 struct clk_rate_request *req)
561 {
562 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
563 }
564 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
565
566 /*** clk api ***/
567
568 static void clk_core_unprepare(struct clk_core *core)
569 {
570 lockdep_assert_held(&prepare_lock);
571
572 if (!core)
573 return;
574
575 if (WARN_ON(core->prepare_count == 0))
576 return;
577
578 if (--core->prepare_count > 0)
579 return;
580
581 WARN_ON(core->enable_count > 0);
582
583 trace_clk_unprepare(core);
584
585 if (core->ops->unprepare)
586 core->ops->unprepare(core->hw);
587
588 trace_clk_unprepare_complete(core);
589 clk_core_unprepare(core->parent);
590 }
591
592 /**
593 * clk_unprepare - undo preparation of a clock source
594 * @clk: the clk being unprepared
595 *
596 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
597 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
598 * if the operation may sleep. One example is a clk which is accessed over
599 * I2c. In the complex case a clk gate operation may require a fast and a slow
600 * part. It is this reason that clk_unprepare and clk_disable are not mutually
601 * exclusive. In fact clk_disable must be called before clk_unprepare.
602 */
603 void clk_unprepare(struct clk *clk)
604 {
605 if (IS_ERR_OR_NULL(clk))
606 return;
607
608 clk_prepare_lock();
609 clk_core_unprepare(clk->core);
610 clk_prepare_unlock();
611 }
612 EXPORT_SYMBOL_GPL(clk_unprepare);
613
614 static int clk_core_prepare(struct clk_core *core)
615 {
616 int ret = 0;
617
618 lockdep_assert_held(&prepare_lock);
619
620 if (!core)
621 return 0;
622
623 if (core->prepare_count == 0) {
624 ret = clk_core_prepare(core->parent);
625 if (ret)
626 return ret;
627
628 trace_clk_prepare(core);
629
630 if (core->ops->prepare)
631 ret = core->ops->prepare(core->hw);
632
633 trace_clk_prepare_complete(core);
634
635 if (ret) {
636 clk_core_unprepare(core->parent);
637 return ret;
638 }
639 }
640
641 core->prepare_count++;
642
643 return 0;
644 }
645
646 /**
647 * clk_prepare - prepare a clock source
648 * @clk: the clk being prepared
649 *
650 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
651 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
652 * operation may sleep. One example is a clk which is accessed over I2c. In
653 * the complex case a clk ungate operation may require a fast and a slow part.
654 * It is this reason that clk_prepare and clk_enable are not mutually
655 * exclusive. In fact clk_prepare must be called before clk_enable.
656 * Returns 0 on success, -EERROR otherwise.
657 */
658 int clk_prepare(struct clk *clk)
659 {
660 int ret;
661
662 if (!clk)
663 return 0;
664
665 clk_prepare_lock();
666 ret = clk_core_prepare(clk->core);
667 clk_prepare_unlock();
668
669 return ret;
670 }
671 EXPORT_SYMBOL_GPL(clk_prepare);
672
673 static void clk_core_disable(struct clk_core *core)
674 {
675 lockdep_assert_held(&enable_lock);
676
677 if (!core)
678 return;
679
680 if (WARN_ON(core->enable_count == 0))
681 return;
682
683 if (--core->enable_count > 0)
684 return;
685
686 trace_clk_disable(core);
687
688 if (core->ops->disable)
689 core->ops->disable(core->hw);
690
691 trace_clk_disable_complete(core);
692
693 clk_core_disable(core->parent);
694 }
695
696 /**
697 * clk_disable - gate a clock
698 * @clk: the clk being gated
699 *
700 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
701 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
702 * clk if the operation is fast and will never sleep. One example is a
703 * SoC-internal clk which is controlled via simple register writes. In the
704 * complex case a clk gate operation may require a fast and a slow part. It is
705 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
706 * In fact clk_disable must be called before clk_unprepare.
707 */
708 void clk_disable(struct clk *clk)
709 {
710 unsigned long flags;
711
712 if (IS_ERR_OR_NULL(clk))
713 return;
714
715 flags = clk_enable_lock();
716 clk_core_disable(clk->core);
717 clk_enable_unlock(flags);
718 }
719 EXPORT_SYMBOL_GPL(clk_disable);
720
721 static int clk_core_enable(struct clk_core *core)
722 {
723 int ret = 0;
724
725 lockdep_assert_held(&enable_lock);
726
727 if (!core)
728 return 0;
729
730 if (WARN_ON(core->prepare_count == 0))
731 return -ESHUTDOWN;
732
733 if (core->enable_count == 0) {
734 ret = clk_core_enable(core->parent);
735
736 if (ret)
737 return ret;
738
739 trace_clk_enable(core);
740
741 if (core->ops->enable)
742 ret = core->ops->enable(core->hw);
743
744 trace_clk_enable_complete(core);
745
746 if (ret) {
747 clk_core_disable(core->parent);
748 return ret;
749 }
750 }
751
752 core->enable_count++;
753 return 0;
754 }
755
756 /**
757 * clk_enable - ungate a clock
758 * @clk: the clk being ungated
759 *
760 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
761 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
762 * if the operation will never sleep. One example is a SoC-internal clk which
763 * is controlled via simple register writes. In the complex case a clk ungate
764 * operation may require a fast and a slow part. It is this reason that
765 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
766 * must be called before clk_enable. Returns 0 on success, -EERROR
767 * otherwise.
768 */
769 int clk_enable(struct clk *clk)
770 {
771 unsigned long flags;
772 int ret;
773
774 if (!clk)
775 return 0;
776
777 flags = clk_enable_lock();
778 ret = clk_core_enable(clk->core);
779 clk_enable_unlock(flags);
780
781 return ret;
782 }
783 EXPORT_SYMBOL_GPL(clk_enable);
784
785 static int clk_core_round_rate_nolock(struct clk_core *core,
786 struct clk_rate_request *req)
787 {
788 struct clk_core *parent;
789 long rate;
790
791 lockdep_assert_held(&prepare_lock);
792
793 if (!core)
794 return 0;
795
796 parent = core->parent;
797 if (parent) {
798 req->best_parent_hw = parent->hw;
799 req->best_parent_rate = parent->rate;
800 } else {
801 req->best_parent_hw = NULL;
802 req->best_parent_rate = 0;
803 }
804
805 if (core->ops->determine_rate) {
806 return core->ops->determine_rate(core->hw, req);
807 } else if (core->ops->round_rate) {
808 rate = core->ops->round_rate(core->hw, req->rate,
809 &req->best_parent_rate);
810 if (rate < 0)
811 return rate;
812
813 req->rate = rate;
814 } else if (core->flags & CLK_SET_RATE_PARENT) {
815 return clk_core_round_rate_nolock(parent, req);
816 } else {
817 req->rate = core->rate;
818 }
819
820 return 0;
821 }
822
823 /**
824 * __clk_determine_rate - get the closest rate actually supported by a clock
825 * @hw: determine the rate of this clock
826 * @rate: target rate
827 * @min_rate: returned rate must be greater than this rate
828 * @max_rate: returned rate must be less than this rate
829 *
830 * Useful for clk_ops such as .set_rate and .determine_rate.
831 */
832 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
833 {
834 if (!hw) {
835 req->rate = 0;
836 return 0;
837 }
838
839 return clk_core_round_rate_nolock(hw->core, req);
840 }
841 EXPORT_SYMBOL_GPL(__clk_determine_rate);
842
843 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
844 {
845 int ret;
846 struct clk_rate_request req;
847
848 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
849 req.rate = rate;
850
851 ret = clk_core_round_rate_nolock(hw->core, &req);
852 if (ret)
853 return 0;
854
855 return req.rate;
856 }
857 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
858
859 /**
860 * clk_round_rate - round the given rate for a clk
861 * @clk: the clk for which we are rounding a rate
862 * @rate: the rate which is to be rounded
863 *
864 * Takes in a rate as input and rounds it to a rate that the clk can actually
865 * use which is then returned. If clk doesn't support round_rate operation
866 * then the parent rate is returned.
867 */
868 long clk_round_rate(struct clk *clk, unsigned long rate)
869 {
870 struct clk_rate_request req;
871 int ret;
872
873 if (!clk)
874 return 0;
875
876 clk_prepare_lock();
877
878 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
879 req.rate = rate;
880
881 ret = clk_core_round_rate_nolock(clk->core, &req);
882 clk_prepare_unlock();
883
884 if (ret)
885 return ret;
886
887 return req.rate;
888 }
889 EXPORT_SYMBOL_GPL(clk_round_rate);
890
891 /**
892 * __clk_notify - call clk notifier chain
893 * @core: clk that is changing rate
894 * @msg: clk notifier type (see include/linux/clk.h)
895 * @old_rate: old clk rate
896 * @new_rate: new clk rate
897 *
898 * Triggers a notifier call chain on the clk rate-change notification
899 * for 'clk'. Passes a pointer to the struct clk and the previous
900 * and current rates to the notifier callback. Intended to be called by
901 * internal clock code only. Returns NOTIFY_DONE from the last driver
902 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
903 * a driver returns that.
904 */
905 static int __clk_notify(struct clk_core *core, unsigned long msg,
906 unsigned long old_rate, unsigned long new_rate)
907 {
908 struct clk_notifier *cn;
909 struct clk_notifier_data cnd;
910 int ret = NOTIFY_DONE;
911
912 cnd.old_rate = old_rate;
913 cnd.new_rate = new_rate;
914
915 list_for_each_entry(cn, &clk_notifier_list, node) {
916 if (cn->clk->core == core) {
917 cnd.clk = cn->clk;
918 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
919 &cnd);
920 }
921 }
922
923 return ret;
924 }
925
926 /**
927 * __clk_recalc_accuracies
928 * @core: first clk in the subtree
929 *
930 * Walks the subtree of clks starting with clk and recalculates accuracies as
931 * it goes. Note that if a clk does not implement the .recalc_accuracy
932 * callback then it is assumed that the clock will take on the accuracy of its
933 * parent.
934 */
935 static void __clk_recalc_accuracies(struct clk_core *core)
936 {
937 unsigned long parent_accuracy = 0;
938 struct clk_core *child;
939
940 lockdep_assert_held(&prepare_lock);
941
942 if (core->parent)
943 parent_accuracy = core->parent->accuracy;
944
945 if (core->ops->recalc_accuracy)
946 core->accuracy = core->ops->recalc_accuracy(core->hw,
947 parent_accuracy);
948 else
949 core->accuracy = parent_accuracy;
950
951 hlist_for_each_entry(child, &core->children, child_node)
952 __clk_recalc_accuracies(child);
953 }
954
955 static long clk_core_get_accuracy(struct clk_core *core)
956 {
957 unsigned long accuracy;
958
959 clk_prepare_lock();
960 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
961 __clk_recalc_accuracies(core);
962
963 accuracy = __clk_get_accuracy(core);
964 clk_prepare_unlock();
965
966 return accuracy;
967 }
968
969 /**
970 * clk_get_accuracy - return the accuracy of clk
971 * @clk: the clk whose accuracy is being returned
972 *
973 * Simply returns the cached accuracy of the clk, unless
974 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
975 * issued.
976 * If clk is NULL then returns 0.
977 */
978 long clk_get_accuracy(struct clk *clk)
979 {
980 if (!clk)
981 return 0;
982
983 return clk_core_get_accuracy(clk->core);
984 }
985 EXPORT_SYMBOL_GPL(clk_get_accuracy);
986
987 static unsigned long clk_recalc(struct clk_core *core,
988 unsigned long parent_rate)
989 {
990 if (core->ops->recalc_rate)
991 return core->ops->recalc_rate(core->hw, parent_rate);
992 return parent_rate;
993 }
994
995 /**
996 * __clk_recalc_rates
997 * @core: first clk in the subtree
998 * @msg: notification type (see include/linux/clk.h)
999 *
1000 * Walks the subtree of clks starting with clk and recalculates rates as it
1001 * goes. Note that if a clk does not implement the .recalc_rate callback then
1002 * it is assumed that the clock will take on the rate of its parent.
1003 *
1004 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1005 * if necessary.
1006 */
1007 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1008 {
1009 unsigned long old_rate;
1010 unsigned long parent_rate = 0;
1011 struct clk_core *child;
1012
1013 lockdep_assert_held(&prepare_lock);
1014
1015 old_rate = core->rate;
1016
1017 if (core->parent)
1018 parent_rate = core->parent->rate;
1019
1020 core->rate = clk_recalc(core, parent_rate);
1021
1022 /*
1023 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1024 * & ABORT_RATE_CHANGE notifiers
1025 */
1026 if (core->notifier_count && msg)
1027 __clk_notify(core, msg, old_rate, core->rate);
1028
1029 hlist_for_each_entry(child, &core->children, child_node)
1030 __clk_recalc_rates(child, msg);
1031 }
1032
1033 static unsigned long clk_core_get_rate(struct clk_core *core)
1034 {
1035 unsigned long rate;
1036
1037 clk_prepare_lock();
1038
1039 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1040 __clk_recalc_rates(core, 0);
1041
1042 rate = clk_core_get_rate_nolock(core);
1043 clk_prepare_unlock();
1044
1045 return rate;
1046 }
1047
1048 /**
1049 * clk_get_rate - return the rate of clk
1050 * @clk: the clk whose rate is being returned
1051 *
1052 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1053 * is set, which means a recalc_rate will be issued.
1054 * If clk is NULL then returns 0.
1055 */
1056 unsigned long clk_get_rate(struct clk *clk)
1057 {
1058 if (!clk)
1059 return 0;
1060
1061 return clk_core_get_rate(clk->core);
1062 }
1063 EXPORT_SYMBOL_GPL(clk_get_rate);
1064
1065 static int clk_fetch_parent_index(struct clk_core *core,
1066 struct clk_core *parent)
1067 {
1068 int i;
1069
1070 if (!core->parents) {
1071 core->parents = kcalloc(core->num_parents,
1072 sizeof(struct clk *), GFP_KERNEL);
1073 if (!core->parents)
1074 return -ENOMEM;
1075 }
1076
1077 /*
1078 * find index of new parent clock using cached parent ptrs,
1079 * or if not yet cached, use string name comparison and cache
1080 * them now to avoid future calls to clk_core_lookup.
1081 */
1082 for (i = 0; i < core->num_parents; i++) {
1083 if (core->parents[i] == parent)
1084 return i;
1085
1086 if (core->parents[i])
1087 continue;
1088
1089 if (!strcmp(core->parent_names[i], parent->name)) {
1090 core->parents[i] = clk_core_lookup(parent->name);
1091 return i;
1092 }
1093 }
1094
1095 return -EINVAL;
1096 }
1097
1098 /*
1099 * Update the orphan status of @core and all its children.
1100 */
1101 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1102 {
1103 struct clk_core *child;
1104
1105 core->orphan = is_orphan;
1106
1107 hlist_for_each_entry(child, &core->children, child_node)
1108 clk_core_update_orphan_status(child, is_orphan);
1109 }
1110
1111 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1112 {
1113 bool was_orphan = core->orphan;
1114
1115 hlist_del(&core->child_node);
1116
1117 if (new_parent) {
1118 bool becomes_orphan = new_parent->orphan;
1119
1120 /* avoid duplicate POST_RATE_CHANGE notifications */
1121 if (new_parent->new_child == core)
1122 new_parent->new_child = NULL;
1123
1124 hlist_add_head(&core->child_node, &new_parent->children);
1125
1126 if (was_orphan != becomes_orphan)
1127 clk_core_update_orphan_status(core, becomes_orphan);
1128 } else {
1129 hlist_add_head(&core->child_node, &clk_orphan_list);
1130 if (!was_orphan)
1131 clk_core_update_orphan_status(core, true);
1132 }
1133
1134 core->parent = new_parent;
1135 }
1136
1137 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1138 struct clk_core *parent)
1139 {
1140 unsigned long flags;
1141 struct clk_core *old_parent = core->parent;
1142
1143 /*
1144 * Migrate prepare state between parents and prevent race with
1145 * clk_enable().
1146 *
1147 * If the clock is not prepared, then a race with
1148 * clk_enable/disable() is impossible since we already have the
1149 * prepare lock (future calls to clk_enable() need to be preceded by
1150 * a clk_prepare()).
1151 *
1152 * If the clock is prepared, migrate the prepared state to the new
1153 * parent and also protect against a race with clk_enable() by
1154 * forcing the clock and the new parent on. This ensures that all
1155 * future calls to clk_enable() are practically NOPs with respect to
1156 * hardware and software states.
1157 *
1158 * See also: Comment for clk_set_parent() below.
1159 */
1160 if (core->prepare_count) {
1161 clk_core_prepare(parent);
1162 flags = clk_enable_lock();
1163 clk_core_enable(parent);
1164 clk_core_enable(core);
1165 clk_enable_unlock(flags);
1166 }
1167
1168 /* update the clk tree topology */
1169 flags = clk_enable_lock();
1170 clk_reparent(core, parent);
1171 clk_enable_unlock(flags);
1172
1173 return old_parent;
1174 }
1175
1176 static void __clk_set_parent_after(struct clk_core *core,
1177 struct clk_core *parent,
1178 struct clk_core *old_parent)
1179 {
1180 unsigned long flags;
1181
1182 /*
1183 * Finish the migration of prepare state and undo the changes done
1184 * for preventing a race with clk_enable().
1185 */
1186 if (core->prepare_count) {
1187 flags = clk_enable_lock();
1188 clk_core_disable(core);
1189 clk_core_disable(old_parent);
1190 clk_enable_unlock(flags);
1191 clk_core_unprepare(old_parent);
1192 }
1193 }
1194
1195 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1196 u8 p_index)
1197 {
1198 unsigned long flags;
1199 int ret = 0;
1200 struct clk_core *old_parent;
1201
1202 old_parent = __clk_set_parent_before(core, parent);
1203
1204 trace_clk_set_parent(core, parent);
1205
1206 /* change clock input source */
1207 if (parent && core->ops->set_parent)
1208 ret = core->ops->set_parent(core->hw, p_index);
1209
1210 trace_clk_set_parent_complete(core, parent);
1211
1212 if (ret) {
1213 flags = clk_enable_lock();
1214 clk_reparent(core, old_parent);
1215 clk_enable_unlock(flags);
1216 __clk_set_parent_after(core, old_parent, parent);
1217
1218 return ret;
1219 }
1220
1221 __clk_set_parent_after(core, parent, old_parent);
1222
1223 return 0;
1224 }
1225
1226 /**
1227 * __clk_speculate_rates
1228 * @core: first clk in the subtree
1229 * @parent_rate: the "future" rate of clk's parent
1230 *
1231 * Walks the subtree of clks starting with clk, speculating rates as it
1232 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1233 *
1234 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1235 * pre-rate change notifications and returns early if no clks in the
1236 * subtree have subscribed to the notifications. Note that if a clk does not
1237 * implement the .recalc_rate callback then it is assumed that the clock will
1238 * take on the rate of its parent.
1239 */
1240 static int __clk_speculate_rates(struct clk_core *core,
1241 unsigned long parent_rate)
1242 {
1243 struct clk_core *child;
1244 unsigned long new_rate;
1245 int ret = NOTIFY_DONE;
1246
1247 lockdep_assert_held(&prepare_lock);
1248
1249 new_rate = clk_recalc(core, parent_rate);
1250
1251 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1252 if (core->notifier_count)
1253 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1254
1255 if (ret & NOTIFY_STOP_MASK) {
1256 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1257 __func__, core->name, ret);
1258 goto out;
1259 }
1260
1261 hlist_for_each_entry(child, &core->children, child_node) {
1262 ret = __clk_speculate_rates(child, new_rate);
1263 if (ret & NOTIFY_STOP_MASK)
1264 break;
1265 }
1266
1267 out:
1268 return ret;
1269 }
1270
1271 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1272 struct clk_core *new_parent, u8 p_index)
1273 {
1274 struct clk_core *child;
1275
1276 core->new_rate = new_rate;
1277 core->new_parent = new_parent;
1278 core->new_parent_index = p_index;
1279 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1280 core->new_child = NULL;
1281 if (new_parent && new_parent != core->parent)
1282 new_parent->new_child = core;
1283
1284 hlist_for_each_entry(child, &core->children, child_node) {
1285 child->new_rate = clk_recalc(child, new_rate);
1286 clk_calc_subtree(child, child->new_rate, NULL, 0);
1287 }
1288 }
1289
1290 /*
1291 * calculate the new rates returning the topmost clock that has to be
1292 * changed.
1293 */
1294 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1295 unsigned long rate)
1296 {
1297 struct clk_core *top = core;
1298 struct clk_core *old_parent, *parent;
1299 unsigned long best_parent_rate = 0;
1300 unsigned long new_rate;
1301 unsigned long min_rate;
1302 unsigned long max_rate;
1303 int p_index = 0;
1304 long ret;
1305
1306 /* sanity */
1307 if (IS_ERR_OR_NULL(core))
1308 return NULL;
1309
1310 /* save parent rate, if it exists */
1311 parent = old_parent = core->parent;
1312 if (parent)
1313 best_parent_rate = parent->rate;
1314
1315 clk_core_get_boundaries(core, &min_rate, &max_rate);
1316
1317 /* find the closest rate and parent clk/rate */
1318 if (core->ops->determine_rate) {
1319 struct clk_rate_request req;
1320
1321 req.rate = rate;
1322 req.min_rate = min_rate;
1323 req.max_rate = max_rate;
1324 if (parent) {
1325 req.best_parent_hw = parent->hw;
1326 req.best_parent_rate = parent->rate;
1327 } else {
1328 req.best_parent_hw = NULL;
1329 req.best_parent_rate = 0;
1330 }
1331
1332 ret = core->ops->determine_rate(core->hw, &req);
1333 if (ret < 0)
1334 return NULL;
1335
1336 best_parent_rate = req.best_parent_rate;
1337 new_rate = req.rate;
1338 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1339 } else if (core->ops->round_rate) {
1340 ret = core->ops->round_rate(core->hw, rate,
1341 &best_parent_rate);
1342 if (ret < 0)
1343 return NULL;
1344
1345 new_rate = ret;
1346 if (new_rate < min_rate || new_rate > max_rate)
1347 return NULL;
1348 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1349 /* pass-through clock without adjustable parent */
1350 core->new_rate = core->rate;
1351 return NULL;
1352 } else {
1353 /* pass-through clock with adjustable parent */
1354 top = clk_calc_new_rates(parent, rate);
1355 new_rate = parent->new_rate;
1356 goto out;
1357 }
1358
1359 /* some clocks must be gated to change parent */
1360 if (parent != old_parent &&
1361 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1362 pr_debug("%s: %s not gated but wants to reparent\n",
1363 __func__, core->name);
1364 return NULL;
1365 }
1366
1367 /* try finding the new parent index */
1368 if (parent && core->num_parents > 1) {
1369 p_index = clk_fetch_parent_index(core, parent);
1370 if (p_index < 0) {
1371 pr_debug("%s: clk %s can not be parent of clk %s\n",
1372 __func__, parent->name, core->name);
1373 return NULL;
1374 }
1375 }
1376
1377 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1378 best_parent_rate != parent->rate)
1379 top = clk_calc_new_rates(parent, best_parent_rate);
1380
1381 out:
1382 clk_calc_subtree(core, new_rate, parent, p_index);
1383
1384 return top;
1385 }
1386
1387 /*
1388 * Notify about rate changes in a subtree. Always walk down the whole tree
1389 * so that in case of an error we can walk down the whole tree again and
1390 * abort the change.
1391 */
1392 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1393 unsigned long event)
1394 {
1395 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1396 int ret = NOTIFY_DONE;
1397
1398 if (core->rate == core->new_rate)
1399 return NULL;
1400
1401 if (core->notifier_count) {
1402 ret = __clk_notify(core, event, core->rate, core->new_rate);
1403 if (ret & NOTIFY_STOP_MASK)
1404 fail_clk = core;
1405 }
1406
1407 hlist_for_each_entry(child, &core->children, child_node) {
1408 /* Skip children who will be reparented to another clock */
1409 if (child->new_parent && child->new_parent != core)
1410 continue;
1411 tmp_clk = clk_propagate_rate_change(child, event);
1412 if (tmp_clk)
1413 fail_clk = tmp_clk;
1414 }
1415
1416 /* handle the new child who might not be in core->children yet */
1417 if (core->new_child) {
1418 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1419 if (tmp_clk)
1420 fail_clk = tmp_clk;
1421 }
1422
1423 return fail_clk;
1424 }
1425
1426 /*
1427 * walk down a subtree and set the new rates notifying the rate
1428 * change on the way
1429 */
1430 static void clk_change_rate(struct clk_core *core)
1431 {
1432 struct clk_core *child;
1433 struct hlist_node *tmp;
1434 unsigned long old_rate;
1435 unsigned long best_parent_rate = 0;
1436 bool skip_set_rate = false;
1437 struct clk_core *old_parent;
1438
1439 old_rate = core->rate;
1440
1441 if (core->new_parent)
1442 best_parent_rate = core->new_parent->rate;
1443 else if (core->parent)
1444 best_parent_rate = core->parent->rate;
1445
1446 if (core->new_parent && core->new_parent != core->parent) {
1447 old_parent = __clk_set_parent_before(core, core->new_parent);
1448 trace_clk_set_parent(core, core->new_parent);
1449
1450 if (core->ops->set_rate_and_parent) {
1451 skip_set_rate = true;
1452 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1453 best_parent_rate,
1454 core->new_parent_index);
1455 } else if (core->ops->set_parent) {
1456 core->ops->set_parent(core->hw, core->new_parent_index);
1457 }
1458
1459 trace_clk_set_parent_complete(core, core->new_parent);
1460 __clk_set_parent_after(core, core->new_parent, old_parent);
1461 }
1462
1463 trace_clk_set_rate(core, core->new_rate);
1464
1465 if (!skip_set_rate && core->ops->set_rate)
1466 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1467
1468 trace_clk_set_rate_complete(core, core->new_rate);
1469
1470 core->rate = clk_recalc(core, best_parent_rate);
1471
1472 if (core->notifier_count && old_rate != core->rate)
1473 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1474
1475 if (core->flags & CLK_RECALC_NEW_RATES)
1476 (void)clk_calc_new_rates(core, core->new_rate);
1477
1478 /*
1479 * Use safe iteration, as change_rate can actually swap parents
1480 * for certain clock types.
1481 */
1482 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1483 /* Skip children who will be reparented to another clock */
1484 if (child->new_parent && child->new_parent != core)
1485 continue;
1486 clk_change_rate(child);
1487 }
1488
1489 /* handle the new child who might not be in core->children yet */
1490 if (core->new_child)
1491 clk_change_rate(core->new_child);
1492 }
1493
1494 static int clk_core_set_rate_nolock(struct clk_core *core,
1495 unsigned long req_rate)
1496 {
1497 struct clk_core *top, *fail_clk;
1498 unsigned long rate = req_rate;
1499 int ret = 0;
1500
1501 if (!core)
1502 return 0;
1503
1504 /* bail early if nothing to do */
1505 if (rate == clk_core_get_rate_nolock(core))
1506 return 0;
1507
1508 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1509 return -EBUSY;
1510
1511 /* calculate new rates and get the topmost changed clock */
1512 top = clk_calc_new_rates(core, rate);
1513 if (!top)
1514 return -EINVAL;
1515
1516 /* notify that we are about to change rates */
1517 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1518 if (fail_clk) {
1519 pr_debug("%s: failed to set %s rate\n", __func__,
1520 fail_clk->name);
1521 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1522 return -EBUSY;
1523 }
1524
1525 /* change the rates */
1526 clk_change_rate(top);
1527
1528 core->req_rate = req_rate;
1529
1530 return ret;
1531 }
1532
1533 /**
1534 * clk_set_rate - specify a new rate for clk
1535 * @clk: the clk whose rate is being changed
1536 * @rate: the new rate for clk
1537 *
1538 * In the simplest case clk_set_rate will only adjust the rate of clk.
1539 *
1540 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1541 * propagate up to clk's parent; whether or not this happens depends on the
1542 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1543 * after calling .round_rate then upstream parent propagation is ignored. If
1544 * *parent_rate comes back with a new rate for clk's parent then we propagate
1545 * up to clk's parent and set its rate. Upward propagation will continue
1546 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1547 * .round_rate stops requesting changes to clk's parent_rate.
1548 *
1549 * Rate changes are accomplished via tree traversal that also recalculates the
1550 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1551 *
1552 * Returns 0 on success, -EERROR otherwise.
1553 */
1554 int clk_set_rate(struct clk *clk, unsigned long rate)
1555 {
1556 int ret;
1557
1558 if (!clk)
1559 return 0;
1560
1561 /* prevent racing with updates to the clock topology */
1562 clk_prepare_lock();
1563
1564 ret = clk_core_set_rate_nolock(clk->core, rate);
1565
1566 clk_prepare_unlock();
1567
1568 return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(clk_set_rate);
1571
1572 /**
1573 * clk_set_rate_range - set a rate range for a clock source
1574 * @clk: clock source
1575 * @min: desired minimum clock rate in Hz, inclusive
1576 * @max: desired maximum clock rate in Hz, inclusive
1577 *
1578 * Returns success (0) or negative errno.
1579 */
1580 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1581 {
1582 int ret = 0;
1583
1584 if (!clk)
1585 return 0;
1586
1587 if (min > max) {
1588 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1589 __func__, clk->core->name, clk->dev_id, clk->con_id,
1590 min, max);
1591 return -EINVAL;
1592 }
1593
1594 clk_prepare_lock();
1595
1596 if (min != clk->min_rate || max != clk->max_rate) {
1597 clk->min_rate = min;
1598 clk->max_rate = max;
1599 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1600 }
1601
1602 clk_prepare_unlock();
1603
1604 return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1607
1608 /**
1609 * clk_set_min_rate - set a minimum clock rate for a clock source
1610 * @clk: clock source
1611 * @rate: desired minimum clock rate in Hz, inclusive
1612 *
1613 * Returns success (0) or negative errno.
1614 */
1615 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1616 {
1617 if (!clk)
1618 return 0;
1619
1620 return clk_set_rate_range(clk, rate, clk->max_rate);
1621 }
1622 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1623
1624 /**
1625 * clk_set_max_rate - set a maximum clock rate for a clock source
1626 * @clk: clock source
1627 * @rate: desired maximum clock rate in Hz, inclusive
1628 *
1629 * Returns success (0) or negative errno.
1630 */
1631 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1632 {
1633 if (!clk)
1634 return 0;
1635
1636 return clk_set_rate_range(clk, clk->min_rate, rate);
1637 }
1638 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1639
1640 /**
1641 * clk_get_parent - return the parent of a clk
1642 * @clk: the clk whose parent gets returned
1643 *
1644 * Simply returns clk->parent. Returns NULL if clk is NULL.
1645 */
1646 struct clk *clk_get_parent(struct clk *clk)
1647 {
1648 struct clk *parent;
1649
1650 if (!clk)
1651 return NULL;
1652
1653 clk_prepare_lock();
1654 /* TODO: Create a per-user clk and change callers to call clk_put */
1655 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1656 clk_prepare_unlock();
1657
1658 return parent;
1659 }
1660 EXPORT_SYMBOL_GPL(clk_get_parent);
1661
1662 /*
1663 * .get_parent is mandatory for clocks with multiple possible parents. It is
1664 * optional for single-parent clocks. Always call .get_parent if it is
1665 * available and WARN if it is missing for multi-parent clocks.
1666 *
1667 * For single-parent clocks without .get_parent, first check to see if the
1668 * .parents array exists, and if so use it to avoid an expensive tree
1669 * traversal. If .parents does not exist then walk the tree.
1670 */
1671 static struct clk_core *__clk_init_parent(struct clk_core *core)
1672 {
1673 struct clk_core *ret = NULL;
1674 u8 index;
1675
1676 /* handle the trivial cases */
1677
1678 if (!core->num_parents)
1679 goto out;
1680
1681 if (core->num_parents == 1) {
1682 if (IS_ERR_OR_NULL(core->parent))
1683 core->parent = clk_core_lookup(core->parent_names[0]);
1684 ret = core->parent;
1685 goto out;
1686 }
1687
1688 if (!core->ops->get_parent) {
1689 WARN(!core->ops->get_parent,
1690 "%s: multi-parent clocks must implement .get_parent\n",
1691 __func__);
1692 goto out;
1693 }
1694
1695 /*
1696 * Do our best to cache parent clocks in core->parents. This prevents
1697 * unnecessary and expensive lookups. We don't set core->parent here;
1698 * that is done by the calling function.
1699 */
1700
1701 index = core->ops->get_parent(core->hw);
1702
1703 if (!core->parents)
1704 core->parents =
1705 kcalloc(core->num_parents, sizeof(struct clk *),
1706 GFP_KERNEL);
1707
1708 ret = clk_core_get_parent_by_index(core, index);
1709
1710 out:
1711 return ret;
1712 }
1713
1714 static void clk_core_reparent(struct clk_core *core,
1715 struct clk_core *new_parent)
1716 {
1717 clk_reparent(core, new_parent);
1718 __clk_recalc_accuracies(core);
1719 __clk_recalc_rates(core, POST_RATE_CHANGE);
1720 }
1721
1722 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1723 {
1724 if (!hw)
1725 return;
1726
1727 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1728 }
1729
1730 /**
1731 * clk_has_parent - check if a clock is a possible parent for another
1732 * @clk: clock source
1733 * @parent: parent clock source
1734 *
1735 * This function can be used in drivers that need to check that a clock can be
1736 * the parent of another without actually changing the parent.
1737 *
1738 * Returns true if @parent is a possible parent for @clk, false otherwise.
1739 */
1740 bool clk_has_parent(struct clk *clk, struct clk *parent)
1741 {
1742 struct clk_core *core, *parent_core;
1743 unsigned int i;
1744
1745 /* NULL clocks should be nops, so return success if either is NULL. */
1746 if (!clk || !parent)
1747 return true;
1748
1749 core = clk->core;
1750 parent_core = parent->core;
1751
1752 /* Optimize for the case where the parent is already the parent. */
1753 if (core->parent == parent_core)
1754 return true;
1755
1756 for (i = 0; i < core->num_parents; i++)
1757 if (strcmp(core->parent_names[i], parent_core->name) == 0)
1758 return true;
1759
1760 return false;
1761 }
1762 EXPORT_SYMBOL_GPL(clk_has_parent);
1763
1764 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1765 {
1766 int ret = 0;
1767 int p_index = 0;
1768 unsigned long p_rate = 0;
1769
1770 if (!core)
1771 return 0;
1772
1773 /* prevent racing with updates to the clock topology */
1774 clk_prepare_lock();
1775
1776 if (core->parent == parent)
1777 goto out;
1778
1779 /* verify ops for for multi-parent clks */
1780 if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1781 ret = -ENOSYS;
1782 goto out;
1783 }
1784
1785 /* check that we are allowed to re-parent if the clock is in use */
1786 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1787 ret = -EBUSY;
1788 goto out;
1789 }
1790
1791 /* try finding the new parent index */
1792 if (parent) {
1793 p_index = clk_fetch_parent_index(core, parent);
1794 p_rate = parent->rate;
1795 if (p_index < 0) {
1796 pr_debug("%s: clk %s can not be parent of clk %s\n",
1797 __func__, parent->name, core->name);
1798 ret = p_index;
1799 goto out;
1800 }
1801 }
1802
1803 /* propagate PRE_RATE_CHANGE notifications */
1804 ret = __clk_speculate_rates(core, p_rate);
1805
1806 /* abort if a driver objects */
1807 if (ret & NOTIFY_STOP_MASK)
1808 goto out;
1809
1810 /* do the re-parent */
1811 ret = __clk_set_parent(core, parent, p_index);
1812
1813 /* propagate rate an accuracy recalculation accordingly */
1814 if (ret) {
1815 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
1816 } else {
1817 __clk_recalc_rates(core, POST_RATE_CHANGE);
1818 __clk_recalc_accuracies(core);
1819 }
1820
1821 out:
1822 clk_prepare_unlock();
1823
1824 return ret;
1825 }
1826
1827 /**
1828 * clk_set_parent - switch the parent of a mux clk
1829 * @clk: the mux clk whose input we are switching
1830 * @parent: the new input to clk
1831 *
1832 * Re-parent clk to use parent as its new input source. If clk is in
1833 * prepared state, the clk will get enabled for the duration of this call. If
1834 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1835 * that, the reparenting is glitchy in hardware, etc), use the
1836 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1837 *
1838 * After successfully changing clk's parent clk_set_parent will update the
1839 * clk topology, sysfs topology and propagate rate recalculation via
1840 * __clk_recalc_rates.
1841 *
1842 * Returns 0 on success, -EERROR otherwise.
1843 */
1844 int clk_set_parent(struct clk *clk, struct clk *parent)
1845 {
1846 if (!clk)
1847 return 0;
1848
1849 return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1850 }
1851 EXPORT_SYMBOL_GPL(clk_set_parent);
1852
1853 /**
1854 * clk_set_phase - adjust the phase shift of a clock signal
1855 * @clk: clock signal source
1856 * @degrees: number of degrees the signal is shifted
1857 *
1858 * Shifts the phase of a clock signal by the specified
1859 * degrees. Returns 0 on success, -EERROR otherwise.
1860 *
1861 * This function makes no distinction about the input or reference
1862 * signal that we adjust the clock signal phase against. For example
1863 * phase locked-loop clock signal generators we may shift phase with
1864 * respect to feedback clock signal input, but for other cases the
1865 * clock phase may be shifted with respect to some other, unspecified
1866 * signal.
1867 *
1868 * Additionally the concept of phase shift does not propagate through
1869 * the clock tree hierarchy, which sets it apart from clock rates and
1870 * clock accuracy. A parent clock phase attribute does not have an
1871 * impact on the phase attribute of a child clock.
1872 */
1873 int clk_set_phase(struct clk *clk, int degrees)
1874 {
1875 int ret = -EINVAL;
1876
1877 if (!clk)
1878 return 0;
1879
1880 /* sanity check degrees */
1881 degrees %= 360;
1882 if (degrees < 0)
1883 degrees += 360;
1884
1885 clk_prepare_lock();
1886
1887 trace_clk_set_phase(clk->core, degrees);
1888
1889 if (clk->core->ops->set_phase)
1890 ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1891
1892 trace_clk_set_phase_complete(clk->core, degrees);
1893
1894 if (!ret)
1895 clk->core->phase = degrees;
1896
1897 clk_prepare_unlock();
1898
1899 return ret;
1900 }
1901 EXPORT_SYMBOL_GPL(clk_set_phase);
1902
1903 static int clk_core_get_phase(struct clk_core *core)
1904 {
1905 int ret;
1906
1907 clk_prepare_lock();
1908 ret = core->phase;
1909 clk_prepare_unlock();
1910
1911 return ret;
1912 }
1913
1914 /**
1915 * clk_get_phase - return the phase shift of a clock signal
1916 * @clk: clock signal source
1917 *
1918 * Returns the phase shift of a clock node in degrees, otherwise returns
1919 * -EERROR.
1920 */
1921 int clk_get_phase(struct clk *clk)
1922 {
1923 if (!clk)
1924 return 0;
1925
1926 return clk_core_get_phase(clk->core);
1927 }
1928 EXPORT_SYMBOL_GPL(clk_get_phase);
1929
1930 /**
1931 * clk_is_match - check if two clk's point to the same hardware clock
1932 * @p: clk compared against q
1933 * @q: clk compared against p
1934 *
1935 * Returns true if the two struct clk pointers both point to the same hardware
1936 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1937 * share the same struct clk_core object.
1938 *
1939 * Returns false otherwise. Note that two NULL clks are treated as matching.
1940 */
1941 bool clk_is_match(const struct clk *p, const struct clk *q)
1942 {
1943 /* trivial case: identical struct clk's or both NULL */
1944 if (p == q)
1945 return true;
1946
1947 /* true if clk->core pointers match. Avoid derefing garbage */
1948 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1949 if (p->core == q->core)
1950 return true;
1951
1952 return false;
1953 }
1954 EXPORT_SYMBOL_GPL(clk_is_match);
1955
1956 /*** debugfs support ***/
1957
1958 #ifdef CONFIG_DEBUG_FS
1959 #include <linux/debugfs.h>
1960
1961 static struct dentry *rootdir;
1962 static int inited = 0;
1963 static DEFINE_MUTEX(clk_debug_lock);
1964 static HLIST_HEAD(clk_debug_list);
1965
1966 static struct hlist_head *all_lists[] = {
1967 &clk_root_list,
1968 &clk_orphan_list,
1969 NULL,
1970 };
1971
1972 static struct hlist_head *orphan_list[] = {
1973 &clk_orphan_list,
1974 NULL,
1975 };
1976
1977 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1978 int level)
1979 {
1980 if (!c)
1981 return;
1982
1983 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1984 level * 3 + 1, "",
1985 30 - level * 3, c->name,
1986 c->enable_count, c->prepare_count, clk_core_get_rate(c),
1987 clk_core_get_accuracy(c), clk_core_get_phase(c));
1988 }
1989
1990 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1991 int level)
1992 {
1993 struct clk_core *child;
1994
1995 if (!c)
1996 return;
1997
1998 clk_summary_show_one(s, c, level);
1999
2000 hlist_for_each_entry(child, &c->children, child_node)
2001 clk_summary_show_subtree(s, child, level + 1);
2002 }
2003
2004 static int clk_summary_show(struct seq_file *s, void *data)
2005 {
2006 struct clk_core *c;
2007 struct hlist_head **lists = (struct hlist_head **)s->private;
2008
2009 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n");
2010 seq_puts(s, "----------------------------------------------------------------------------------------\n");
2011
2012 clk_prepare_lock();
2013
2014 for (; *lists; lists++)
2015 hlist_for_each_entry(c, *lists, child_node)
2016 clk_summary_show_subtree(s, c, 0);
2017
2018 clk_prepare_unlock();
2019
2020 return 0;
2021 }
2022
2023
2024 static int clk_summary_open(struct inode *inode, struct file *file)
2025 {
2026 return single_open(file, clk_summary_show, inode->i_private);
2027 }
2028
2029 static const struct file_operations clk_summary_fops = {
2030 .open = clk_summary_open,
2031 .read = seq_read,
2032 .llseek = seq_lseek,
2033 .release = single_release,
2034 };
2035
2036 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2037 {
2038 if (!c)
2039 return;
2040
2041 /* This should be JSON format, i.e. elements separated with a comma */
2042 seq_printf(s, "\"%s\": { ", c->name);
2043 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2044 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2045 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2046 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2047 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2048 }
2049
2050 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2051 {
2052 struct clk_core *child;
2053
2054 if (!c)
2055 return;
2056
2057 clk_dump_one(s, c, level);
2058
2059 hlist_for_each_entry(child, &c->children, child_node) {
2060 seq_printf(s, ",");
2061 clk_dump_subtree(s, child, level + 1);
2062 }
2063
2064 seq_printf(s, "}");
2065 }
2066
2067 static int clk_dump(struct seq_file *s, void *data)
2068 {
2069 struct clk_core *c;
2070 bool first_node = true;
2071 struct hlist_head **lists = (struct hlist_head **)s->private;
2072
2073 seq_printf(s, "{");
2074
2075 clk_prepare_lock();
2076
2077 for (; *lists; lists++) {
2078 hlist_for_each_entry(c, *lists, child_node) {
2079 if (!first_node)
2080 seq_puts(s, ",");
2081 first_node = false;
2082 clk_dump_subtree(s, c, 0);
2083 }
2084 }
2085
2086 clk_prepare_unlock();
2087
2088 seq_puts(s, "}\n");
2089 return 0;
2090 }
2091
2092
2093 static int clk_dump_open(struct inode *inode, struct file *file)
2094 {
2095 return single_open(file, clk_dump, inode->i_private);
2096 }
2097
2098 static const struct file_operations clk_dump_fops = {
2099 .open = clk_dump_open,
2100 .read = seq_read,
2101 .llseek = seq_lseek,
2102 .release = single_release,
2103 };
2104
2105 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2106 {
2107 struct dentry *d;
2108 int ret = -ENOMEM;
2109
2110 if (!core || !pdentry) {
2111 ret = -EINVAL;
2112 goto out;
2113 }
2114
2115 d = debugfs_create_dir(core->name, pdentry);
2116 if (!d)
2117 goto out;
2118
2119 core->dentry = d;
2120
2121 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2122 (u32 *)&core->rate);
2123 if (!d)
2124 goto err_out;
2125
2126 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2127 (u32 *)&core->accuracy);
2128 if (!d)
2129 goto err_out;
2130
2131 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2132 (u32 *)&core->phase);
2133 if (!d)
2134 goto err_out;
2135
2136 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2137 (u32 *)&core->flags);
2138 if (!d)
2139 goto err_out;
2140
2141 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2142 (u32 *)&core->prepare_count);
2143 if (!d)
2144 goto err_out;
2145
2146 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2147 (u32 *)&core->enable_count);
2148 if (!d)
2149 goto err_out;
2150
2151 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2152 (u32 *)&core->notifier_count);
2153 if (!d)
2154 goto err_out;
2155
2156 if (core->ops->debug_init) {
2157 ret = core->ops->debug_init(core->hw, core->dentry);
2158 if (ret)
2159 goto err_out;
2160 }
2161
2162 ret = 0;
2163 goto out;
2164
2165 err_out:
2166 debugfs_remove_recursive(core->dentry);
2167 core->dentry = NULL;
2168 out:
2169 return ret;
2170 }
2171
2172 /**
2173 * clk_debug_register - add a clk node to the debugfs clk directory
2174 * @core: the clk being added to the debugfs clk directory
2175 *
2176 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2177 * initialized. Otherwise it bails out early since the debugfs clk directory
2178 * will be created lazily by clk_debug_init as part of a late_initcall.
2179 */
2180 static int clk_debug_register(struct clk_core *core)
2181 {
2182 int ret = 0;
2183
2184 mutex_lock(&clk_debug_lock);
2185 hlist_add_head(&core->debug_node, &clk_debug_list);
2186
2187 if (!inited)
2188 goto unlock;
2189
2190 ret = clk_debug_create_one(core, rootdir);
2191 unlock:
2192 mutex_unlock(&clk_debug_lock);
2193
2194 return ret;
2195 }
2196
2197 /**
2198 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2199 * @core: the clk being removed from the debugfs clk directory
2200 *
2201 * Dynamically removes a clk and all its child nodes from the
2202 * debugfs clk directory if clk->dentry points to debugfs created by
2203 * clk_debug_register in __clk_init.
2204 */
2205 static void clk_debug_unregister(struct clk_core *core)
2206 {
2207 mutex_lock(&clk_debug_lock);
2208 hlist_del_init(&core->debug_node);
2209 debugfs_remove_recursive(core->dentry);
2210 core->dentry = NULL;
2211 mutex_unlock(&clk_debug_lock);
2212 }
2213
2214 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2215 void *data, const struct file_operations *fops)
2216 {
2217 struct dentry *d = NULL;
2218
2219 if (hw->core->dentry)
2220 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2221 fops);
2222
2223 return d;
2224 }
2225 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2226
2227 /**
2228 * clk_debug_init - lazily populate the debugfs clk directory
2229 *
2230 * clks are often initialized very early during boot before memory can be
2231 * dynamically allocated and well before debugfs is setup. This function
2232 * populates the debugfs clk directory once at boot-time when we know that
2233 * debugfs is setup. It should only be called once at boot-time, all other clks
2234 * added dynamically will be done so with clk_debug_register.
2235 */
2236 static int __init clk_debug_init(void)
2237 {
2238 struct clk_core *core;
2239 struct dentry *d;
2240
2241 rootdir = debugfs_create_dir("clk", NULL);
2242
2243 if (!rootdir)
2244 return -ENOMEM;
2245
2246 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2247 &clk_summary_fops);
2248 if (!d)
2249 return -ENOMEM;
2250
2251 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2252 &clk_dump_fops);
2253 if (!d)
2254 return -ENOMEM;
2255
2256 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2257 &orphan_list, &clk_summary_fops);
2258 if (!d)
2259 return -ENOMEM;
2260
2261 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2262 &orphan_list, &clk_dump_fops);
2263 if (!d)
2264 return -ENOMEM;
2265
2266 mutex_lock(&clk_debug_lock);
2267 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2268 clk_debug_create_one(core, rootdir);
2269
2270 inited = 1;
2271 mutex_unlock(&clk_debug_lock);
2272
2273 return 0;
2274 }
2275 late_initcall(clk_debug_init);
2276 #else
2277 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2278 static inline void clk_debug_reparent(struct clk_core *core,
2279 struct clk_core *new_parent)
2280 {
2281 }
2282 static inline void clk_debug_unregister(struct clk_core *core)
2283 {
2284 }
2285 #endif
2286
2287 /**
2288 * __clk_init - initialize the data structures in a struct clk
2289 * @dev: device initializing this clk, placeholder for now
2290 * @clk: clk being initialized
2291 *
2292 * Initializes the lists in struct clk_core, queries the hardware for the
2293 * parent and rate and sets them both.
2294 */
2295 static int __clk_init(struct device *dev, struct clk *clk_user)
2296 {
2297 int i, ret = 0;
2298 struct clk_core *orphan;
2299 struct hlist_node *tmp2;
2300 struct clk_core *core;
2301 unsigned long rate;
2302
2303 if (!clk_user)
2304 return -EINVAL;
2305
2306 core = clk_user->core;
2307
2308 clk_prepare_lock();
2309
2310 /* check to see if a clock with this name is already registered */
2311 if (clk_core_lookup(core->name)) {
2312 pr_debug("%s: clk %s already initialized\n",
2313 __func__, core->name);
2314 ret = -EEXIST;
2315 goto out;
2316 }
2317
2318 /* check that clk_ops are sane. See Documentation/clk.txt */
2319 if (core->ops->set_rate &&
2320 !((core->ops->round_rate || core->ops->determine_rate) &&
2321 core->ops->recalc_rate)) {
2322 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2323 __func__, core->name);
2324 ret = -EINVAL;
2325 goto out;
2326 }
2327
2328 if (core->ops->set_parent && !core->ops->get_parent) {
2329 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2330 __func__, core->name);
2331 ret = -EINVAL;
2332 goto out;
2333 }
2334
2335 if (core->ops->set_rate_and_parent &&
2336 !(core->ops->set_parent && core->ops->set_rate)) {
2337 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2338 __func__, core->name);
2339 ret = -EINVAL;
2340 goto out;
2341 }
2342
2343 /* throw a WARN if any entries in parent_names are NULL */
2344 for (i = 0; i < core->num_parents; i++)
2345 WARN(!core->parent_names[i],
2346 "%s: invalid NULL in %s's .parent_names\n",
2347 __func__, core->name);
2348
2349 /*
2350 * Allocate an array of struct clk *'s to avoid unnecessary string
2351 * look-ups of clk's possible parents. This can fail for clocks passed
2352 * in to clk_init during early boot; thus any access to core->parents[]
2353 * must always check for a NULL pointer and try to populate it if
2354 * necessary.
2355 *
2356 * If core->parents is not NULL we skip this entire block. This allows
2357 * for clock drivers to statically initialize core->parents.
2358 */
2359 if (core->num_parents > 1 && !core->parents) {
2360 core->parents = kcalloc(core->num_parents, sizeof(struct clk *),
2361 GFP_KERNEL);
2362 /*
2363 * clk_core_lookup returns NULL for parents that have not been
2364 * clk_init'd; thus any access to clk->parents[] must check
2365 * for a NULL pointer. We can always perform lazy lookups for
2366 * missing parents later on.
2367 */
2368 if (core->parents)
2369 for (i = 0; i < core->num_parents; i++)
2370 core->parents[i] =
2371 clk_core_lookup(core->parent_names[i]);
2372 }
2373
2374 core->parent = __clk_init_parent(core);
2375
2376 /*
2377 * Populate core->parent if parent has already been __clk_init'd. If
2378 * parent has not yet been __clk_init'd then place clk in the orphan
2379 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
2380 * clk list.
2381 *
2382 * Every time a new clk is clk_init'd then we walk the list of orphan
2383 * clocks and re-parent any that are children of the clock currently
2384 * being clk_init'd.
2385 */
2386 if (core->parent) {
2387 hlist_add_head(&core->child_node,
2388 &core->parent->children);
2389 core->orphan = core->parent->orphan;
2390 } else if (core->flags & CLK_IS_ROOT) {
2391 hlist_add_head(&core->child_node, &clk_root_list);
2392 core->orphan = false;
2393 } else {
2394 hlist_add_head(&core->child_node, &clk_orphan_list);
2395 core->orphan = true;
2396 }
2397
2398 /*
2399 * Set clk's accuracy. The preferred method is to use
2400 * .recalc_accuracy. For simple clocks and lazy developers the default
2401 * fallback is to use the parent's accuracy. If a clock doesn't have a
2402 * parent (or is orphaned) then accuracy is set to zero (perfect
2403 * clock).
2404 */
2405 if (core->ops->recalc_accuracy)
2406 core->accuracy = core->ops->recalc_accuracy(core->hw,
2407 __clk_get_accuracy(core->parent));
2408 else if (core->parent)
2409 core->accuracy = core->parent->accuracy;
2410 else
2411 core->accuracy = 0;
2412
2413 /*
2414 * Set clk's phase.
2415 * Since a phase is by definition relative to its parent, just
2416 * query the current clock phase, or just assume it's in phase.
2417 */
2418 if (core->ops->get_phase)
2419 core->phase = core->ops->get_phase(core->hw);
2420 else
2421 core->phase = 0;
2422
2423 /*
2424 * Set clk's rate. The preferred method is to use .recalc_rate. For
2425 * simple clocks and lazy developers the default fallback is to use the
2426 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2427 * then rate is set to zero.
2428 */
2429 if (core->ops->recalc_rate)
2430 rate = core->ops->recalc_rate(core->hw,
2431 clk_core_get_rate_nolock(core->parent));
2432 else if (core->parent)
2433 rate = core->parent->rate;
2434 else
2435 rate = 0;
2436 core->rate = core->req_rate = rate;
2437
2438 /*
2439 * walk the list of orphan clocks and reparent any that are children of
2440 * this clock
2441 */
2442 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2443 if (orphan->num_parents && orphan->ops->get_parent) {
2444 i = orphan->ops->get_parent(orphan->hw);
2445 if (i >= 0 && i < orphan->num_parents &&
2446 !strcmp(core->name, orphan->parent_names[i]))
2447 clk_core_reparent(orphan, core);
2448 continue;
2449 }
2450
2451 for (i = 0; i < orphan->num_parents; i++)
2452 if (!strcmp(core->name, orphan->parent_names[i])) {
2453 clk_core_reparent(orphan, core);
2454 break;
2455 }
2456 }
2457
2458 /*
2459 * optional platform-specific magic
2460 *
2461 * The .init callback is not used by any of the basic clock types, but
2462 * exists for weird hardware that must perform initialization magic.
2463 * Please consider other ways of solving initialization problems before
2464 * using this callback, as its use is discouraged.
2465 */
2466 if (core->ops->init)
2467 core->ops->init(core->hw);
2468
2469 kref_init(&core->ref);
2470 out:
2471 clk_prepare_unlock();
2472
2473 if (!ret)
2474 clk_debug_register(core);
2475
2476 return ret;
2477 }
2478
2479 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2480 const char *con_id)
2481 {
2482 struct clk *clk;
2483
2484 /* This is to allow this function to be chained to others */
2485 if (!hw || IS_ERR(hw))
2486 return (struct clk *) hw;
2487
2488 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2489 if (!clk)
2490 return ERR_PTR(-ENOMEM);
2491
2492 clk->core = hw->core;
2493 clk->dev_id = dev_id;
2494 clk->con_id = con_id;
2495 clk->max_rate = ULONG_MAX;
2496
2497 clk_prepare_lock();
2498 hlist_add_head(&clk->clks_node, &hw->core->clks);
2499 clk_prepare_unlock();
2500
2501 return clk;
2502 }
2503
2504 void __clk_free_clk(struct clk *clk)
2505 {
2506 clk_prepare_lock();
2507 hlist_del(&clk->clks_node);
2508 clk_prepare_unlock();
2509
2510 kfree(clk);
2511 }
2512
2513 /**
2514 * clk_register - allocate a new clock, register it and return an opaque cookie
2515 * @dev: device that is registering this clock
2516 * @hw: link to hardware-specific clock data
2517 *
2518 * clk_register is the primary interface for populating the clock tree with new
2519 * clock nodes. It returns a pointer to the newly allocated struct clk which
2520 * cannot be dereferenced by driver code but may be used in conjunction with the
2521 * rest of the clock API. In the event of an error clk_register will return an
2522 * error code; drivers must test for an error code after calling clk_register.
2523 */
2524 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2525 {
2526 int i, ret;
2527 struct clk_core *core;
2528
2529 core = kzalloc(sizeof(*core), GFP_KERNEL);
2530 if (!core) {
2531 ret = -ENOMEM;
2532 goto fail_out;
2533 }
2534
2535 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2536 if (!core->name) {
2537 ret = -ENOMEM;
2538 goto fail_name;
2539 }
2540 core->ops = hw->init->ops;
2541 if (dev && dev->driver)
2542 core->owner = dev->driver->owner;
2543 core->hw = hw;
2544 core->flags = hw->init->flags;
2545 core->num_parents = hw->init->num_parents;
2546 core->min_rate = 0;
2547 core->max_rate = ULONG_MAX;
2548 hw->core = core;
2549
2550 /* allocate local copy in case parent_names is __initdata */
2551 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2552 GFP_KERNEL);
2553
2554 if (!core->parent_names) {
2555 ret = -ENOMEM;
2556 goto fail_parent_names;
2557 }
2558
2559
2560 /* copy each string name in case parent_names is __initdata */
2561 for (i = 0; i < core->num_parents; i++) {
2562 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2563 GFP_KERNEL);
2564 if (!core->parent_names[i]) {
2565 ret = -ENOMEM;
2566 goto fail_parent_names_copy;
2567 }
2568 }
2569
2570 INIT_HLIST_HEAD(&core->clks);
2571
2572 hw->clk = __clk_create_clk(hw, NULL, NULL);
2573 if (IS_ERR(hw->clk)) {
2574 ret = PTR_ERR(hw->clk);
2575 goto fail_parent_names_copy;
2576 }
2577
2578 ret = __clk_init(dev, hw->clk);
2579 if (!ret)
2580 return hw->clk;
2581
2582 __clk_free_clk(hw->clk);
2583 hw->clk = NULL;
2584
2585 fail_parent_names_copy:
2586 while (--i >= 0)
2587 kfree_const(core->parent_names[i]);
2588 kfree(core->parent_names);
2589 fail_parent_names:
2590 kfree_const(core->name);
2591 fail_name:
2592 kfree(core);
2593 fail_out:
2594 return ERR_PTR(ret);
2595 }
2596 EXPORT_SYMBOL_GPL(clk_register);
2597
2598 /* Free memory allocated for a clock. */
2599 static void __clk_release(struct kref *ref)
2600 {
2601 struct clk_core *core = container_of(ref, struct clk_core, ref);
2602 int i = core->num_parents;
2603
2604 lockdep_assert_held(&prepare_lock);
2605
2606 kfree(core->parents);
2607 while (--i >= 0)
2608 kfree_const(core->parent_names[i]);
2609
2610 kfree(core->parent_names);
2611 kfree_const(core->name);
2612 kfree(core);
2613 }
2614
2615 /*
2616 * Empty clk_ops for unregistered clocks. These are used temporarily
2617 * after clk_unregister() was called on a clock and until last clock
2618 * consumer calls clk_put() and the struct clk object is freed.
2619 */
2620 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2621 {
2622 return -ENXIO;
2623 }
2624
2625 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2626 {
2627 WARN_ON_ONCE(1);
2628 }
2629
2630 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2631 unsigned long parent_rate)
2632 {
2633 return -ENXIO;
2634 }
2635
2636 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2637 {
2638 return -ENXIO;
2639 }
2640
2641 static const struct clk_ops clk_nodrv_ops = {
2642 .enable = clk_nodrv_prepare_enable,
2643 .disable = clk_nodrv_disable_unprepare,
2644 .prepare = clk_nodrv_prepare_enable,
2645 .unprepare = clk_nodrv_disable_unprepare,
2646 .set_rate = clk_nodrv_set_rate,
2647 .set_parent = clk_nodrv_set_parent,
2648 };
2649
2650 /**
2651 * clk_unregister - unregister a currently registered clock
2652 * @clk: clock to unregister
2653 */
2654 void clk_unregister(struct clk *clk)
2655 {
2656 unsigned long flags;
2657
2658 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2659 return;
2660
2661 clk_debug_unregister(clk->core);
2662
2663 clk_prepare_lock();
2664
2665 if (clk->core->ops == &clk_nodrv_ops) {
2666 pr_err("%s: unregistered clock: %s\n", __func__,
2667 clk->core->name);
2668 return;
2669 }
2670 /*
2671 * Assign empty clock ops for consumers that might still hold
2672 * a reference to this clock.
2673 */
2674 flags = clk_enable_lock();
2675 clk->core->ops = &clk_nodrv_ops;
2676 clk_enable_unlock(flags);
2677
2678 if (!hlist_empty(&clk->core->children)) {
2679 struct clk_core *child;
2680 struct hlist_node *t;
2681
2682 /* Reparent all children to the orphan list. */
2683 hlist_for_each_entry_safe(child, t, &clk->core->children,
2684 child_node)
2685 clk_core_set_parent(child, NULL);
2686 }
2687
2688 hlist_del_init(&clk->core->child_node);
2689
2690 if (clk->core->prepare_count)
2691 pr_warn("%s: unregistering prepared clock: %s\n",
2692 __func__, clk->core->name);
2693 kref_put(&clk->core->ref, __clk_release);
2694
2695 clk_prepare_unlock();
2696 }
2697 EXPORT_SYMBOL_GPL(clk_unregister);
2698
2699 static void devm_clk_release(struct device *dev, void *res)
2700 {
2701 clk_unregister(*(struct clk **)res);
2702 }
2703
2704 /**
2705 * devm_clk_register - resource managed clk_register()
2706 * @dev: device that is registering this clock
2707 * @hw: link to hardware-specific clock data
2708 *
2709 * Managed clk_register(). Clocks returned from this function are
2710 * automatically clk_unregister()ed on driver detach. See clk_register() for
2711 * more information.
2712 */
2713 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2714 {
2715 struct clk *clk;
2716 struct clk **clkp;
2717
2718 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2719 if (!clkp)
2720 return ERR_PTR(-ENOMEM);
2721
2722 clk = clk_register(dev, hw);
2723 if (!IS_ERR(clk)) {
2724 *clkp = clk;
2725 devres_add(dev, clkp);
2726 } else {
2727 devres_free(clkp);
2728 }
2729
2730 return clk;
2731 }
2732 EXPORT_SYMBOL_GPL(devm_clk_register);
2733
2734 static int devm_clk_match(struct device *dev, void *res, void *data)
2735 {
2736 struct clk *c = res;
2737 if (WARN_ON(!c))
2738 return 0;
2739 return c == data;
2740 }
2741
2742 /**
2743 * devm_clk_unregister - resource managed clk_unregister()
2744 * @clk: clock to unregister
2745 *
2746 * Deallocate a clock allocated with devm_clk_register(). Normally
2747 * this function will not need to be called and the resource management
2748 * code will ensure that the resource is freed.
2749 */
2750 void devm_clk_unregister(struct device *dev, struct clk *clk)
2751 {
2752 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2753 }
2754 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2755
2756 /*
2757 * clkdev helpers
2758 */
2759 int __clk_get(struct clk *clk)
2760 {
2761 struct clk_core *core = !clk ? NULL : clk->core;
2762
2763 if (core) {
2764 if (!try_module_get(core->owner))
2765 return 0;
2766
2767 kref_get(&core->ref);
2768 }
2769 return 1;
2770 }
2771
2772 void __clk_put(struct clk *clk)
2773 {
2774 struct module *owner;
2775
2776 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2777 return;
2778
2779 clk_prepare_lock();
2780
2781 hlist_del(&clk->clks_node);
2782 if (clk->min_rate > clk->core->req_rate ||
2783 clk->max_rate < clk->core->req_rate)
2784 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2785
2786 owner = clk->core->owner;
2787 kref_put(&clk->core->ref, __clk_release);
2788
2789 clk_prepare_unlock();
2790
2791 module_put(owner);
2792
2793 kfree(clk);
2794 }
2795
2796 /*** clk rate change notifiers ***/
2797
2798 /**
2799 * clk_notifier_register - add a clk rate change notifier
2800 * @clk: struct clk * to watch
2801 * @nb: struct notifier_block * with callback info
2802 *
2803 * Request notification when clk's rate changes. This uses an SRCU
2804 * notifier because we want it to block and notifier unregistrations are
2805 * uncommon. The callbacks associated with the notifier must not
2806 * re-enter into the clk framework by calling any top-level clk APIs;
2807 * this will cause a nested prepare_lock mutex.
2808 *
2809 * In all notification cases cases (pre, post and abort rate change) the
2810 * original clock rate is passed to the callback via struct
2811 * clk_notifier_data.old_rate and the new frequency is passed via struct
2812 * clk_notifier_data.new_rate.
2813 *
2814 * clk_notifier_register() must be called from non-atomic context.
2815 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2816 * allocation failure; otherwise, passes along the return value of
2817 * srcu_notifier_chain_register().
2818 */
2819 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2820 {
2821 struct clk_notifier *cn;
2822 int ret = -ENOMEM;
2823
2824 if (!clk || !nb)
2825 return -EINVAL;
2826
2827 clk_prepare_lock();
2828
2829 /* search the list of notifiers for this clk */
2830 list_for_each_entry(cn, &clk_notifier_list, node)
2831 if (cn->clk == clk)
2832 break;
2833
2834 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2835 if (cn->clk != clk) {
2836 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2837 if (!cn)
2838 goto out;
2839
2840 cn->clk = clk;
2841 srcu_init_notifier_head(&cn->notifier_head);
2842
2843 list_add(&cn->node, &clk_notifier_list);
2844 }
2845
2846 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2847
2848 clk->core->notifier_count++;
2849
2850 out:
2851 clk_prepare_unlock();
2852
2853 return ret;
2854 }
2855 EXPORT_SYMBOL_GPL(clk_notifier_register);
2856
2857 /**
2858 * clk_notifier_unregister - remove a clk rate change notifier
2859 * @clk: struct clk *
2860 * @nb: struct notifier_block * with callback info
2861 *
2862 * Request no further notification for changes to 'clk' and frees memory
2863 * allocated in clk_notifier_register.
2864 *
2865 * Returns -EINVAL if called with null arguments; otherwise, passes
2866 * along the return value of srcu_notifier_chain_unregister().
2867 */
2868 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2869 {
2870 struct clk_notifier *cn = NULL;
2871 int ret = -EINVAL;
2872
2873 if (!clk || !nb)
2874 return -EINVAL;
2875
2876 clk_prepare_lock();
2877
2878 list_for_each_entry(cn, &clk_notifier_list, node)
2879 if (cn->clk == clk)
2880 break;
2881
2882 if (cn->clk == clk) {
2883 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2884
2885 clk->core->notifier_count--;
2886
2887 /* XXX the notifier code should handle this better */
2888 if (!cn->notifier_head.head) {
2889 srcu_cleanup_notifier_head(&cn->notifier_head);
2890 list_del(&cn->node);
2891 kfree(cn);
2892 }
2893
2894 } else {
2895 ret = -ENOENT;
2896 }
2897
2898 clk_prepare_unlock();
2899
2900 return ret;
2901 }
2902 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2903
2904 #ifdef CONFIG_OF
2905 /**
2906 * struct of_clk_provider - Clock provider registration structure
2907 * @link: Entry in global list of clock providers
2908 * @node: Pointer to device tree node of clock provider
2909 * @get: Get clock callback. Returns NULL or a struct clk for the
2910 * given clock specifier
2911 * @data: context pointer to be passed into @get callback
2912 */
2913 struct of_clk_provider {
2914 struct list_head link;
2915
2916 struct device_node *node;
2917 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2918 void *data;
2919 };
2920
2921 static const struct of_device_id __clk_of_table_sentinel
2922 __used __section(__clk_of_table_end);
2923
2924 static LIST_HEAD(of_clk_providers);
2925 static DEFINE_MUTEX(of_clk_mutex);
2926
2927 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2928 void *data)
2929 {
2930 return data;
2931 }
2932 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2933
2934 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2935 {
2936 struct clk_onecell_data *clk_data = data;
2937 unsigned int idx = clkspec->args[0];
2938
2939 if (idx >= clk_data->clk_num) {
2940 pr_err("%s: invalid clock index %u\n", __func__, idx);
2941 return ERR_PTR(-EINVAL);
2942 }
2943
2944 return clk_data->clks[idx];
2945 }
2946 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2947
2948 /**
2949 * of_clk_add_provider() - Register a clock provider for a node
2950 * @np: Device node pointer associated with clock provider
2951 * @clk_src_get: callback for decoding clock
2952 * @data: context pointer for @clk_src_get callback.
2953 */
2954 int of_clk_add_provider(struct device_node *np,
2955 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2956 void *data),
2957 void *data)
2958 {
2959 struct of_clk_provider *cp;
2960 int ret;
2961
2962 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2963 if (!cp)
2964 return -ENOMEM;
2965
2966 cp->node = of_node_get(np);
2967 cp->data = data;
2968 cp->get = clk_src_get;
2969
2970 mutex_lock(&of_clk_mutex);
2971 list_add(&cp->link, &of_clk_providers);
2972 mutex_unlock(&of_clk_mutex);
2973 pr_debug("Added clock from %s\n", np->full_name);
2974
2975 ret = of_clk_set_defaults(np, true);
2976 if (ret < 0)
2977 of_clk_del_provider(np);
2978
2979 return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2982
2983 /**
2984 * of_clk_del_provider() - Remove a previously registered clock provider
2985 * @np: Device node pointer associated with clock provider
2986 */
2987 void of_clk_del_provider(struct device_node *np)
2988 {
2989 struct of_clk_provider *cp;
2990
2991 mutex_lock(&of_clk_mutex);
2992 list_for_each_entry(cp, &of_clk_providers, link) {
2993 if (cp->node == np) {
2994 list_del(&cp->link);
2995 of_node_put(cp->node);
2996 kfree(cp);
2997 break;
2998 }
2999 }
3000 mutex_unlock(&of_clk_mutex);
3001 }
3002 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3003
3004 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3005 const char *dev_id, const char *con_id)
3006 {
3007 struct of_clk_provider *provider;
3008 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3009
3010 if (!clkspec)
3011 return ERR_PTR(-EINVAL);
3012
3013 /* Check if we have such a provider in our array */
3014 mutex_lock(&of_clk_mutex);
3015 list_for_each_entry(provider, &of_clk_providers, link) {
3016 if (provider->node == clkspec->np)
3017 clk = provider->get(clkspec, provider->data);
3018 if (!IS_ERR(clk)) {
3019 clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
3020 con_id);
3021
3022 if (!IS_ERR(clk) && !__clk_get(clk)) {
3023 __clk_free_clk(clk);
3024 clk = ERR_PTR(-ENOENT);
3025 }
3026
3027 break;
3028 }
3029 }
3030 mutex_unlock(&of_clk_mutex);
3031
3032 return clk;
3033 }
3034
3035 /**
3036 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3037 * @clkspec: pointer to a clock specifier data structure
3038 *
3039 * This function looks up a struct clk from the registered list of clock
3040 * providers, an input is a clock specifier data structure as returned
3041 * from the of_parse_phandle_with_args() function call.
3042 */
3043 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3044 {
3045 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3046 }
3047
3048 int of_clk_get_parent_count(struct device_node *np)
3049 {
3050 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3051 }
3052 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3053
3054 const char *of_clk_get_parent_name(struct device_node *np, int index)
3055 {
3056 struct of_phandle_args clkspec;
3057 struct property *prop;
3058 const char *clk_name;
3059 const __be32 *vp;
3060 u32 pv;
3061 int rc;
3062 int count;
3063 struct clk *clk;
3064
3065 if (index < 0)
3066 return NULL;
3067
3068 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3069 &clkspec);
3070 if (rc)
3071 return NULL;
3072
3073 index = clkspec.args_count ? clkspec.args[0] : 0;
3074 count = 0;
3075
3076 /* if there is an indices property, use it to transfer the index
3077 * specified into an array offset for the clock-output-names property.
3078 */
3079 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3080 if (index == pv) {
3081 index = count;
3082 break;
3083 }
3084 count++;
3085 }
3086
3087 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3088 index,
3089 &clk_name) < 0) {
3090 /*
3091 * Best effort to get the name if the clock has been
3092 * registered with the framework. If the clock isn't
3093 * registered, we return the node name as the name of
3094 * the clock as long as #clock-cells = 0.
3095 */
3096 clk = of_clk_get_from_provider(&clkspec);
3097 if (IS_ERR(clk)) {
3098 if (clkspec.args_count == 0)
3099 clk_name = clkspec.np->name;
3100 else
3101 clk_name = NULL;
3102 } else {
3103 clk_name = __clk_get_name(clk);
3104 clk_put(clk);
3105 }
3106 }
3107
3108
3109 of_node_put(clkspec.np);
3110 return clk_name;
3111 }
3112 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3113
3114 /**
3115 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3116 * number of parents
3117 * @np: Device node pointer associated with clock provider
3118 * @parents: pointer to char array that hold the parents' names
3119 * @size: size of the @parents array
3120 *
3121 * Return: number of parents for the clock node.
3122 */
3123 int of_clk_parent_fill(struct device_node *np, const char **parents,
3124 unsigned int size)
3125 {
3126 unsigned int i = 0;
3127
3128 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3129 i++;
3130
3131 return i;
3132 }
3133 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3134
3135 struct clock_provider {
3136 of_clk_init_cb_t clk_init_cb;
3137 struct device_node *np;
3138 struct list_head node;
3139 };
3140
3141 /*
3142 * This function looks for a parent clock. If there is one, then it
3143 * checks that the provider for this parent clock was initialized, in
3144 * this case the parent clock will be ready.
3145 */
3146 static int parent_ready(struct device_node *np)
3147 {
3148 int i = 0;
3149
3150 while (true) {
3151 struct clk *clk = of_clk_get(np, i);
3152
3153 /* this parent is ready we can check the next one */
3154 if (!IS_ERR(clk)) {
3155 clk_put(clk);
3156 i++;
3157 continue;
3158 }
3159
3160 /* at least one parent is not ready, we exit now */
3161 if (PTR_ERR(clk) == -EPROBE_DEFER)
3162 return 0;
3163
3164 /*
3165 * Here we make assumption that the device tree is
3166 * written correctly. So an error means that there is
3167 * no more parent. As we didn't exit yet, then the
3168 * previous parent are ready. If there is no clock
3169 * parent, no need to wait for them, then we can
3170 * consider their absence as being ready
3171 */
3172 return 1;
3173 }
3174 }
3175
3176 /**
3177 * of_clk_init() - Scan and init clock providers from the DT
3178 * @matches: array of compatible values and init functions for providers.
3179 *
3180 * This function scans the device tree for matching clock providers
3181 * and calls their initialization functions. It also does it by trying
3182 * to follow the dependencies.
3183 */
3184 void __init of_clk_init(const struct of_device_id *matches)
3185 {
3186 const struct of_device_id *match;
3187 struct device_node *np;
3188 struct clock_provider *clk_provider, *next;
3189 bool is_init_done;
3190 bool force = false;
3191 LIST_HEAD(clk_provider_list);
3192
3193 if (!matches)
3194 matches = &__clk_of_table;
3195
3196 /* First prepare the list of the clocks providers */
3197 for_each_matching_node_and_match(np, matches, &match) {
3198 struct clock_provider *parent;
3199
3200 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3201 if (!parent) {
3202 list_for_each_entry_safe(clk_provider, next,
3203 &clk_provider_list, node) {
3204 list_del(&clk_provider->node);
3205 of_node_put(clk_provider->np);
3206 kfree(clk_provider);
3207 }
3208 of_node_put(np);
3209 return;
3210 }
3211
3212 parent->clk_init_cb = match->data;
3213 parent->np = of_node_get(np);
3214 list_add_tail(&parent->node, &clk_provider_list);
3215 }
3216
3217 while (!list_empty(&clk_provider_list)) {
3218 is_init_done = false;
3219 list_for_each_entry_safe(clk_provider, next,
3220 &clk_provider_list, node) {
3221 if (force || parent_ready(clk_provider->np)) {
3222
3223 clk_provider->clk_init_cb(clk_provider->np);
3224 of_clk_set_defaults(clk_provider->np, true);
3225
3226 list_del(&clk_provider->node);
3227 of_node_put(clk_provider->np);
3228 kfree(clk_provider);
3229 is_init_done = true;
3230 }
3231 }
3232
3233 /*
3234 * We didn't manage to initialize any of the
3235 * remaining providers during the last loop, so now we
3236 * initialize all the remaining ones unconditionally
3237 * in case the clock parent was not mandatory
3238 */
3239 if (!is_init_done)
3240 force = true;
3241 }
3242 }
3243 #endif
This page took 0.110427 seconds and 6 git commands to generate.