34ee69f4d50c5bd574ceeed4893b0bb9f67a3686
[deliverable/linux.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2 * Copyright 2013 Emilio López
3 *
4 * Emilio López <emilio@elopez.com.ar>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/clk/sunxi.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22
23 #include "clk-factors.h"
24
25 static DEFINE_SPINLOCK(clk_lock);
26
27 /**
28 * sun4i_osc_clk_setup() - Setup function for gatable oscillator
29 */
30
31 #define SUNXI_OSC24M_GATE 0
32
33 static void __init sun4i_osc_clk_setup(struct device_node *node)
34 {
35 struct clk *clk;
36 struct clk_fixed_rate *fixed;
37 struct clk_gate *gate;
38 const char *clk_name = node->name;
39 u32 rate;
40
41 /* allocate fixed-rate and gate clock structs */
42 fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
43 if (!fixed)
44 return;
45 gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
46 if (!gate) {
47 kfree(fixed);
48 return;
49 }
50
51 if (of_property_read_u32(node, "clock-frequency", &rate))
52 return;
53
54 /* set up gate and fixed rate properties */
55 gate->reg = of_iomap(node, 0);
56 gate->bit_idx = SUNXI_OSC24M_GATE;
57 gate->lock = &clk_lock;
58 fixed->fixed_rate = rate;
59
60 clk = clk_register_composite(NULL, clk_name,
61 NULL, 0,
62 NULL, NULL,
63 &fixed->hw, &clk_fixed_rate_ops,
64 &gate->hw, &clk_gate_ops,
65 CLK_IS_ROOT);
66
67 if (!IS_ERR(clk)) {
68 of_clk_add_provider(node, of_clk_src_simple_get, clk);
69 clk_register_clkdev(clk, clk_name, NULL);
70 }
71 }
72 CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-osc-clk", sun4i_osc_clk_setup);
73
74
75
76 /**
77 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
78 * PLL1 rate is calculated as follows
79 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
80 * parent_rate is always 24Mhz
81 */
82
83 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
84 u8 *n, u8 *k, u8 *m, u8 *p)
85 {
86 u8 div;
87
88 /* Normalize value to a 6M multiple */
89 div = *freq / 6000000;
90 *freq = 6000000 * div;
91
92 /* we were called to round the frequency, we can now return */
93 if (n == NULL)
94 return;
95
96 /* m is always zero for pll1 */
97 *m = 0;
98
99 /* k is 1 only on these cases */
100 if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
101 *k = 1;
102 else
103 *k = 0;
104
105 /* p will be 3 for divs under 10 */
106 if (div < 10)
107 *p = 3;
108
109 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
110 else if (div < 20 || (div < 32 && (div & 1)))
111 *p = 2;
112
113 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
114 * of divs between 40-62 */
115 else if (div < 40 || (div < 64 && (div & 2)))
116 *p = 1;
117
118 /* any other entries have p = 0 */
119 else
120 *p = 0;
121
122 /* calculate a suitable n based on k and p */
123 div <<= *p;
124 div /= (*k + 1);
125 *n = div / 4;
126 }
127
128 /**
129 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
130 * PLL1 rate is calculated as follows
131 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
132 * parent_rate should always be 24MHz
133 */
134 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
135 u8 *n, u8 *k, u8 *m, u8 *p)
136 {
137 /*
138 * We can operate only on MHz, this will make our life easier
139 * later.
140 */
141 u32 freq_mhz = *freq / 1000000;
142 u32 parent_freq_mhz = parent_rate / 1000000;
143
144 /*
145 * Round down the frequency to the closest multiple of either
146 * 6 or 16
147 */
148 u32 round_freq_6 = round_down(freq_mhz, 6);
149 u32 round_freq_16 = round_down(freq_mhz, 16);
150
151 if (round_freq_6 > round_freq_16)
152 freq_mhz = round_freq_6;
153 else
154 freq_mhz = round_freq_16;
155
156 *freq = freq_mhz * 1000000;
157
158 /*
159 * If the factors pointer are null, we were just called to
160 * round down the frequency.
161 * Exit.
162 */
163 if (n == NULL)
164 return;
165
166 /* If the frequency is a multiple of 32 MHz, k is always 3 */
167 if (!(freq_mhz % 32))
168 *k = 3;
169 /* If the frequency is a multiple of 9 MHz, k is always 2 */
170 else if (!(freq_mhz % 9))
171 *k = 2;
172 /* If the frequency is a multiple of 8 MHz, k is always 1 */
173 else if (!(freq_mhz % 8))
174 *k = 1;
175 /* Otherwise, we don't use the k factor */
176 else
177 *k = 0;
178
179 /*
180 * If the frequency is a multiple of 2 but not a multiple of
181 * 3, m is 3. This is the first time we use 6 here, yet we
182 * will use it on several other places.
183 * We use this number because it's the lowest frequency we can
184 * generate (with n = 0, k = 0, m = 3), so every other frequency
185 * somehow relates to this frequency.
186 */
187 if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
188 *m = 2;
189 /*
190 * If the frequency is a multiple of 6MHz, but the factor is
191 * odd, m will be 3
192 */
193 else if ((freq_mhz / 6) & 1)
194 *m = 3;
195 /* Otherwise, we end up with m = 1 */
196 else
197 *m = 1;
198
199 /* Calculate n thanks to the above factors we already got */
200 *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
201
202 /*
203 * If n end up being outbound, and that we can still decrease
204 * m, do it.
205 */
206 if ((*n + 1) > 31 && (*m + 1) > 1) {
207 *n = (*n + 1) / 2 - 1;
208 *m = (*m + 1) / 2 - 1;
209 }
210 }
211
212 /**
213 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
214 * APB1 rate is calculated as follows
215 * rate = (parent_rate >> p) / (m + 1);
216 */
217
218 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
219 u8 *n, u8 *k, u8 *m, u8 *p)
220 {
221 u8 calcm, calcp;
222
223 if (parent_rate < *freq)
224 *freq = parent_rate;
225
226 parent_rate = (parent_rate + (*freq - 1)) / *freq;
227
228 /* Invalid rate! */
229 if (parent_rate > 32)
230 return;
231
232 if (parent_rate <= 4)
233 calcp = 0;
234 else if (parent_rate <= 8)
235 calcp = 1;
236 else if (parent_rate <= 16)
237 calcp = 2;
238 else
239 calcp = 3;
240
241 calcm = (parent_rate >> calcp) - 1;
242
243 *freq = (parent_rate >> calcp) / (calcm + 1);
244
245 /* we were called to round the frequency, we can now return */
246 if (n == NULL)
247 return;
248
249 *m = calcm;
250 *p = calcp;
251 }
252
253
254
255 /**
256 * sunxi_factors_clk_setup() - Setup function for factor clocks
257 */
258
259 struct factors_data {
260 struct clk_factors_config *table;
261 void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
262 };
263
264 static struct clk_factors_config sun4i_pll1_config = {
265 .nshift = 8,
266 .nwidth = 5,
267 .kshift = 4,
268 .kwidth = 2,
269 .mshift = 0,
270 .mwidth = 2,
271 .pshift = 16,
272 .pwidth = 2,
273 };
274
275 static struct clk_factors_config sun6i_a31_pll1_config = {
276 .nshift = 8,
277 .nwidth = 5,
278 .kshift = 4,
279 .kwidth = 2,
280 .mshift = 0,
281 .mwidth = 2,
282 };
283
284 static struct clk_factors_config sun4i_apb1_config = {
285 .mshift = 0,
286 .mwidth = 5,
287 .pshift = 16,
288 .pwidth = 2,
289 };
290
291 static const struct factors_data sun4i_pll1_data __initconst = {
292 .table = &sun4i_pll1_config,
293 .getter = sun4i_get_pll1_factors,
294 };
295
296 static const struct factors_data sun6i_a31_pll1_data __initconst = {
297 .table = &sun6i_a31_pll1_config,
298 .getter = sun6i_a31_get_pll1_factors,
299 };
300
301 static const struct factors_data sun4i_apb1_data __initconst = {
302 .table = &sun4i_apb1_config,
303 .getter = sun4i_get_apb1_factors,
304 };
305
306 static void __init sunxi_factors_clk_setup(struct device_node *node,
307 struct factors_data *data)
308 {
309 struct clk *clk;
310 const char *clk_name = node->name;
311 const char *parent;
312 void *reg;
313
314 reg = of_iomap(node, 0);
315
316 parent = of_clk_get_parent_name(node, 0);
317
318 clk = clk_register_factors(NULL, clk_name, parent, 0, reg,
319 data->table, data->getter, &clk_lock);
320
321 if (!IS_ERR(clk)) {
322 of_clk_add_provider(node, of_clk_src_simple_get, clk);
323 clk_register_clkdev(clk, clk_name, NULL);
324 }
325 }
326
327
328
329 /**
330 * sunxi_mux_clk_setup() - Setup function for muxes
331 */
332
333 #define SUNXI_MUX_GATE_WIDTH 2
334
335 struct mux_data {
336 u8 shift;
337 };
338
339 static const struct mux_data sun4i_cpu_mux_data __initconst = {
340 .shift = 16,
341 };
342
343 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
344 .shift = 12,
345 };
346
347 static const struct mux_data sun4i_apb1_mux_data __initconst = {
348 .shift = 24,
349 };
350
351 static void __init sunxi_mux_clk_setup(struct device_node *node,
352 struct mux_data *data)
353 {
354 struct clk *clk;
355 const char *clk_name = node->name;
356 const char *parents[5];
357 void *reg;
358 int i = 0;
359
360 reg = of_iomap(node, 0);
361
362 while (i < 5 && (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
363 i++;
364
365 clk = clk_register_mux(NULL, clk_name, parents, i,
366 CLK_SET_RATE_NO_REPARENT, reg,
367 data->shift, SUNXI_MUX_GATE_WIDTH,
368 0, &clk_lock);
369
370 if (clk) {
371 of_clk_add_provider(node, of_clk_src_simple_get, clk);
372 clk_register_clkdev(clk, clk_name, NULL);
373 }
374 }
375
376
377
378 /**
379 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
380 */
381
382 struct div_data {
383 u8 shift;
384 u8 pow;
385 u8 width;
386 };
387
388 static const struct div_data sun4i_axi_data __initconst = {
389 .shift = 0,
390 .pow = 0,
391 .width = 2,
392 };
393
394 static const struct div_data sun4i_ahb_data __initconst = {
395 .shift = 4,
396 .pow = 1,
397 .width = 2,
398 };
399
400 static const struct div_data sun4i_apb0_data __initconst = {
401 .shift = 8,
402 .pow = 1,
403 .width = 2,
404 };
405
406 static const struct div_data sun6i_a31_apb2_div_data __initconst = {
407 .shift = 0,
408 .pow = 0,
409 .width = 4,
410 };
411
412 static void __init sunxi_divider_clk_setup(struct device_node *node,
413 struct div_data *data)
414 {
415 struct clk *clk;
416 const char *clk_name = node->name;
417 const char *clk_parent;
418 void *reg;
419
420 reg = of_iomap(node, 0);
421
422 clk_parent = of_clk_get_parent_name(node, 0);
423
424 clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
425 reg, data->shift, data->width,
426 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
427 &clk_lock);
428 if (clk) {
429 of_clk_add_provider(node, of_clk_src_simple_get, clk);
430 clk_register_clkdev(clk, clk_name, NULL);
431 }
432 }
433
434
435
436 /**
437 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
438 */
439
440 #define SUNXI_GATES_MAX_SIZE 64
441
442 struct gates_data {
443 DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
444 };
445
446 static const struct gates_data sun4i_axi_gates_data __initconst = {
447 .mask = {1},
448 };
449
450 static const struct gates_data sun4i_ahb_gates_data __initconst = {
451 .mask = {0x7F77FFF, 0x14FB3F},
452 };
453
454 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
455 .mask = {0x147667e7, 0x185915},
456 };
457
458 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
459 .mask = {0x107067e7, 0x185111},
460 };
461
462 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
463 .mask = {0xEDFE7F62, 0x794F931},
464 };
465
466 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
467 .mask = { 0x12f77fff, 0x16ff3f },
468 };
469
470 static const struct gates_data sun4i_apb0_gates_data __initconst = {
471 .mask = {0x4EF},
472 };
473
474 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
475 .mask = {0x469},
476 };
477
478 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
479 .mask = {0x61},
480 };
481
482 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
483 .mask = { 0x4ff },
484 };
485
486 static const struct gates_data sun4i_apb1_gates_data __initconst = {
487 .mask = {0xFF00F7},
488 };
489
490 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
491 .mask = {0xf0007},
492 };
493
494 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
495 .mask = {0xa0007},
496 };
497
498 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
499 .mask = {0x3031},
500 };
501
502 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
503 .mask = {0x3F000F},
504 };
505
506 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
507 .mask = { 0xff80ff },
508 };
509
510 static void __init sunxi_gates_clk_setup(struct device_node *node,
511 struct gates_data *data)
512 {
513 struct clk_onecell_data *clk_data;
514 const char *clk_parent;
515 const char *clk_name;
516 void *reg;
517 int qty;
518 int i = 0;
519 int j = 0;
520 int ignore;
521
522 reg = of_iomap(node, 0);
523
524 clk_parent = of_clk_get_parent_name(node, 0);
525
526 /* Worst-case size approximation and memory allocation */
527 qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
528 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
529 if (!clk_data)
530 return;
531 clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
532 if (!clk_data->clks) {
533 kfree(clk_data);
534 return;
535 }
536
537 for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
538 of_property_read_string_index(node, "clock-output-names",
539 j, &clk_name);
540
541 /* No driver claims this clock, but it should remain gated */
542 ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;
543
544 clk_data->clks[i] = clk_register_gate(NULL, clk_name,
545 clk_parent, ignore,
546 reg + 4 * (i/32), i % 32,
547 0, &clk_lock);
548 WARN_ON(IS_ERR(clk_data->clks[i]));
549
550 j++;
551 }
552
553 /* Adjust to the real max */
554 clk_data->clk_num = i;
555
556 of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
557 }
558
559 /* Matches for factors clocks */
560 static const struct of_device_id clk_factors_match[] __initconst = {
561 {.compatible = "allwinner,sun4i-pll1-clk", .data = &sun4i_pll1_data,},
562 {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
563 {.compatible = "allwinner,sun4i-apb1-clk", .data = &sun4i_apb1_data,},
564 {}
565 };
566
567 /* Matches for divider clocks */
568 static const struct of_device_id clk_div_match[] __initconst = {
569 {.compatible = "allwinner,sun4i-axi-clk", .data = &sun4i_axi_data,},
570 {.compatible = "allwinner,sun4i-ahb-clk", .data = &sun4i_ahb_data,},
571 {.compatible = "allwinner,sun4i-apb0-clk", .data = &sun4i_apb0_data,},
572 {.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
573 {}
574 };
575
576 /* Matches for mux clocks */
577 static const struct of_device_id clk_mux_match[] __initconst = {
578 {.compatible = "allwinner,sun4i-cpu-clk", .data = &sun4i_cpu_mux_data,},
579 {.compatible = "allwinner,sun4i-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
580 {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
581 {}
582 };
583
584 /* Matches for gate clocks */
585 static const struct of_device_id clk_gates_match[] __initconst = {
586 {.compatible = "allwinner,sun4i-axi-gates-clk", .data = &sun4i_axi_gates_data,},
587 {.compatible = "allwinner,sun4i-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
588 {.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
589 {.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
590 {.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
591 {.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
592 {.compatible = "allwinner,sun4i-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
593 {.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
594 {.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
595 {.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
596 {.compatible = "allwinner,sun4i-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
597 {.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
598 {.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
599 {.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
600 {.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
601 {.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
602 {}
603 };
604
605 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
606 void *function)
607 {
608 struct device_node *np;
609 const struct div_data *data;
610 const struct of_device_id *match;
611 void (*setup_function)(struct device_node *, const void *) = function;
612
613 for_each_matching_node(np, clk_match) {
614 match = of_match_node(clk_match, np);
615 data = match->data;
616 setup_function(np, data);
617 }
618 }
619
620 void __init sunxi_init_clocks(void)
621 {
622 /* Register all the simple and basic clocks on DT */
623 of_clk_init(NULL);
624
625 /* Register factor clocks */
626 of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
627
628 /* Register divider clocks */
629 of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
630
631 /* Register mux clocks */
632 of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
633
634 /* Register gate clocks */
635 of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
636 }
This page took 0.043178 seconds and 4 git commands to generate.