iw_cxgb4: handle draining an idle qp
[deliverable/linux.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2 * Copyright 2013 Emilio López
3 *
4 * Emilio López <emilio@elopez.com.ar>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
26
27 #include "clk-factors.h"
28
29 static DEFINE_SPINLOCK(clk_lock);
30
31 /* Maximum number of parents our clocks have */
32 #define SUNXI_MAX_PARENTS 5
33
34 /**
35 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
36 * PLL1 rate is calculated as follows
37 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
38 * parent_rate is always 24Mhz
39 */
40
41 static void sun4i_get_pll1_factors(struct factors_request *req)
42 {
43 u8 div;
44
45 /* Normalize value to a 6M multiple */
46 div = req->rate / 6000000;
47 req->rate = 6000000 * div;
48
49 /* m is always zero for pll1 */
50 req->m = 0;
51
52 /* k is 1 only on these cases */
53 if (req->rate >= 768000000 || req->rate == 42000000 ||
54 req->rate == 54000000)
55 req->k = 1;
56 else
57 req->k = 0;
58
59 /* p will be 3 for divs under 10 */
60 if (div < 10)
61 req->p = 3;
62
63 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64 else if (div < 20 || (div < 32 && (div & 1)))
65 req->p = 2;
66
67 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
68 * of divs between 40-62 */
69 else if (div < 40 || (div < 64 && (div & 2)))
70 req->p = 1;
71
72 /* any other entries have p = 0 */
73 else
74 req->p = 0;
75
76 /* calculate a suitable n based on k and p */
77 div <<= req->p;
78 div /= (req->k + 1);
79 req->n = div / 4;
80 }
81
82 /**
83 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84 * PLL1 rate is calculated as follows
85 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86 * parent_rate should always be 24MHz
87 */
88 static void sun6i_a31_get_pll1_factors(struct factors_request *req)
89 {
90 /*
91 * We can operate only on MHz, this will make our life easier
92 * later.
93 */
94 u32 freq_mhz = req->rate / 1000000;
95 u32 parent_freq_mhz = req->parent_rate / 1000000;
96
97 /*
98 * Round down the frequency to the closest multiple of either
99 * 6 or 16
100 */
101 u32 round_freq_6 = round_down(freq_mhz, 6);
102 u32 round_freq_16 = round_down(freq_mhz, 16);
103
104 if (round_freq_6 > round_freq_16)
105 freq_mhz = round_freq_6;
106 else
107 freq_mhz = round_freq_16;
108
109 req->rate = freq_mhz * 1000000;
110
111 /* If the frequency is a multiple of 32 MHz, k is always 3 */
112 if (!(freq_mhz % 32))
113 req->k = 3;
114 /* If the frequency is a multiple of 9 MHz, k is always 2 */
115 else if (!(freq_mhz % 9))
116 req->k = 2;
117 /* If the frequency is a multiple of 8 MHz, k is always 1 */
118 else if (!(freq_mhz % 8))
119 req->k = 1;
120 /* Otherwise, we don't use the k factor */
121 else
122 req->k = 0;
123
124 /*
125 * If the frequency is a multiple of 2 but not a multiple of
126 * 3, m is 3. This is the first time we use 6 here, yet we
127 * will use it on several other places.
128 * We use this number because it's the lowest frequency we can
129 * generate (with n = 0, k = 0, m = 3), so every other frequency
130 * somehow relates to this frequency.
131 */
132 if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
133 req->m = 2;
134 /*
135 * If the frequency is a multiple of 6MHz, but the factor is
136 * odd, m will be 3
137 */
138 else if ((freq_mhz / 6) & 1)
139 req->m = 3;
140 /* Otherwise, we end up with m = 1 */
141 else
142 req->m = 1;
143
144 /* Calculate n thanks to the above factors we already got */
145 req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
146 - 1;
147
148 /*
149 * If n end up being outbound, and that we can still decrease
150 * m, do it.
151 */
152 if ((req->n + 1) > 31 && (req->m + 1) > 1) {
153 req->n = (req->n + 1) / 2 - 1;
154 req->m = (req->m + 1) / 2 - 1;
155 }
156 }
157
158 /**
159 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
160 * PLL1 rate is calculated as follows
161 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
162 * parent_rate is always 24Mhz
163 */
164
165 static void sun8i_a23_get_pll1_factors(struct factors_request *req)
166 {
167 u8 div;
168
169 /* Normalize value to a 6M multiple */
170 div = req->rate / 6000000;
171 req->rate = 6000000 * div;
172
173 /* m is always zero for pll1 */
174 req->m = 0;
175
176 /* k is 1 only on these cases */
177 if (req->rate >= 768000000 || req->rate == 42000000 ||
178 req->rate == 54000000)
179 req->k = 1;
180 else
181 req->k = 0;
182
183 /* p will be 2 for divs under 20 and odd divs under 32 */
184 if (div < 20 || (div < 32 && (div & 1)))
185 req->p = 2;
186
187 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
188 * of divs between 40-62 */
189 else if (div < 40 || (div < 64 && (div & 2)))
190 req->p = 1;
191
192 /* any other entries have p = 0 */
193 else
194 req->p = 0;
195
196 /* calculate a suitable n based on k and p */
197 div <<= req->p;
198 div /= (req->k + 1);
199 req->n = div / 4 - 1;
200 }
201
202 /**
203 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
204 * PLL5 rate is calculated as follows
205 * rate = parent_rate * n * (k + 1)
206 * parent_rate is always 24Mhz
207 */
208
209 static void sun4i_get_pll5_factors(struct factors_request *req)
210 {
211 u8 div;
212
213 /* Normalize value to a parent_rate multiple (24M) */
214 div = req->rate / req->parent_rate;
215 req->rate = req->parent_rate * div;
216
217 if (div < 31)
218 req->k = 0;
219 else if (div / 2 < 31)
220 req->k = 1;
221 else if (div / 3 < 31)
222 req->k = 2;
223 else
224 req->k = 3;
225
226 req->n = DIV_ROUND_UP(div, (req->k + 1));
227 }
228
229 /**
230 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
231 * PLL6x2 rate is calculated as follows
232 * rate = parent_rate * (n + 1) * (k + 1)
233 * parent_rate is always 24Mhz
234 */
235
236 static void sun6i_a31_get_pll6_factors(struct factors_request *req)
237 {
238 u8 div;
239
240 /* Normalize value to a parent_rate multiple (24M) */
241 div = req->rate / req->parent_rate;
242 req->rate = req->parent_rate * div;
243
244 req->k = div / 32;
245 if (req->k > 3)
246 req->k = 3;
247
248 req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
249 }
250
251 /**
252 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
253 * AHB rate is calculated as follows
254 * rate = parent_rate >> p
255 */
256
257 static void sun5i_a13_get_ahb_factors(struct factors_request *req)
258 {
259 u32 div;
260
261 /* divide only */
262 if (req->parent_rate < req->rate)
263 req->rate = req->parent_rate;
264
265 /*
266 * user manual says valid speed is 8k ~ 276M, but tests show it
267 * can work at speeds up to 300M, just after reparenting to pll6
268 */
269 if (req->rate < 8000)
270 req->rate = 8000;
271 if (req->rate > 300000000)
272 req->rate = 300000000;
273
274 div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
275
276 /* p = 0 ~ 3 */
277 if (div > 3)
278 div = 3;
279
280 req->rate = req->parent_rate >> div;
281
282 req->p = div;
283 }
284
285 #define SUN6I_AHB1_PARENT_PLL6 3
286
287 /**
288 * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
289 * AHB rate is calculated as follows
290 * rate = parent_rate >> p
291 *
292 * if parent is pll6, then
293 * parent_rate = pll6 rate / (m + 1)
294 */
295
296 static void sun6i_get_ahb1_factors(struct factors_request *req)
297 {
298 u8 div, calcp, calcm = 1;
299
300 /*
301 * clock can only divide, so we will never be able to achieve
302 * frequencies higher than the parent frequency
303 */
304 if (req->parent_rate && req->rate > req->parent_rate)
305 req->rate = req->parent_rate;
306
307 div = DIV_ROUND_UP(req->parent_rate, req->rate);
308
309 /* calculate pre-divider if parent is pll6 */
310 if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
311 if (div < 4)
312 calcp = 0;
313 else if (div / 2 < 4)
314 calcp = 1;
315 else if (div / 4 < 4)
316 calcp = 2;
317 else
318 calcp = 3;
319
320 calcm = DIV_ROUND_UP(div, 1 << calcp);
321 } else {
322 calcp = __roundup_pow_of_two(div);
323 calcp = calcp > 3 ? 3 : calcp;
324 }
325
326 req->rate = (req->parent_rate / calcm) >> calcp;
327 req->p = calcp;
328 req->m = calcm - 1;
329 }
330
331 /**
332 * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
333 * parent index
334 */
335 static void sun6i_ahb1_recalc(struct factors_request *req)
336 {
337 req->rate = req->parent_rate;
338
339 /* apply pre-divider first if parent is pll6 */
340 if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
341 req->rate /= req->m + 1;
342
343 /* clk divider */
344 req->rate >>= req->p;
345 }
346
347 /**
348 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
349 * APB1 rate is calculated as follows
350 * rate = (parent_rate >> p) / (m + 1);
351 */
352
353 static void sun4i_get_apb1_factors(struct factors_request *req)
354 {
355 u8 calcm, calcp;
356 int div;
357
358 if (req->parent_rate < req->rate)
359 req->rate = req->parent_rate;
360
361 div = DIV_ROUND_UP(req->parent_rate, req->rate);
362
363 /* Invalid rate! */
364 if (div > 32)
365 return;
366
367 if (div <= 4)
368 calcp = 0;
369 else if (div <= 8)
370 calcp = 1;
371 else if (div <= 16)
372 calcp = 2;
373 else
374 calcp = 3;
375
376 calcm = (req->parent_rate >> calcp) - 1;
377
378 req->rate = (req->parent_rate >> calcp) / (calcm + 1);
379 req->m = calcm;
380 req->p = calcp;
381 }
382
383
384
385
386 /**
387 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
388 * CLK_OUT rate is calculated as follows
389 * rate = (parent_rate >> p) / (m + 1);
390 */
391
392 static void sun7i_a20_get_out_factors(struct factors_request *req)
393 {
394 u8 div, calcm, calcp;
395
396 /* These clocks can only divide, so we will never be able to achieve
397 * frequencies higher than the parent frequency */
398 if (req->rate > req->parent_rate)
399 req->rate = req->parent_rate;
400
401 div = DIV_ROUND_UP(req->parent_rate, req->rate);
402
403 if (div < 32)
404 calcp = 0;
405 else if (div / 2 < 32)
406 calcp = 1;
407 else if (div / 4 < 32)
408 calcp = 2;
409 else
410 calcp = 3;
411
412 calcm = DIV_ROUND_UP(div, 1 << calcp);
413
414 req->rate = (req->parent_rate >> calcp) / calcm;
415 req->m = calcm - 1;
416 req->p = calcp;
417 }
418
419 /**
420 * sunxi_factors_clk_setup() - Setup function for factor clocks
421 */
422
423 static const struct clk_factors_config sun4i_pll1_config = {
424 .nshift = 8,
425 .nwidth = 5,
426 .kshift = 4,
427 .kwidth = 2,
428 .mshift = 0,
429 .mwidth = 2,
430 .pshift = 16,
431 .pwidth = 2,
432 };
433
434 static const struct clk_factors_config sun6i_a31_pll1_config = {
435 .nshift = 8,
436 .nwidth = 5,
437 .kshift = 4,
438 .kwidth = 2,
439 .mshift = 0,
440 .mwidth = 2,
441 .n_start = 1,
442 };
443
444 static const struct clk_factors_config sun8i_a23_pll1_config = {
445 .nshift = 8,
446 .nwidth = 5,
447 .kshift = 4,
448 .kwidth = 2,
449 .mshift = 0,
450 .mwidth = 2,
451 .pshift = 16,
452 .pwidth = 2,
453 .n_start = 1,
454 };
455
456 static const struct clk_factors_config sun4i_pll5_config = {
457 .nshift = 8,
458 .nwidth = 5,
459 .kshift = 4,
460 .kwidth = 2,
461 };
462
463 static const struct clk_factors_config sun6i_a31_pll6_config = {
464 .nshift = 8,
465 .nwidth = 5,
466 .kshift = 4,
467 .kwidth = 2,
468 .n_start = 1,
469 };
470
471 static const struct clk_factors_config sun5i_a13_ahb_config = {
472 .pshift = 4,
473 .pwidth = 2,
474 };
475
476 static const struct clk_factors_config sun6i_ahb1_config = {
477 .mshift = 6,
478 .mwidth = 2,
479 .pshift = 4,
480 .pwidth = 2,
481 };
482
483 static const struct clk_factors_config sun4i_apb1_config = {
484 .mshift = 0,
485 .mwidth = 5,
486 .pshift = 16,
487 .pwidth = 2,
488 };
489
490 /* user manual says "n" but it's really "p" */
491 static const struct clk_factors_config sun7i_a20_out_config = {
492 .mshift = 8,
493 .mwidth = 5,
494 .pshift = 20,
495 .pwidth = 2,
496 };
497
498 static const struct factors_data sun4i_pll1_data __initconst = {
499 .enable = 31,
500 .table = &sun4i_pll1_config,
501 .getter = sun4i_get_pll1_factors,
502 };
503
504 static const struct factors_data sun6i_a31_pll1_data __initconst = {
505 .enable = 31,
506 .table = &sun6i_a31_pll1_config,
507 .getter = sun6i_a31_get_pll1_factors,
508 };
509
510 static const struct factors_data sun8i_a23_pll1_data __initconst = {
511 .enable = 31,
512 .table = &sun8i_a23_pll1_config,
513 .getter = sun8i_a23_get_pll1_factors,
514 };
515
516 static const struct factors_data sun7i_a20_pll4_data __initconst = {
517 .enable = 31,
518 .table = &sun4i_pll5_config,
519 .getter = sun4i_get_pll5_factors,
520 };
521
522 static const struct factors_data sun4i_pll5_data __initconst = {
523 .enable = 31,
524 .table = &sun4i_pll5_config,
525 .getter = sun4i_get_pll5_factors,
526 .name = "pll5",
527 };
528
529 static const struct factors_data sun4i_pll6_data __initconst = {
530 .enable = 31,
531 .table = &sun4i_pll5_config,
532 .getter = sun4i_get_pll5_factors,
533 .name = "pll6",
534 };
535
536 static const struct factors_data sun6i_a31_pll6_data __initconst = {
537 .enable = 31,
538 .table = &sun6i_a31_pll6_config,
539 .getter = sun6i_a31_get_pll6_factors,
540 .name = "pll6x2",
541 };
542
543 static const struct factors_data sun5i_a13_ahb_data __initconst = {
544 .mux = 6,
545 .muxmask = BIT(1) | BIT(0),
546 .table = &sun5i_a13_ahb_config,
547 .getter = sun5i_a13_get_ahb_factors,
548 };
549
550 static const struct factors_data sun6i_ahb1_data __initconst = {
551 .mux = 12,
552 .muxmask = BIT(1) | BIT(0),
553 .table = &sun6i_ahb1_config,
554 .getter = sun6i_get_ahb1_factors,
555 .recalc = sun6i_ahb1_recalc,
556 };
557
558 static const struct factors_data sun4i_apb1_data __initconst = {
559 .mux = 24,
560 .muxmask = BIT(1) | BIT(0),
561 .table = &sun4i_apb1_config,
562 .getter = sun4i_get_apb1_factors,
563 };
564
565 static const struct factors_data sun7i_a20_out_data __initconst = {
566 .enable = 31,
567 .mux = 24,
568 .muxmask = BIT(1) | BIT(0),
569 .table = &sun7i_a20_out_config,
570 .getter = sun7i_a20_get_out_factors,
571 };
572
573 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
574 const struct factors_data *data)
575 {
576 void __iomem *reg;
577
578 reg = of_iomap(node, 0);
579 if (!reg) {
580 pr_err("Could not get registers for factors-clk: %s\n",
581 node->name);
582 return NULL;
583 }
584
585 return sunxi_factors_register(node, data, &clk_lock, reg);
586 }
587
588 static void __init sun4i_pll1_clk_setup(struct device_node *node)
589 {
590 sunxi_factors_clk_setup(node, &sun4i_pll1_data);
591 }
592 CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
593 sun4i_pll1_clk_setup);
594
595 static void __init sun6i_pll1_clk_setup(struct device_node *node)
596 {
597 sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
598 }
599 CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
600 sun6i_pll1_clk_setup);
601
602 static void __init sun8i_pll1_clk_setup(struct device_node *node)
603 {
604 sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
605 }
606 CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
607 sun8i_pll1_clk_setup);
608
609 static void __init sun7i_pll4_clk_setup(struct device_node *node)
610 {
611 sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
612 }
613 CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
614 sun7i_pll4_clk_setup);
615
616 static void __init sun5i_ahb_clk_setup(struct device_node *node)
617 {
618 sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
619 }
620 CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
621 sun5i_ahb_clk_setup);
622
623 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
624 {
625 sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
626 }
627 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
628 sun6i_ahb1_clk_setup);
629
630 static void __init sun4i_apb1_clk_setup(struct device_node *node)
631 {
632 sunxi_factors_clk_setup(node, &sun4i_apb1_data);
633 }
634 CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
635 sun4i_apb1_clk_setup);
636
637 static void __init sun7i_out_clk_setup(struct device_node *node)
638 {
639 sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
640 }
641 CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
642 sun7i_out_clk_setup);
643
644
645 /**
646 * sunxi_mux_clk_setup() - Setup function for muxes
647 */
648
649 #define SUNXI_MUX_GATE_WIDTH 2
650
651 struct mux_data {
652 u8 shift;
653 };
654
655 static const struct mux_data sun4i_cpu_mux_data __initconst = {
656 .shift = 16,
657 };
658
659 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
660 .shift = 12,
661 };
662
663 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
664 .shift = 0,
665 };
666
667 static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
668 const struct mux_data *data)
669 {
670 struct clk *clk;
671 const char *clk_name = node->name;
672 const char *parents[SUNXI_MAX_PARENTS];
673 void __iomem *reg;
674 int i;
675
676 reg = of_iomap(node, 0);
677 if (!reg) {
678 pr_err("Could not map registers for mux-clk: %s\n",
679 of_node_full_name(node));
680 return NULL;
681 }
682
683 i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
684 if (of_property_read_string(node, "clock-output-names", &clk_name)) {
685 pr_err("%s: could not read clock-output-names from \"%s\"\n",
686 __func__, of_node_full_name(node));
687 goto out_unmap;
688 }
689
690 clk = clk_register_mux(NULL, clk_name, parents, i,
691 CLK_SET_RATE_PARENT, reg,
692 data->shift, SUNXI_MUX_GATE_WIDTH,
693 0, &clk_lock);
694
695 if (IS_ERR(clk)) {
696 pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
697 clk_name, PTR_ERR(clk));
698 goto out_unmap;
699 }
700
701 if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
702 pr_err("%s: failed to add clock provider for %s\n",
703 __func__, clk_name);
704 clk_unregister_divider(clk);
705 goto out_unmap;
706 }
707
708 return clk;
709 out_unmap:
710 iounmap(reg);
711 return NULL;
712 }
713
714 static void __init sun4i_cpu_clk_setup(struct device_node *node)
715 {
716 struct clk *clk;
717
718 clk = sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data);
719 if (!clk)
720 return;
721
722 /* Protect CPU clock */
723 __clk_get(clk);
724 clk_prepare_enable(clk);
725 }
726 CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
727 sun4i_cpu_clk_setup);
728
729 static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
730 {
731 sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data);
732 }
733 CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
734 sun6i_ahb1_mux_clk_setup);
735
736 static void __init sun8i_ahb2_clk_setup(struct device_node *node)
737 {
738 sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data);
739 }
740 CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
741 sun8i_ahb2_clk_setup);
742
743
744 /**
745 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
746 */
747
748 struct div_data {
749 u8 shift;
750 u8 pow;
751 u8 width;
752 const struct clk_div_table *table;
753 };
754
755 static const struct div_data sun4i_axi_data __initconst = {
756 .shift = 0,
757 .pow = 0,
758 .width = 2,
759 };
760
761 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
762 { .val = 0, .div = 1 },
763 { .val = 1, .div = 2 },
764 { .val = 2, .div = 3 },
765 { .val = 3, .div = 4 },
766 { .val = 4, .div = 4 },
767 { .val = 5, .div = 4 },
768 { .val = 6, .div = 4 },
769 { .val = 7, .div = 4 },
770 { } /* sentinel */
771 };
772
773 static const struct div_data sun8i_a23_axi_data __initconst = {
774 .width = 3,
775 .table = sun8i_a23_axi_table,
776 };
777
778 static const struct div_data sun4i_ahb_data __initconst = {
779 .shift = 4,
780 .pow = 1,
781 .width = 2,
782 };
783
784 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
785 { .val = 0, .div = 2 },
786 { .val = 1, .div = 2 },
787 { .val = 2, .div = 4 },
788 { .val = 3, .div = 8 },
789 { } /* sentinel */
790 };
791
792 static const struct div_data sun4i_apb0_data __initconst = {
793 .shift = 8,
794 .pow = 1,
795 .width = 2,
796 .table = sun4i_apb0_table,
797 };
798
799 static void __init sunxi_divider_clk_setup(struct device_node *node,
800 const struct div_data *data)
801 {
802 struct clk *clk;
803 const char *clk_name = node->name;
804 const char *clk_parent;
805 void __iomem *reg;
806
807 reg = of_iomap(node, 0);
808 if (!reg) {
809 pr_err("Could not map registers for mux-clk: %s\n",
810 of_node_full_name(node));
811 return;
812 }
813
814 clk_parent = of_clk_get_parent_name(node, 0);
815
816 if (of_property_read_string(node, "clock-output-names", &clk_name)) {
817 pr_err("%s: could not read clock-output-names from \"%s\"\n",
818 __func__, of_node_full_name(node));
819 goto out_unmap;
820 }
821
822 clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
823 reg, data->shift, data->width,
824 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
825 data->table, &clk_lock);
826 if (IS_ERR(clk)) {
827 pr_err("%s: failed to register divider clock %s: %ld\n",
828 __func__, clk_name, PTR_ERR(clk));
829 goto out_unmap;
830 }
831
832 if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
833 pr_err("%s: failed to add clock provider for %s\n",
834 __func__, clk_name);
835 goto out_unregister;
836 }
837
838 if (clk_register_clkdev(clk, clk_name, NULL)) {
839 of_clk_del_provider(node);
840 goto out_unregister;
841 }
842
843 return;
844 out_unregister:
845 clk_unregister_divider(clk);
846
847 out_unmap:
848 iounmap(reg);
849 }
850
851 static void __init sun4i_ahb_clk_setup(struct device_node *node)
852 {
853 sunxi_divider_clk_setup(node, &sun4i_ahb_data);
854 }
855 CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
856 sun4i_ahb_clk_setup);
857
858 static void __init sun4i_apb0_clk_setup(struct device_node *node)
859 {
860 sunxi_divider_clk_setup(node, &sun4i_apb0_data);
861 }
862 CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
863 sun4i_apb0_clk_setup);
864
865 static void __init sun4i_axi_clk_setup(struct device_node *node)
866 {
867 sunxi_divider_clk_setup(node, &sun4i_axi_data);
868 }
869 CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
870 sun4i_axi_clk_setup);
871
872 static void __init sun8i_axi_clk_setup(struct device_node *node)
873 {
874 sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
875 }
876 CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
877 sun8i_axi_clk_setup);
878
879
880
881 /**
882 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
883 */
884
885 #define SUNXI_GATES_MAX_SIZE 64
886
887 struct gates_data {
888 DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
889 };
890
891 /**
892 * sunxi_divs_clk_setup() helper data
893 */
894
895 #define SUNXI_DIVS_MAX_QTY 4
896 #define SUNXI_DIVISOR_WIDTH 2
897
898 struct divs_data {
899 const struct factors_data *factors; /* data for the factor clock */
900 int ndivs; /* number of outputs */
901 /*
902 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
903 * self or base factor clock refers to the output from the pll
904 * itself. The remaining refer to fixed or configurable divider
905 * outputs.
906 */
907 struct {
908 u8 self; /* is it the base factor clock? (only one) */
909 u8 fixed; /* is it a fixed divisor? if not... */
910 struct clk_div_table *table; /* is it a table based divisor? */
911 u8 shift; /* otherwise it's a normal divisor with this shift */
912 u8 pow; /* is it power-of-two based? */
913 u8 gate; /* is it independently gateable? */
914 } div[SUNXI_DIVS_MAX_QTY];
915 };
916
917 static struct clk_div_table pll6_sata_tbl[] = {
918 { .val = 0, .div = 6, },
919 { .val = 1, .div = 12, },
920 { .val = 2, .div = 18, },
921 { .val = 3, .div = 24, },
922 { } /* sentinel */
923 };
924
925 static const struct divs_data pll5_divs_data __initconst = {
926 .factors = &sun4i_pll5_data,
927 .ndivs = 2,
928 .div = {
929 { .shift = 0, .pow = 0, }, /* M, DDR */
930 { .shift = 16, .pow = 1, }, /* P, other */
931 /* No output for the base factor clock */
932 }
933 };
934
935 static const struct divs_data pll6_divs_data __initconst = {
936 .factors = &sun4i_pll6_data,
937 .ndivs = 4,
938 .div = {
939 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
940 { .fixed = 2 }, /* P, other */
941 { .self = 1 }, /* base factor clock, 2x */
942 { .fixed = 4 }, /* pll6 / 4, used as ahb input */
943 }
944 };
945
946 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
947 .factors = &sun6i_a31_pll6_data,
948 .ndivs = 2,
949 .div = {
950 { .fixed = 2 }, /* normal output */
951 { .self = 1 }, /* base factor clock, 2x */
952 }
953 };
954
955 /**
956 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
957 *
958 * These clocks look something like this
959 * ________________________
960 * | ___divisor 1---|----> to consumer
961 * parent >--| pll___/___divisor 2---|----> to consumer
962 * | \_______________|____> to consumer
963 * |________________________|
964 */
965
966 static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
967 const struct divs_data *data)
968 {
969 struct clk_onecell_data *clk_data;
970 const char *parent;
971 const char *clk_name;
972 struct clk **clks, *pclk;
973 struct clk_hw *gate_hw, *rate_hw;
974 const struct clk_ops *rate_ops;
975 struct clk_gate *gate = NULL;
976 struct clk_fixed_factor *fix_factor;
977 struct clk_divider *divider;
978 void __iomem *reg;
979 int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
980 int flags, clkflags;
981
982 /* if number of children known, use it */
983 if (data->ndivs)
984 ndivs = data->ndivs;
985
986 /* Set up factor clock that we will be dividing */
987 pclk = sunxi_factors_clk_setup(node, data->factors);
988 if (!pclk)
989 return NULL;
990 parent = __clk_get_name(pclk);
991
992 reg = of_iomap(node, 0);
993 if (!reg) {
994 pr_err("Could not map registers for divs-clk: %s\n",
995 of_node_full_name(node));
996 return NULL;
997 }
998
999 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1000 if (!clk_data)
1001 goto out_unmap;
1002
1003 clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1004 if (!clks)
1005 goto free_clkdata;
1006
1007 clk_data->clks = clks;
1008
1009 /* It's not a good idea to have automatic reparenting changing
1010 * our RAM clock! */
1011 clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1012
1013 for (i = 0; i < ndivs; i++) {
1014 if (of_property_read_string_index(node, "clock-output-names",
1015 i, &clk_name) != 0)
1016 break;
1017
1018 /* If this is the base factor clock, only update clks */
1019 if (data->div[i].self) {
1020 clk_data->clks[i] = pclk;
1021 continue;
1022 }
1023
1024 gate_hw = NULL;
1025 rate_hw = NULL;
1026 rate_ops = NULL;
1027
1028 /* If this leaf clock can be gated, create a gate */
1029 if (data->div[i].gate) {
1030 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1031 if (!gate)
1032 goto free_clks;
1033
1034 gate->reg = reg;
1035 gate->bit_idx = data->div[i].gate;
1036 gate->lock = &clk_lock;
1037
1038 gate_hw = &gate->hw;
1039 }
1040
1041 /* Leaves can be fixed or configurable divisors */
1042 if (data->div[i].fixed) {
1043 fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1044 if (!fix_factor)
1045 goto free_gate;
1046
1047 fix_factor->mult = 1;
1048 fix_factor->div = data->div[i].fixed;
1049
1050 rate_hw = &fix_factor->hw;
1051 rate_ops = &clk_fixed_factor_ops;
1052 } else {
1053 divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1054 if (!divider)
1055 goto free_gate;
1056
1057 flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1058
1059 divider->reg = reg;
1060 divider->shift = data->div[i].shift;
1061 divider->width = SUNXI_DIVISOR_WIDTH;
1062 divider->flags = flags;
1063 divider->lock = &clk_lock;
1064 divider->table = data->div[i].table;
1065
1066 rate_hw = &divider->hw;
1067 rate_ops = &clk_divider_ops;
1068 }
1069
1070 /* Wrap the (potential) gate and the divisor on a composite
1071 * clock to unify them */
1072 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1073 NULL, NULL,
1074 rate_hw, rate_ops,
1075 gate_hw, &clk_gate_ops,
1076 clkflags);
1077
1078 WARN_ON(IS_ERR(clk_data->clks[i]));
1079 }
1080
1081 /* Adjust to the real max */
1082 clk_data->clk_num = i;
1083
1084 if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1085 pr_err("%s: failed to add clock provider for %s\n",
1086 __func__, clk_name);
1087 goto free_gate;
1088 }
1089
1090 return clks;
1091 free_gate:
1092 kfree(gate);
1093 free_clks:
1094 kfree(clks);
1095 free_clkdata:
1096 kfree(clk_data);
1097 out_unmap:
1098 iounmap(reg);
1099 return NULL;
1100 }
1101
1102 static void __init sun4i_pll5_clk_setup(struct device_node *node)
1103 {
1104 struct clk **clks;
1105
1106 clks = sunxi_divs_clk_setup(node, &pll5_divs_data);
1107 if (!clks)
1108 return;
1109
1110 /* Protect PLL5_DDR */
1111 __clk_get(clks[0]);
1112 clk_prepare_enable(clks[0]);
1113 }
1114 CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1115 sun4i_pll5_clk_setup);
1116
1117 static void __init sun4i_pll6_clk_setup(struct device_node *node)
1118 {
1119 sunxi_divs_clk_setup(node, &pll6_divs_data);
1120 }
1121 CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1122 sun4i_pll6_clk_setup);
1123
1124 static void __init sun6i_pll6_clk_setup(struct device_node *node)
1125 {
1126 sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1127 }
1128 CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1129 sun6i_pll6_clk_setup);
This page took 0.056093 seconds and 5 git commands to generate.