Merge tag 'remoteproc-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/ohad...
[deliverable/linux.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2 * Copyright 2013 Emilio López
3 *
4 * Emilio López <emilio@elopez.com.ar>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22 #include <linux/spinlock.h>
23 #include <linux/log2.h>
24
25 #include "clk-factors.h"
26
27 static DEFINE_SPINLOCK(clk_lock);
28
29 /**
30 * sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk
31 */
32
33 #define SUN6I_AHB1_MAX_PARENTS 4
34 #define SUN6I_AHB1_MUX_PARENT_PLL6 3
35 #define SUN6I_AHB1_MUX_SHIFT 12
36 /* un-shifted mask is what mux_clk expects */
37 #define SUN6I_AHB1_MUX_MASK 0x3
38 #define SUN6I_AHB1_MUX_GET_PARENT(reg) ((reg >> SUN6I_AHB1_MUX_SHIFT) & \
39 SUN6I_AHB1_MUX_MASK)
40
41 #define SUN6I_AHB1_DIV_SHIFT 4
42 #define SUN6I_AHB1_DIV_MASK (0x3 << SUN6I_AHB1_DIV_SHIFT)
43 #define SUN6I_AHB1_DIV_GET(reg) ((reg & SUN6I_AHB1_DIV_MASK) >> \
44 SUN6I_AHB1_DIV_SHIFT)
45 #define SUN6I_AHB1_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_DIV_MASK) | \
46 (div << SUN6I_AHB1_DIV_SHIFT))
47 #define SUN6I_AHB1_PLL6_DIV_SHIFT 6
48 #define SUN6I_AHB1_PLL6_DIV_MASK (0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT)
49 #define SUN6I_AHB1_PLL6_DIV_GET(reg) ((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \
50 SUN6I_AHB1_PLL6_DIV_SHIFT)
51 #define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \
52 (div << SUN6I_AHB1_PLL6_DIV_SHIFT))
53
54 struct sun6i_ahb1_clk {
55 struct clk_hw hw;
56 void __iomem *reg;
57 };
58
59 #define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw)
60
61 static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw,
62 unsigned long parent_rate)
63 {
64 struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
65 unsigned long rate;
66 u32 reg;
67
68 /* Fetch the register value */
69 reg = readl(ahb1->reg);
70
71 /* apply pre-divider first if parent is pll6 */
72 if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6)
73 parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1;
74
75 /* clk divider */
76 rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg);
77
78 return rate;
79 }
80
81 static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp,
82 u8 parent, unsigned long parent_rate)
83 {
84 u8 div, calcp, calcm = 1;
85
86 /*
87 * clock can only divide, so we will never be able to achieve
88 * frequencies higher than the parent frequency
89 */
90 if (parent_rate && rate > parent_rate)
91 rate = parent_rate;
92
93 div = DIV_ROUND_UP(parent_rate, rate);
94
95 /* calculate pre-divider if parent is pll6 */
96 if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) {
97 if (div < 4)
98 calcp = 0;
99 else if (div / 2 < 4)
100 calcp = 1;
101 else if (div / 4 < 4)
102 calcp = 2;
103 else
104 calcp = 3;
105
106 calcm = DIV_ROUND_UP(div, 1 << calcp);
107 } else {
108 calcp = __roundup_pow_of_two(div);
109 calcp = calcp > 3 ? 3 : calcp;
110 }
111
112 /* we were asked to pass back divider values */
113 if (divp) {
114 *divp = calcp;
115 *pre_divp = calcm - 1;
116 }
117
118 return (parent_rate / calcm) >> calcp;
119 }
120
121 static long sun6i_ahb1_clk_determine_rate(struct clk_hw *hw, unsigned long rate,
122 unsigned long min_rate,
123 unsigned long max_rate,
124 unsigned long *best_parent_rate,
125 struct clk_hw **best_parent_clk)
126 {
127 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
128 int i, num_parents;
129 unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0;
130
131 /* find the parent that can help provide the fastest rate <= rate */
132 num_parents = __clk_get_num_parents(clk);
133 for (i = 0; i < num_parents; i++) {
134 parent = clk_get_parent_by_index(clk, i);
135 if (!parent)
136 continue;
137 if (__clk_get_flags(clk) & CLK_SET_RATE_PARENT)
138 parent_rate = __clk_round_rate(parent, rate);
139 else
140 parent_rate = __clk_get_rate(parent);
141
142 child_rate = sun6i_ahb1_clk_round(rate, NULL, NULL, i,
143 parent_rate);
144
145 if (child_rate <= rate && child_rate > best_child_rate) {
146 best_parent = parent;
147 best = parent_rate;
148 best_child_rate = child_rate;
149 }
150 }
151
152 if (best_parent)
153 *best_parent_clk = __clk_get_hw(best_parent);
154 *best_parent_rate = best;
155
156 return best_child_rate;
157 }
158
159 static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate,
160 unsigned long parent_rate)
161 {
162 struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
163 unsigned long flags;
164 u8 div, pre_div, parent;
165 u32 reg;
166
167 spin_lock_irqsave(&clk_lock, flags);
168
169 reg = readl(ahb1->reg);
170
171 /* need to know which parent is used to apply pre-divider */
172 parent = SUN6I_AHB1_MUX_GET_PARENT(reg);
173 sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate);
174
175 reg = SUN6I_AHB1_DIV_SET(reg, div);
176 reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div);
177 writel(reg, ahb1->reg);
178
179 spin_unlock_irqrestore(&clk_lock, flags);
180
181 return 0;
182 }
183
184 static const struct clk_ops sun6i_ahb1_clk_ops = {
185 .determine_rate = sun6i_ahb1_clk_determine_rate,
186 .recalc_rate = sun6i_ahb1_clk_recalc_rate,
187 .set_rate = sun6i_ahb1_clk_set_rate,
188 };
189
190 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
191 {
192 struct clk *clk;
193 struct sun6i_ahb1_clk *ahb1;
194 struct clk_mux *mux;
195 const char *clk_name = node->name;
196 const char *parents[SUN6I_AHB1_MAX_PARENTS];
197 void __iomem *reg;
198 int i = 0;
199
200 reg = of_io_request_and_map(node, 0, of_node_full_name(node));
201 if (IS_ERR(reg))
202 return;
203
204 /* we have a mux, we will have >1 parents */
205 while (i < SUN6I_AHB1_MAX_PARENTS &&
206 (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
207 i++;
208
209 of_property_read_string(node, "clock-output-names", &clk_name);
210
211 ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL);
212 if (!ahb1)
213 return;
214
215 mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
216 if (!mux) {
217 kfree(ahb1);
218 return;
219 }
220
221 /* set up clock properties */
222 mux->reg = reg;
223 mux->shift = SUN6I_AHB1_MUX_SHIFT;
224 mux->mask = SUN6I_AHB1_MUX_MASK;
225 mux->lock = &clk_lock;
226 ahb1->reg = reg;
227
228 clk = clk_register_composite(NULL, clk_name, parents, i,
229 &mux->hw, &clk_mux_ops,
230 &ahb1->hw, &sun6i_ahb1_clk_ops,
231 NULL, NULL, 0);
232
233 if (!IS_ERR(clk)) {
234 of_clk_add_provider(node, of_clk_src_simple_get, clk);
235 clk_register_clkdev(clk, clk_name, NULL);
236 }
237 }
238 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup);
239
240 /* Maximum number of parents our clocks have */
241 #define SUNXI_MAX_PARENTS 5
242
243 /**
244 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
245 * PLL1 rate is calculated as follows
246 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
247 * parent_rate is always 24Mhz
248 */
249
250 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
251 u8 *n, u8 *k, u8 *m, u8 *p)
252 {
253 u8 div;
254
255 /* Normalize value to a 6M multiple */
256 div = *freq / 6000000;
257 *freq = 6000000 * div;
258
259 /* we were called to round the frequency, we can now return */
260 if (n == NULL)
261 return;
262
263 /* m is always zero for pll1 */
264 *m = 0;
265
266 /* k is 1 only on these cases */
267 if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
268 *k = 1;
269 else
270 *k = 0;
271
272 /* p will be 3 for divs under 10 */
273 if (div < 10)
274 *p = 3;
275
276 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
277 else if (div < 20 || (div < 32 && (div & 1)))
278 *p = 2;
279
280 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
281 * of divs between 40-62 */
282 else if (div < 40 || (div < 64 && (div & 2)))
283 *p = 1;
284
285 /* any other entries have p = 0 */
286 else
287 *p = 0;
288
289 /* calculate a suitable n based on k and p */
290 div <<= *p;
291 div /= (*k + 1);
292 *n = div / 4;
293 }
294
295 /**
296 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
297 * PLL1 rate is calculated as follows
298 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
299 * parent_rate should always be 24MHz
300 */
301 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
302 u8 *n, u8 *k, u8 *m, u8 *p)
303 {
304 /*
305 * We can operate only on MHz, this will make our life easier
306 * later.
307 */
308 u32 freq_mhz = *freq / 1000000;
309 u32 parent_freq_mhz = parent_rate / 1000000;
310
311 /*
312 * Round down the frequency to the closest multiple of either
313 * 6 or 16
314 */
315 u32 round_freq_6 = round_down(freq_mhz, 6);
316 u32 round_freq_16 = round_down(freq_mhz, 16);
317
318 if (round_freq_6 > round_freq_16)
319 freq_mhz = round_freq_6;
320 else
321 freq_mhz = round_freq_16;
322
323 *freq = freq_mhz * 1000000;
324
325 /*
326 * If the factors pointer are null, we were just called to
327 * round down the frequency.
328 * Exit.
329 */
330 if (n == NULL)
331 return;
332
333 /* If the frequency is a multiple of 32 MHz, k is always 3 */
334 if (!(freq_mhz % 32))
335 *k = 3;
336 /* If the frequency is a multiple of 9 MHz, k is always 2 */
337 else if (!(freq_mhz % 9))
338 *k = 2;
339 /* If the frequency is a multiple of 8 MHz, k is always 1 */
340 else if (!(freq_mhz % 8))
341 *k = 1;
342 /* Otherwise, we don't use the k factor */
343 else
344 *k = 0;
345
346 /*
347 * If the frequency is a multiple of 2 but not a multiple of
348 * 3, m is 3. This is the first time we use 6 here, yet we
349 * will use it on several other places.
350 * We use this number because it's the lowest frequency we can
351 * generate (with n = 0, k = 0, m = 3), so every other frequency
352 * somehow relates to this frequency.
353 */
354 if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
355 *m = 2;
356 /*
357 * If the frequency is a multiple of 6MHz, but the factor is
358 * odd, m will be 3
359 */
360 else if ((freq_mhz / 6) & 1)
361 *m = 3;
362 /* Otherwise, we end up with m = 1 */
363 else
364 *m = 1;
365
366 /* Calculate n thanks to the above factors we already got */
367 *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
368
369 /*
370 * If n end up being outbound, and that we can still decrease
371 * m, do it.
372 */
373 if ((*n + 1) > 31 && (*m + 1) > 1) {
374 *n = (*n + 1) / 2 - 1;
375 *m = (*m + 1) / 2 - 1;
376 }
377 }
378
379 /**
380 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
381 * PLL1 rate is calculated as follows
382 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
383 * parent_rate is always 24Mhz
384 */
385
386 static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
387 u8 *n, u8 *k, u8 *m, u8 *p)
388 {
389 u8 div;
390
391 /* Normalize value to a 6M multiple */
392 div = *freq / 6000000;
393 *freq = 6000000 * div;
394
395 /* we were called to round the frequency, we can now return */
396 if (n == NULL)
397 return;
398
399 /* m is always zero for pll1 */
400 *m = 0;
401
402 /* k is 1 only on these cases */
403 if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
404 *k = 1;
405 else
406 *k = 0;
407
408 /* p will be 2 for divs under 20 and odd divs under 32 */
409 if (div < 20 || (div < 32 && (div & 1)))
410 *p = 2;
411
412 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
413 * of divs between 40-62 */
414 else if (div < 40 || (div < 64 && (div & 2)))
415 *p = 1;
416
417 /* any other entries have p = 0 */
418 else
419 *p = 0;
420
421 /* calculate a suitable n based on k and p */
422 div <<= *p;
423 div /= (*k + 1);
424 *n = div / 4 - 1;
425 }
426
427 /**
428 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
429 * PLL5 rate is calculated as follows
430 * rate = parent_rate * n * (k + 1)
431 * parent_rate is always 24Mhz
432 */
433
434 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
435 u8 *n, u8 *k, u8 *m, u8 *p)
436 {
437 u8 div;
438
439 /* Normalize value to a parent_rate multiple (24M) */
440 div = *freq / parent_rate;
441 *freq = parent_rate * div;
442
443 /* we were called to round the frequency, we can now return */
444 if (n == NULL)
445 return;
446
447 if (div < 31)
448 *k = 0;
449 else if (div / 2 < 31)
450 *k = 1;
451 else if (div / 3 < 31)
452 *k = 2;
453 else
454 *k = 3;
455
456 *n = DIV_ROUND_UP(div, (*k+1));
457 }
458
459 /**
460 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
461 * PLL6x2 rate is calculated as follows
462 * rate = parent_rate * (n + 1) * (k + 1)
463 * parent_rate is always 24Mhz
464 */
465
466 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
467 u8 *n, u8 *k, u8 *m, u8 *p)
468 {
469 u8 div;
470
471 /* Normalize value to a parent_rate multiple (24M) */
472 div = *freq / parent_rate;
473 *freq = parent_rate * div;
474
475 /* we were called to round the frequency, we can now return */
476 if (n == NULL)
477 return;
478
479 *k = div / 32;
480 if (*k > 3)
481 *k = 3;
482
483 *n = DIV_ROUND_UP(div, (*k+1)) - 1;
484 }
485
486 /**
487 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
488 * AHB rate is calculated as follows
489 * rate = parent_rate >> p
490 */
491
492 static void sun5i_a13_get_ahb_factors(u32 *freq, u32 parent_rate,
493 u8 *n, u8 *k, u8 *m, u8 *p)
494 {
495 u32 div;
496
497 /* divide only */
498 if (parent_rate < *freq)
499 *freq = parent_rate;
500
501 /*
502 * user manual says valid speed is 8k ~ 276M, but tests show it
503 * can work at speeds up to 300M, just after reparenting to pll6
504 */
505 if (*freq < 8000)
506 *freq = 8000;
507 if (*freq > 300000000)
508 *freq = 300000000;
509
510 div = order_base_2(DIV_ROUND_UP(parent_rate, *freq));
511
512 /* p = 0 ~ 3 */
513 if (div > 3)
514 div = 3;
515
516 *freq = parent_rate >> div;
517
518 /* we were called to round the frequency, we can now return */
519 if (p == NULL)
520 return;
521
522 *p = div;
523 }
524
525 /**
526 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
527 * APB1 rate is calculated as follows
528 * rate = (parent_rate >> p) / (m + 1);
529 */
530
531 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
532 u8 *n, u8 *k, u8 *m, u8 *p)
533 {
534 u8 calcm, calcp;
535
536 if (parent_rate < *freq)
537 *freq = parent_rate;
538
539 parent_rate = DIV_ROUND_UP(parent_rate, *freq);
540
541 /* Invalid rate! */
542 if (parent_rate > 32)
543 return;
544
545 if (parent_rate <= 4)
546 calcp = 0;
547 else if (parent_rate <= 8)
548 calcp = 1;
549 else if (parent_rate <= 16)
550 calcp = 2;
551 else
552 calcp = 3;
553
554 calcm = (parent_rate >> calcp) - 1;
555
556 *freq = (parent_rate >> calcp) / (calcm + 1);
557
558 /* we were called to round the frequency, we can now return */
559 if (n == NULL)
560 return;
561
562 *m = calcm;
563 *p = calcp;
564 }
565
566
567
568
569 /**
570 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
571 * CLK_OUT rate is calculated as follows
572 * rate = (parent_rate >> p) / (m + 1);
573 */
574
575 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
576 u8 *n, u8 *k, u8 *m, u8 *p)
577 {
578 u8 div, calcm, calcp;
579
580 /* These clocks can only divide, so we will never be able to achieve
581 * frequencies higher than the parent frequency */
582 if (*freq > parent_rate)
583 *freq = parent_rate;
584
585 div = DIV_ROUND_UP(parent_rate, *freq);
586
587 if (div < 32)
588 calcp = 0;
589 else if (div / 2 < 32)
590 calcp = 1;
591 else if (div / 4 < 32)
592 calcp = 2;
593 else
594 calcp = 3;
595
596 calcm = DIV_ROUND_UP(div, 1 << calcp);
597
598 *freq = (parent_rate >> calcp) / calcm;
599
600 /* we were called to round the frequency, we can now return */
601 if (n == NULL)
602 return;
603
604 *m = calcm - 1;
605 *p = calcp;
606 }
607
608 /**
609 * sunxi_factors_clk_setup() - Setup function for factor clocks
610 */
611
612 static struct clk_factors_config sun4i_pll1_config = {
613 .nshift = 8,
614 .nwidth = 5,
615 .kshift = 4,
616 .kwidth = 2,
617 .mshift = 0,
618 .mwidth = 2,
619 .pshift = 16,
620 .pwidth = 2,
621 };
622
623 static struct clk_factors_config sun6i_a31_pll1_config = {
624 .nshift = 8,
625 .nwidth = 5,
626 .kshift = 4,
627 .kwidth = 2,
628 .mshift = 0,
629 .mwidth = 2,
630 .n_start = 1,
631 };
632
633 static struct clk_factors_config sun8i_a23_pll1_config = {
634 .nshift = 8,
635 .nwidth = 5,
636 .kshift = 4,
637 .kwidth = 2,
638 .mshift = 0,
639 .mwidth = 2,
640 .pshift = 16,
641 .pwidth = 2,
642 .n_start = 1,
643 };
644
645 static struct clk_factors_config sun4i_pll5_config = {
646 .nshift = 8,
647 .nwidth = 5,
648 .kshift = 4,
649 .kwidth = 2,
650 };
651
652 static struct clk_factors_config sun6i_a31_pll6_config = {
653 .nshift = 8,
654 .nwidth = 5,
655 .kshift = 4,
656 .kwidth = 2,
657 .n_start = 1,
658 };
659
660 static struct clk_factors_config sun5i_a13_ahb_config = {
661 .pshift = 4,
662 .pwidth = 2,
663 };
664
665 static struct clk_factors_config sun4i_apb1_config = {
666 .mshift = 0,
667 .mwidth = 5,
668 .pshift = 16,
669 .pwidth = 2,
670 };
671
672 /* user manual says "n" but it's really "p" */
673 static struct clk_factors_config sun7i_a20_out_config = {
674 .mshift = 8,
675 .mwidth = 5,
676 .pshift = 20,
677 .pwidth = 2,
678 };
679
680 static const struct factors_data sun4i_pll1_data __initconst = {
681 .enable = 31,
682 .table = &sun4i_pll1_config,
683 .getter = sun4i_get_pll1_factors,
684 };
685
686 static const struct factors_data sun6i_a31_pll1_data __initconst = {
687 .enable = 31,
688 .table = &sun6i_a31_pll1_config,
689 .getter = sun6i_a31_get_pll1_factors,
690 };
691
692 static const struct factors_data sun8i_a23_pll1_data __initconst = {
693 .enable = 31,
694 .table = &sun8i_a23_pll1_config,
695 .getter = sun8i_a23_get_pll1_factors,
696 };
697
698 static const struct factors_data sun7i_a20_pll4_data __initconst = {
699 .enable = 31,
700 .table = &sun4i_pll5_config,
701 .getter = sun4i_get_pll5_factors,
702 };
703
704 static const struct factors_data sun4i_pll5_data __initconst = {
705 .enable = 31,
706 .table = &sun4i_pll5_config,
707 .getter = sun4i_get_pll5_factors,
708 .name = "pll5",
709 };
710
711 static const struct factors_data sun4i_pll6_data __initconst = {
712 .enable = 31,
713 .table = &sun4i_pll5_config,
714 .getter = sun4i_get_pll5_factors,
715 .name = "pll6",
716 };
717
718 static const struct factors_data sun6i_a31_pll6_data __initconst = {
719 .enable = 31,
720 .table = &sun6i_a31_pll6_config,
721 .getter = sun6i_a31_get_pll6_factors,
722 .name = "pll6x2",
723 };
724
725 static const struct factors_data sun5i_a13_ahb_data __initconst = {
726 .mux = 6,
727 .muxmask = BIT(1) | BIT(0),
728 .table = &sun5i_a13_ahb_config,
729 .getter = sun5i_a13_get_ahb_factors,
730 };
731
732 static const struct factors_data sun4i_apb1_data __initconst = {
733 .mux = 24,
734 .muxmask = BIT(1) | BIT(0),
735 .table = &sun4i_apb1_config,
736 .getter = sun4i_get_apb1_factors,
737 };
738
739 static const struct factors_data sun7i_a20_out_data __initconst = {
740 .enable = 31,
741 .mux = 24,
742 .muxmask = BIT(1) | BIT(0),
743 .table = &sun7i_a20_out_config,
744 .getter = sun7i_a20_get_out_factors,
745 };
746
747 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
748 const struct factors_data *data)
749 {
750 void __iomem *reg;
751
752 reg = of_iomap(node, 0);
753 if (!reg) {
754 pr_err("Could not get registers for factors-clk: %s\n",
755 node->name);
756 return NULL;
757 }
758
759 return sunxi_factors_register(node, data, &clk_lock, reg);
760 }
761
762
763
764 /**
765 * sunxi_mux_clk_setup() - Setup function for muxes
766 */
767
768 #define SUNXI_MUX_GATE_WIDTH 2
769
770 struct mux_data {
771 u8 shift;
772 };
773
774 static const struct mux_data sun4i_cpu_mux_data __initconst = {
775 .shift = 16,
776 };
777
778 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
779 .shift = 12,
780 };
781
782 static void __init sunxi_mux_clk_setup(struct device_node *node,
783 struct mux_data *data)
784 {
785 struct clk *clk;
786 const char *clk_name = node->name;
787 const char *parents[SUNXI_MAX_PARENTS];
788 void __iomem *reg;
789 int i = 0;
790
791 reg = of_iomap(node, 0);
792
793 while (i < SUNXI_MAX_PARENTS &&
794 (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
795 i++;
796
797 of_property_read_string(node, "clock-output-names", &clk_name);
798
799 clk = clk_register_mux(NULL, clk_name, parents, i,
800 CLK_SET_RATE_PARENT, reg,
801 data->shift, SUNXI_MUX_GATE_WIDTH,
802 0, &clk_lock);
803
804 if (clk) {
805 of_clk_add_provider(node, of_clk_src_simple_get, clk);
806 clk_register_clkdev(clk, clk_name, NULL);
807 }
808 }
809
810
811
812 /**
813 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
814 */
815
816 struct div_data {
817 u8 shift;
818 u8 pow;
819 u8 width;
820 const struct clk_div_table *table;
821 };
822
823 static const struct div_data sun4i_axi_data __initconst = {
824 .shift = 0,
825 .pow = 0,
826 .width = 2,
827 };
828
829 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
830 { .val = 0, .div = 1 },
831 { .val = 1, .div = 2 },
832 { .val = 2, .div = 3 },
833 { .val = 3, .div = 4 },
834 { .val = 4, .div = 4 },
835 { .val = 5, .div = 4 },
836 { .val = 6, .div = 4 },
837 { .val = 7, .div = 4 },
838 { } /* sentinel */
839 };
840
841 static const struct div_data sun8i_a23_axi_data __initconst = {
842 .width = 3,
843 .table = sun8i_a23_axi_table,
844 };
845
846 static const struct div_data sun4i_ahb_data __initconst = {
847 .shift = 4,
848 .pow = 1,
849 .width = 2,
850 };
851
852 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
853 { .val = 0, .div = 2 },
854 { .val = 1, .div = 2 },
855 { .val = 2, .div = 4 },
856 { .val = 3, .div = 8 },
857 { } /* sentinel */
858 };
859
860 static const struct div_data sun4i_apb0_data __initconst = {
861 .shift = 8,
862 .pow = 1,
863 .width = 2,
864 .table = sun4i_apb0_table,
865 };
866
867 static void __init sunxi_divider_clk_setup(struct device_node *node,
868 struct div_data *data)
869 {
870 struct clk *clk;
871 const char *clk_name = node->name;
872 const char *clk_parent;
873 void __iomem *reg;
874
875 reg = of_iomap(node, 0);
876
877 clk_parent = of_clk_get_parent_name(node, 0);
878
879 of_property_read_string(node, "clock-output-names", &clk_name);
880
881 clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
882 reg, data->shift, data->width,
883 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
884 data->table, &clk_lock);
885 if (clk) {
886 of_clk_add_provider(node, of_clk_src_simple_get, clk);
887 clk_register_clkdev(clk, clk_name, NULL);
888 }
889 }
890
891
892
893 /**
894 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
895 */
896
897 #define SUNXI_GATES_MAX_SIZE 64
898
899 struct gates_data {
900 DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
901 };
902
903 static const struct gates_data sun4i_axi_gates_data __initconst = {
904 .mask = {1},
905 };
906
907 static const struct gates_data sun4i_ahb_gates_data __initconst = {
908 .mask = {0x7F77FFF, 0x14FB3F},
909 };
910
911 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
912 .mask = {0x147667e7, 0x185915},
913 };
914
915 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
916 .mask = {0x107067e7, 0x185111},
917 };
918
919 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
920 .mask = {0xEDFE7F62, 0x794F931},
921 };
922
923 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
924 .mask = { 0x12f77fff, 0x16ff3f },
925 };
926
927 static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = {
928 .mask = {0x25386742, 0x2505111},
929 };
930
931 static const struct gates_data sun9i_a80_ahb0_gates_data __initconst = {
932 .mask = {0xF5F12B},
933 };
934
935 static const struct gates_data sun9i_a80_ahb1_gates_data __initconst = {
936 .mask = {0x1E20003},
937 };
938
939 static const struct gates_data sun9i_a80_ahb2_gates_data __initconst = {
940 .mask = {0x9B7},
941 };
942
943 static const struct gates_data sun4i_apb0_gates_data __initconst = {
944 .mask = {0x4EF},
945 };
946
947 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
948 .mask = {0x469},
949 };
950
951 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
952 .mask = {0x61},
953 };
954
955 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
956 .mask = { 0x4ff },
957 };
958
959 static const struct gates_data sun9i_a80_apb0_gates_data __initconst = {
960 .mask = {0xEB822},
961 };
962
963 static const struct gates_data sun4i_apb1_gates_data __initconst = {
964 .mask = {0xFF00F7},
965 };
966
967 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
968 .mask = {0xf0007},
969 };
970
971 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
972 .mask = {0xa0007},
973 };
974
975 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
976 .mask = {0x3031},
977 };
978
979 static const struct gates_data sun8i_a23_apb1_gates_data __initconst = {
980 .mask = {0x3021},
981 };
982
983 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
984 .mask = {0x3F000F},
985 };
986
987 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
988 .mask = { 0xff80ff },
989 };
990
991 static const struct gates_data sun9i_a80_apb1_gates_data __initconst = {
992 .mask = {0x3F001F},
993 };
994
995 static const struct gates_data sun8i_a23_apb2_gates_data __initconst = {
996 .mask = {0x1F0007},
997 };
998
999 static void __init sunxi_gates_clk_setup(struct device_node *node,
1000 struct gates_data *data)
1001 {
1002 struct clk_onecell_data *clk_data;
1003 const char *clk_parent;
1004 const char *clk_name;
1005 void __iomem *reg;
1006 int qty;
1007 int i = 0;
1008 int j = 0;
1009
1010 reg = of_iomap(node, 0);
1011
1012 clk_parent = of_clk_get_parent_name(node, 0);
1013
1014 /* Worst-case size approximation and memory allocation */
1015 qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
1016 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1017 if (!clk_data)
1018 return;
1019 clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
1020 if (!clk_data->clks) {
1021 kfree(clk_data);
1022 return;
1023 }
1024
1025 for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
1026 of_property_read_string_index(node, "clock-output-names",
1027 j, &clk_name);
1028
1029 clk_data->clks[i] = clk_register_gate(NULL, clk_name,
1030 clk_parent, 0,
1031 reg + 4 * (i/32), i % 32,
1032 0, &clk_lock);
1033 WARN_ON(IS_ERR(clk_data->clks[i]));
1034 clk_register_clkdev(clk_data->clks[i], clk_name, NULL);
1035
1036 j++;
1037 }
1038
1039 /* Adjust to the real max */
1040 clk_data->clk_num = i;
1041
1042 of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1043 }
1044
1045
1046
1047 /**
1048 * sunxi_divs_clk_setup() helper data
1049 */
1050
1051 #define SUNXI_DIVS_MAX_QTY 4
1052 #define SUNXI_DIVISOR_WIDTH 2
1053
1054 struct divs_data {
1055 const struct factors_data *factors; /* data for the factor clock */
1056 int ndivs; /* number of outputs */
1057 /*
1058 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
1059 * self or base factor clock refers to the output from the pll
1060 * itself. The remaining refer to fixed or configurable divider
1061 * outputs.
1062 */
1063 struct {
1064 u8 self; /* is it the base factor clock? (only one) */
1065 u8 fixed; /* is it a fixed divisor? if not... */
1066 struct clk_div_table *table; /* is it a table based divisor? */
1067 u8 shift; /* otherwise it's a normal divisor with this shift */
1068 u8 pow; /* is it power-of-two based? */
1069 u8 gate; /* is it independently gateable? */
1070 } div[SUNXI_DIVS_MAX_QTY];
1071 };
1072
1073 static struct clk_div_table pll6_sata_tbl[] = {
1074 { .val = 0, .div = 6, },
1075 { .val = 1, .div = 12, },
1076 { .val = 2, .div = 18, },
1077 { .val = 3, .div = 24, },
1078 { } /* sentinel */
1079 };
1080
1081 static const struct divs_data pll5_divs_data __initconst = {
1082 .factors = &sun4i_pll5_data,
1083 .ndivs = 2,
1084 .div = {
1085 { .shift = 0, .pow = 0, }, /* M, DDR */
1086 { .shift = 16, .pow = 1, }, /* P, other */
1087 /* No output for the base factor clock */
1088 }
1089 };
1090
1091 static const struct divs_data pll6_divs_data __initconst = {
1092 .factors = &sun4i_pll6_data,
1093 .ndivs = 4,
1094 .div = {
1095 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
1096 { .fixed = 2 }, /* P, other */
1097 { .self = 1 }, /* base factor clock, 2x */
1098 { .fixed = 4 }, /* pll6 / 4, used as ahb input */
1099 }
1100 };
1101
1102 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
1103 .factors = &sun6i_a31_pll6_data,
1104 .ndivs = 2,
1105 .div = {
1106 { .fixed = 2 }, /* normal output */
1107 { .self = 1 }, /* base factor clock, 2x */
1108 }
1109 };
1110
1111 /**
1112 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
1113 *
1114 * These clocks look something like this
1115 * ________________________
1116 * | ___divisor 1---|----> to consumer
1117 * parent >--| pll___/___divisor 2---|----> to consumer
1118 * | \_______________|____> to consumer
1119 * |________________________|
1120 */
1121
1122 static void __init sunxi_divs_clk_setup(struct device_node *node,
1123 struct divs_data *data)
1124 {
1125 struct clk_onecell_data *clk_data;
1126 const char *parent;
1127 const char *clk_name;
1128 struct clk **clks, *pclk;
1129 struct clk_hw *gate_hw, *rate_hw;
1130 const struct clk_ops *rate_ops;
1131 struct clk_gate *gate = NULL;
1132 struct clk_fixed_factor *fix_factor;
1133 struct clk_divider *divider;
1134 void __iomem *reg;
1135 int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
1136 int flags, clkflags;
1137
1138 /* if number of children known, use it */
1139 if (data->ndivs)
1140 ndivs = data->ndivs;
1141
1142 /* Set up factor clock that we will be dividing */
1143 pclk = sunxi_factors_clk_setup(node, data->factors);
1144 parent = __clk_get_name(pclk);
1145
1146 reg = of_iomap(node, 0);
1147
1148 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1149 if (!clk_data)
1150 return;
1151
1152 clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1153 if (!clks)
1154 goto free_clkdata;
1155
1156 clk_data->clks = clks;
1157
1158 /* It's not a good idea to have automatic reparenting changing
1159 * our RAM clock! */
1160 clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1161
1162 for (i = 0; i < ndivs; i++) {
1163 if (of_property_read_string_index(node, "clock-output-names",
1164 i, &clk_name) != 0)
1165 break;
1166
1167 /* If this is the base factor clock, only update clks */
1168 if (data->div[i].self) {
1169 clk_data->clks[i] = pclk;
1170 continue;
1171 }
1172
1173 gate_hw = NULL;
1174 rate_hw = NULL;
1175 rate_ops = NULL;
1176
1177 /* If this leaf clock can be gated, create a gate */
1178 if (data->div[i].gate) {
1179 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1180 if (!gate)
1181 goto free_clks;
1182
1183 gate->reg = reg;
1184 gate->bit_idx = data->div[i].gate;
1185 gate->lock = &clk_lock;
1186
1187 gate_hw = &gate->hw;
1188 }
1189
1190 /* Leaves can be fixed or configurable divisors */
1191 if (data->div[i].fixed) {
1192 fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1193 if (!fix_factor)
1194 goto free_gate;
1195
1196 fix_factor->mult = 1;
1197 fix_factor->div = data->div[i].fixed;
1198
1199 rate_hw = &fix_factor->hw;
1200 rate_ops = &clk_fixed_factor_ops;
1201 } else {
1202 divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1203 if (!divider)
1204 goto free_gate;
1205
1206 flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1207
1208 divider->reg = reg;
1209 divider->shift = data->div[i].shift;
1210 divider->width = SUNXI_DIVISOR_WIDTH;
1211 divider->flags = flags;
1212 divider->lock = &clk_lock;
1213 divider->table = data->div[i].table;
1214
1215 rate_hw = &divider->hw;
1216 rate_ops = &clk_divider_ops;
1217 }
1218
1219 /* Wrap the (potential) gate and the divisor on a composite
1220 * clock to unify them */
1221 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1222 NULL, NULL,
1223 rate_hw, rate_ops,
1224 gate_hw, &clk_gate_ops,
1225 clkflags);
1226
1227 WARN_ON(IS_ERR(clk_data->clks[i]));
1228 clk_register_clkdev(clks[i], clk_name, NULL);
1229 }
1230
1231 /* Adjust to the real max */
1232 clk_data->clk_num = i;
1233
1234 of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1235
1236 return;
1237
1238 free_gate:
1239 kfree(gate);
1240 free_clks:
1241 kfree(clks);
1242 free_clkdata:
1243 kfree(clk_data);
1244 }
1245
1246
1247
1248 /* Matches for factors clocks */
1249 static const struct of_device_id clk_factors_match[] __initconst = {
1250 {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1251 {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1252 {.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1253 {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1254 {.compatible = "allwinner,sun5i-a13-ahb-clk", .data = &sun5i_a13_ahb_data,},
1255 {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1256 {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1257 {}
1258 };
1259
1260 /* Matches for divider clocks */
1261 static const struct of_device_id clk_div_match[] __initconst = {
1262 {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1263 {.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1264 {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1265 {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1266 {}
1267 };
1268
1269 /* Matches for divided outputs */
1270 static const struct of_device_id clk_divs_match[] __initconst = {
1271 {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1272 {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1273 {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,},
1274 {}
1275 };
1276
1277 /* Matches for mux clocks */
1278 static const struct of_device_id clk_mux_match[] __initconst = {
1279 {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1280 {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1281 {}
1282 };
1283
1284 /* Matches for gate clocks */
1285 static const struct of_device_id clk_gates_match[] __initconst = {
1286 {.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1287 {.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1288 {.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1289 {.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1290 {.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1291 {.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1292 {.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,},
1293 {.compatible = "allwinner,sun9i-a80-ahb0-gates-clk", .data = &sun9i_a80_ahb0_gates_data,},
1294 {.compatible = "allwinner,sun9i-a80-ahb1-gates-clk", .data = &sun9i_a80_ahb1_gates_data,},
1295 {.compatible = "allwinner,sun9i-a80-ahb2-gates-clk", .data = &sun9i_a80_ahb2_gates_data,},
1296 {.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1297 {.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1298 {.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1299 {.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1300 {.compatible = "allwinner,sun9i-a80-apb0-gates-clk", .data = &sun9i_a80_apb0_gates_data,},
1301 {.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1302 {.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1303 {.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1304 {.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1305 {.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1306 {.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,},
1307 {.compatible = "allwinner,sun9i-a80-apb1-gates-clk", .data = &sun9i_a80_apb1_gates_data,},
1308 {.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1309 {.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,},
1310 {}
1311 };
1312
1313 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1314 void *function)
1315 {
1316 struct device_node *np;
1317 const struct div_data *data;
1318 const struct of_device_id *match;
1319 void (*setup_function)(struct device_node *, const void *) = function;
1320
1321 for_each_matching_node_and_match(np, clk_match, &match) {
1322 data = match->data;
1323 setup_function(np, data);
1324 }
1325 }
1326
1327 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1328 {
1329 unsigned int i;
1330
1331 /* Register divided output clocks */
1332 of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1333
1334 /* Register factor clocks */
1335 of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1336
1337 /* Register divider clocks */
1338 of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1339
1340 /* Register mux clocks */
1341 of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1342
1343 /* Register gate clocks */
1344 of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1345
1346 /* Protect the clocks that needs to stay on */
1347 for (i = 0; i < nclocks; i++) {
1348 struct clk *clk = clk_get(NULL, clocks[i]);
1349
1350 if (!IS_ERR(clk))
1351 clk_prepare_enable(clk);
1352 }
1353 }
1354
1355 static const char *sun4i_a10_critical_clocks[] __initdata = {
1356 "pll5_ddr",
1357 "ahb_sdram",
1358 };
1359
1360 static void __init sun4i_a10_init_clocks(struct device_node *node)
1361 {
1362 sunxi_init_clocks(sun4i_a10_critical_clocks,
1363 ARRAY_SIZE(sun4i_a10_critical_clocks));
1364 }
1365 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1366
1367 static const char *sun5i_critical_clocks[] __initdata = {
1368 "cpu",
1369 "pll5_ddr",
1370 "ahb_sdram",
1371 };
1372
1373 static void __init sun5i_init_clocks(struct device_node *node)
1374 {
1375 sunxi_init_clocks(sun5i_critical_clocks,
1376 ARRAY_SIZE(sun5i_critical_clocks));
1377 }
1378 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1379 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1380 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1381
1382 static const char *sun6i_critical_clocks[] __initdata = {
1383 "cpu",
1384 };
1385
1386 static void __init sun6i_init_clocks(struct device_node *node)
1387 {
1388 sunxi_init_clocks(sun6i_critical_clocks,
1389 ARRAY_SIZE(sun6i_critical_clocks));
1390 }
1391 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1392 CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks);
1393 CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
1394
1395 static void __init sun9i_init_clocks(struct device_node *node)
1396 {
1397 sunxi_init_clocks(NULL, 0);
1398 }
1399 CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);
This page took 0.078905 seconds and 6 git commands to generate.