clocksource: arch_timer: Add support for memory mapped timers
[deliverable/linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_address.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
22
23 #include <asm/arch_timer.h>
24 #include <asm/virt.h>
25
26 #include <clocksource/arm_arch_timer.h>
27
28 #define CNTTIDR 0x08
29 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
30
31 #define CNTVCT_LO 0x08
32 #define CNTVCT_HI 0x0c
33 #define CNTFRQ 0x10
34 #define CNTP_TVAL 0x28
35 #define CNTP_CTL 0x2c
36 #define CNTV_TVAL 0x38
37 #define CNTV_CTL 0x3c
38
39 #define ARCH_CP15_TIMER BIT(0)
40 #define ARCH_MEM_TIMER BIT(1)
41 static unsigned arch_timers_present __initdata;
42
43 static void __iomem *arch_counter_base;
44
45 struct arch_timer {
46 void __iomem *base;
47 struct clock_event_device evt;
48 };
49
50 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
51
52 static u32 arch_timer_rate;
53
54 enum ppi_nr {
55 PHYS_SECURE_PPI,
56 PHYS_NONSECURE_PPI,
57 VIRT_PPI,
58 HYP_PPI,
59 MAX_TIMER_PPI
60 };
61
62 static int arch_timer_ppi[MAX_TIMER_PPI];
63
64 static struct clock_event_device __percpu *arch_timer_evt;
65
66 static bool arch_timer_use_virtual = true;
67 static bool arch_timer_mem_use_virtual;
68
69 /*
70 * Architected system timer support.
71 */
72
73 static __always_inline
74 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
75 struct clock_event_device *clk)
76 {
77 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
78 struct arch_timer *timer = to_arch_timer(clk);
79 switch (reg) {
80 case ARCH_TIMER_REG_CTRL:
81 writel_relaxed(val, timer->base + CNTP_CTL);
82 break;
83 case ARCH_TIMER_REG_TVAL:
84 writel_relaxed(val, timer->base + CNTP_TVAL);
85 break;
86 }
87 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
88 struct arch_timer *timer = to_arch_timer(clk);
89 switch (reg) {
90 case ARCH_TIMER_REG_CTRL:
91 writel_relaxed(val, timer->base + CNTV_CTL);
92 break;
93 case ARCH_TIMER_REG_TVAL:
94 writel_relaxed(val, timer->base + CNTV_TVAL);
95 break;
96 }
97 } else {
98 arch_timer_reg_write_cp15(access, reg, val);
99 }
100 }
101
102 static __always_inline
103 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
104 struct clock_event_device *clk)
105 {
106 u32 val;
107
108 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
109 struct arch_timer *timer = to_arch_timer(clk);
110 switch (reg) {
111 case ARCH_TIMER_REG_CTRL:
112 val = readl_relaxed(timer->base + CNTP_CTL);
113 break;
114 case ARCH_TIMER_REG_TVAL:
115 val = readl_relaxed(timer->base + CNTP_TVAL);
116 break;
117 }
118 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
119 struct arch_timer *timer = to_arch_timer(clk);
120 switch (reg) {
121 case ARCH_TIMER_REG_CTRL:
122 val = readl_relaxed(timer->base + CNTV_CTL);
123 break;
124 case ARCH_TIMER_REG_TVAL:
125 val = readl_relaxed(timer->base + CNTV_TVAL);
126 break;
127 }
128 } else {
129 val = arch_timer_reg_read_cp15(access, reg);
130 }
131
132 return val;
133 }
134
135 static __always_inline irqreturn_t timer_handler(const int access,
136 struct clock_event_device *evt)
137 {
138 unsigned long ctrl;
139 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
140 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
141 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
142 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
143 evt->event_handler(evt);
144 return IRQ_HANDLED;
145 }
146
147 return IRQ_NONE;
148 }
149
150 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
151 {
152 struct clock_event_device *evt = dev_id;
153
154 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
155 }
156
157 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
158 {
159 struct clock_event_device *evt = dev_id;
160
161 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
162 }
163
164 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
165 {
166 struct clock_event_device *evt = dev_id;
167
168 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
169 }
170
171 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
172 {
173 struct clock_event_device *evt = dev_id;
174
175 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
176 }
177
178 static __always_inline void timer_set_mode(const int access, int mode,
179 struct clock_event_device *clk)
180 {
181 unsigned long ctrl;
182 switch (mode) {
183 case CLOCK_EVT_MODE_UNUSED:
184 case CLOCK_EVT_MODE_SHUTDOWN:
185 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
186 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
187 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
188 break;
189 default:
190 break;
191 }
192 }
193
194 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
195 struct clock_event_device *clk)
196 {
197 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
198 }
199
200 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
201 struct clock_event_device *clk)
202 {
203 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
204 }
205
206 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
207 struct clock_event_device *clk)
208 {
209 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
210 }
211
212 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
213 struct clock_event_device *clk)
214 {
215 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
216 }
217
218 static __always_inline void set_next_event(const int access, unsigned long evt,
219 struct clock_event_device *clk)
220 {
221 unsigned long ctrl;
222 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
223 ctrl |= ARCH_TIMER_CTRL_ENABLE;
224 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
225 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
226 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
227 }
228
229 static int arch_timer_set_next_event_virt(unsigned long evt,
230 struct clock_event_device *clk)
231 {
232 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
233 return 0;
234 }
235
236 static int arch_timer_set_next_event_phys(unsigned long evt,
237 struct clock_event_device *clk)
238 {
239 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
240 return 0;
241 }
242
243 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
244 struct clock_event_device *clk)
245 {
246 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
247 return 0;
248 }
249
250 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
251 struct clock_event_device *clk)
252 {
253 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
254 return 0;
255 }
256
257 static void __cpuinit __arch_timer_setup(unsigned type,
258 struct clock_event_device *clk)
259 {
260 clk->features = CLOCK_EVT_FEAT_ONESHOT;
261
262 if (type == ARCH_CP15_TIMER) {
263 clk->features |= CLOCK_EVT_FEAT_C3STOP;
264 clk->name = "arch_sys_timer";
265 clk->rating = 450;
266 clk->cpumask = cpumask_of(smp_processor_id());
267 if (arch_timer_use_virtual) {
268 clk->irq = arch_timer_ppi[VIRT_PPI];
269 clk->set_mode = arch_timer_set_mode_virt;
270 clk->set_next_event = arch_timer_set_next_event_virt;
271 } else {
272 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
273 clk->set_mode = arch_timer_set_mode_phys;
274 clk->set_next_event = arch_timer_set_next_event_phys;
275 }
276 } else {
277 clk->name = "arch_mem_timer";
278 clk->rating = 400;
279 clk->cpumask = cpu_all_mask;
280 if (arch_timer_mem_use_virtual) {
281 clk->set_mode = arch_timer_set_mode_virt_mem;
282 clk->set_next_event =
283 arch_timer_set_next_event_virt_mem;
284 } else {
285 clk->set_mode = arch_timer_set_mode_phys_mem;
286 clk->set_next_event =
287 arch_timer_set_next_event_phys_mem;
288 }
289 }
290
291 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
292
293 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
294 }
295
296 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
297 {
298 __arch_timer_setup(ARCH_CP15_TIMER, clk);
299
300 if (arch_timer_use_virtual)
301 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
302 else {
303 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
304 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
305 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
306 }
307
308 arch_counter_set_user_access();
309
310 return 0;
311 }
312
313 static void
314 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
315 {
316 /* Who has more than one independent system counter? */
317 if (arch_timer_rate)
318 return;
319
320 /* Try to determine the frequency from the device tree or CNTFRQ */
321 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
322 if (cntbase)
323 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
324 else
325 arch_timer_rate = arch_timer_get_cntfrq();
326 }
327
328 /* Check the timer frequency. */
329 if (arch_timer_rate == 0)
330 pr_warn("Architected timer frequency not available\n");
331 }
332
333 static void arch_timer_banner(unsigned type)
334 {
335 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
336 type & ARCH_CP15_TIMER ? "cp15" : "",
337 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
338 type & ARCH_MEM_TIMER ? "mmio" : "",
339 (unsigned long)arch_timer_rate / 1000000,
340 (unsigned long)(arch_timer_rate / 10000) % 100,
341 type & ARCH_CP15_TIMER ?
342 arch_timer_use_virtual ? "virt" : "phys" :
343 "",
344 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
345 type & ARCH_MEM_TIMER ?
346 arch_timer_mem_use_virtual ? "virt" : "phys" :
347 "");
348 }
349
350 u32 arch_timer_get_rate(void)
351 {
352 return arch_timer_rate;
353 }
354
355 static u64 arch_counter_get_cntvct_mem(void)
356 {
357 u32 vct_lo, vct_hi, tmp_hi;
358
359 do {
360 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
361 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
362 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
363 } while (vct_hi != tmp_hi);
364
365 return ((u64) vct_hi << 32) | vct_lo;
366 }
367
368 /*
369 * Default to cp15 based access because arm64 uses this function for
370 * sched_clock() before DT is probed and the cp15 method is guaranteed
371 * to exist on arm64. arm doesn't use this before DT is probed so even
372 * if we don't have the cp15 accessors we won't have a problem.
373 */
374 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
375
376 static cycle_t arch_counter_read(struct clocksource *cs)
377 {
378 return arch_timer_read_counter();
379 }
380
381 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
382 {
383 return arch_timer_read_counter();
384 }
385
386 static struct clocksource clocksource_counter = {
387 .name = "arch_sys_counter",
388 .rating = 400,
389 .read = arch_counter_read,
390 .mask = CLOCKSOURCE_MASK(56),
391 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
392 };
393
394 static struct cyclecounter cyclecounter = {
395 .read = arch_counter_read_cc,
396 .mask = CLOCKSOURCE_MASK(56),
397 };
398
399 static struct timecounter timecounter;
400
401 struct timecounter *arch_timer_get_timecounter(void)
402 {
403 return &timecounter;
404 }
405
406 static void __init arch_counter_register(unsigned type)
407 {
408 u64 start_count;
409
410 /* Register the CP15 based counter if we have one */
411 if (type & ARCH_CP15_TIMER)
412 arch_timer_read_counter = arch_counter_get_cntvct;
413 else
414 arch_timer_read_counter = arch_counter_get_cntvct_mem;
415
416 start_count = arch_timer_read_counter();
417 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
418 cyclecounter.mult = clocksource_counter.mult;
419 cyclecounter.shift = clocksource_counter.shift;
420 timecounter_init(&timecounter, &cyclecounter, start_count);
421 }
422
423 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
424 {
425 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
426 clk->irq, smp_processor_id());
427
428 if (arch_timer_use_virtual)
429 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
430 else {
431 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
432 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
433 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
434 }
435
436 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
437 }
438
439 static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
440 unsigned long action, void *hcpu)
441 {
442 /*
443 * Grab cpu pointer in each case to avoid spurious
444 * preemptible warnings
445 */
446 switch (action & ~CPU_TASKS_FROZEN) {
447 case CPU_STARTING:
448 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
449 break;
450 case CPU_DYING:
451 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
452 break;
453 }
454
455 return NOTIFY_OK;
456 }
457
458 static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
459 .notifier_call = arch_timer_cpu_notify,
460 };
461
462 static int __init arch_timer_register(void)
463 {
464 int err;
465 int ppi;
466
467 arch_timer_evt = alloc_percpu(struct clock_event_device);
468 if (!arch_timer_evt) {
469 err = -ENOMEM;
470 goto out;
471 }
472
473 if (arch_timer_use_virtual) {
474 ppi = arch_timer_ppi[VIRT_PPI];
475 err = request_percpu_irq(ppi, arch_timer_handler_virt,
476 "arch_timer", arch_timer_evt);
477 } else {
478 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
479 err = request_percpu_irq(ppi, arch_timer_handler_phys,
480 "arch_timer", arch_timer_evt);
481 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
482 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
483 err = request_percpu_irq(ppi, arch_timer_handler_phys,
484 "arch_timer", arch_timer_evt);
485 if (err)
486 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
487 arch_timer_evt);
488 }
489 }
490
491 if (err) {
492 pr_err("arch_timer: can't register interrupt %d (%d)\n",
493 ppi, err);
494 goto out_free;
495 }
496
497 err = register_cpu_notifier(&arch_timer_cpu_nb);
498 if (err)
499 goto out_free_irq;
500
501 /* Immediately configure the timer on the boot CPU */
502 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
503
504 return 0;
505
506 out_free_irq:
507 if (arch_timer_use_virtual)
508 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
509 else {
510 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
511 arch_timer_evt);
512 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
513 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
514 arch_timer_evt);
515 }
516
517 out_free:
518 free_percpu(arch_timer_evt);
519 out:
520 return err;
521 }
522
523 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
524 {
525 int ret;
526 irq_handler_t func;
527 struct arch_timer *t;
528
529 t = kzalloc(sizeof(*t), GFP_KERNEL);
530 if (!t)
531 return -ENOMEM;
532
533 t->base = base;
534 t->evt.irq = irq;
535 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
536
537 if (arch_timer_mem_use_virtual)
538 func = arch_timer_handler_virt_mem;
539 else
540 func = arch_timer_handler_phys_mem;
541
542 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
543 if (ret) {
544 pr_err("arch_timer: Failed to request mem timer irq\n");
545 kfree(t);
546 }
547
548 return ret;
549 }
550
551 static const struct of_device_id arch_timer_of_match[] __initconst = {
552 { .compatible = "arm,armv7-timer", },
553 { .compatible = "arm,armv8-timer", },
554 {},
555 };
556
557 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
558 { .compatible = "arm,armv7-timer-mem", },
559 {},
560 };
561
562 static void __init arch_timer_common_init(void)
563 {
564 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
565
566 /* Wait until both nodes are probed if we have two timers */
567 if ((arch_timers_present & mask) != mask) {
568 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
569 !(arch_timers_present & ARCH_MEM_TIMER))
570 return;
571 if (of_find_matching_node(NULL, arch_timer_of_match) &&
572 !(arch_timers_present & ARCH_CP15_TIMER))
573 return;
574 }
575
576 arch_timer_banner(arch_timers_present);
577 arch_counter_register(arch_timers_present);
578 arch_timer_arch_init();
579 }
580
581 static void __init arch_timer_init(struct device_node *np)
582 {
583 int i;
584
585 if (arch_timers_present & ARCH_CP15_TIMER) {
586 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
587 return;
588 }
589
590 arch_timers_present |= ARCH_CP15_TIMER;
591 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
592 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
593 arch_timer_detect_rate(NULL, np);
594
595 /*
596 * If HYP mode is available, we know that the physical timer
597 * has been configured to be accessible from PL1. Use it, so
598 * that a guest can use the virtual timer instead.
599 *
600 * If no interrupt provided for virtual timer, we'll have to
601 * stick to the physical timer. It'd better be accessible...
602 */
603 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
604 arch_timer_use_virtual = false;
605
606 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
607 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
608 pr_warn("arch_timer: No interrupt available, giving up\n");
609 return;
610 }
611 }
612
613 arch_timer_register();
614 arch_timer_common_init();
615 }
616 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
617 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
618
619 static void __init arch_timer_mem_init(struct device_node *np)
620 {
621 struct device_node *frame, *best_frame = NULL;
622 void __iomem *cntctlbase, *base;
623 unsigned int irq;
624 u32 cnttidr;
625
626 arch_timers_present |= ARCH_MEM_TIMER;
627 cntctlbase = of_iomap(np, 0);
628 if (!cntctlbase) {
629 pr_err("arch_timer: Can't find CNTCTLBase\n");
630 return;
631 }
632
633 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
634 iounmap(cntctlbase);
635
636 /*
637 * Try to find a virtual capable frame. Otherwise fall back to a
638 * physical capable frame.
639 */
640 for_each_available_child_of_node(np, frame) {
641 int n;
642
643 if (of_property_read_u32(frame, "frame-number", &n)) {
644 pr_err("arch_timer: Missing frame-number\n");
645 of_node_put(best_frame);
646 of_node_put(frame);
647 return;
648 }
649
650 if (cnttidr & CNTTIDR_VIRT(n)) {
651 of_node_put(best_frame);
652 best_frame = frame;
653 arch_timer_mem_use_virtual = true;
654 break;
655 }
656 of_node_put(best_frame);
657 best_frame = of_node_get(frame);
658 }
659
660 base = arch_counter_base = of_iomap(best_frame, 0);
661 if (!base) {
662 pr_err("arch_timer: Can't map frame's registers\n");
663 of_node_put(best_frame);
664 return;
665 }
666
667 if (arch_timer_mem_use_virtual)
668 irq = irq_of_parse_and_map(best_frame, 1);
669 else
670 irq = irq_of_parse_and_map(best_frame, 0);
671 of_node_put(best_frame);
672 if (!irq) {
673 pr_err("arch_timer: Frame missing %s irq",
674 arch_timer_mem_use_virtual ? "virt" : "phys");
675 return;
676 }
677
678 arch_timer_detect_rate(base, np);
679 arch_timer_mem_register(base, irq);
680 arch_timer_common_init();
681 }
682 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
683 arch_timer_mem_init);
This page took 0.044823 seconds and 5 git commands to generate.