clockevents/drivers/atmel: Migrate to new 'set-state' interface
[deliverable/linux.git] / drivers / clocksource / cadence_ttc_timer.c
1 /*
2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
3 *
4 * Copyright (C) 2011-2013 Xilinx
5 *
6 * based on arch/mips/kernel/time.c timer driver
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/clk.h>
19 #include <linux/clk-provider.h>
20 #include <linux/interrupt.h>
21 #include <linux/clockchips.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/slab.h>
25 #include <linux/sched_clock.h>
26
27 /*
28 * This driver configures the 2 16/32-bit count-up timers as follows:
29 *
30 * T1: Timer 1, clocksource for generic timekeeping
31 * T2: Timer 2, clockevent source for hrtimers
32 * T3: Timer 3, <unused>
33 *
34 * The input frequency to the timer module for emulation is 2.5MHz which is
35 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
36 * the timers are clocked at 78.125KHz (12.8 us resolution).
37
38 * The input frequency to the timer module in silicon is configurable and
39 * obtained from device tree. The pre-scaler of 32 is used.
40 */
41
42 /*
43 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
44 * and use same offsets for Timer 2
45 */
46 #define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */
47 #define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */
48 #define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */
49 #define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */
50 #define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */
51 #define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */
52
53 #define TTC_CNT_CNTRL_DISABLE_MASK 0x1
54
55 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */
56 #define TTC_CLK_CNTRL_PSV_MASK 0x1e
57 #define TTC_CLK_CNTRL_PSV_SHIFT 1
58
59 /*
60 * Setup the timers to use pre-scaling, using a fixed value for now that will
61 * work across most input frequency, but it may need to be more dynamic
62 */
63 #define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
64 #define PRESCALE 2048 /* The exponent must match this */
65 #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
66 #define CLK_CNTRL_PRESCALE_EN 1
67 #define CNT_CNTRL_RESET (1 << 4)
68
69 #define MAX_F_ERR 50
70
71 /**
72 * struct ttc_timer - This definition defines local timer structure
73 *
74 * @base_addr: Base address of timer
75 * @freq: Timer input clock frequency
76 * @clk: Associated clock source
77 * @clk_rate_change_nb Notifier block for clock rate changes
78 */
79 struct ttc_timer {
80 void __iomem *base_addr;
81 unsigned long freq;
82 struct clk *clk;
83 struct notifier_block clk_rate_change_nb;
84 };
85
86 #define to_ttc_timer(x) \
87 container_of(x, struct ttc_timer, clk_rate_change_nb)
88
89 struct ttc_timer_clocksource {
90 u32 scale_clk_ctrl_reg_old;
91 u32 scale_clk_ctrl_reg_new;
92 struct ttc_timer ttc;
93 struct clocksource cs;
94 };
95
96 #define to_ttc_timer_clksrc(x) \
97 container_of(x, struct ttc_timer_clocksource, cs)
98
99 struct ttc_timer_clockevent {
100 struct ttc_timer ttc;
101 struct clock_event_device ce;
102 };
103
104 #define to_ttc_timer_clkevent(x) \
105 container_of(x, struct ttc_timer_clockevent, ce)
106
107 static void __iomem *ttc_sched_clock_val_reg;
108
109 /**
110 * ttc_set_interval - Set the timer interval value
111 *
112 * @timer: Pointer to the timer instance
113 * @cycles: Timer interval ticks
114 **/
115 static void ttc_set_interval(struct ttc_timer *timer,
116 unsigned long cycles)
117 {
118 u32 ctrl_reg;
119
120 /* Disable the counter, set the counter value and re-enable counter */
121 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124
125 writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126
127 /*
128 * Reset the counter (0x10) so that it starts from 0, one-shot
129 * mode makes this needed for timing to be right.
130 */
131 ctrl_reg |= CNT_CNTRL_RESET;
132 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134 }
135
136 /**
137 * ttc_clock_event_interrupt - Clock event timer interrupt handler
138 *
139 * @irq: IRQ number of the Timer
140 * @dev_id: void pointer to the ttc_timer instance
141 *
142 * returns: Always IRQ_HANDLED - success
143 **/
144 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145 {
146 struct ttc_timer_clockevent *ttce = dev_id;
147 struct ttc_timer *timer = &ttce->ttc;
148
149 /* Acknowledge the interrupt and call event handler */
150 readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151
152 ttce->ce.event_handler(&ttce->ce);
153
154 return IRQ_HANDLED;
155 }
156
157 /**
158 * __ttc_clocksource_read - Reads the timer counter register
159 *
160 * returns: Current timer counter register value
161 **/
162 static cycle_t __ttc_clocksource_read(struct clocksource *cs)
163 {
164 struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165
166 return (cycle_t)readl_relaxed(timer->base_addr +
167 TTC_COUNT_VAL_OFFSET);
168 }
169
170 static u64 notrace ttc_sched_clock_read(void)
171 {
172 return readl_relaxed(ttc_sched_clock_val_reg);
173 }
174
175 /**
176 * ttc_set_next_event - Sets the time interval for next event
177 *
178 * @cycles: Timer interval ticks
179 * @evt: Address of clock event instance
180 *
181 * returns: Always 0 - success
182 **/
183 static int ttc_set_next_event(unsigned long cycles,
184 struct clock_event_device *evt)
185 {
186 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
187 struct ttc_timer *timer = &ttce->ttc;
188
189 ttc_set_interval(timer, cycles);
190 return 0;
191 }
192
193 /**
194 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
195 *
196 * @evt: Address of clock event instance
197 **/
198 static int ttc_shutdown(struct clock_event_device *evt)
199 {
200 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
201 struct ttc_timer *timer = &ttce->ttc;
202 u32 ctrl_reg;
203
204 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
205 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
206 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
207 return 0;
208 }
209
210 static int ttc_set_periodic(struct clock_event_device *evt)
211 {
212 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
213 struct ttc_timer *timer = &ttce->ttc;
214
215 ttc_set_interval(timer,
216 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
217 return 0;
218 }
219
220 static int ttc_resume(struct clock_event_device *evt)
221 {
222 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
223 struct ttc_timer *timer = &ttce->ttc;
224 u32 ctrl_reg;
225
226 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
227 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
228 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
229 return 0;
230 }
231
232 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
233 unsigned long event, void *data)
234 {
235 struct clk_notifier_data *ndata = data;
236 struct ttc_timer *ttc = to_ttc_timer(nb);
237 struct ttc_timer_clocksource *ttccs = container_of(ttc,
238 struct ttc_timer_clocksource, ttc);
239
240 switch (event) {
241 case PRE_RATE_CHANGE:
242 {
243 u32 psv;
244 unsigned long factor, rate_low, rate_high;
245
246 if (ndata->new_rate > ndata->old_rate) {
247 factor = DIV_ROUND_CLOSEST(ndata->new_rate,
248 ndata->old_rate);
249 rate_low = ndata->old_rate;
250 rate_high = ndata->new_rate;
251 } else {
252 factor = DIV_ROUND_CLOSEST(ndata->old_rate,
253 ndata->new_rate);
254 rate_low = ndata->new_rate;
255 rate_high = ndata->old_rate;
256 }
257
258 if (!is_power_of_2(factor))
259 return NOTIFY_BAD;
260
261 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
262 return NOTIFY_BAD;
263
264 factor = __ilog2_u32(factor);
265
266 /*
267 * store timer clock ctrl register so we can restore it in case
268 * of an abort.
269 */
270 ttccs->scale_clk_ctrl_reg_old =
271 readl_relaxed(ttccs->ttc.base_addr +
272 TTC_CLK_CNTRL_OFFSET);
273
274 psv = (ttccs->scale_clk_ctrl_reg_old &
275 TTC_CLK_CNTRL_PSV_MASK) >>
276 TTC_CLK_CNTRL_PSV_SHIFT;
277 if (ndata->new_rate < ndata->old_rate)
278 psv -= factor;
279 else
280 psv += factor;
281
282 /* prescaler within legal range? */
283 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
284 return NOTIFY_BAD;
285
286 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
287 ~TTC_CLK_CNTRL_PSV_MASK;
288 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
289
290
291 /* scale down: adjust divider in post-change notification */
292 if (ndata->new_rate < ndata->old_rate)
293 return NOTIFY_DONE;
294
295 /* scale up: adjust divider now - before frequency change */
296 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
297 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
298 break;
299 }
300 case POST_RATE_CHANGE:
301 /* scale up: pre-change notification did the adjustment */
302 if (ndata->new_rate > ndata->old_rate)
303 return NOTIFY_OK;
304
305 /* scale down: adjust divider now - after frequency change */
306 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
307 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
308 break;
309
310 case ABORT_RATE_CHANGE:
311 /* we have to undo the adjustment in case we scale up */
312 if (ndata->new_rate < ndata->old_rate)
313 return NOTIFY_OK;
314
315 /* restore original register value */
316 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
317 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
318 /* fall through */
319 default:
320 return NOTIFY_DONE;
321 }
322
323 return NOTIFY_DONE;
324 }
325
326 static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
327 u32 timer_width)
328 {
329 struct ttc_timer_clocksource *ttccs;
330 int err;
331
332 ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
333 if (WARN_ON(!ttccs))
334 return;
335
336 ttccs->ttc.clk = clk;
337
338 err = clk_prepare_enable(ttccs->ttc.clk);
339 if (WARN_ON(err)) {
340 kfree(ttccs);
341 return;
342 }
343
344 ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
345
346 ttccs->ttc.clk_rate_change_nb.notifier_call =
347 ttc_rate_change_clocksource_cb;
348 ttccs->ttc.clk_rate_change_nb.next = NULL;
349 if (clk_notifier_register(ttccs->ttc.clk,
350 &ttccs->ttc.clk_rate_change_nb))
351 pr_warn("Unable to register clock notifier.\n");
352
353 ttccs->ttc.base_addr = base;
354 ttccs->cs.name = "ttc_clocksource";
355 ttccs->cs.rating = 200;
356 ttccs->cs.read = __ttc_clocksource_read;
357 ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
358 ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
359
360 /*
361 * Setup the clock source counter to be an incrementing counter
362 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
363 * it by 32 also. Let it start running now.
364 */
365 writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET);
366 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
367 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
368 writel_relaxed(CNT_CNTRL_RESET,
369 ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
370
371 err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
372 if (WARN_ON(err)) {
373 kfree(ttccs);
374 return;
375 }
376
377 ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
378 sched_clock_register(ttc_sched_clock_read, timer_width,
379 ttccs->ttc.freq / PRESCALE);
380 }
381
382 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
383 unsigned long event, void *data)
384 {
385 struct clk_notifier_data *ndata = data;
386 struct ttc_timer *ttc = to_ttc_timer(nb);
387 struct ttc_timer_clockevent *ttcce = container_of(ttc,
388 struct ttc_timer_clockevent, ttc);
389
390 switch (event) {
391 case POST_RATE_CHANGE:
392 /* update cached frequency */
393 ttc->freq = ndata->new_rate;
394
395 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
396
397 /* fall through */
398 case PRE_RATE_CHANGE:
399 case ABORT_RATE_CHANGE:
400 default:
401 return NOTIFY_DONE;
402 }
403 }
404
405 static void __init ttc_setup_clockevent(struct clk *clk,
406 void __iomem *base, u32 irq)
407 {
408 struct ttc_timer_clockevent *ttcce;
409 int err;
410
411 ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
412 if (WARN_ON(!ttcce))
413 return;
414
415 ttcce->ttc.clk = clk;
416
417 err = clk_prepare_enable(ttcce->ttc.clk);
418 if (WARN_ON(err)) {
419 kfree(ttcce);
420 return;
421 }
422
423 ttcce->ttc.clk_rate_change_nb.notifier_call =
424 ttc_rate_change_clockevent_cb;
425 ttcce->ttc.clk_rate_change_nb.next = NULL;
426 if (clk_notifier_register(ttcce->ttc.clk,
427 &ttcce->ttc.clk_rate_change_nb))
428 pr_warn("Unable to register clock notifier.\n");
429 ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
430
431 ttcce->ttc.base_addr = base;
432 ttcce->ce.name = "ttc_clockevent";
433 ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
434 ttcce->ce.set_next_event = ttc_set_next_event;
435 ttcce->ce.set_state_shutdown = ttc_shutdown;
436 ttcce->ce.set_state_periodic = ttc_set_periodic;
437 ttcce->ce.set_state_oneshot = ttc_shutdown;
438 ttcce->ce.tick_resume = ttc_resume;
439 ttcce->ce.rating = 200;
440 ttcce->ce.irq = irq;
441 ttcce->ce.cpumask = cpu_possible_mask;
442
443 /*
444 * Setup the clock event timer to be an interval timer which
445 * is prescaled by 32 using the interval interrupt. Leave it
446 * disabled for now.
447 */
448 writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
449 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
450 ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
451 writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET);
452
453 err = request_irq(irq, ttc_clock_event_interrupt,
454 IRQF_TIMER, ttcce->ce.name, ttcce);
455 if (WARN_ON(err)) {
456 kfree(ttcce);
457 return;
458 }
459
460 clockevents_config_and_register(&ttcce->ce,
461 ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
462 }
463
464 /**
465 * ttc_timer_init - Initialize the timer
466 *
467 * Initializes the timer hardware and register the clock source and clock event
468 * timers with Linux kernal timer framework
469 */
470 static void __init ttc_timer_init(struct device_node *timer)
471 {
472 unsigned int irq;
473 void __iomem *timer_baseaddr;
474 struct clk *clk_cs, *clk_ce;
475 static int initialized;
476 int clksel;
477 u32 timer_width = 16;
478
479 if (initialized)
480 return;
481
482 initialized = 1;
483
484 /*
485 * Get the 1st Triple Timer Counter (TTC) block from the device tree
486 * and use it. Note that the event timer uses the interrupt and it's the
487 * 2nd TTC hence the irq_of_parse_and_map(,1)
488 */
489 timer_baseaddr = of_iomap(timer, 0);
490 if (!timer_baseaddr) {
491 pr_err("ERROR: invalid timer base address\n");
492 BUG();
493 }
494
495 irq = irq_of_parse_and_map(timer, 1);
496 if (irq <= 0) {
497 pr_err("ERROR: invalid interrupt number\n");
498 BUG();
499 }
500
501 of_property_read_u32(timer, "timer-width", &timer_width);
502
503 clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
504 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
505 clk_cs = of_clk_get(timer, clksel);
506 if (IS_ERR(clk_cs)) {
507 pr_err("ERROR: timer input clock not found\n");
508 BUG();
509 }
510
511 clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
512 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
513 clk_ce = of_clk_get(timer, clksel);
514 if (IS_ERR(clk_ce)) {
515 pr_err("ERROR: timer input clock not found\n");
516 BUG();
517 }
518
519 ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
520 ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
521
522 pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
523 }
524
525 CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);
This page took 0.054943 seconds and 5 git commands to generate.