clockevents/drivers/atmel: Migrate to new 'set-state' interface
[deliverable/linux.git] / drivers / clocksource / dw_apb_timer.c
1 /*
2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
4 *
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Support for the Synopsys DesignWare APB Timers.
12 */
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20
21 #define APBT_MIN_PERIOD 4
22 #define APBT_MIN_DELTA_USEC 200
23
24 #define APBTMR_N_LOAD_COUNT 0x00
25 #define APBTMR_N_CURRENT_VALUE 0x04
26 #define APBTMR_N_CONTROL 0x08
27 #define APBTMR_N_EOI 0x0c
28 #define APBTMR_N_INT_STATUS 0x10
29
30 #define APBTMRS_INT_STATUS 0xa0
31 #define APBTMRS_EOI 0xa4
32 #define APBTMRS_RAW_INT_STATUS 0xa8
33 #define APBTMRS_COMP_VERSION 0xac
34
35 #define APBTMR_CONTROL_ENABLE (1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38 #define APBTMR_CONTROL_INT (1 << 2)
39
40 static inline struct dw_apb_clock_event_device *
41 ced_to_dw_apb_ced(struct clock_event_device *evt)
42 {
43 return container_of(evt, struct dw_apb_clock_event_device, ced);
44 }
45
46 static inline struct dw_apb_clocksource *
47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48 {
49 return container_of(cs, struct dw_apb_clocksource, cs);
50 }
51
52 static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53 {
54 return readl(timer->base + offs);
55 }
56
57 static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
58 unsigned long offs)
59 {
60 writel(val, timer->base + offs);
61 }
62
63 static void apbt_disable_int(struct dw_apb_timer *timer)
64 {
65 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
66
67 ctrl |= APBTMR_CONTROL_INT;
68 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
69 }
70
71 /**
72 * dw_apb_clockevent_pause() - stop the clock_event_device from running
73 *
74 * @dw_ced: The APB clock to stop generating events.
75 */
76 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
77 {
78 disable_irq(dw_ced->timer.irq);
79 apbt_disable_int(&dw_ced->timer);
80 }
81
82 static void apbt_eoi(struct dw_apb_timer *timer)
83 {
84 apbt_readl(timer, APBTMR_N_EOI);
85 }
86
87 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
88 {
89 struct clock_event_device *evt = data;
90 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
91
92 if (!evt->event_handler) {
93 pr_info("Spurious APBT timer interrupt %d", irq);
94 return IRQ_NONE;
95 }
96
97 if (dw_ced->eoi)
98 dw_ced->eoi(&dw_ced->timer);
99
100 evt->event_handler(evt);
101 return IRQ_HANDLED;
102 }
103
104 static void apbt_enable_int(struct dw_apb_timer *timer)
105 {
106 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
107 /* clear pending intr */
108 apbt_readl(timer, APBTMR_N_EOI);
109 ctrl &= ~APBTMR_CONTROL_INT;
110 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
111 }
112
113 static int apbt_shutdown(struct clock_event_device *evt)
114 {
115 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
116 unsigned long ctrl;
117
118 pr_debug("%s CPU %d state=shutdown\n", __func__,
119 cpumask_first(evt->cpumask));
120
121 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
122 ctrl &= ~APBTMR_CONTROL_ENABLE;
123 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
124 return 0;
125 }
126
127 static int apbt_set_oneshot(struct clock_event_device *evt)
128 {
129 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
130 unsigned long ctrl;
131
132 pr_debug("%s CPU %d state=oneshot\n", __func__,
133 cpumask_first(evt->cpumask));
134
135 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
136 /*
137 * set free running mode, this mode will let timer reload max
138 * timeout which will give time (3min on 25MHz clock) to rearm
139 * the next event, therefore emulate the one-shot mode.
140 */
141 ctrl &= ~APBTMR_CONTROL_ENABLE;
142 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
143
144 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
145 /* write again to set free running mode */
146 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
147
148 /*
149 * DW APB p. 46, load counter with all 1s before starting free
150 * running mode.
151 */
152 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
153 ctrl &= ~APBTMR_CONTROL_INT;
154 ctrl |= APBTMR_CONTROL_ENABLE;
155 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
156 return 0;
157 }
158
159 static int apbt_set_periodic(struct clock_event_device *evt)
160 {
161 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
162 unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
163 unsigned long ctrl;
164
165 pr_debug("%s CPU %d state=periodic\n", __func__,
166 cpumask_first(evt->cpumask));
167
168 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
169 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
170 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171 /*
172 * DW APB p. 46, have to disable timer before load counter,
173 * may cause sync problem.
174 */
175 ctrl &= ~APBTMR_CONTROL_ENABLE;
176 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
177 udelay(1);
178 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
179 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
180 ctrl |= APBTMR_CONTROL_ENABLE;
181 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
182 return 0;
183 }
184
185 static int apbt_resume(struct clock_event_device *evt)
186 {
187 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
188
189 pr_debug("%s CPU %d state=resume\n", __func__,
190 cpumask_first(evt->cpumask));
191
192 apbt_enable_int(&dw_ced->timer);
193 return 0;
194 }
195
196 static int apbt_next_event(unsigned long delta,
197 struct clock_event_device *evt)
198 {
199 unsigned long ctrl;
200 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
201
202 /* Disable timer */
203 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
204 ctrl &= ~APBTMR_CONTROL_ENABLE;
205 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
206 /* write new count */
207 apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
208 ctrl |= APBTMR_CONTROL_ENABLE;
209 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
210
211 return 0;
212 }
213
214 /**
215 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
216 *
217 * @cpu: The CPU the events will be targeted at.
218 * @name: The name used for the timer and the IRQ for it.
219 * @rating: The rating to give the timer.
220 * @base: I/O base for the timer registers.
221 * @irq: The interrupt number to use for the timer.
222 * @freq: The frequency that the timer counts at.
223 *
224 * This creates a clock_event_device for using with the generic clock layer
225 * but does not start and register it. This should be done with
226 * dw_apb_clockevent_register() as the next step. If this is the first time
227 * it has been called for a timer then the IRQ will be requested, if not it
228 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
229 * releasing the IRQ.
230 */
231 struct dw_apb_clock_event_device *
232 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
233 void __iomem *base, int irq, unsigned long freq)
234 {
235 struct dw_apb_clock_event_device *dw_ced =
236 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
237 int err;
238
239 if (!dw_ced)
240 return NULL;
241
242 dw_ced->timer.base = base;
243 dw_ced->timer.irq = irq;
244 dw_ced->timer.freq = freq;
245
246 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
247 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
248 &dw_ced->ced);
249 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
250 dw_ced->ced.cpumask = cpumask_of(cpu);
251 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
252 dw_ced->ced.set_state_shutdown = apbt_shutdown;
253 dw_ced->ced.set_state_periodic = apbt_set_periodic;
254 dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
255 dw_ced->ced.tick_resume = apbt_resume;
256 dw_ced->ced.set_next_event = apbt_next_event;
257 dw_ced->ced.irq = dw_ced->timer.irq;
258 dw_ced->ced.rating = rating;
259 dw_ced->ced.name = name;
260
261 dw_ced->irqaction.name = dw_ced->ced.name;
262 dw_ced->irqaction.handler = dw_apb_clockevent_irq;
263 dw_ced->irqaction.dev_id = &dw_ced->ced;
264 dw_ced->irqaction.irq = irq;
265 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
266 IRQF_NOBALANCING;
267
268 dw_ced->eoi = apbt_eoi;
269 err = setup_irq(irq, &dw_ced->irqaction);
270 if (err) {
271 pr_err("failed to request timer irq\n");
272 kfree(dw_ced);
273 dw_ced = NULL;
274 }
275
276 return dw_ced;
277 }
278
279 /**
280 * dw_apb_clockevent_resume() - resume a clock that has been paused.
281 *
282 * @dw_ced: The APB clock to resume.
283 */
284 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
285 {
286 enable_irq(dw_ced->timer.irq);
287 }
288
289 /**
290 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
291 *
292 * @dw_ced: The APB clock to stop generating the events.
293 */
294 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
295 {
296 free_irq(dw_ced->timer.irq, &dw_ced->ced);
297 }
298
299 /**
300 * dw_apb_clockevent_register() - register the clock with the generic layer
301 *
302 * @dw_ced: The APB clock to register as a clock_event_device.
303 */
304 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
305 {
306 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
307 clockevents_register_device(&dw_ced->ced);
308 apbt_enable_int(&dw_ced->timer);
309 }
310
311 /**
312 * dw_apb_clocksource_start() - start the clocksource counting.
313 *
314 * @dw_cs: The clocksource to start.
315 *
316 * This is used to start the clocksource before registration and can be used
317 * to enable calibration of timers.
318 */
319 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
320 {
321 /*
322 * start count down from 0xffff_ffff. this is done by toggling the
323 * enable bit then load initial load count to ~0.
324 */
325 unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
326
327 ctrl &= ~APBTMR_CONTROL_ENABLE;
328 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
329 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
330 /* enable, mask interrupt */
331 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
332 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
333 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
334 /* read it once to get cached counter value initialized */
335 dw_apb_clocksource_read(dw_cs);
336 }
337
338 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
339 {
340 unsigned long current_count;
341 struct dw_apb_clocksource *dw_cs =
342 clocksource_to_dw_apb_clocksource(cs);
343
344 current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
345
346 return (cycle_t)~current_count;
347 }
348
349 static void apbt_restart_clocksource(struct clocksource *cs)
350 {
351 struct dw_apb_clocksource *dw_cs =
352 clocksource_to_dw_apb_clocksource(cs);
353
354 dw_apb_clocksource_start(dw_cs);
355 }
356
357 /**
358 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
359 *
360 * @rating: The rating to give the clocksource.
361 * @name: The name for the clocksource.
362 * @base: The I/O base for the timer registers.
363 * @freq: The frequency that the timer counts at.
364 *
365 * This creates a clocksource using an APB timer but does not yet register it
366 * with the clocksource system. This should be done with
367 * dw_apb_clocksource_register() as the next step.
368 */
369 struct dw_apb_clocksource *
370 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
371 unsigned long freq)
372 {
373 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
374
375 if (!dw_cs)
376 return NULL;
377
378 dw_cs->timer.base = base;
379 dw_cs->timer.freq = freq;
380 dw_cs->cs.name = name;
381 dw_cs->cs.rating = rating;
382 dw_cs->cs.read = __apbt_read_clocksource;
383 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
384 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
385 dw_cs->cs.resume = apbt_restart_clocksource;
386
387 return dw_cs;
388 }
389
390 /**
391 * dw_apb_clocksource_register() - register the APB clocksource.
392 *
393 * @dw_cs: The clocksource to register.
394 */
395 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
396 {
397 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
398 }
399
400 /**
401 * dw_apb_clocksource_read() - read the current value of a clocksource.
402 *
403 * @dw_cs: The clocksource to read.
404 */
405 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
406 {
407 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
408 }
This page took 0.05165 seconds and 5 git commands to generate.