cpufreq: get rid of 'tpolicy' from __cpufreq_add_dev()
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 /**
35 * The "cpufreq driver" - the arch- or hardware-dependent low
36 * level driver of CPUFreq support, and its spinlock. This lock
37 * also protects the cpufreq_cpu_data array.
38 */
39 static struct cpufreq_driver *cpufreq_driver;
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
42 static DEFINE_RWLOCK(cpufreq_driver_lock);
43 DEFINE_MUTEX(cpufreq_governor_lock);
44 static LIST_HEAD(cpufreq_policy_list);
45
46 /* This one keeps track of the previously set governor of a removed CPU */
47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
48
49 /* Flag to suspend/resume CPUFreq governors */
50 static bool cpufreq_suspended;
51
52 static inline bool has_target(void)
53 {
54 return cpufreq_driver->target_index || cpufreq_driver->target;
55 }
56
57 /*
58 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
59 * sections
60 */
61 static DECLARE_RWSEM(cpufreq_rwsem);
62
63 /* internal prototypes */
64 static int __cpufreq_governor(struct cpufreq_policy *policy,
65 unsigned int event);
66 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
67 static void handle_update(struct work_struct *work);
68
69 /**
70 * Two notifier lists: the "policy" list is involved in the
71 * validation process for a new CPU frequency policy; the
72 * "transition" list for kernel code that needs to handle
73 * changes to devices when the CPU clock speed changes.
74 * The mutex locks both lists.
75 */
76 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
77 static struct srcu_notifier_head cpufreq_transition_notifier_list;
78
79 static bool init_cpufreq_transition_notifier_list_called;
80 static int __init init_cpufreq_transition_notifier_list(void)
81 {
82 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
83 init_cpufreq_transition_notifier_list_called = true;
84 return 0;
85 }
86 pure_initcall(init_cpufreq_transition_notifier_list);
87
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91 return off;
92 }
93 void disable_cpufreq(void)
94 {
95 off = 1;
96 }
97 static LIST_HEAD(cpufreq_governor_list);
98 static DEFINE_MUTEX(cpufreq_governor_mutex);
99
100 bool have_governor_per_policy(void)
101 {
102 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
103 }
104 EXPORT_SYMBOL_GPL(have_governor_per_policy);
105
106 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
107 {
108 if (have_governor_per_policy())
109 return &policy->kobj;
110 else
111 return cpufreq_global_kobject;
112 }
113 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
114
115 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
116 {
117 u64 idle_time;
118 u64 cur_wall_time;
119 u64 busy_time;
120
121 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
122
123 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
128 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
129
130 idle_time = cur_wall_time - busy_time;
131 if (wall)
132 *wall = cputime_to_usecs(cur_wall_time);
133
134 return cputime_to_usecs(idle_time);
135 }
136
137 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
138 {
139 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
140
141 if (idle_time == -1ULL)
142 return get_cpu_idle_time_jiffy(cpu, wall);
143 else if (!io_busy)
144 idle_time += get_cpu_iowait_time_us(cpu, wall);
145
146 return idle_time;
147 }
148 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
149
150 /*
151 * This is a generic cpufreq init() routine which can be used by cpufreq
152 * drivers of SMP systems. It will do following:
153 * - validate & show freq table passed
154 * - set policies transition latency
155 * - policy->cpus with all possible CPUs
156 */
157 int cpufreq_generic_init(struct cpufreq_policy *policy,
158 struct cpufreq_frequency_table *table,
159 unsigned int transition_latency)
160 {
161 int ret;
162
163 ret = cpufreq_table_validate_and_show(policy, table);
164 if (ret) {
165 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
166 return ret;
167 }
168
169 policy->cpuinfo.transition_latency = transition_latency;
170
171 /*
172 * The driver only supports the SMP configuartion where all processors
173 * share the clock and voltage and clock.
174 */
175 cpumask_setall(policy->cpus);
176
177 return 0;
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
180
181 unsigned int cpufreq_generic_get(unsigned int cpu)
182 {
183 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
184
185 if (!policy || IS_ERR(policy->clk)) {
186 pr_err("%s: No %s associated to cpu: %d\n",
187 __func__, policy ? "clk" : "policy", cpu);
188 return 0;
189 }
190
191 return clk_get_rate(policy->clk) / 1000;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
194
195 /* Only for cpufreq core internal use */
196 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
197 {
198 return per_cpu(cpufreq_cpu_data, cpu);
199 }
200
201 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
202 {
203 struct cpufreq_policy *policy = NULL;
204 unsigned long flags;
205
206 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
207 return NULL;
208
209 if (!down_read_trylock(&cpufreq_rwsem))
210 return NULL;
211
212 /* get the cpufreq driver */
213 read_lock_irqsave(&cpufreq_driver_lock, flags);
214
215 if (cpufreq_driver) {
216 /* get the CPU */
217 policy = per_cpu(cpufreq_cpu_data, cpu);
218 if (policy)
219 kobject_get(&policy->kobj);
220 }
221
222 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
223
224 if (!policy)
225 up_read(&cpufreq_rwsem);
226
227 return policy;
228 }
229 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
230
231 void cpufreq_cpu_put(struct cpufreq_policy *policy)
232 {
233 if (cpufreq_disabled())
234 return;
235
236 kobject_put(&policy->kobj);
237 up_read(&cpufreq_rwsem);
238 }
239 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
240
241 /*********************************************************************
242 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
243 *********************************************************************/
244
245 /**
246 * adjust_jiffies - adjust the system "loops_per_jiffy"
247 *
248 * This function alters the system "loops_per_jiffy" for the clock
249 * speed change. Note that loops_per_jiffy cannot be updated on SMP
250 * systems as each CPU might be scaled differently. So, use the arch
251 * per-CPU loops_per_jiffy value wherever possible.
252 */
253 #ifndef CONFIG_SMP
254 static unsigned long l_p_j_ref;
255 static unsigned int l_p_j_ref_freq;
256
257 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
258 {
259 if (ci->flags & CPUFREQ_CONST_LOOPS)
260 return;
261
262 if (!l_p_j_ref_freq) {
263 l_p_j_ref = loops_per_jiffy;
264 l_p_j_ref_freq = ci->old;
265 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
266 l_p_j_ref, l_p_j_ref_freq);
267 }
268 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
269 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
270 ci->new);
271 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
272 loops_per_jiffy, ci->new);
273 }
274 }
275 #else
276 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
277 {
278 return;
279 }
280 #endif
281
282 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
283 struct cpufreq_freqs *freqs, unsigned int state)
284 {
285 BUG_ON(irqs_disabled());
286
287 if (cpufreq_disabled())
288 return;
289
290 freqs->flags = cpufreq_driver->flags;
291 pr_debug("notification %u of frequency transition to %u kHz\n",
292 state, freqs->new);
293
294 switch (state) {
295
296 case CPUFREQ_PRECHANGE:
297 /* detect if the driver reported a value as "old frequency"
298 * which is not equal to what the cpufreq core thinks is
299 * "old frequency".
300 */
301 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
302 if ((policy) && (policy->cpu == freqs->cpu) &&
303 (policy->cur) && (policy->cur != freqs->old)) {
304 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
305 freqs->old, policy->cur);
306 freqs->old = policy->cur;
307 }
308 }
309 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
310 CPUFREQ_PRECHANGE, freqs);
311 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
312 break;
313
314 case CPUFREQ_POSTCHANGE:
315 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
316 pr_debug("FREQ: %lu - CPU: %lu\n",
317 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
318 trace_cpu_frequency(freqs->new, freqs->cpu);
319 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
320 CPUFREQ_POSTCHANGE, freqs);
321 if (likely(policy) && likely(policy->cpu == freqs->cpu))
322 policy->cur = freqs->new;
323 break;
324 }
325 }
326
327 /**
328 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
329 * on frequency transition.
330 *
331 * This function calls the transition notifiers and the "adjust_jiffies"
332 * function. It is called twice on all CPU frequency changes that have
333 * external effects.
334 */
335 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
336 struct cpufreq_freqs *freqs, unsigned int state)
337 {
338 for_each_cpu(freqs->cpu, policy->cpus)
339 __cpufreq_notify_transition(policy, freqs, state);
340 }
341
342 /* Do post notifications when there are chances that transition has failed */
343 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
344 struct cpufreq_freqs *freqs, int transition_failed)
345 {
346 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
347 if (!transition_failed)
348 return;
349
350 swap(freqs->old, freqs->new);
351 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
352 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
353 }
354
355 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
356 struct cpufreq_freqs *freqs)
357 {
358
359 /*
360 * Catch double invocations of _begin() which lead to self-deadlock.
361 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
362 * doesn't invoke _begin() on their behalf, and hence the chances of
363 * double invocations are very low. Moreover, there are scenarios
364 * where these checks can emit false-positive warnings in these
365 * drivers; so we avoid that by skipping them altogether.
366 */
367 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
368 && current == policy->transition_task);
369
370 wait:
371 wait_event(policy->transition_wait, !policy->transition_ongoing);
372
373 spin_lock(&policy->transition_lock);
374
375 if (unlikely(policy->transition_ongoing)) {
376 spin_unlock(&policy->transition_lock);
377 goto wait;
378 }
379
380 policy->transition_ongoing = true;
381 policy->transition_task = current;
382
383 spin_unlock(&policy->transition_lock);
384
385 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
386 }
387 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
388
389 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
390 struct cpufreq_freqs *freqs, int transition_failed)
391 {
392 if (unlikely(WARN_ON(!policy->transition_ongoing)))
393 return;
394
395 cpufreq_notify_post_transition(policy, freqs, transition_failed);
396
397 policy->transition_ongoing = false;
398 policy->transition_task = NULL;
399
400 wake_up(&policy->transition_wait);
401 }
402 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
403
404
405 /*********************************************************************
406 * SYSFS INTERFACE *
407 *********************************************************************/
408 static ssize_t show_boost(struct kobject *kobj,
409 struct attribute *attr, char *buf)
410 {
411 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
412 }
413
414 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
415 const char *buf, size_t count)
416 {
417 int ret, enable;
418
419 ret = sscanf(buf, "%d", &enable);
420 if (ret != 1 || enable < 0 || enable > 1)
421 return -EINVAL;
422
423 if (cpufreq_boost_trigger_state(enable)) {
424 pr_err("%s: Cannot %s BOOST!\n",
425 __func__, enable ? "enable" : "disable");
426 return -EINVAL;
427 }
428
429 pr_debug("%s: cpufreq BOOST %s\n",
430 __func__, enable ? "enabled" : "disabled");
431
432 return count;
433 }
434 define_one_global_rw(boost);
435
436 static struct cpufreq_governor *find_governor(const char *str_governor)
437 {
438 struct cpufreq_governor *t;
439
440 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
441 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
442 return t;
443
444 return NULL;
445 }
446
447 /**
448 * cpufreq_parse_governor - parse a governor string
449 */
450 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
451 struct cpufreq_governor **governor)
452 {
453 int err = -EINVAL;
454
455 if (!cpufreq_driver)
456 goto out;
457
458 if (cpufreq_driver->setpolicy) {
459 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
460 *policy = CPUFREQ_POLICY_PERFORMANCE;
461 err = 0;
462 } else if (!strncasecmp(str_governor, "powersave",
463 CPUFREQ_NAME_LEN)) {
464 *policy = CPUFREQ_POLICY_POWERSAVE;
465 err = 0;
466 }
467 } else {
468 struct cpufreq_governor *t;
469
470 mutex_lock(&cpufreq_governor_mutex);
471
472 t = find_governor(str_governor);
473
474 if (t == NULL) {
475 int ret;
476
477 mutex_unlock(&cpufreq_governor_mutex);
478 ret = request_module("cpufreq_%s", str_governor);
479 mutex_lock(&cpufreq_governor_mutex);
480
481 if (ret == 0)
482 t = find_governor(str_governor);
483 }
484
485 if (t != NULL) {
486 *governor = t;
487 err = 0;
488 }
489
490 mutex_unlock(&cpufreq_governor_mutex);
491 }
492 out:
493 return err;
494 }
495
496 /**
497 * cpufreq_per_cpu_attr_read() / show_##file_name() -
498 * print out cpufreq information
499 *
500 * Write out information from cpufreq_driver->policy[cpu]; object must be
501 * "unsigned int".
502 */
503
504 #define show_one(file_name, object) \
505 static ssize_t show_##file_name \
506 (struct cpufreq_policy *policy, char *buf) \
507 { \
508 return sprintf(buf, "%u\n", policy->object); \
509 }
510
511 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
512 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
513 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
514 show_one(scaling_min_freq, min);
515 show_one(scaling_max_freq, max);
516
517 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
518 {
519 ssize_t ret;
520
521 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
522 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
523 else
524 ret = sprintf(buf, "%u\n", policy->cur);
525 return ret;
526 }
527
528 static int cpufreq_set_policy(struct cpufreq_policy *policy,
529 struct cpufreq_policy *new_policy);
530
531 /**
532 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
533 */
534 #define store_one(file_name, object) \
535 static ssize_t store_##file_name \
536 (struct cpufreq_policy *policy, const char *buf, size_t count) \
537 { \
538 int ret, temp; \
539 struct cpufreq_policy new_policy; \
540 \
541 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
542 if (ret) \
543 return -EINVAL; \
544 \
545 ret = sscanf(buf, "%u", &new_policy.object); \
546 if (ret != 1) \
547 return -EINVAL; \
548 \
549 temp = new_policy.object; \
550 ret = cpufreq_set_policy(policy, &new_policy); \
551 if (!ret) \
552 policy->user_policy.object = temp; \
553 \
554 return ret ? ret : count; \
555 }
556
557 store_one(scaling_min_freq, min);
558 store_one(scaling_max_freq, max);
559
560 /**
561 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
562 */
563 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
564 char *buf)
565 {
566 unsigned int cur_freq = __cpufreq_get(policy);
567 if (!cur_freq)
568 return sprintf(buf, "<unknown>");
569 return sprintf(buf, "%u\n", cur_freq);
570 }
571
572 /**
573 * show_scaling_governor - show the current policy for the specified CPU
574 */
575 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
576 {
577 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
578 return sprintf(buf, "powersave\n");
579 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
580 return sprintf(buf, "performance\n");
581 else if (policy->governor)
582 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
583 policy->governor->name);
584 return -EINVAL;
585 }
586
587 /**
588 * store_scaling_governor - store policy for the specified CPU
589 */
590 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
591 const char *buf, size_t count)
592 {
593 int ret;
594 char str_governor[16];
595 struct cpufreq_policy new_policy;
596
597 ret = cpufreq_get_policy(&new_policy, policy->cpu);
598 if (ret)
599 return ret;
600
601 ret = sscanf(buf, "%15s", str_governor);
602 if (ret != 1)
603 return -EINVAL;
604
605 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
606 &new_policy.governor))
607 return -EINVAL;
608
609 ret = cpufreq_set_policy(policy, &new_policy);
610
611 policy->user_policy.policy = policy->policy;
612 policy->user_policy.governor = policy->governor;
613
614 if (ret)
615 return ret;
616 else
617 return count;
618 }
619
620 /**
621 * show_scaling_driver - show the cpufreq driver currently loaded
622 */
623 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
624 {
625 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
626 }
627
628 /**
629 * show_scaling_available_governors - show the available CPUfreq governors
630 */
631 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
632 char *buf)
633 {
634 ssize_t i = 0;
635 struct cpufreq_governor *t;
636
637 if (!has_target()) {
638 i += sprintf(buf, "performance powersave");
639 goto out;
640 }
641
642 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
643 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
644 - (CPUFREQ_NAME_LEN + 2)))
645 goto out;
646 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
647 }
648 out:
649 i += sprintf(&buf[i], "\n");
650 return i;
651 }
652
653 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
654 {
655 ssize_t i = 0;
656 unsigned int cpu;
657
658 for_each_cpu(cpu, mask) {
659 if (i)
660 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
661 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
662 if (i >= (PAGE_SIZE - 5))
663 break;
664 }
665 i += sprintf(&buf[i], "\n");
666 return i;
667 }
668 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
669
670 /**
671 * show_related_cpus - show the CPUs affected by each transition even if
672 * hw coordination is in use
673 */
674 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
675 {
676 return cpufreq_show_cpus(policy->related_cpus, buf);
677 }
678
679 /**
680 * show_affected_cpus - show the CPUs affected by each transition
681 */
682 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
683 {
684 return cpufreq_show_cpus(policy->cpus, buf);
685 }
686
687 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
688 const char *buf, size_t count)
689 {
690 unsigned int freq = 0;
691 unsigned int ret;
692
693 if (!policy->governor || !policy->governor->store_setspeed)
694 return -EINVAL;
695
696 ret = sscanf(buf, "%u", &freq);
697 if (ret != 1)
698 return -EINVAL;
699
700 policy->governor->store_setspeed(policy, freq);
701
702 return count;
703 }
704
705 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
706 {
707 if (!policy->governor || !policy->governor->show_setspeed)
708 return sprintf(buf, "<unsupported>\n");
709
710 return policy->governor->show_setspeed(policy, buf);
711 }
712
713 /**
714 * show_bios_limit - show the current cpufreq HW/BIOS limitation
715 */
716 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
717 {
718 unsigned int limit;
719 int ret;
720 if (cpufreq_driver->bios_limit) {
721 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
722 if (!ret)
723 return sprintf(buf, "%u\n", limit);
724 }
725 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
726 }
727
728 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
729 cpufreq_freq_attr_ro(cpuinfo_min_freq);
730 cpufreq_freq_attr_ro(cpuinfo_max_freq);
731 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
732 cpufreq_freq_attr_ro(scaling_available_governors);
733 cpufreq_freq_attr_ro(scaling_driver);
734 cpufreq_freq_attr_ro(scaling_cur_freq);
735 cpufreq_freq_attr_ro(bios_limit);
736 cpufreq_freq_attr_ro(related_cpus);
737 cpufreq_freq_attr_ro(affected_cpus);
738 cpufreq_freq_attr_rw(scaling_min_freq);
739 cpufreq_freq_attr_rw(scaling_max_freq);
740 cpufreq_freq_attr_rw(scaling_governor);
741 cpufreq_freq_attr_rw(scaling_setspeed);
742
743 static struct attribute *default_attrs[] = {
744 &cpuinfo_min_freq.attr,
745 &cpuinfo_max_freq.attr,
746 &cpuinfo_transition_latency.attr,
747 &scaling_min_freq.attr,
748 &scaling_max_freq.attr,
749 &affected_cpus.attr,
750 &related_cpus.attr,
751 &scaling_governor.attr,
752 &scaling_driver.attr,
753 &scaling_available_governors.attr,
754 &scaling_setspeed.attr,
755 NULL
756 };
757
758 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
759 #define to_attr(a) container_of(a, struct freq_attr, attr)
760
761 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
762 {
763 struct cpufreq_policy *policy = to_policy(kobj);
764 struct freq_attr *fattr = to_attr(attr);
765 ssize_t ret;
766
767 if (!down_read_trylock(&cpufreq_rwsem))
768 return -EINVAL;
769
770 down_read(&policy->rwsem);
771
772 if (fattr->show)
773 ret = fattr->show(policy, buf);
774 else
775 ret = -EIO;
776
777 up_read(&policy->rwsem);
778 up_read(&cpufreq_rwsem);
779
780 return ret;
781 }
782
783 static ssize_t store(struct kobject *kobj, struct attribute *attr,
784 const char *buf, size_t count)
785 {
786 struct cpufreq_policy *policy = to_policy(kobj);
787 struct freq_attr *fattr = to_attr(attr);
788 ssize_t ret = -EINVAL;
789
790 get_online_cpus();
791
792 if (!cpu_online(policy->cpu))
793 goto unlock;
794
795 if (!down_read_trylock(&cpufreq_rwsem))
796 goto unlock;
797
798 down_write(&policy->rwsem);
799
800 if (fattr->store)
801 ret = fattr->store(policy, buf, count);
802 else
803 ret = -EIO;
804
805 up_write(&policy->rwsem);
806
807 up_read(&cpufreq_rwsem);
808 unlock:
809 put_online_cpus();
810
811 return ret;
812 }
813
814 static void cpufreq_sysfs_release(struct kobject *kobj)
815 {
816 struct cpufreq_policy *policy = to_policy(kobj);
817 pr_debug("last reference is dropped\n");
818 complete(&policy->kobj_unregister);
819 }
820
821 static const struct sysfs_ops sysfs_ops = {
822 .show = show,
823 .store = store,
824 };
825
826 static struct kobj_type ktype_cpufreq = {
827 .sysfs_ops = &sysfs_ops,
828 .default_attrs = default_attrs,
829 .release = cpufreq_sysfs_release,
830 };
831
832 struct kobject *cpufreq_global_kobject;
833 EXPORT_SYMBOL(cpufreq_global_kobject);
834
835 static int cpufreq_global_kobject_usage;
836
837 int cpufreq_get_global_kobject(void)
838 {
839 if (!cpufreq_global_kobject_usage++)
840 return kobject_add(cpufreq_global_kobject,
841 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
842
843 return 0;
844 }
845 EXPORT_SYMBOL(cpufreq_get_global_kobject);
846
847 void cpufreq_put_global_kobject(void)
848 {
849 if (!--cpufreq_global_kobject_usage)
850 kobject_del(cpufreq_global_kobject);
851 }
852 EXPORT_SYMBOL(cpufreq_put_global_kobject);
853
854 int cpufreq_sysfs_create_file(const struct attribute *attr)
855 {
856 int ret = cpufreq_get_global_kobject();
857
858 if (!ret) {
859 ret = sysfs_create_file(cpufreq_global_kobject, attr);
860 if (ret)
861 cpufreq_put_global_kobject();
862 }
863
864 return ret;
865 }
866 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
867
868 void cpufreq_sysfs_remove_file(const struct attribute *attr)
869 {
870 sysfs_remove_file(cpufreq_global_kobject, attr);
871 cpufreq_put_global_kobject();
872 }
873 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
874
875 /* symlink affected CPUs */
876 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
877 {
878 unsigned int j;
879 int ret = 0;
880
881 for_each_cpu(j, policy->cpus) {
882 struct device *cpu_dev;
883
884 if (j == policy->cpu)
885 continue;
886
887 pr_debug("Adding link for CPU: %u\n", j);
888 cpu_dev = get_cpu_device(j);
889 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
890 "cpufreq");
891 if (ret)
892 break;
893 }
894 return ret;
895 }
896
897 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
898 struct device *dev)
899 {
900 struct freq_attr **drv_attr;
901 int ret = 0;
902
903 /* set up files for this cpu device */
904 drv_attr = cpufreq_driver->attr;
905 while (drv_attr && *drv_attr) {
906 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
907 if (ret)
908 return ret;
909 drv_attr++;
910 }
911 if (cpufreq_driver->get) {
912 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
913 if (ret)
914 return ret;
915 }
916
917 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
918 if (ret)
919 return ret;
920
921 if (cpufreq_driver->bios_limit) {
922 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
923 if (ret)
924 return ret;
925 }
926
927 return cpufreq_add_dev_symlink(policy);
928 }
929
930 static void cpufreq_init_policy(struct cpufreq_policy *policy)
931 {
932 struct cpufreq_governor *gov = NULL;
933 struct cpufreq_policy new_policy;
934 int ret = 0;
935
936 memcpy(&new_policy, policy, sizeof(*policy));
937
938 /* Update governor of new_policy to the governor used before hotplug */
939 gov = find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
940 if (gov)
941 pr_debug("Restoring governor %s for cpu %d\n",
942 policy->governor->name, policy->cpu);
943 else
944 gov = CPUFREQ_DEFAULT_GOVERNOR;
945
946 new_policy.governor = gov;
947
948 /* Use the default policy if its valid. */
949 if (cpufreq_driver->setpolicy)
950 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
951
952 /* set default policy */
953 ret = cpufreq_set_policy(policy, &new_policy);
954 if (ret) {
955 pr_debug("setting policy failed\n");
956 if (cpufreq_driver->exit)
957 cpufreq_driver->exit(policy);
958 }
959 }
960
961 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
962 unsigned int cpu, struct device *dev)
963 {
964 int ret = 0;
965 unsigned long flags;
966
967 if (has_target()) {
968 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
969 if (ret) {
970 pr_err("%s: Failed to stop governor\n", __func__);
971 return ret;
972 }
973 }
974
975 down_write(&policy->rwsem);
976
977 write_lock_irqsave(&cpufreq_driver_lock, flags);
978
979 cpumask_set_cpu(cpu, policy->cpus);
980 per_cpu(cpufreq_cpu_data, cpu) = policy;
981 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
982
983 up_write(&policy->rwsem);
984
985 if (has_target()) {
986 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
987 if (!ret)
988 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
989
990 if (ret) {
991 pr_err("%s: Failed to start governor\n", __func__);
992 return ret;
993 }
994 }
995
996 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
997 }
998
999 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
1000 {
1001 struct cpufreq_policy *policy;
1002 unsigned long flags;
1003
1004 read_lock_irqsave(&cpufreq_driver_lock, flags);
1005
1006 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
1007
1008 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1009
1010 if (policy)
1011 policy->governor = NULL;
1012
1013 return policy;
1014 }
1015
1016 static struct cpufreq_policy *cpufreq_policy_alloc(void)
1017 {
1018 struct cpufreq_policy *policy;
1019
1020 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1021 if (!policy)
1022 return NULL;
1023
1024 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1025 goto err_free_policy;
1026
1027 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1028 goto err_free_cpumask;
1029
1030 INIT_LIST_HEAD(&policy->policy_list);
1031 init_rwsem(&policy->rwsem);
1032 spin_lock_init(&policy->transition_lock);
1033 init_waitqueue_head(&policy->transition_wait);
1034
1035 return policy;
1036
1037 err_free_cpumask:
1038 free_cpumask_var(policy->cpus);
1039 err_free_policy:
1040 kfree(policy);
1041
1042 return NULL;
1043 }
1044
1045 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1046 {
1047 struct kobject *kobj;
1048 struct completion *cmp;
1049
1050 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1051 CPUFREQ_REMOVE_POLICY, policy);
1052
1053 down_read(&policy->rwsem);
1054 kobj = &policy->kobj;
1055 cmp = &policy->kobj_unregister;
1056 up_read(&policy->rwsem);
1057 kobject_put(kobj);
1058
1059 /*
1060 * We need to make sure that the underlying kobj is
1061 * actually not referenced anymore by anybody before we
1062 * proceed with unloading.
1063 */
1064 pr_debug("waiting for dropping of refcount\n");
1065 wait_for_completion(cmp);
1066 pr_debug("wait complete\n");
1067 }
1068
1069 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1070 {
1071 free_cpumask_var(policy->related_cpus);
1072 free_cpumask_var(policy->cpus);
1073 kfree(policy);
1074 }
1075
1076 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu,
1077 struct device *cpu_dev)
1078 {
1079 int ret;
1080
1081 if (WARN_ON(cpu == policy->cpu))
1082 return 0;
1083
1084 /* Move kobject to the new policy->cpu */
1085 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1086 if (ret) {
1087 pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1088 return ret;
1089 }
1090
1091 down_write(&policy->rwsem);
1092
1093 policy->last_cpu = policy->cpu;
1094 policy->cpu = cpu;
1095
1096 up_write(&policy->rwsem);
1097
1098 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1099 CPUFREQ_UPDATE_POLICY_CPU, policy);
1100
1101 return 0;
1102 }
1103
1104 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1105 {
1106 unsigned int j, cpu = dev->id;
1107 int ret = -ENOMEM;
1108 struct cpufreq_policy *policy;
1109 unsigned long flags;
1110 bool recover_policy = cpufreq_suspended;
1111
1112 if (cpu_is_offline(cpu))
1113 return 0;
1114
1115 pr_debug("adding CPU %u\n", cpu);
1116
1117 /* check whether a different CPU already registered this
1118 * CPU because it is in the same boat. */
1119 policy = cpufreq_cpu_get(cpu);
1120 if (unlikely(policy)) {
1121 cpufreq_cpu_put(policy);
1122 return 0;
1123 }
1124
1125 if (!down_read_trylock(&cpufreq_rwsem))
1126 return 0;
1127
1128 /* Check if this cpu was hot-unplugged earlier and has siblings */
1129 read_lock_irqsave(&cpufreq_driver_lock, flags);
1130 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1131 if (cpumask_test_cpu(cpu, policy->related_cpus)) {
1132 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1133 ret = cpufreq_add_policy_cpu(policy, cpu, dev);
1134 up_read(&cpufreq_rwsem);
1135 return ret;
1136 }
1137 }
1138 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1139
1140 /*
1141 * Restore the saved policy when doing light-weight init and fall back
1142 * to the full init if that fails.
1143 */
1144 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1145 if (!policy) {
1146 recover_policy = false;
1147 policy = cpufreq_policy_alloc();
1148 if (!policy)
1149 goto nomem_out;
1150 }
1151
1152 /*
1153 * In the resume path, since we restore a saved policy, the assignment
1154 * to policy->cpu is like an update of the existing policy, rather than
1155 * the creation of a brand new one. So we need to perform this update
1156 * by invoking update_policy_cpu().
1157 */
1158 if (recover_policy && cpu != policy->cpu)
1159 WARN_ON(update_policy_cpu(policy, cpu, dev));
1160 else
1161 policy->cpu = cpu;
1162
1163 cpumask_copy(policy->cpus, cpumask_of(cpu));
1164
1165 init_completion(&policy->kobj_unregister);
1166 INIT_WORK(&policy->update, handle_update);
1167
1168 /* call driver. From then on the cpufreq must be able
1169 * to accept all calls to ->verify and ->setpolicy for this CPU
1170 */
1171 ret = cpufreq_driver->init(policy);
1172 if (ret) {
1173 pr_debug("initialization failed\n");
1174 goto err_set_policy_cpu;
1175 }
1176
1177 down_write(&policy->rwsem);
1178
1179 /* related cpus should atleast have policy->cpus */
1180 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1181
1182 /*
1183 * affected cpus must always be the one, which are online. We aren't
1184 * managing offline cpus here.
1185 */
1186 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1187
1188 if (!recover_policy) {
1189 policy->user_policy.min = policy->min;
1190 policy->user_policy.max = policy->max;
1191
1192 /* prepare interface data */
1193 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1194 &dev->kobj, "cpufreq");
1195 if (ret) {
1196 pr_err("%s: failed to init policy->kobj: %d\n",
1197 __func__, ret);
1198 goto err_init_policy_kobj;
1199 }
1200 }
1201
1202 write_lock_irqsave(&cpufreq_driver_lock, flags);
1203 for_each_cpu(j, policy->cpus)
1204 per_cpu(cpufreq_cpu_data, j) = policy;
1205 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1206
1207 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1208 policy->cur = cpufreq_driver->get(policy->cpu);
1209 if (!policy->cur) {
1210 pr_err("%s: ->get() failed\n", __func__);
1211 goto err_get_freq;
1212 }
1213 }
1214
1215 /*
1216 * Sometimes boot loaders set CPU frequency to a value outside of
1217 * frequency table present with cpufreq core. In such cases CPU might be
1218 * unstable if it has to run on that frequency for long duration of time
1219 * and so its better to set it to a frequency which is specified in
1220 * freq-table. This also makes cpufreq stats inconsistent as
1221 * cpufreq-stats would fail to register because current frequency of CPU
1222 * isn't found in freq-table.
1223 *
1224 * Because we don't want this change to effect boot process badly, we go
1225 * for the next freq which is >= policy->cur ('cur' must be set by now,
1226 * otherwise we will end up setting freq to lowest of the table as 'cur'
1227 * is initialized to zero).
1228 *
1229 * We are passing target-freq as "policy->cur - 1" otherwise
1230 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1231 * equal to target-freq.
1232 */
1233 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1234 && has_target()) {
1235 /* Are we running at unknown frequency ? */
1236 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1237 if (ret == -EINVAL) {
1238 /* Warn user and fix it */
1239 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1240 __func__, policy->cpu, policy->cur);
1241 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1242 CPUFREQ_RELATION_L);
1243
1244 /*
1245 * Reaching here after boot in a few seconds may not
1246 * mean that system will remain stable at "unknown"
1247 * frequency for longer duration. Hence, a BUG_ON().
1248 */
1249 BUG_ON(ret);
1250 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1251 __func__, policy->cpu, policy->cur);
1252 }
1253 }
1254
1255 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1256 CPUFREQ_START, policy);
1257
1258 if (!recover_policy) {
1259 ret = cpufreq_add_dev_interface(policy, dev);
1260 if (ret)
1261 goto err_out_unregister;
1262 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1263 CPUFREQ_CREATE_POLICY, policy);
1264 }
1265
1266 write_lock_irqsave(&cpufreq_driver_lock, flags);
1267 list_add(&policy->policy_list, &cpufreq_policy_list);
1268 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1269
1270 cpufreq_init_policy(policy);
1271
1272 if (!recover_policy) {
1273 policy->user_policy.policy = policy->policy;
1274 policy->user_policy.governor = policy->governor;
1275 }
1276 up_write(&policy->rwsem);
1277
1278 kobject_uevent(&policy->kobj, KOBJ_ADD);
1279
1280 up_read(&cpufreq_rwsem);
1281
1282 /* Callback for handling stuff after policy is ready */
1283 if (cpufreq_driver->ready)
1284 cpufreq_driver->ready(policy);
1285
1286 pr_debug("initialization complete\n");
1287
1288 return 0;
1289
1290 err_out_unregister:
1291 err_get_freq:
1292 write_lock_irqsave(&cpufreq_driver_lock, flags);
1293 for_each_cpu(j, policy->cpus)
1294 per_cpu(cpufreq_cpu_data, j) = NULL;
1295 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1296
1297 if (!recover_policy) {
1298 kobject_put(&policy->kobj);
1299 wait_for_completion(&policy->kobj_unregister);
1300 }
1301 err_init_policy_kobj:
1302 up_write(&policy->rwsem);
1303
1304 if (cpufreq_driver->exit)
1305 cpufreq_driver->exit(policy);
1306 err_set_policy_cpu:
1307 if (recover_policy) {
1308 /* Do not leave stale fallback data behind. */
1309 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1310 cpufreq_policy_put_kobj(policy);
1311 }
1312 cpufreq_policy_free(policy);
1313
1314 nomem_out:
1315 up_read(&cpufreq_rwsem);
1316
1317 return ret;
1318 }
1319
1320 /**
1321 * cpufreq_add_dev - add a CPU device
1322 *
1323 * Adds the cpufreq interface for a CPU device.
1324 *
1325 * The Oracle says: try running cpufreq registration/unregistration concurrently
1326 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1327 * mess up, but more thorough testing is needed. - Mathieu
1328 */
1329 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1330 {
1331 return __cpufreq_add_dev(dev, sif);
1332 }
1333
1334 static int __cpufreq_remove_dev_prepare(struct device *dev,
1335 struct subsys_interface *sif)
1336 {
1337 unsigned int cpu = dev->id, cpus;
1338 int ret;
1339 unsigned long flags;
1340 struct cpufreq_policy *policy;
1341
1342 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1343
1344 write_lock_irqsave(&cpufreq_driver_lock, flags);
1345
1346 policy = per_cpu(cpufreq_cpu_data, cpu);
1347
1348 /* Save the policy somewhere when doing a light-weight tear-down */
1349 if (cpufreq_suspended)
1350 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1351
1352 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1353
1354 if (!policy) {
1355 pr_debug("%s: No cpu_data found\n", __func__);
1356 return -EINVAL;
1357 }
1358
1359 if (has_target()) {
1360 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1361 if (ret) {
1362 pr_err("%s: Failed to stop governor\n", __func__);
1363 return ret;
1364 }
1365
1366 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1367 policy->governor->name, CPUFREQ_NAME_LEN);
1368 }
1369
1370 down_read(&policy->rwsem);
1371 cpus = cpumask_weight(policy->cpus);
1372 up_read(&policy->rwsem);
1373
1374 if (cpu != policy->cpu) {
1375 sysfs_remove_link(&dev->kobj, "cpufreq");
1376 } else if (cpus > 1) {
1377 /* Nominate new CPU */
1378 int new_cpu = cpumask_any_but(policy->cpus, cpu);
1379 struct device *cpu_dev = get_cpu_device(new_cpu);
1380
1381 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1382 ret = update_policy_cpu(policy, new_cpu, cpu_dev);
1383 if (ret) {
1384 if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1385 "cpufreq"))
1386 pr_err("%s: Failed to restore kobj link to cpu:%d\n",
1387 __func__, cpu_dev->id);
1388 return ret;
1389 }
1390
1391 if (!cpufreq_suspended)
1392 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1393 __func__, new_cpu, cpu);
1394 } else if (cpufreq_driver->stop_cpu) {
1395 cpufreq_driver->stop_cpu(policy);
1396 }
1397
1398 return 0;
1399 }
1400
1401 static int __cpufreq_remove_dev_finish(struct device *dev,
1402 struct subsys_interface *sif)
1403 {
1404 unsigned int cpu = dev->id, cpus;
1405 int ret;
1406 unsigned long flags;
1407 struct cpufreq_policy *policy;
1408
1409 read_lock_irqsave(&cpufreq_driver_lock, flags);
1410 policy = per_cpu(cpufreq_cpu_data, cpu);
1411 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1412
1413 if (!policy) {
1414 pr_debug("%s: No cpu_data found\n", __func__);
1415 return -EINVAL;
1416 }
1417
1418 down_write(&policy->rwsem);
1419 cpus = cpumask_weight(policy->cpus);
1420
1421 if (cpus > 1)
1422 cpumask_clear_cpu(cpu, policy->cpus);
1423 up_write(&policy->rwsem);
1424
1425 /* If cpu is last user of policy, free policy */
1426 if (cpus == 1) {
1427 if (has_target()) {
1428 ret = __cpufreq_governor(policy,
1429 CPUFREQ_GOV_POLICY_EXIT);
1430 if (ret) {
1431 pr_err("%s: Failed to exit governor\n",
1432 __func__);
1433 return ret;
1434 }
1435 }
1436
1437 if (!cpufreq_suspended)
1438 cpufreq_policy_put_kobj(policy);
1439
1440 /*
1441 * Perform the ->exit() even during light-weight tear-down,
1442 * since this is a core component, and is essential for the
1443 * subsequent light-weight ->init() to succeed.
1444 */
1445 if (cpufreq_driver->exit)
1446 cpufreq_driver->exit(policy);
1447
1448 /* Remove policy from list of active policies */
1449 write_lock_irqsave(&cpufreq_driver_lock, flags);
1450 list_del(&policy->policy_list);
1451 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1452
1453 if (!cpufreq_suspended)
1454 cpufreq_policy_free(policy);
1455 } else if (has_target()) {
1456 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1457 if (!ret)
1458 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1459
1460 if (ret) {
1461 pr_err("%s: Failed to start governor\n", __func__);
1462 return ret;
1463 }
1464 }
1465
1466 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1467 return 0;
1468 }
1469
1470 /**
1471 * cpufreq_remove_dev - remove a CPU device
1472 *
1473 * Removes the cpufreq interface for a CPU device.
1474 */
1475 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1476 {
1477 unsigned int cpu = dev->id;
1478 int ret;
1479
1480 if (cpu_is_offline(cpu))
1481 return 0;
1482
1483 ret = __cpufreq_remove_dev_prepare(dev, sif);
1484
1485 if (!ret)
1486 ret = __cpufreq_remove_dev_finish(dev, sif);
1487
1488 return ret;
1489 }
1490
1491 static void handle_update(struct work_struct *work)
1492 {
1493 struct cpufreq_policy *policy =
1494 container_of(work, struct cpufreq_policy, update);
1495 unsigned int cpu = policy->cpu;
1496 pr_debug("handle_update for cpu %u called\n", cpu);
1497 cpufreq_update_policy(cpu);
1498 }
1499
1500 /**
1501 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1502 * in deep trouble.
1503 * @policy: policy managing CPUs
1504 * @new_freq: CPU frequency the CPU actually runs at
1505 *
1506 * We adjust to current frequency first, and need to clean up later.
1507 * So either call to cpufreq_update_policy() or schedule handle_update()).
1508 */
1509 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1510 unsigned int new_freq)
1511 {
1512 struct cpufreq_freqs freqs;
1513
1514 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1515 policy->cur, new_freq);
1516
1517 freqs.old = policy->cur;
1518 freqs.new = new_freq;
1519
1520 cpufreq_freq_transition_begin(policy, &freqs);
1521 cpufreq_freq_transition_end(policy, &freqs, 0);
1522 }
1523
1524 /**
1525 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1526 * @cpu: CPU number
1527 *
1528 * This is the last known freq, without actually getting it from the driver.
1529 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1530 */
1531 unsigned int cpufreq_quick_get(unsigned int cpu)
1532 {
1533 struct cpufreq_policy *policy;
1534 unsigned int ret_freq = 0;
1535
1536 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1537 return cpufreq_driver->get(cpu);
1538
1539 policy = cpufreq_cpu_get(cpu);
1540 if (policy) {
1541 ret_freq = policy->cur;
1542 cpufreq_cpu_put(policy);
1543 }
1544
1545 return ret_freq;
1546 }
1547 EXPORT_SYMBOL(cpufreq_quick_get);
1548
1549 /**
1550 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1551 * @cpu: CPU number
1552 *
1553 * Just return the max possible frequency for a given CPU.
1554 */
1555 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1556 {
1557 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1558 unsigned int ret_freq = 0;
1559
1560 if (policy) {
1561 ret_freq = policy->max;
1562 cpufreq_cpu_put(policy);
1563 }
1564
1565 return ret_freq;
1566 }
1567 EXPORT_SYMBOL(cpufreq_quick_get_max);
1568
1569 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1570 {
1571 unsigned int ret_freq = 0;
1572
1573 if (!cpufreq_driver->get)
1574 return ret_freq;
1575
1576 ret_freq = cpufreq_driver->get(policy->cpu);
1577
1578 if (ret_freq && policy->cur &&
1579 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1580 /* verify no discrepancy between actual and
1581 saved value exists */
1582 if (unlikely(ret_freq != policy->cur)) {
1583 cpufreq_out_of_sync(policy, ret_freq);
1584 schedule_work(&policy->update);
1585 }
1586 }
1587
1588 return ret_freq;
1589 }
1590
1591 /**
1592 * cpufreq_get - get the current CPU frequency (in kHz)
1593 * @cpu: CPU number
1594 *
1595 * Get the CPU current (static) CPU frequency
1596 */
1597 unsigned int cpufreq_get(unsigned int cpu)
1598 {
1599 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1600 unsigned int ret_freq = 0;
1601
1602 if (policy) {
1603 down_read(&policy->rwsem);
1604 ret_freq = __cpufreq_get(policy);
1605 up_read(&policy->rwsem);
1606
1607 cpufreq_cpu_put(policy);
1608 }
1609
1610 return ret_freq;
1611 }
1612 EXPORT_SYMBOL(cpufreq_get);
1613
1614 static struct subsys_interface cpufreq_interface = {
1615 .name = "cpufreq",
1616 .subsys = &cpu_subsys,
1617 .add_dev = cpufreq_add_dev,
1618 .remove_dev = cpufreq_remove_dev,
1619 };
1620
1621 /*
1622 * In case platform wants some specific frequency to be configured
1623 * during suspend..
1624 */
1625 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1626 {
1627 int ret;
1628
1629 if (!policy->suspend_freq) {
1630 pr_err("%s: suspend_freq can't be zero\n", __func__);
1631 return -EINVAL;
1632 }
1633
1634 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1635 policy->suspend_freq);
1636
1637 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1638 CPUFREQ_RELATION_H);
1639 if (ret)
1640 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1641 __func__, policy->suspend_freq, ret);
1642
1643 return ret;
1644 }
1645 EXPORT_SYMBOL(cpufreq_generic_suspend);
1646
1647 /**
1648 * cpufreq_suspend() - Suspend CPUFreq governors
1649 *
1650 * Called during system wide Suspend/Hibernate cycles for suspending governors
1651 * as some platforms can't change frequency after this point in suspend cycle.
1652 * Because some of the devices (like: i2c, regulators, etc) they use for
1653 * changing frequency are suspended quickly after this point.
1654 */
1655 void cpufreq_suspend(void)
1656 {
1657 struct cpufreq_policy *policy;
1658
1659 if (!cpufreq_driver)
1660 return;
1661
1662 if (!has_target())
1663 goto suspend;
1664
1665 pr_debug("%s: Suspending Governors\n", __func__);
1666
1667 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1668 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1669 pr_err("%s: Failed to stop governor for policy: %p\n",
1670 __func__, policy);
1671 else if (cpufreq_driver->suspend
1672 && cpufreq_driver->suspend(policy))
1673 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1674 policy);
1675 }
1676
1677 suspend:
1678 cpufreq_suspended = true;
1679 }
1680
1681 /**
1682 * cpufreq_resume() - Resume CPUFreq governors
1683 *
1684 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1685 * are suspended with cpufreq_suspend().
1686 */
1687 void cpufreq_resume(void)
1688 {
1689 struct cpufreq_policy *policy;
1690
1691 if (!cpufreq_driver)
1692 return;
1693
1694 cpufreq_suspended = false;
1695
1696 if (!has_target())
1697 return;
1698
1699 pr_debug("%s: Resuming Governors\n", __func__);
1700
1701 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1702 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1703 pr_err("%s: Failed to resume driver: %p\n", __func__,
1704 policy);
1705 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1706 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1707 pr_err("%s: Failed to start governor for policy: %p\n",
1708 __func__, policy);
1709
1710 /*
1711 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1712 * policy in list. It will verify that the current freq is in
1713 * sync with what we believe it to be.
1714 */
1715 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1716 schedule_work(&policy->update);
1717 }
1718 }
1719
1720 /**
1721 * cpufreq_get_current_driver - return current driver's name
1722 *
1723 * Return the name string of the currently loaded cpufreq driver
1724 * or NULL, if none.
1725 */
1726 const char *cpufreq_get_current_driver(void)
1727 {
1728 if (cpufreq_driver)
1729 return cpufreq_driver->name;
1730
1731 return NULL;
1732 }
1733 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1734
1735 /**
1736 * cpufreq_get_driver_data - return current driver data
1737 *
1738 * Return the private data of the currently loaded cpufreq
1739 * driver, or NULL if no cpufreq driver is loaded.
1740 */
1741 void *cpufreq_get_driver_data(void)
1742 {
1743 if (cpufreq_driver)
1744 return cpufreq_driver->driver_data;
1745
1746 return NULL;
1747 }
1748 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1749
1750 /*********************************************************************
1751 * NOTIFIER LISTS INTERFACE *
1752 *********************************************************************/
1753
1754 /**
1755 * cpufreq_register_notifier - register a driver with cpufreq
1756 * @nb: notifier function to register
1757 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1758 *
1759 * Add a driver to one of two lists: either a list of drivers that
1760 * are notified about clock rate changes (once before and once after
1761 * the transition), or a list of drivers that are notified about
1762 * changes in cpufreq policy.
1763 *
1764 * This function may sleep, and has the same return conditions as
1765 * blocking_notifier_chain_register.
1766 */
1767 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1768 {
1769 int ret;
1770
1771 if (cpufreq_disabled())
1772 return -EINVAL;
1773
1774 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1775
1776 switch (list) {
1777 case CPUFREQ_TRANSITION_NOTIFIER:
1778 ret = srcu_notifier_chain_register(
1779 &cpufreq_transition_notifier_list, nb);
1780 break;
1781 case CPUFREQ_POLICY_NOTIFIER:
1782 ret = blocking_notifier_chain_register(
1783 &cpufreq_policy_notifier_list, nb);
1784 break;
1785 default:
1786 ret = -EINVAL;
1787 }
1788
1789 return ret;
1790 }
1791 EXPORT_SYMBOL(cpufreq_register_notifier);
1792
1793 /**
1794 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1795 * @nb: notifier block to be unregistered
1796 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1797 *
1798 * Remove a driver from the CPU frequency notifier list.
1799 *
1800 * This function may sleep, and has the same return conditions as
1801 * blocking_notifier_chain_unregister.
1802 */
1803 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1804 {
1805 int ret;
1806
1807 if (cpufreq_disabled())
1808 return -EINVAL;
1809
1810 switch (list) {
1811 case CPUFREQ_TRANSITION_NOTIFIER:
1812 ret = srcu_notifier_chain_unregister(
1813 &cpufreq_transition_notifier_list, nb);
1814 break;
1815 case CPUFREQ_POLICY_NOTIFIER:
1816 ret = blocking_notifier_chain_unregister(
1817 &cpufreq_policy_notifier_list, nb);
1818 break;
1819 default:
1820 ret = -EINVAL;
1821 }
1822
1823 return ret;
1824 }
1825 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1826
1827
1828 /*********************************************************************
1829 * GOVERNORS *
1830 *********************************************************************/
1831
1832 /* Must set freqs->new to intermediate frequency */
1833 static int __target_intermediate(struct cpufreq_policy *policy,
1834 struct cpufreq_freqs *freqs, int index)
1835 {
1836 int ret;
1837
1838 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1839
1840 /* We don't need to switch to intermediate freq */
1841 if (!freqs->new)
1842 return 0;
1843
1844 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1845 __func__, policy->cpu, freqs->old, freqs->new);
1846
1847 cpufreq_freq_transition_begin(policy, freqs);
1848 ret = cpufreq_driver->target_intermediate(policy, index);
1849 cpufreq_freq_transition_end(policy, freqs, ret);
1850
1851 if (ret)
1852 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1853 __func__, ret);
1854
1855 return ret;
1856 }
1857
1858 static int __target_index(struct cpufreq_policy *policy,
1859 struct cpufreq_frequency_table *freq_table, int index)
1860 {
1861 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1862 unsigned int intermediate_freq = 0;
1863 int retval = -EINVAL;
1864 bool notify;
1865
1866 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1867 if (notify) {
1868 /* Handle switching to intermediate frequency */
1869 if (cpufreq_driver->get_intermediate) {
1870 retval = __target_intermediate(policy, &freqs, index);
1871 if (retval)
1872 return retval;
1873
1874 intermediate_freq = freqs.new;
1875 /* Set old freq to intermediate */
1876 if (intermediate_freq)
1877 freqs.old = freqs.new;
1878 }
1879
1880 freqs.new = freq_table[index].frequency;
1881 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1882 __func__, policy->cpu, freqs.old, freqs.new);
1883
1884 cpufreq_freq_transition_begin(policy, &freqs);
1885 }
1886
1887 retval = cpufreq_driver->target_index(policy, index);
1888 if (retval)
1889 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1890 retval);
1891
1892 if (notify) {
1893 cpufreq_freq_transition_end(policy, &freqs, retval);
1894
1895 /*
1896 * Failed after setting to intermediate freq? Driver should have
1897 * reverted back to initial frequency and so should we. Check
1898 * here for intermediate_freq instead of get_intermediate, in
1899 * case we have't switched to intermediate freq at all.
1900 */
1901 if (unlikely(retval && intermediate_freq)) {
1902 freqs.old = intermediate_freq;
1903 freqs.new = policy->restore_freq;
1904 cpufreq_freq_transition_begin(policy, &freqs);
1905 cpufreq_freq_transition_end(policy, &freqs, 0);
1906 }
1907 }
1908
1909 return retval;
1910 }
1911
1912 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1913 unsigned int target_freq,
1914 unsigned int relation)
1915 {
1916 unsigned int old_target_freq = target_freq;
1917 int retval = -EINVAL;
1918
1919 if (cpufreq_disabled())
1920 return -ENODEV;
1921
1922 /* Make sure that target_freq is within supported range */
1923 if (target_freq > policy->max)
1924 target_freq = policy->max;
1925 if (target_freq < policy->min)
1926 target_freq = policy->min;
1927
1928 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1929 policy->cpu, target_freq, relation, old_target_freq);
1930
1931 /*
1932 * This might look like a redundant call as we are checking it again
1933 * after finding index. But it is left intentionally for cases where
1934 * exactly same freq is called again and so we can save on few function
1935 * calls.
1936 */
1937 if (target_freq == policy->cur)
1938 return 0;
1939
1940 /* Save last value to restore later on errors */
1941 policy->restore_freq = policy->cur;
1942
1943 if (cpufreq_driver->target)
1944 retval = cpufreq_driver->target(policy, target_freq, relation);
1945 else if (cpufreq_driver->target_index) {
1946 struct cpufreq_frequency_table *freq_table;
1947 int index;
1948
1949 freq_table = cpufreq_frequency_get_table(policy->cpu);
1950 if (unlikely(!freq_table)) {
1951 pr_err("%s: Unable to find freq_table\n", __func__);
1952 goto out;
1953 }
1954
1955 retval = cpufreq_frequency_table_target(policy, freq_table,
1956 target_freq, relation, &index);
1957 if (unlikely(retval)) {
1958 pr_err("%s: Unable to find matching freq\n", __func__);
1959 goto out;
1960 }
1961
1962 if (freq_table[index].frequency == policy->cur) {
1963 retval = 0;
1964 goto out;
1965 }
1966
1967 retval = __target_index(policy, freq_table, index);
1968 }
1969
1970 out:
1971 return retval;
1972 }
1973 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1974
1975 int cpufreq_driver_target(struct cpufreq_policy *policy,
1976 unsigned int target_freq,
1977 unsigned int relation)
1978 {
1979 int ret = -EINVAL;
1980
1981 down_write(&policy->rwsem);
1982
1983 ret = __cpufreq_driver_target(policy, target_freq, relation);
1984
1985 up_write(&policy->rwsem);
1986
1987 return ret;
1988 }
1989 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1990
1991 static int __cpufreq_governor(struct cpufreq_policy *policy,
1992 unsigned int event)
1993 {
1994 int ret;
1995
1996 /* Only must be defined when default governor is known to have latency
1997 restrictions, like e.g. conservative or ondemand.
1998 That this is the case is already ensured in Kconfig
1999 */
2000 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
2001 struct cpufreq_governor *gov = &cpufreq_gov_performance;
2002 #else
2003 struct cpufreq_governor *gov = NULL;
2004 #endif
2005
2006 /* Don't start any governor operations if we are entering suspend */
2007 if (cpufreq_suspended)
2008 return 0;
2009 /*
2010 * Governor might not be initiated here if ACPI _PPC changed
2011 * notification happened, so check it.
2012 */
2013 if (!policy->governor)
2014 return -EINVAL;
2015
2016 if (policy->governor->max_transition_latency &&
2017 policy->cpuinfo.transition_latency >
2018 policy->governor->max_transition_latency) {
2019 if (!gov)
2020 return -EINVAL;
2021 else {
2022 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2023 policy->governor->name, gov->name);
2024 policy->governor = gov;
2025 }
2026 }
2027
2028 if (event == CPUFREQ_GOV_POLICY_INIT)
2029 if (!try_module_get(policy->governor->owner))
2030 return -EINVAL;
2031
2032 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
2033 policy->cpu, event);
2034
2035 mutex_lock(&cpufreq_governor_lock);
2036 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
2037 || (!policy->governor_enabled
2038 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
2039 mutex_unlock(&cpufreq_governor_lock);
2040 return -EBUSY;
2041 }
2042
2043 if (event == CPUFREQ_GOV_STOP)
2044 policy->governor_enabled = false;
2045 else if (event == CPUFREQ_GOV_START)
2046 policy->governor_enabled = true;
2047
2048 mutex_unlock(&cpufreq_governor_lock);
2049
2050 ret = policy->governor->governor(policy, event);
2051
2052 if (!ret) {
2053 if (event == CPUFREQ_GOV_POLICY_INIT)
2054 policy->governor->initialized++;
2055 else if (event == CPUFREQ_GOV_POLICY_EXIT)
2056 policy->governor->initialized--;
2057 } else {
2058 /* Restore original values */
2059 mutex_lock(&cpufreq_governor_lock);
2060 if (event == CPUFREQ_GOV_STOP)
2061 policy->governor_enabled = true;
2062 else if (event == CPUFREQ_GOV_START)
2063 policy->governor_enabled = false;
2064 mutex_unlock(&cpufreq_governor_lock);
2065 }
2066
2067 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2068 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2069 module_put(policy->governor->owner);
2070
2071 return ret;
2072 }
2073
2074 int cpufreq_register_governor(struct cpufreq_governor *governor)
2075 {
2076 int err;
2077
2078 if (!governor)
2079 return -EINVAL;
2080
2081 if (cpufreq_disabled())
2082 return -ENODEV;
2083
2084 mutex_lock(&cpufreq_governor_mutex);
2085
2086 governor->initialized = 0;
2087 err = -EBUSY;
2088 if (!find_governor(governor->name)) {
2089 err = 0;
2090 list_add(&governor->governor_list, &cpufreq_governor_list);
2091 }
2092
2093 mutex_unlock(&cpufreq_governor_mutex);
2094 return err;
2095 }
2096 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2097
2098 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2099 {
2100 int cpu;
2101
2102 if (!governor)
2103 return;
2104
2105 if (cpufreq_disabled())
2106 return;
2107
2108 for_each_present_cpu(cpu) {
2109 if (cpu_online(cpu))
2110 continue;
2111 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2112 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2113 }
2114
2115 mutex_lock(&cpufreq_governor_mutex);
2116 list_del(&governor->governor_list);
2117 mutex_unlock(&cpufreq_governor_mutex);
2118 return;
2119 }
2120 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2121
2122
2123 /*********************************************************************
2124 * POLICY INTERFACE *
2125 *********************************************************************/
2126
2127 /**
2128 * cpufreq_get_policy - get the current cpufreq_policy
2129 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2130 * is written
2131 *
2132 * Reads the current cpufreq policy.
2133 */
2134 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2135 {
2136 struct cpufreq_policy *cpu_policy;
2137 if (!policy)
2138 return -EINVAL;
2139
2140 cpu_policy = cpufreq_cpu_get(cpu);
2141 if (!cpu_policy)
2142 return -EINVAL;
2143
2144 memcpy(policy, cpu_policy, sizeof(*policy));
2145
2146 cpufreq_cpu_put(cpu_policy);
2147 return 0;
2148 }
2149 EXPORT_SYMBOL(cpufreq_get_policy);
2150
2151 /*
2152 * policy : current policy.
2153 * new_policy: policy to be set.
2154 */
2155 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2156 struct cpufreq_policy *new_policy)
2157 {
2158 struct cpufreq_governor *old_gov;
2159 int ret;
2160
2161 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2162 new_policy->cpu, new_policy->min, new_policy->max);
2163
2164 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2165
2166 if (new_policy->min > policy->max || new_policy->max < policy->min)
2167 return -EINVAL;
2168
2169 /* verify the cpu speed can be set within this limit */
2170 ret = cpufreq_driver->verify(new_policy);
2171 if (ret)
2172 return ret;
2173
2174 /* adjust if necessary - all reasons */
2175 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2176 CPUFREQ_ADJUST, new_policy);
2177
2178 /* adjust if necessary - hardware incompatibility*/
2179 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2180 CPUFREQ_INCOMPATIBLE, new_policy);
2181
2182 /*
2183 * verify the cpu speed can be set within this limit, which might be
2184 * different to the first one
2185 */
2186 ret = cpufreq_driver->verify(new_policy);
2187 if (ret)
2188 return ret;
2189
2190 /* notification of the new policy */
2191 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2192 CPUFREQ_NOTIFY, new_policy);
2193
2194 policy->min = new_policy->min;
2195 policy->max = new_policy->max;
2196
2197 pr_debug("new min and max freqs are %u - %u kHz\n",
2198 policy->min, policy->max);
2199
2200 if (cpufreq_driver->setpolicy) {
2201 policy->policy = new_policy->policy;
2202 pr_debug("setting range\n");
2203 return cpufreq_driver->setpolicy(new_policy);
2204 }
2205
2206 if (new_policy->governor == policy->governor)
2207 goto out;
2208
2209 pr_debug("governor switch\n");
2210
2211 /* save old, working values */
2212 old_gov = policy->governor;
2213 /* end old governor */
2214 if (old_gov) {
2215 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2216 up_write(&policy->rwsem);
2217 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2218 down_write(&policy->rwsem);
2219 }
2220
2221 /* start new governor */
2222 policy->governor = new_policy->governor;
2223 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2224 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2225 goto out;
2226
2227 up_write(&policy->rwsem);
2228 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2229 down_write(&policy->rwsem);
2230 }
2231
2232 /* new governor failed, so re-start old one */
2233 pr_debug("starting governor %s failed\n", policy->governor->name);
2234 if (old_gov) {
2235 policy->governor = old_gov;
2236 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2237 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2238 }
2239
2240 return -EINVAL;
2241
2242 out:
2243 pr_debug("governor: change or update limits\n");
2244 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2245 }
2246
2247 /**
2248 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2249 * @cpu: CPU which shall be re-evaluated
2250 *
2251 * Useful for policy notifiers which have different necessities
2252 * at different times.
2253 */
2254 int cpufreq_update_policy(unsigned int cpu)
2255 {
2256 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2257 struct cpufreq_policy new_policy;
2258 int ret;
2259
2260 if (!policy)
2261 return -ENODEV;
2262
2263 down_write(&policy->rwsem);
2264
2265 pr_debug("updating policy for CPU %u\n", cpu);
2266 memcpy(&new_policy, policy, sizeof(*policy));
2267 new_policy.min = policy->user_policy.min;
2268 new_policy.max = policy->user_policy.max;
2269 new_policy.policy = policy->user_policy.policy;
2270 new_policy.governor = policy->user_policy.governor;
2271
2272 /*
2273 * BIOS might change freq behind our back
2274 * -> ask driver for current freq and notify governors about a change
2275 */
2276 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2277 new_policy.cur = cpufreq_driver->get(cpu);
2278 if (WARN_ON(!new_policy.cur)) {
2279 ret = -EIO;
2280 goto unlock;
2281 }
2282
2283 if (!policy->cur) {
2284 pr_debug("Driver did not initialize current freq\n");
2285 policy->cur = new_policy.cur;
2286 } else {
2287 if (policy->cur != new_policy.cur && has_target())
2288 cpufreq_out_of_sync(policy, new_policy.cur);
2289 }
2290 }
2291
2292 ret = cpufreq_set_policy(policy, &new_policy);
2293
2294 unlock:
2295 up_write(&policy->rwsem);
2296
2297 cpufreq_cpu_put(policy);
2298 return ret;
2299 }
2300 EXPORT_SYMBOL(cpufreq_update_policy);
2301
2302 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2303 unsigned long action, void *hcpu)
2304 {
2305 unsigned int cpu = (unsigned long)hcpu;
2306 struct device *dev;
2307
2308 dev = get_cpu_device(cpu);
2309 if (dev) {
2310 switch (action & ~CPU_TASKS_FROZEN) {
2311 case CPU_ONLINE:
2312 __cpufreq_add_dev(dev, NULL);
2313 break;
2314
2315 case CPU_DOWN_PREPARE:
2316 __cpufreq_remove_dev_prepare(dev, NULL);
2317 break;
2318
2319 case CPU_POST_DEAD:
2320 __cpufreq_remove_dev_finish(dev, NULL);
2321 break;
2322
2323 case CPU_DOWN_FAILED:
2324 __cpufreq_add_dev(dev, NULL);
2325 break;
2326 }
2327 }
2328 return NOTIFY_OK;
2329 }
2330
2331 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2332 .notifier_call = cpufreq_cpu_callback,
2333 };
2334
2335 /*********************************************************************
2336 * BOOST *
2337 *********************************************************************/
2338 static int cpufreq_boost_set_sw(int state)
2339 {
2340 struct cpufreq_frequency_table *freq_table;
2341 struct cpufreq_policy *policy;
2342 int ret = -EINVAL;
2343
2344 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2345 freq_table = cpufreq_frequency_get_table(policy->cpu);
2346 if (freq_table) {
2347 ret = cpufreq_frequency_table_cpuinfo(policy,
2348 freq_table);
2349 if (ret) {
2350 pr_err("%s: Policy frequency update failed\n",
2351 __func__);
2352 break;
2353 }
2354 policy->user_policy.max = policy->max;
2355 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2356 }
2357 }
2358
2359 return ret;
2360 }
2361
2362 int cpufreq_boost_trigger_state(int state)
2363 {
2364 unsigned long flags;
2365 int ret = 0;
2366
2367 if (cpufreq_driver->boost_enabled == state)
2368 return 0;
2369
2370 write_lock_irqsave(&cpufreq_driver_lock, flags);
2371 cpufreq_driver->boost_enabled = state;
2372 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2373
2374 ret = cpufreq_driver->set_boost(state);
2375 if (ret) {
2376 write_lock_irqsave(&cpufreq_driver_lock, flags);
2377 cpufreq_driver->boost_enabled = !state;
2378 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2379
2380 pr_err("%s: Cannot %s BOOST\n",
2381 __func__, state ? "enable" : "disable");
2382 }
2383
2384 return ret;
2385 }
2386
2387 int cpufreq_boost_supported(void)
2388 {
2389 if (likely(cpufreq_driver))
2390 return cpufreq_driver->boost_supported;
2391
2392 return 0;
2393 }
2394 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2395
2396 int cpufreq_boost_enabled(void)
2397 {
2398 return cpufreq_driver->boost_enabled;
2399 }
2400 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2401
2402 /*********************************************************************
2403 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2404 *********************************************************************/
2405
2406 /**
2407 * cpufreq_register_driver - register a CPU Frequency driver
2408 * @driver_data: A struct cpufreq_driver containing the values#
2409 * submitted by the CPU Frequency driver.
2410 *
2411 * Registers a CPU Frequency driver to this core code. This code
2412 * returns zero on success, -EBUSY when another driver got here first
2413 * (and isn't unregistered in the meantime).
2414 *
2415 */
2416 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2417 {
2418 unsigned long flags;
2419 int ret;
2420
2421 if (cpufreq_disabled())
2422 return -ENODEV;
2423
2424 if (!driver_data || !driver_data->verify || !driver_data->init ||
2425 !(driver_data->setpolicy || driver_data->target_index ||
2426 driver_data->target) ||
2427 (driver_data->setpolicy && (driver_data->target_index ||
2428 driver_data->target)) ||
2429 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2430 return -EINVAL;
2431
2432 pr_debug("trying to register driver %s\n", driver_data->name);
2433
2434 write_lock_irqsave(&cpufreq_driver_lock, flags);
2435 if (cpufreq_driver) {
2436 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2437 return -EEXIST;
2438 }
2439 cpufreq_driver = driver_data;
2440 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441
2442 if (driver_data->setpolicy)
2443 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2444
2445 if (cpufreq_boost_supported()) {
2446 /*
2447 * Check if driver provides function to enable boost -
2448 * if not, use cpufreq_boost_set_sw as default
2449 */
2450 if (!cpufreq_driver->set_boost)
2451 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2452
2453 ret = cpufreq_sysfs_create_file(&boost.attr);
2454 if (ret) {
2455 pr_err("%s: cannot register global BOOST sysfs file\n",
2456 __func__);
2457 goto err_null_driver;
2458 }
2459 }
2460
2461 ret = subsys_interface_register(&cpufreq_interface);
2462 if (ret)
2463 goto err_boost_unreg;
2464
2465 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2466 int i;
2467 ret = -ENODEV;
2468
2469 /* check for at least one working CPU */
2470 for (i = 0; i < nr_cpu_ids; i++)
2471 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2472 ret = 0;
2473 break;
2474 }
2475
2476 /* if all ->init() calls failed, unregister */
2477 if (ret) {
2478 pr_debug("no CPU initialized for driver %s\n",
2479 driver_data->name);
2480 goto err_if_unreg;
2481 }
2482 }
2483
2484 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2485 pr_debug("driver %s up and running\n", driver_data->name);
2486
2487 return 0;
2488 err_if_unreg:
2489 subsys_interface_unregister(&cpufreq_interface);
2490 err_boost_unreg:
2491 if (cpufreq_boost_supported())
2492 cpufreq_sysfs_remove_file(&boost.attr);
2493 err_null_driver:
2494 write_lock_irqsave(&cpufreq_driver_lock, flags);
2495 cpufreq_driver = NULL;
2496 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2497 return ret;
2498 }
2499 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2500
2501 /**
2502 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2503 *
2504 * Unregister the current CPUFreq driver. Only call this if you have
2505 * the right to do so, i.e. if you have succeeded in initialising before!
2506 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2507 * currently not initialised.
2508 */
2509 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2510 {
2511 unsigned long flags;
2512
2513 if (!cpufreq_driver || (driver != cpufreq_driver))
2514 return -EINVAL;
2515
2516 pr_debug("unregistering driver %s\n", driver->name);
2517
2518 subsys_interface_unregister(&cpufreq_interface);
2519 if (cpufreq_boost_supported())
2520 cpufreq_sysfs_remove_file(&boost.attr);
2521
2522 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2523
2524 down_write(&cpufreq_rwsem);
2525 write_lock_irqsave(&cpufreq_driver_lock, flags);
2526
2527 cpufreq_driver = NULL;
2528
2529 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2530 up_write(&cpufreq_rwsem);
2531
2532 return 0;
2533 }
2534 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2535
2536 /*
2537 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2538 * or mutexes when secondary CPUs are halted.
2539 */
2540 static struct syscore_ops cpufreq_syscore_ops = {
2541 .shutdown = cpufreq_suspend,
2542 };
2543
2544 static int __init cpufreq_core_init(void)
2545 {
2546 if (cpufreq_disabled())
2547 return -ENODEV;
2548
2549 cpufreq_global_kobject = kobject_create();
2550 BUG_ON(!cpufreq_global_kobject);
2551
2552 register_syscore_ops(&cpufreq_syscore_ops);
2553
2554 return 0;
2555 }
2556 core_initcall(cpufreq_core_init);
This page took 0.084008 seconds and 5 git commands to generate.