Merge branch 's5p-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #include <trace/events/power.h>
33
34 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
35 "cpufreq-core", msg)
36
37 /**
38 * The "cpufreq driver" - the arch- or hardware-dependent low
39 * level driver of CPUFreq support, and its spinlock. This lock
40 * also protects the cpufreq_cpu_data array.
41 */
42 static struct cpufreq_driver *cpufreq_driver;
43 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
44 #ifdef CONFIG_HOTPLUG_CPU
45 /* This one keeps track of the previously set governor of a removed CPU */
46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47 #endif
48 static DEFINE_SPINLOCK(cpufreq_driver_lock);
49
50 /*
51 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
52 * all cpufreq/hotplug/workqueue/etc related lock issues.
53 *
54 * The rules for this semaphore:
55 * - Any routine that wants to read from the policy structure will
56 * do a down_read on this semaphore.
57 * - Any routine that will write to the policy structure and/or may take away
58 * the policy altogether (eg. CPU hotplug), will hold this lock in write
59 * mode before doing so.
60 *
61 * Additional rules:
62 * - All holders of the lock should check to make sure that the CPU they
63 * are concerned with are online after they get the lock.
64 * - Governor routines that can be called in cpufreq hotplug path should not
65 * take this sem as top level hotplug notifier handler takes this.
66 * - Lock should not be held across
67 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
68 */
69 static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
70 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
71
72 #define lock_policy_rwsem(mode, cpu) \
73 static int lock_policy_rwsem_##mode \
74 (int cpu) \
75 { \
76 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
77 BUG_ON(policy_cpu == -1); \
78 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
79 if (unlikely(!cpu_online(cpu))) { \
80 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
81 return -1; \
82 } \
83 \
84 return 0; \
85 }
86
87 lock_policy_rwsem(read, cpu);
88
89 lock_policy_rwsem(write, cpu);
90
91 static void unlock_policy_rwsem_read(int cpu)
92 {
93 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
94 BUG_ON(policy_cpu == -1);
95 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
96 }
97
98 static void unlock_policy_rwsem_write(int cpu)
99 {
100 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
101 BUG_ON(policy_cpu == -1);
102 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
103 }
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy,
108 unsigned int event);
109 static unsigned int __cpufreq_get(unsigned int cpu);
110 static void handle_update(struct work_struct *work);
111
112 /**
113 * Two notifier lists: the "policy" list is involved in the
114 * validation process for a new CPU frequency policy; the
115 * "transition" list for kernel code that needs to handle
116 * changes to devices when the CPU clock speed changes.
117 * The mutex locks both lists.
118 */
119 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
120 static struct srcu_notifier_head cpufreq_transition_notifier_list;
121
122 static bool init_cpufreq_transition_notifier_list_called;
123 static int __init init_cpufreq_transition_notifier_list(void)
124 {
125 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
126 init_cpufreq_transition_notifier_list_called = true;
127 return 0;
128 }
129 pure_initcall(init_cpufreq_transition_notifier_list);
130
131 static LIST_HEAD(cpufreq_governor_list);
132 static DEFINE_MUTEX(cpufreq_governor_mutex);
133
134 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
135 {
136 struct cpufreq_policy *data;
137 unsigned long flags;
138
139 if (cpu >= nr_cpu_ids)
140 goto err_out;
141
142 /* get the cpufreq driver */
143 spin_lock_irqsave(&cpufreq_driver_lock, flags);
144
145 if (!cpufreq_driver)
146 goto err_out_unlock;
147
148 if (!try_module_get(cpufreq_driver->owner))
149 goto err_out_unlock;
150
151
152 /* get the CPU */
153 data = per_cpu(cpufreq_cpu_data, cpu);
154
155 if (!data)
156 goto err_out_put_module;
157
158 if (!kobject_get(&data->kobj))
159 goto err_out_put_module;
160
161 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
162 return data;
163
164 err_out_put_module:
165 module_put(cpufreq_driver->owner);
166 err_out_unlock:
167 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
168 err_out:
169 return NULL;
170 }
171 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
172
173
174 void cpufreq_cpu_put(struct cpufreq_policy *data)
175 {
176 kobject_put(&data->kobj);
177 module_put(cpufreq_driver->owner);
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
180
181
182 /*********************************************************************
183 * UNIFIED DEBUG HELPERS *
184 *********************************************************************/
185 #ifdef CONFIG_CPU_FREQ_DEBUG
186
187 /* what part(s) of the CPUfreq subsystem are debugged? */
188 static unsigned int debug;
189
190 /* is the debug output ratelimit'ed using printk_ratelimit? User can
191 * set or modify this value.
192 */
193 static unsigned int debug_ratelimit = 1;
194
195 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
196 * loading of a cpufreq driver, temporarily disabled when a new policy
197 * is set, and disabled upon cpufreq driver removal
198 */
199 static unsigned int disable_ratelimit = 1;
200 static DEFINE_SPINLOCK(disable_ratelimit_lock);
201
202 static void cpufreq_debug_enable_ratelimit(void)
203 {
204 unsigned long flags;
205
206 spin_lock_irqsave(&disable_ratelimit_lock, flags);
207 if (disable_ratelimit)
208 disable_ratelimit--;
209 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
210 }
211
212 static void cpufreq_debug_disable_ratelimit(void)
213 {
214 unsigned long flags;
215
216 spin_lock_irqsave(&disable_ratelimit_lock, flags);
217 disable_ratelimit++;
218 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
219 }
220
221 void cpufreq_debug_printk(unsigned int type, const char *prefix,
222 const char *fmt, ...)
223 {
224 char s[256];
225 va_list args;
226 unsigned int len;
227 unsigned long flags;
228
229 WARN_ON(!prefix);
230 if (type & debug) {
231 spin_lock_irqsave(&disable_ratelimit_lock, flags);
232 if (!disable_ratelimit && debug_ratelimit
233 && !printk_ratelimit()) {
234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235 return;
236 }
237 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
238
239 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
240
241 va_start(args, fmt);
242 len += vsnprintf(&s[len], (256 - len), fmt, args);
243 va_end(args);
244
245 printk(s);
246
247 WARN_ON(len < 5);
248 }
249 }
250 EXPORT_SYMBOL(cpufreq_debug_printk);
251
252
253 module_param(debug, uint, 0644);
254 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
255 " 2 to debug drivers, and 4 to debug governors.");
256
257 module_param(debug_ratelimit, uint, 0644);
258 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
259 " set to 0 to disable ratelimiting.");
260
261 #else /* !CONFIG_CPU_FREQ_DEBUG */
262
263 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
264 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
265
266 #endif /* CONFIG_CPU_FREQ_DEBUG */
267
268
269 /*********************************************************************
270 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
271 *********************************************************************/
272
273 /**
274 * adjust_jiffies - adjust the system "loops_per_jiffy"
275 *
276 * This function alters the system "loops_per_jiffy" for the clock
277 * speed change. Note that loops_per_jiffy cannot be updated on SMP
278 * systems as each CPU might be scaled differently. So, use the arch
279 * per-CPU loops_per_jiffy value wherever possible.
280 */
281 #ifndef CONFIG_SMP
282 static unsigned long l_p_j_ref;
283 static unsigned int l_p_j_ref_freq;
284
285 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
286 {
287 if (ci->flags & CPUFREQ_CONST_LOOPS)
288 return;
289
290 if (!l_p_j_ref_freq) {
291 l_p_j_ref = loops_per_jiffy;
292 l_p_j_ref_freq = ci->old;
293 dprintk("saving %lu as reference value for loops_per_jiffy; "
294 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
295 }
296 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
297 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
298 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
299 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
300 ci->new);
301 dprintk("scaling loops_per_jiffy to %lu "
302 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
303 }
304 }
305 #else
306 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
307 {
308 return;
309 }
310 #endif
311
312
313 /**
314 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
315 * on frequency transition.
316 *
317 * This function calls the transition notifiers and the "adjust_jiffies"
318 * function. It is called twice on all CPU frequency changes that have
319 * external effects.
320 */
321 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
322 {
323 struct cpufreq_policy *policy;
324
325 BUG_ON(irqs_disabled());
326
327 freqs->flags = cpufreq_driver->flags;
328 dprintk("notification %u of frequency transition to %u kHz\n",
329 state, freqs->new);
330
331 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
332 switch (state) {
333
334 case CPUFREQ_PRECHANGE:
335 /* detect if the driver reported a value as "old frequency"
336 * which is not equal to what the cpufreq core thinks is
337 * "old frequency".
338 */
339 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
340 if ((policy) && (policy->cpu == freqs->cpu) &&
341 (policy->cur) && (policy->cur != freqs->old)) {
342 dprintk("Warning: CPU frequency is"
343 " %u, cpufreq assumed %u kHz.\n",
344 freqs->old, policy->cur);
345 freqs->old = policy->cur;
346 }
347 }
348 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349 CPUFREQ_PRECHANGE, freqs);
350 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
351 break;
352
353 case CPUFREQ_POSTCHANGE:
354 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
355 dprintk("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
356 (unsigned long)freqs->cpu);
357 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
358 trace_cpu_frequency(freqs->new, freqs->cpu);
359 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
360 CPUFREQ_POSTCHANGE, freqs);
361 if (likely(policy) && likely(policy->cpu == freqs->cpu))
362 policy->cur = freqs->new;
363 break;
364 }
365 }
366 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
367
368
369
370 /*********************************************************************
371 * SYSFS INTERFACE *
372 *********************************************************************/
373
374 static struct cpufreq_governor *__find_governor(const char *str_governor)
375 {
376 struct cpufreq_governor *t;
377
378 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
379 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
380 return t;
381
382 return NULL;
383 }
384
385 /**
386 * cpufreq_parse_governor - parse a governor string
387 */
388 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
389 struct cpufreq_governor **governor)
390 {
391 int err = -EINVAL;
392
393 if (!cpufreq_driver)
394 goto out;
395
396 if (cpufreq_driver->setpolicy) {
397 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
398 *policy = CPUFREQ_POLICY_PERFORMANCE;
399 err = 0;
400 } else if (!strnicmp(str_governor, "powersave",
401 CPUFREQ_NAME_LEN)) {
402 *policy = CPUFREQ_POLICY_POWERSAVE;
403 err = 0;
404 }
405 } else if (cpufreq_driver->target) {
406 struct cpufreq_governor *t;
407
408 mutex_lock(&cpufreq_governor_mutex);
409
410 t = __find_governor(str_governor);
411
412 if (t == NULL) {
413 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
414 str_governor);
415
416 if (name) {
417 int ret;
418
419 mutex_unlock(&cpufreq_governor_mutex);
420 ret = request_module("%s", name);
421 mutex_lock(&cpufreq_governor_mutex);
422
423 if (ret == 0)
424 t = __find_governor(str_governor);
425 }
426
427 kfree(name);
428 }
429
430 if (t != NULL) {
431 *governor = t;
432 err = 0;
433 }
434
435 mutex_unlock(&cpufreq_governor_mutex);
436 }
437 out:
438 return err;
439 }
440
441
442 /**
443 * cpufreq_per_cpu_attr_read() / show_##file_name() -
444 * print out cpufreq information
445 *
446 * Write out information from cpufreq_driver->policy[cpu]; object must be
447 * "unsigned int".
448 */
449
450 #define show_one(file_name, object) \
451 static ssize_t show_##file_name \
452 (struct cpufreq_policy *policy, char *buf) \
453 { \
454 return sprintf(buf, "%u\n", policy->object); \
455 }
456
457 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
458 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
459 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
460 show_one(scaling_min_freq, min);
461 show_one(scaling_max_freq, max);
462 show_one(scaling_cur_freq, cur);
463
464 static int __cpufreq_set_policy(struct cpufreq_policy *data,
465 struct cpufreq_policy *policy);
466
467 /**
468 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
469 */
470 #define store_one(file_name, object) \
471 static ssize_t store_##file_name \
472 (struct cpufreq_policy *policy, const char *buf, size_t count) \
473 { \
474 unsigned int ret = -EINVAL; \
475 struct cpufreq_policy new_policy; \
476 \
477 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
478 if (ret) \
479 return -EINVAL; \
480 \
481 ret = sscanf(buf, "%u", &new_policy.object); \
482 if (ret != 1) \
483 return -EINVAL; \
484 \
485 ret = __cpufreq_set_policy(policy, &new_policy); \
486 policy->user_policy.object = policy->object; \
487 \
488 return ret ? ret : count; \
489 }
490
491 store_one(scaling_min_freq, min);
492 store_one(scaling_max_freq, max);
493
494 /**
495 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
496 */
497 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
498 char *buf)
499 {
500 unsigned int cur_freq = __cpufreq_get(policy->cpu);
501 if (!cur_freq)
502 return sprintf(buf, "<unknown>");
503 return sprintf(buf, "%u\n", cur_freq);
504 }
505
506
507 /**
508 * show_scaling_governor - show the current policy for the specified CPU
509 */
510 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
511 {
512 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
513 return sprintf(buf, "powersave\n");
514 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
515 return sprintf(buf, "performance\n");
516 else if (policy->governor)
517 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
518 policy->governor->name);
519 return -EINVAL;
520 }
521
522
523 /**
524 * store_scaling_governor - store policy for the specified CPU
525 */
526 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
527 const char *buf, size_t count)
528 {
529 unsigned int ret = -EINVAL;
530 char str_governor[16];
531 struct cpufreq_policy new_policy;
532
533 ret = cpufreq_get_policy(&new_policy, policy->cpu);
534 if (ret)
535 return ret;
536
537 ret = sscanf(buf, "%15s", str_governor);
538 if (ret != 1)
539 return -EINVAL;
540
541 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
542 &new_policy.governor))
543 return -EINVAL;
544
545 /* Do not use cpufreq_set_policy here or the user_policy.max
546 will be wrongly overridden */
547 ret = __cpufreq_set_policy(policy, &new_policy);
548
549 policy->user_policy.policy = policy->policy;
550 policy->user_policy.governor = policy->governor;
551
552 if (ret)
553 return ret;
554 else
555 return count;
556 }
557
558 /**
559 * show_scaling_driver - show the cpufreq driver currently loaded
560 */
561 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
562 {
563 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
564 }
565
566 /**
567 * show_scaling_available_governors - show the available CPUfreq governors
568 */
569 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
570 char *buf)
571 {
572 ssize_t i = 0;
573 struct cpufreq_governor *t;
574
575 if (!cpufreq_driver->target) {
576 i += sprintf(buf, "performance powersave");
577 goto out;
578 }
579
580 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
581 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
582 - (CPUFREQ_NAME_LEN + 2)))
583 goto out;
584 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
585 }
586 out:
587 i += sprintf(&buf[i], "\n");
588 return i;
589 }
590
591 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
592 {
593 ssize_t i = 0;
594 unsigned int cpu;
595
596 for_each_cpu(cpu, mask) {
597 if (i)
598 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
599 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
600 if (i >= (PAGE_SIZE - 5))
601 break;
602 }
603 i += sprintf(&buf[i], "\n");
604 return i;
605 }
606
607 /**
608 * show_related_cpus - show the CPUs affected by each transition even if
609 * hw coordination is in use
610 */
611 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
612 {
613 if (cpumask_empty(policy->related_cpus))
614 return show_cpus(policy->cpus, buf);
615 return show_cpus(policy->related_cpus, buf);
616 }
617
618 /**
619 * show_affected_cpus - show the CPUs affected by each transition
620 */
621 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
622 {
623 return show_cpus(policy->cpus, buf);
624 }
625
626 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
627 const char *buf, size_t count)
628 {
629 unsigned int freq = 0;
630 unsigned int ret;
631
632 if (!policy->governor || !policy->governor->store_setspeed)
633 return -EINVAL;
634
635 ret = sscanf(buf, "%u", &freq);
636 if (ret != 1)
637 return -EINVAL;
638
639 policy->governor->store_setspeed(policy, freq);
640
641 return count;
642 }
643
644 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
645 {
646 if (!policy->governor || !policy->governor->show_setspeed)
647 return sprintf(buf, "<unsupported>\n");
648
649 return policy->governor->show_setspeed(policy, buf);
650 }
651
652 /**
653 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
654 */
655 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
656 {
657 unsigned int limit;
658 int ret;
659 if (cpufreq_driver->bios_limit) {
660 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
661 if (!ret)
662 return sprintf(buf, "%u\n", limit);
663 }
664 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
665 }
666
667 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
668 cpufreq_freq_attr_ro(cpuinfo_min_freq);
669 cpufreq_freq_attr_ro(cpuinfo_max_freq);
670 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
671 cpufreq_freq_attr_ro(scaling_available_governors);
672 cpufreq_freq_attr_ro(scaling_driver);
673 cpufreq_freq_attr_ro(scaling_cur_freq);
674 cpufreq_freq_attr_ro(bios_limit);
675 cpufreq_freq_attr_ro(related_cpus);
676 cpufreq_freq_attr_ro(affected_cpus);
677 cpufreq_freq_attr_rw(scaling_min_freq);
678 cpufreq_freq_attr_rw(scaling_max_freq);
679 cpufreq_freq_attr_rw(scaling_governor);
680 cpufreq_freq_attr_rw(scaling_setspeed);
681
682 static struct attribute *default_attrs[] = {
683 &cpuinfo_min_freq.attr,
684 &cpuinfo_max_freq.attr,
685 &cpuinfo_transition_latency.attr,
686 &scaling_min_freq.attr,
687 &scaling_max_freq.attr,
688 &affected_cpus.attr,
689 &related_cpus.attr,
690 &scaling_governor.attr,
691 &scaling_driver.attr,
692 &scaling_available_governors.attr,
693 &scaling_setspeed.attr,
694 NULL
695 };
696
697 struct kobject *cpufreq_global_kobject;
698 EXPORT_SYMBOL(cpufreq_global_kobject);
699
700 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
701 #define to_attr(a) container_of(a, struct freq_attr, attr)
702
703 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
704 {
705 struct cpufreq_policy *policy = to_policy(kobj);
706 struct freq_attr *fattr = to_attr(attr);
707 ssize_t ret = -EINVAL;
708 policy = cpufreq_cpu_get(policy->cpu);
709 if (!policy)
710 goto no_policy;
711
712 if (lock_policy_rwsem_read(policy->cpu) < 0)
713 goto fail;
714
715 if (fattr->show)
716 ret = fattr->show(policy, buf);
717 else
718 ret = -EIO;
719
720 unlock_policy_rwsem_read(policy->cpu);
721 fail:
722 cpufreq_cpu_put(policy);
723 no_policy:
724 return ret;
725 }
726
727 static ssize_t store(struct kobject *kobj, struct attribute *attr,
728 const char *buf, size_t count)
729 {
730 struct cpufreq_policy *policy = to_policy(kobj);
731 struct freq_attr *fattr = to_attr(attr);
732 ssize_t ret = -EINVAL;
733 policy = cpufreq_cpu_get(policy->cpu);
734 if (!policy)
735 goto no_policy;
736
737 if (lock_policy_rwsem_write(policy->cpu) < 0)
738 goto fail;
739
740 if (fattr->store)
741 ret = fattr->store(policy, buf, count);
742 else
743 ret = -EIO;
744
745 unlock_policy_rwsem_write(policy->cpu);
746 fail:
747 cpufreq_cpu_put(policy);
748 no_policy:
749 return ret;
750 }
751
752 static void cpufreq_sysfs_release(struct kobject *kobj)
753 {
754 struct cpufreq_policy *policy = to_policy(kobj);
755 dprintk("last reference is dropped\n");
756 complete(&policy->kobj_unregister);
757 }
758
759 static const struct sysfs_ops sysfs_ops = {
760 .show = show,
761 .store = store,
762 };
763
764 static struct kobj_type ktype_cpufreq = {
765 .sysfs_ops = &sysfs_ops,
766 .default_attrs = default_attrs,
767 .release = cpufreq_sysfs_release,
768 };
769
770 /*
771 * Returns:
772 * Negative: Failure
773 * 0: Success
774 * Positive: When we have a managed CPU and the sysfs got symlinked
775 */
776 static int cpufreq_add_dev_policy(unsigned int cpu,
777 struct cpufreq_policy *policy,
778 struct sys_device *sys_dev)
779 {
780 int ret = 0;
781 #ifdef CONFIG_SMP
782 unsigned long flags;
783 unsigned int j;
784 #ifdef CONFIG_HOTPLUG_CPU
785 struct cpufreq_governor *gov;
786
787 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
788 if (gov) {
789 policy->governor = gov;
790 dprintk("Restoring governor %s for cpu %d\n",
791 policy->governor->name, cpu);
792 }
793 #endif
794
795 for_each_cpu(j, policy->cpus) {
796 struct cpufreq_policy *managed_policy;
797
798 if (cpu == j)
799 continue;
800
801 /* Check for existing affected CPUs.
802 * They may not be aware of it due to CPU Hotplug.
803 * cpufreq_cpu_put is called when the device is removed
804 * in __cpufreq_remove_dev()
805 */
806 managed_policy = cpufreq_cpu_get(j);
807 if (unlikely(managed_policy)) {
808
809 /* Set proper policy_cpu */
810 unlock_policy_rwsem_write(cpu);
811 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
812
813 if (lock_policy_rwsem_write(cpu) < 0) {
814 /* Should not go through policy unlock path */
815 if (cpufreq_driver->exit)
816 cpufreq_driver->exit(policy);
817 cpufreq_cpu_put(managed_policy);
818 return -EBUSY;
819 }
820
821 spin_lock_irqsave(&cpufreq_driver_lock, flags);
822 cpumask_copy(managed_policy->cpus, policy->cpus);
823 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
824 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
825
826 dprintk("CPU already managed, adding link\n");
827 ret = sysfs_create_link(&sys_dev->kobj,
828 &managed_policy->kobj,
829 "cpufreq");
830 if (ret)
831 cpufreq_cpu_put(managed_policy);
832 /*
833 * Success. We only needed to be added to the mask.
834 * Call driver->exit() because only the cpu parent of
835 * the kobj needed to call init().
836 */
837 if (cpufreq_driver->exit)
838 cpufreq_driver->exit(policy);
839
840 if (!ret)
841 return 1;
842 else
843 return ret;
844 }
845 }
846 #endif
847 return ret;
848 }
849
850
851 /* symlink affected CPUs */
852 static int cpufreq_add_dev_symlink(unsigned int cpu,
853 struct cpufreq_policy *policy)
854 {
855 unsigned int j;
856 int ret = 0;
857
858 for_each_cpu(j, policy->cpus) {
859 struct cpufreq_policy *managed_policy;
860 struct sys_device *cpu_sys_dev;
861
862 if (j == cpu)
863 continue;
864 if (!cpu_online(j))
865 continue;
866
867 dprintk("CPU %u already managed, adding link\n", j);
868 managed_policy = cpufreq_cpu_get(cpu);
869 cpu_sys_dev = get_cpu_sysdev(j);
870 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
871 "cpufreq");
872 if (ret) {
873 cpufreq_cpu_put(managed_policy);
874 return ret;
875 }
876 }
877 return ret;
878 }
879
880 static int cpufreq_add_dev_interface(unsigned int cpu,
881 struct cpufreq_policy *policy,
882 struct sys_device *sys_dev)
883 {
884 struct cpufreq_policy new_policy;
885 struct freq_attr **drv_attr;
886 unsigned long flags;
887 int ret = 0;
888 unsigned int j;
889
890 /* prepare interface data */
891 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
892 &sys_dev->kobj, "cpufreq");
893 if (ret)
894 return ret;
895
896 /* set up files for this cpu device */
897 drv_attr = cpufreq_driver->attr;
898 while ((drv_attr) && (*drv_attr)) {
899 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
900 if (ret)
901 goto err_out_kobj_put;
902 drv_attr++;
903 }
904 if (cpufreq_driver->get) {
905 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
906 if (ret)
907 goto err_out_kobj_put;
908 }
909 if (cpufreq_driver->target) {
910 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
911 if (ret)
912 goto err_out_kobj_put;
913 }
914 if (cpufreq_driver->bios_limit) {
915 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
916 if (ret)
917 goto err_out_kobj_put;
918 }
919
920 spin_lock_irqsave(&cpufreq_driver_lock, flags);
921 for_each_cpu(j, policy->cpus) {
922 if (!cpu_online(j))
923 continue;
924 per_cpu(cpufreq_cpu_data, j) = policy;
925 per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
926 }
927 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
928
929 ret = cpufreq_add_dev_symlink(cpu, policy);
930 if (ret)
931 goto err_out_kobj_put;
932
933 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
934 /* assure that the starting sequence is run in __cpufreq_set_policy */
935 policy->governor = NULL;
936
937 /* set default policy */
938 ret = __cpufreq_set_policy(policy, &new_policy);
939 policy->user_policy.policy = policy->policy;
940 policy->user_policy.governor = policy->governor;
941
942 if (ret) {
943 dprintk("setting policy failed\n");
944 if (cpufreq_driver->exit)
945 cpufreq_driver->exit(policy);
946 }
947 return ret;
948
949 err_out_kobj_put:
950 kobject_put(&policy->kobj);
951 wait_for_completion(&policy->kobj_unregister);
952 return ret;
953 }
954
955
956 /**
957 * cpufreq_add_dev - add a CPU device
958 *
959 * Adds the cpufreq interface for a CPU device.
960 *
961 * The Oracle says: try running cpufreq registration/unregistration concurrently
962 * with with cpu hotplugging and all hell will break loose. Tried to clean this
963 * mess up, but more thorough testing is needed. - Mathieu
964 */
965 static int cpufreq_add_dev(struct sys_device *sys_dev)
966 {
967 unsigned int cpu = sys_dev->id;
968 int ret = 0, found = 0;
969 struct cpufreq_policy *policy;
970 unsigned long flags;
971 unsigned int j;
972 #ifdef CONFIG_HOTPLUG_CPU
973 int sibling;
974 #endif
975
976 if (cpu_is_offline(cpu))
977 return 0;
978
979 cpufreq_debug_disable_ratelimit();
980 dprintk("adding CPU %u\n", cpu);
981
982 #ifdef CONFIG_SMP
983 /* check whether a different CPU already registered this
984 * CPU because it is in the same boat. */
985 policy = cpufreq_cpu_get(cpu);
986 if (unlikely(policy)) {
987 cpufreq_cpu_put(policy);
988 cpufreq_debug_enable_ratelimit();
989 return 0;
990 }
991 #endif
992
993 if (!try_module_get(cpufreq_driver->owner)) {
994 ret = -EINVAL;
995 goto module_out;
996 }
997
998 ret = -ENOMEM;
999 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
1000 if (!policy)
1001 goto nomem_out;
1002
1003 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1004 goto err_free_policy;
1005
1006 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1007 goto err_free_cpumask;
1008
1009 policy->cpu = cpu;
1010 cpumask_copy(policy->cpus, cpumask_of(cpu));
1011
1012 /* Initially set CPU itself as the policy_cpu */
1013 per_cpu(cpufreq_policy_cpu, cpu) = cpu;
1014 ret = (lock_policy_rwsem_write(cpu) < 0);
1015 WARN_ON(ret);
1016
1017 init_completion(&policy->kobj_unregister);
1018 INIT_WORK(&policy->update, handle_update);
1019
1020 /* Set governor before ->init, so that driver could check it */
1021 #ifdef CONFIG_HOTPLUG_CPU
1022 for_each_online_cpu(sibling) {
1023 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
1024 if (cp && cp->governor &&
1025 (cpumask_test_cpu(cpu, cp->related_cpus))) {
1026 policy->governor = cp->governor;
1027 found = 1;
1028 break;
1029 }
1030 }
1031 #endif
1032 if (!found)
1033 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1034 /* call driver. From then on the cpufreq must be able
1035 * to accept all calls to ->verify and ->setpolicy for this CPU
1036 */
1037 ret = cpufreq_driver->init(policy);
1038 if (ret) {
1039 dprintk("initialization failed\n");
1040 goto err_unlock_policy;
1041 }
1042 policy->user_policy.min = policy->min;
1043 policy->user_policy.max = policy->max;
1044
1045 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1046 CPUFREQ_START, policy);
1047
1048 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
1049 if (ret) {
1050 if (ret > 0)
1051 /* This is a managed cpu, symlink created,
1052 exit with 0 */
1053 ret = 0;
1054 goto err_unlock_policy;
1055 }
1056
1057 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
1058 if (ret)
1059 goto err_out_unregister;
1060
1061 unlock_policy_rwsem_write(cpu);
1062
1063 kobject_uevent(&policy->kobj, KOBJ_ADD);
1064 module_put(cpufreq_driver->owner);
1065 dprintk("initialization complete\n");
1066 cpufreq_debug_enable_ratelimit();
1067
1068 return 0;
1069
1070
1071 err_out_unregister:
1072 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1073 for_each_cpu(j, policy->cpus)
1074 per_cpu(cpufreq_cpu_data, j) = NULL;
1075 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1076
1077 kobject_put(&policy->kobj);
1078 wait_for_completion(&policy->kobj_unregister);
1079
1080 err_unlock_policy:
1081 unlock_policy_rwsem_write(cpu);
1082 free_cpumask_var(policy->related_cpus);
1083 err_free_cpumask:
1084 free_cpumask_var(policy->cpus);
1085 err_free_policy:
1086 kfree(policy);
1087 nomem_out:
1088 module_put(cpufreq_driver->owner);
1089 module_out:
1090 cpufreq_debug_enable_ratelimit();
1091 return ret;
1092 }
1093
1094
1095 /**
1096 * __cpufreq_remove_dev - remove a CPU device
1097 *
1098 * Removes the cpufreq interface for a CPU device.
1099 * Caller should already have policy_rwsem in write mode for this CPU.
1100 * This routine frees the rwsem before returning.
1101 */
1102 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1103 {
1104 unsigned int cpu = sys_dev->id;
1105 unsigned long flags;
1106 struct cpufreq_policy *data;
1107 struct kobject *kobj;
1108 struct completion *cmp;
1109 #ifdef CONFIG_SMP
1110 struct sys_device *cpu_sys_dev;
1111 unsigned int j;
1112 #endif
1113
1114 cpufreq_debug_disable_ratelimit();
1115 dprintk("unregistering CPU %u\n", cpu);
1116
1117 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1118 data = per_cpu(cpufreq_cpu_data, cpu);
1119
1120 if (!data) {
1121 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122 cpufreq_debug_enable_ratelimit();
1123 unlock_policy_rwsem_write(cpu);
1124 return -EINVAL;
1125 }
1126 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1127
1128
1129 #ifdef CONFIG_SMP
1130 /* if this isn't the CPU which is the parent of the kobj, we
1131 * only need to unlink, put and exit
1132 */
1133 if (unlikely(cpu != data->cpu)) {
1134 dprintk("removing link\n");
1135 cpumask_clear_cpu(cpu, data->cpus);
1136 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1137 kobj = &sys_dev->kobj;
1138 cpufreq_cpu_put(data);
1139 cpufreq_debug_enable_ratelimit();
1140 unlock_policy_rwsem_write(cpu);
1141 sysfs_remove_link(kobj, "cpufreq");
1142 return 0;
1143 }
1144 #endif
1145
1146 #ifdef CONFIG_SMP
1147
1148 #ifdef CONFIG_HOTPLUG_CPU
1149 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1150 CPUFREQ_NAME_LEN);
1151 #endif
1152
1153 /* if we have other CPUs still registered, we need to unlink them,
1154 * or else wait_for_completion below will lock up. Clean the
1155 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1156 * the sysfs links afterwards.
1157 */
1158 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1159 for_each_cpu(j, data->cpus) {
1160 if (j == cpu)
1161 continue;
1162 per_cpu(cpufreq_cpu_data, j) = NULL;
1163 }
1164 }
1165
1166 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1167
1168 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1169 for_each_cpu(j, data->cpus) {
1170 if (j == cpu)
1171 continue;
1172 dprintk("removing link for cpu %u\n", j);
1173 #ifdef CONFIG_HOTPLUG_CPU
1174 strncpy(per_cpu(cpufreq_cpu_governor, j),
1175 data->governor->name, CPUFREQ_NAME_LEN);
1176 #endif
1177 cpu_sys_dev = get_cpu_sysdev(j);
1178 kobj = &cpu_sys_dev->kobj;
1179 unlock_policy_rwsem_write(cpu);
1180 sysfs_remove_link(kobj, "cpufreq");
1181 lock_policy_rwsem_write(cpu);
1182 cpufreq_cpu_put(data);
1183 }
1184 }
1185 #else
1186 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1187 #endif
1188
1189 if (cpufreq_driver->target)
1190 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1191
1192 kobj = &data->kobj;
1193 cmp = &data->kobj_unregister;
1194 unlock_policy_rwsem_write(cpu);
1195 kobject_put(kobj);
1196
1197 /* we need to make sure that the underlying kobj is actually
1198 * not referenced anymore by anybody before we proceed with
1199 * unloading.
1200 */
1201 dprintk("waiting for dropping of refcount\n");
1202 wait_for_completion(cmp);
1203 dprintk("wait complete\n");
1204
1205 lock_policy_rwsem_write(cpu);
1206 if (cpufreq_driver->exit)
1207 cpufreq_driver->exit(data);
1208 unlock_policy_rwsem_write(cpu);
1209
1210 free_cpumask_var(data->related_cpus);
1211 free_cpumask_var(data->cpus);
1212 kfree(data);
1213 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1214
1215 cpufreq_debug_enable_ratelimit();
1216 return 0;
1217 }
1218
1219
1220 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1221 {
1222 unsigned int cpu = sys_dev->id;
1223 int retval;
1224
1225 if (cpu_is_offline(cpu))
1226 return 0;
1227
1228 if (unlikely(lock_policy_rwsem_write(cpu)))
1229 BUG();
1230
1231 retval = __cpufreq_remove_dev(sys_dev);
1232 return retval;
1233 }
1234
1235
1236 static void handle_update(struct work_struct *work)
1237 {
1238 struct cpufreq_policy *policy =
1239 container_of(work, struct cpufreq_policy, update);
1240 unsigned int cpu = policy->cpu;
1241 dprintk("handle_update for cpu %u called\n", cpu);
1242 cpufreq_update_policy(cpu);
1243 }
1244
1245 /**
1246 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1247 * @cpu: cpu number
1248 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1249 * @new_freq: CPU frequency the CPU actually runs at
1250 *
1251 * We adjust to current frequency first, and need to clean up later.
1252 * So either call to cpufreq_update_policy() or schedule handle_update()).
1253 */
1254 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1255 unsigned int new_freq)
1256 {
1257 struct cpufreq_freqs freqs;
1258
1259 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1260 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1261
1262 freqs.cpu = cpu;
1263 freqs.old = old_freq;
1264 freqs.new = new_freq;
1265 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1266 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1267 }
1268
1269
1270 /**
1271 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1272 * @cpu: CPU number
1273 *
1274 * This is the last known freq, without actually getting it from the driver.
1275 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1276 */
1277 unsigned int cpufreq_quick_get(unsigned int cpu)
1278 {
1279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1280 unsigned int ret_freq = 0;
1281
1282 if (policy) {
1283 ret_freq = policy->cur;
1284 cpufreq_cpu_put(policy);
1285 }
1286
1287 return ret_freq;
1288 }
1289 EXPORT_SYMBOL(cpufreq_quick_get);
1290
1291
1292 static unsigned int __cpufreq_get(unsigned int cpu)
1293 {
1294 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1295 unsigned int ret_freq = 0;
1296
1297 if (!cpufreq_driver->get)
1298 return ret_freq;
1299
1300 ret_freq = cpufreq_driver->get(cpu);
1301
1302 if (ret_freq && policy->cur &&
1303 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1304 /* verify no discrepancy between actual and
1305 saved value exists */
1306 if (unlikely(ret_freq != policy->cur)) {
1307 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1308 schedule_work(&policy->update);
1309 }
1310 }
1311
1312 return ret_freq;
1313 }
1314
1315 /**
1316 * cpufreq_get - get the current CPU frequency (in kHz)
1317 * @cpu: CPU number
1318 *
1319 * Get the CPU current (static) CPU frequency
1320 */
1321 unsigned int cpufreq_get(unsigned int cpu)
1322 {
1323 unsigned int ret_freq = 0;
1324 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1325
1326 if (!policy)
1327 goto out;
1328
1329 if (unlikely(lock_policy_rwsem_read(cpu)))
1330 goto out_policy;
1331
1332 ret_freq = __cpufreq_get(cpu);
1333
1334 unlock_policy_rwsem_read(cpu);
1335
1336 out_policy:
1337 cpufreq_cpu_put(policy);
1338 out:
1339 return ret_freq;
1340 }
1341 EXPORT_SYMBOL(cpufreq_get);
1342
1343
1344 /**
1345 * cpufreq_suspend - let the low level driver prepare for suspend
1346 */
1347
1348 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1349 {
1350 int ret = 0;
1351
1352 int cpu = sysdev->id;
1353 struct cpufreq_policy *cpu_policy;
1354
1355 dprintk("suspending cpu %u\n", cpu);
1356
1357 if (!cpu_online(cpu))
1358 return 0;
1359
1360 /* we may be lax here as interrupts are off. Nonetheless
1361 * we need to grab the correct cpu policy, as to check
1362 * whether we really run on this CPU.
1363 */
1364
1365 cpu_policy = cpufreq_cpu_get(cpu);
1366 if (!cpu_policy)
1367 return -EINVAL;
1368
1369 /* only handle each CPU group once */
1370 if (unlikely(cpu_policy->cpu != cpu))
1371 goto out;
1372
1373 if (cpufreq_driver->suspend) {
1374 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1375 if (ret)
1376 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1377 "step on CPU %u\n", cpu_policy->cpu);
1378 }
1379
1380 out:
1381 cpufreq_cpu_put(cpu_policy);
1382 return ret;
1383 }
1384
1385 /**
1386 * cpufreq_resume - restore proper CPU frequency handling after resume
1387 *
1388 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1389 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1390 * restored. It will verify that the current freq is in sync with
1391 * what we believe it to be. This is a bit later than when it
1392 * should be, but nonethteless it's better than calling
1393 * cpufreq_driver->get() here which might re-enable interrupts...
1394 */
1395 static int cpufreq_resume(struct sys_device *sysdev)
1396 {
1397 int ret = 0;
1398
1399 int cpu = sysdev->id;
1400 struct cpufreq_policy *cpu_policy;
1401
1402 dprintk("resuming cpu %u\n", cpu);
1403
1404 if (!cpu_online(cpu))
1405 return 0;
1406
1407 /* we may be lax here as interrupts are off. Nonetheless
1408 * we need to grab the correct cpu policy, as to check
1409 * whether we really run on this CPU.
1410 */
1411
1412 cpu_policy = cpufreq_cpu_get(cpu);
1413 if (!cpu_policy)
1414 return -EINVAL;
1415
1416 /* only handle each CPU group once */
1417 if (unlikely(cpu_policy->cpu != cpu))
1418 goto fail;
1419
1420 if (cpufreq_driver->resume) {
1421 ret = cpufreq_driver->resume(cpu_policy);
1422 if (ret) {
1423 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1424 "step on CPU %u\n", cpu_policy->cpu);
1425 goto fail;
1426 }
1427 }
1428
1429 schedule_work(&cpu_policy->update);
1430
1431 fail:
1432 cpufreq_cpu_put(cpu_policy);
1433 return ret;
1434 }
1435
1436 static struct sysdev_driver cpufreq_sysdev_driver = {
1437 .add = cpufreq_add_dev,
1438 .remove = cpufreq_remove_dev,
1439 .suspend = cpufreq_suspend,
1440 .resume = cpufreq_resume,
1441 };
1442
1443
1444 /*********************************************************************
1445 * NOTIFIER LISTS INTERFACE *
1446 *********************************************************************/
1447
1448 /**
1449 * cpufreq_register_notifier - register a driver with cpufreq
1450 * @nb: notifier function to register
1451 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1452 *
1453 * Add a driver to one of two lists: either a list of drivers that
1454 * are notified about clock rate changes (once before and once after
1455 * the transition), or a list of drivers that are notified about
1456 * changes in cpufreq policy.
1457 *
1458 * This function may sleep, and has the same return conditions as
1459 * blocking_notifier_chain_register.
1460 */
1461 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1462 {
1463 int ret;
1464
1465 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1466
1467 switch (list) {
1468 case CPUFREQ_TRANSITION_NOTIFIER:
1469 ret = srcu_notifier_chain_register(
1470 &cpufreq_transition_notifier_list, nb);
1471 break;
1472 case CPUFREQ_POLICY_NOTIFIER:
1473 ret = blocking_notifier_chain_register(
1474 &cpufreq_policy_notifier_list, nb);
1475 break;
1476 default:
1477 ret = -EINVAL;
1478 }
1479
1480 return ret;
1481 }
1482 EXPORT_SYMBOL(cpufreq_register_notifier);
1483
1484
1485 /**
1486 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1487 * @nb: notifier block to be unregistered
1488 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1489 *
1490 * Remove a driver from the CPU frequency notifier list.
1491 *
1492 * This function may sleep, and has the same return conditions as
1493 * blocking_notifier_chain_unregister.
1494 */
1495 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1496 {
1497 int ret;
1498
1499 switch (list) {
1500 case CPUFREQ_TRANSITION_NOTIFIER:
1501 ret = srcu_notifier_chain_unregister(
1502 &cpufreq_transition_notifier_list, nb);
1503 break;
1504 case CPUFREQ_POLICY_NOTIFIER:
1505 ret = blocking_notifier_chain_unregister(
1506 &cpufreq_policy_notifier_list, nb);
1507 break;
1508 default:
1509 ret = -EINVAL;
1510 }
1511
1512 return ret;
1513 }
1514 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1515
1516
1517 /*********************************************************************
1518 * GOVERNORS *
1519 *********************************************************************/
1520
1521
1522 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1523 unsigned int target_freq,
1524 unsigned int relation)
1525 {
1526 int retval = -EINVAL;
1527
1528 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1529 target_freq, relation);
1530 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1531 retval = cpufreq_driver->target(policy, target_freq, relation);
1532
1533 return retval;
1534 }
1535 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1536
1537 int cpufreq_driver_target(struct cpufreq_policy *policy,
1538 unsigned int target_freq,
1539 unsigned int relation)
1540 {
1541 int ret = -EINVAL;
1542
1543 policy = cpufreq_cpu_get(policy->cpu);
1544 if (!policy)
1545 goto no_policy;
1546
1547 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1548 goto fail;
1549
1550 ret = __cpufreq_driver_target(policy, target_freq, relation);
1551
1552 unlock_policy_rwsem_write(policy->cpu);
1553
1554 fail:
1555 cpufreq_cpu_put(policy);
1556 no_policy:
1557 return ret;
1558 }
1559 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1560
1561 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1562 {
1563 int ret = 0;
1564
1565 policy = cpufreq_cpu_get(policy->cpu);
1566 if (!policy)
1567 return -EINVAL;
1568
1569 if (cpu_online(cpu) && cpufreq_driver->getavg)
1570 ret = cpufreq_driver->getavg(policy, cpu);
1571
1572 cpufreq_cpu_put(policy);
1573 return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1576
1577 /*
1578 * when "event" is CPUFREQ_GOV_LIMITS
1579 */
1580
1581 static int __cpufreq_governor(struct cpufreq_policy *policy,
1582 unsigned int event)
1583 {
1584 int ret;
1585
1586 /* Only must be defined when default governor is known to have latency
1587 restrictions, like e.g. conservative or ondemand.
1588 That this is the case is already ensured in Kconfig
1589 */
1590 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1591 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1592 #else
1593 struct cpufreq_governor *gov = NULL;
1594 #endif
1595
1596 if (policy->governor->max_transition_latency &&
1597 policy->cpuinfo.transition_latency >
1598 policy->governor->max_transition_latency) {
1599 if (!gov)
1600 return -EINVAL;
1601 else {
1602 printk(KERN_WARNING "%s governor failed, too long"
1603 " transition latency of HW, fallback"
1604 " to %s governor\n",
1605 policy->governor->name,
1606 gov->name);
1607 policy->governor = gov;
1608 }
1609 }
1610
1611 if (!try_module_get(policy->governor->owner))
1612 return -EINVAL;
1613
1614 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1615 policy->cpu, event);
1616 ret = policy->governor->governor(policy, event);
1617
1618 /* we keep one module reference alive for
1619 each CPU governed by this CPU */
1620 if ((event != CPUFREQ_GOV_START) || ret)
1621 module_put(policy->governor->owner);
1622 if ((event == CPUFREQ_GOV_STOP) && !ret)
1623 module_put(policy->governor->owner);
1624
1625 return ret;
1626 }
1627
1628
1629 int cpufreq_register_governor(struct cpufreq_governor *governor)
1630 {
1631 int err;
1632
1633 if (!governor)
1634 return -EINVAL;
1635
1636 mutex_lock(&cpufreq_governor_mutex);
1637
1638 err = -EBUSY;
1639 if (__find_governor(governor->name) == NULL) {
1640 err = 0;
1641 list_add(&governor->governor_list, &cpufreq_governor_list);
1642 }
1643
1644 mutex_unlock(&cpufreq_governor_mutex);
1645 return err;
1646 }
1647 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1648
1649
1650 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1651 {
1652 #ifdef CONFIG_HOTPLUG_CPU
1653 int cpu;
1654 #endif
1655
1656 if (!governor)
1657 return;
1658
1659 #ifdef CONFIG_HOTPLUG_CPU
1660 for_each_present_cpu(cpu) {
1661 if (cpu_online(cpu))
1662 continue;
1663 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1664 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1665 }
1666 #endif
1667
1668 mutex_lock(&cpufreq_governor_mutex);
1669 list_del(&governor->governor_list);
1670 mutex_unlock(&cpufreq_governor_mutex);
1671 return;
1672 }
1673 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1674
1675
1676
1677 /*********************************************************************
1678 * POLICY INTERFACE *
1679 *********************************************************************/
1680
1681 /**
1682 * cpufreq_get_policy - get the current cpufreq_policy
1683 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1684 * is written
1685 *
1686 * Reads the current cpufreq policy.
1687 */
1688 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1689 {
1690 struct cpufreq_policy *cpu_policy;
1691 if (!policy)
1692 return -EINVAL;
1693
1694 cpu_policy = cpufreq_cpu_get(cpu);
1695 if (!cpu_policy)
1696 return -EINVAL;
1697
1698 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1699
1700 cpufreq_cpu_put(cpu_policy);
1701 return 0;
1702 }
1703 EXPORT_SYMBOL(cpufreq_get_policy);
1704
1705
1706 /*
1707 * data : current policy.
1708 * policy : policy to be set.
1709 */
1710 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1711 struct cpufreq_policy *policy)
1712 {
1713 int ret = 0;
1714
1715 cpufreq_debug_disable_ratelimit();
1716 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1717 policy->min, policy->max);
1718
1719 memcpy(&policy->cpuinfo, &data->cpuinfo,
1720 sizeof(struct cpufreq_cpuinfo));
1721
1722 if (policy->min > data->max || policy->max < data->min) {
1723 ret = -EINVAL;
1724 goto error_out;
1725 }
1726
1727 /* verify the cpu speed can be set within this limit */
1728 ret = cpufreq_driver->verify(policy);
1729 if (ret)
1730 goto error_out;
1731
1732 /* adjust if necessary - all reasons */
1733 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1734 CPUFREQ_ADJUST, policy);
1735
1736 /* adjust if necessary - hardware incompatibility*/
1737 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1738 CPUFREQ_INCOMPATIBLE, policy);
1739
1740 /* verify the cpu speed can be set within this limit,
1741 which might be different to the first one */
1742 ret = cpufreq_driver->verify(policy);
1743 if (ret)
1744 goto error_out;
1745
1746 /* notification of the new policy */
1747 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1748 CPUFREQ_NOTIFY, policy);
1749
1750 data->min = policy->min;
1751 data->max = policy->max;
1752
1753 dprintk("new min and max freqs are %u - %u kHz\n",
1754 data->min, data->max);
1755
1756 if (cpufreq_driver->setpolicy) {
1757 data->policy = policy->policy;
1758 dprintk("setting range\n");
1759 ret = cpufreq_driver->setpolicy(policy);
1760 } else {
1761 if (policy->governor != data->governor) {
1762 /* save old, working values */
1763 struct cpufreq_governor *old_gov = data->governor;
1764
1765 dprintk("governor switch\n");
1766
1767 /* end old governor */
1768 if (data->governor)
1769 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1770
1771 /* start new governor */
1772 data->governor = policy->governor;
1773 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1774 /* new governor failed, so re-start old one */
1775 dprintk("starting governor %s failed\n",
1776 data->governor->name);
1777 if (old_gov) {
1778 data->governor = old_gov;
1779 __cpufreq_governor(data,
1780 CPUFREQ_GOV_START);
1781 }
1782 ret = -EINVAL;
1783 goto error_out;
1784 }
1785 /* might be a policy change, too, so fall through */
1786 }
1787 dprintk("governor: change or update limits\n");
1788 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1789 }
1790
1791 error_out:
1792 cpufreq_debug_enable_ratelimit();
1793 return ret;
1794 }
1795
1796 /**
1797 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1798 * @cpu: CPU which shall be re-evaluated
1799 *
1800 * Usefull for policy notifiers which have different necessities
1801 * at different times.
1802 */
1803 int cpufreq_update_policy(unsigned int cpu)
1804 {
1805 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1806 struct cpufreq_policy policy;
1807 int ret;
1808
1809 if (!data) {
1810 ret = -ENODEV;
1811 goto no_policy;
1812 }
1813
1814 if (unlikely(lock_policy_rwsem_write(cpu))) {
1815 ret = -EINVAL;
1816 goto fail;
1817 }
1818
1819 dprintk("updating policy for CPU %u\n", cpu);
1820 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1821 policy.min = data->user_policy.min;
1822 policy.max = data->user_policy.max;
1823 policy.policy = data->user_policy.policy;
1824 policy.governor = data->user_policy.governor;
1825
1826 /* BIOS might change freq behind our back
1827 -> ask driver for current freq and notify governors about a change */
1828 if (cpufreq_driver->get) {
1829 policy.cur = cpufreq_driver->get(cpu);
1830 if (!data->cur) {
1831 dprintk("Driver did not initialize current freq");
1832 data->cur = policy.cur;
1833 } else {
1834 if (data->cur != policy.cur)
1835 cpufreq_out_of_sync(cpu, data->cur,
1836 policy.cur);
1837 }
1838 }
1839
1840 ret = __cpufreq_set_policy(data, &policy);
1841
1842 unlock_policy_rwsem_write(cpu);
1843
1844 fail:
1845 cpufreq_cpu_put(data);
1846 no_policy:
1847 return ret;
1848 }
1849 EXPORT_SYMBOL(cpufreq_update_policy);
1850
1851 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1852 unsigned long action, void *hcpu)
1853 {
1854 unsigned int cpu = (unsigned long)hcpu;
1855 struct sys_device *sys_dev;
1856
1857 sys_dev = get_cpu_sysdev(cpu);
1858 if (sys_dev) {
1859 switch (action) {
1860 case CPU_ONLINE:
1861 case CPU_ONLINE_FROZEN:
1862 cpufreq_add_dev(sys_dev);
1863 break;
1864 case CPU_DOWN_PREPARE:
1865 case CPU_DOWN_PREPARE_FROZEN:
1866 if (unlikely(lock_policy_rwsem_write(cpu)))
1867 BUG();
1868
1869 __cpufreq_remove_dev(sys_dev);
1870 break;
1871 case CPU_DOWN_FAILED:
1872 case CPU_DOWN_FAILED_FROZEN:
1873 cpufreq_add_dev(sys_dev);
1874 break;
1875 }
1876 }
1877 return NOTIFY_OK;
1878 }
1879
1880 static struct notifier_block __refdata cpufreq_cpu_notifier = {
1881 .notifier_call = cpufreq_cpu_callback,
1882 };
1883
1884 /*********************************************************************
1885 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1886 *********************************************************************/
1887
1888 /**
1889 * cpufreq_register_driver - register a CPU Frequency driver
1890 * @driver_data: A struct cpufreq_driver containing the values#
1891 * submitted by the CPU Frequency driver.
1892 *
1893 * Registers a CPU Frequency driver to this core code. This code
1894 * returns zero on success, -EBUSY when another driver got here first
1895 * (and isn't unregistered in the meantime).
1896 *
1897 */
1898 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1899 {
1900 unsigned long flags;
1901 int ret;
1902
1903 if (!driver_data || !driver_data->verify || !driver_data->init ||
1904 ((!driver_data->setpolicy) && (!driver_data->target)))
1905 return -EINVAL;
1906
1907 dprintk("trying to register driver %s\n", driver_data->name);
1908
1909 if (driver_data->setpolicy)
1910 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1911
1912 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1913 if (cpufreq_driver) {
1914 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1915 return -EBUSY;
1916 }
1917 cpufreq_driver = driver_data;
1918 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1919
1920 ret = sysdev_driver_register(&cpu_sysdev_class,
1921 &cpufreq_sysdev_driver);
1922 if (ret)
1923 goto err_null_driver;
1924
1925 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1926 int i;
1927 ret = -ENODEV;
1928
1929 /* check for at least one working CPU */
1930 for (i = 0; i < nr_cpu_ids; i++)
1931 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1932 ret = 0;
1933 break;
1934 }
1935
1936 /* if all ->init() calls failed, unregister */
1937 if (ret) {
1938 dprintk("no CPU initialized for driver %s\n",
1939 driver_data->name);
1940 goto err_sysdev_unreg;
1941 }
1942 }
1943
1944 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1945 dprintk("driver %s up and running\n", driver_data->name);
1946 cpufreq_debug_enable_ratelimit();
1947
1948 return 0;
1949 err_sysdev_unreg:
1950 sysdev_driver_unregister(&cpu_sysdev_class,
1951 &cpufreq_sysdev_driver);
1952 err_null_driver:
1953 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1954 cpufreq_driver = NULL;
1955 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1956 return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1959
1960
1961 /**
1962 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1963 *
1964 * Unregister the current CPUFreq driver. Only call this if you have
1965 * the right to do so, i.e. if you have succeeded in initialising before!
1966 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1967 * currently not initialised.
1968 */
1969 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1970 {
1971 unsigned long flags;
1972
1973 cpufreq_debug_disable_ratelimit();
1974
1975 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1976 cpufreq_debug_enable_ratelimit();
1977 return -EINVAL;
1978 }
1979
1980 dprintk("unregistering driver %s\n", driver->name);
1981
1982 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1983 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1984
1985 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1986 cpufreq_driver = NULL;
1987 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1988
1989 return 0;
1990 }
1991 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1992
1993 static int __init cpufreq_core_init(void)
1994 {
1995 int cpu;
1996
1997 for_each_possible_cpu(cpu) {
1998 per_cpu(cpufreq_policy_cpu, cpu) = -1;
1999 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
2000 }
2001
2002 cpufreq_global_kobject = kobject_create_and_add("cpufreq",
2003 &cpu_sysdev_class.kset.kobj);
2004 BUG_ON(!cpufreq_global_kobject);
2005
2006 return 0;
2007 }
2008 core_initcall(cpufreq_core_init);
This page took 0.09091 seconds and 5 git commands to generate.